WO2020110406A1 - 酸化膜形成装置 - Google Patents

酸化膜形成装置 Download PDF

Info

Publication number
WO2020110406A1
WO2020110406A1 PCT/JP2019/034881 JP2019034881W WO2020110406A1 WO 2020110406 A1 WO2020110406 A1 WO 2020110406A1 JP 2019034881 W JP2019034881 W JP 2019034881W WO 2020110406 A1 WO2020110406 A1 WO 2020110406A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxide film
shower head
film
ozone
Prior art date
Application number
PCT/JP2019/034881
Other languages
English (en)
French (fr)
Inventor
直人 亀田
敏徳 三浦
満 花倉
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP2019551404A priority Critical patent/JP6702514B1/ja
Priority to CN201980078450.3A priority patent/CN113196455B/zh
Priority to US17/297,652 priority patent/US11306396B2/en
Priority to KR1020217019238A priority patent/KR102390560B1/ko
Publication of WO2020110406A1 publication Critical patent/WO2020110406A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to an oxide film forming apparatus for supplying a source gas containing an element forming an oxide film to a film formation base to form an oxide film on the film formation base.
  • an inorganic film is formed to protect the surface and add functionality.
  • many of various electric devices have been studied to be flexible, and these are required to be formed on an organic film, for example. Therefore, a low temperature film forming technique capable of forming a film on a low heat resistant substrate such as an organic film has been studied.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a source gas containing a compound having various film-forming elements for example, silane (a generic name for silicon compounds), TEOS (TetraEthyl OrthoSililicate), TMA (TriMethyl Aluminum), tungsten fluoride (WF 6 ), etc.
  • a source gas containing a compound having various film-forming elements for example, silane (a generic name for silicon compounds), TEOS (TetraEthyl OrthoSililicate), TMA (TriMethyl Aluminum), tungsten fluoride (WF 6 ), etc.
  • various reaction gases are added and reacted to deposit a reaction product on the film formation substrate to form a film.
  • This technique is carried out at a high temperature of several hundreds of degrees Celsius or higher in order to accelerate the reaction between gases and to improve the film quality on the film formation substrate. That is, in the chemical vapor deposition method, it is difficult to lower the temperature, and in many cases, the upper temperature limit of the organic material is exceeded.
  • a SiO 2 film is formed on a substrate by using a high concentration ozone gas and TEOS gas at a high temperature of several hundreds of degrees Celsius or more (for example, Patent Document 1).
  • Non-Patent Document 1 a method of forming an oxide film on a substrate on which a film is to be formed, by reacting a reactive raw material generated from a reaction between ozone gas and an unsaturated hydrocarbon with a CVD source gas (for example, Non-Patent Document 1).
  • a film is formed by CVD in the vicinity where ozone gas, unsaturated hydrocarbon and source gas are mixed. Therefore, there is a possibility that the thickness of the oxide film formed on the film formation substrate may be uneven.
  • the present invention has been made in view of the above circumstances, and when forming an oxide film on a deposition target substrate by the reaction of ozone gas, unsaturated hydrocarbon gas, and source gas, the film thickness distribution of the oxide film It is intended to provide a technique for reducing the bias of.
  • an oxide film forming apparatus of the present invention for forming an oxide film on a film-forming substrate, comprising a processing furnace in which the film-forming substrate is disposed, and A shower head provided to face the processing surface of the film-forming substrate; the shower head has a first hole for supplying ozone gas to the film-forming substrate; and an unsaturated hydrocarbon gas for the film-forming substrate.
  • the shower head is provided such that a gas supply surface of the shower head faces the processing surface of the film formation substrate at a distance of 1 mm or more and 100 mm or less, and the first hole and the second hole are formed.
  • the diameter is 0.1 mm or more and 10 mm or less, and the interval between the adjacent first holes and the interval between the adjacent second holes is 1 mm or more and 100 mm or less.
  • the processing furnace includes a first gas supply port to which the ozone gas is supplied and a second gas supply port to which the unsaturated hydrocarbon gas, the raw material gas or the mixed gas is supplied,
  • a first gas buffer space for diffusing the ozone gas is provided between the first gas supply port and the showerhead, and the unsaturated hydrocarbon gas, the first gas buffer space between the second gas supply port and the showerhead.
  • the second gas buffer space for diffusing the source gas or the mixed gas may be provided.
  • first holes are arranged in a rectangular lattice shape at equal intervals in two directions orthogonal to each other along the processing surface, and the second holes are offset from the first holes along the processing surface.
  • the positions may be those arranged in a rectangular lattice shape at equal intervals in the directions parallel to the two directions.
  • the first hole may be formed along the outer peripheral portion of the shower head.
  • the shower head may be a plate detachably provided inside the processing furnace.
  • oxide film forming apparatus for forming an oxide film on a film-forming substrate, wherein a processing furnace in which the film-forming substrate is arranged and a processed surface of the film-forming substrate are provided.
  • a shower head provided opposite to the shower head, wherein the shower head comprises a first slit for supplying ozone gas to the film formation base, and an unsaturated hydrocarbon gas and the oxide film on the film formation base.
  • the two slits are arranged alternately in the lateral direction of the slit.
  • the shower head is provided such that the gas supply surface of the shower head faces the processing surface of the film formation substrate at a distance of 1 mm or more and 100 mm or less, and the first slit and the second slit are provided.
  • the slit width is 0.1 mm or more and 10 mm or less, and the distance between the slit centers of the adjacent first slits and the distance between the slit centers of the adjacent second slits are 1 mm or more and 100 mm or less.
  • the oxide film when the oxide film is formed on the film formation substrate by the reaction of the ozone gas, the unsaturated hydrocarbon gas and the raw material gas, the deviation of the film thickness distribution of the oxide film is reduced.
  • FIG. 3 is a plan view of a shower head included in the oxide film forming apparatus according to the first embodiment of the present invention.
  • FIG. 4A is a diagram showing the result of measuring the thickness of the SiO 2 film in the surface direction
  • FIG. 8B is a diagram showing the result of measuring the film thickness of the SiO 2 film taken along the line AA. It is a diagram illustrating a SiO 2 film thickness measurement result of which is formed without using a showerhead.
  • FIG. 7 is a plan view of a shower head included in the oxide film forming apparatus according to the second embodiment of the present invention.
  • an oxide film forming apparatus will be described in detail with reference to the drawings.
  • an ozone gas having an ozone concentration of 100 vol%, ethylene gas as an unsaturated hydrocarbon gas, TEOS gas as a raw material gas, and nitrogen gas as a carrier gas are shown.
  • an unsaturated hydrocarbon gas, a source gas or a carrier gas, which is described in detail later, is used the oxide film can be similarly formed.
  • an oxide film forming apparatus 1 includes an ozone gas generator 2 (or a cylinder filled with high concentration ozone gas), an ethylene gas cylinder 3, a TEOS gas cylinder 4, and nitrogen.
  • a gas cylinder 5 and a processing furnace 6 (chamber) for performing a film forming process are provided.
  • the ozone gas generator 2 supplies ozone gas to the processing furnace 6.
  • the ozone gas generator 2 is connected to the processing furnace 6 via a pipe 2a.
  • the pipe 2a is provided with a variable flow rate valve V 1 to individually control the flow rate of ozone gas.
  • the flow rate of the pipe 2a is calculated, for example, based on the differential pressure between the primary pressure and the secondary pressure of the valve V 1 and the cross-sectional area of the pipe 2a.
  • the ethylene gas cylinder 3 supplies ethylene gas to the processing furnace 6.
  • the ethylene gas cylinder 3 is connected to the processing furnace 6 via a pipe 3a.
  • the pipe 3a, the valve V 2 of the variable flow rate is provided, the flow control ethylene gas is performed separately.
  • the pipe 3a is equipped with a measuring device such as a mass flow meter for measuring the flow rate of ethylene gas.
  • the TEOS gas cylinder 4 supplies TEOS gas to the processing furnace 6.
  • the TEOS gas cylinder 4 is connected to the processing furnace 6 via a pipe 4a and a pipe 3a.
  • the pipe 4a the is provided a flow rate variable valve V 3, flow rate control of the TEOS gas is performed separately.
  • the flow rate of the TEOS gas is calculated, for example, based on the differential pressure between the primary pressure and the secondary pressure of the valve V 3 and the cross-sectional area of the pipe 4a.
  • a vaporization chamber 7 is provided in the pipe 4a. For example, in the vaporization chamber 7, TEOS is heated to 70° C. or higher, and TEOS which is a liquid at room temperature is vaporized in the vaporization chamber 7 and then supplied to the processing furnace 6.
  • the nitrogen gas cylinder 5 supplies nitrogen gas as a carrier gas for sending the TEOS gas to the processing furnace 6.
  • the carrier gas in addition to nitrogen, for example, an inert gas such as argon is used.
  • the nitrogen gas cylinder 5 is connected to the processing furnace 6 via a pipe 5a, a pipe 4a and a pipe 3a.
  • the pipe 5a is provided with a variable flow rate valve V 4 , and the flow rate of nitrogen gas is individually controlled.
  • the nitrogen gas (and other carrier gas) supplied from the nitrogen gas cylinder 5 can stir or purge the gas in the processing furnace 6.
  • a film-forming substrate 8 on which an oxide film is formed is arranged in the processing furnace 6.
  • an oxide film SiO 2 film in this embodiment
  • the processing furnace 6 is a cold wall furnace because decomposition of ozone and the like on the wall surface of the processing furnace 6 is suppressed.
  • An exhaust pipe 9 is connected to the processing furnace 6.
  • the exhaust pipe 9 is provided with a vacuum pump 10 and an exclusion cylinder 11 for decomposing residual gas after exhaust, and the gas in the processing furnace 6 is released into the atmosphere through the exclusion cylinder 11.
  • the exhaust pipe 9 is provided with a variable flow rate valve V 5 , and the valve V 5 controls the pressure in the processing furnace 6 during the film forming process.
  • Fig. 2 shows the details of the processing furnace 6.
  • the processing furnace 6 includes a furnace housing 6a in which the film formation substrate 8 is arranged, a furnace lid 6b, and a mixed gas diffusion portion 6c.
  • a shield plate 12 is provided on the inner side of the furnace lid 6b inside the furnace housing 6a. Then, the mixed gas diffusion portion 6c is provided on the furnace lid 6b via the shield plate 12.
  • a shower head plate 13 is provided on the surface of the mixed gas diffusion portion 6c opposite to the surface on which the shielding plate 12 is provided.
  • Each component of the processing furnace 6 has, for example, a structure in which the pressure inside the processing furnace 6 is fixed by a vacuum specification that can reach 1 Pa or less.
  • the shielding plate 12 is formed with a hole 12a through which ozone gas passes and a hole 12b through which mixed gas passes. Further, an ozone gas passage portion 14 through which the ozone gas passes is provided on the side of the hole 12a through which the ozone gas passes, where the mixed gas diffusion portion 6c is provided.
  • the ozone gas passage portion 14 is, for example, a tubular member. The ozone gas that has passed through the holes 12a of the shielding plate 12 passes through the ozone gas passage portion 14, so that the ozone gas is provided in the furnace housing 6a without being mixed with other gas in the mixed gas diffusion portion 6c.
  • the furnace housing 6a is formed of, for example, aluminum or SUS material (stainless steel) (the same applies to the furnace lid 6b, the mixed gas diffusion portion 6c, and the shielding plate 12).
  • a sample stage 15 (heating susceptor) is provided in the furnace case 6 a, and the film formation substrate 8 is placed on the sample stage 15.
  • the sample table 15 is made of, for example, quartz glass or SiC material in addition to aluminum or SUS material.
  • a heater (not shown) that heats the sample table 15, for example, a light source that emits infrared rays, which is used as a heating unit in semiconductor manufacturing technology, is applied.
  • the heating means is preferably capable of heating up to about 200° C., for example.
  • the furnace lid 6b is provided so as to close the opening 16 formed in the upper part of the furnace housing 6a.
  • An ozone gas buffer space 17 and a mixed gas passage 18 are formed in the furnace lid 6b.
  • the ozone gas buffer space 17 has an opening on the furnace housing 6a side, and a shielding plate 12 is provided so as to cover the opening.
  • An ozone gas introducing unit 19 to which the pipe 2a is connected is provided above the ozone gas buffer space 17, and ozone gas is supplied from the pipe 2a to the ozone gas buffer space 17 via the ozone gas introducing unit 19.
  • a gas flow diffusion plate 20 is provided in the ozone gas buffer space 17.
  • the mixed gas passage portion 18 is formed so as to penetrate the furnace lid 6b.
  • a pipe 3a is connected to an outer end of the furnace case 6a of the mixed gas passage portion 18. Further, the end portion on the inner side of the furnace casing 6a of the mixed gas passage portion 18 communicates with the inside of the mixed gas diffusion portion 6c through a hole 12b formed in the shielding plate 12. Therefore, the mixed gas obtained by mixing the ethylene gas, the TEOS gas, and the nitrogen gas is supplied from the pipe 3a to the inside of the mixed gas diffusion unit 6c through the mixed gas passage unit 18. At least one mixed gas passage portion 18 is provided around the ozone gas buffer space 17.
  • the mixed gas passages 18 are provided at equal intervals so as to surround the ozone gas buffer space 17, the deviation of the flow rate of the mixed gas is reduced.
  • the flow channel cross-sectional area of the mixed gas passage portion 18 is, for example, the same as the flow channel cross-sectional area of the pipe 3 a connected to the mixed gas passage portion 18.
  • the gas flow diffusion plate 20 has, for example, a circular plate shape, and is arranged so as to face the opening surface of the ozone gas introduction unit 19.
  • the gas flow diffusion plate 20 is provided on the ceiling of the ozone gas buffer space 17 by a hook or the like. It is preferable that the size of the gas flow diffusion plate 20 is larger than the opening surface of the ozone gas introduction part 19 so that the ozone gas flowing from the ozone gas introduction part 19 cannot be directly sprayed to the shielding plate 12. Further, as the gas flow diffusion plate 20 becomes larger, the flow resistance of ozone gas passing near the gas flow diffusion plate 20 increases, so the diameter of the gas flow diffusion plate 20 is, for example, 1 of the cross-sectional area of the ozone gas buffer space 17. About /2 is preferable. Further, the gas flow diffusion plate 20 is provided between the ceiling portion of the ozone gas buffer space 17 and the shielding plate 12 or on the ozone gas introducing portion 19 side with respect to the middle. The thinner the gas flow diffusion plate 20, the more preferable.
  • the mixed gas diffusion portion 6c is a box having an opening at the end contacting the shield plate 12.
  • a mixed gas buffer space 21 is formed by the inner wall surface of the mixed gas diffusion portion 6c and the shield plate 12.
  • a hole 21a through which ozone gas passes and a hole 21b through which mixed gas passes are formed on an end surface of the mixed gas diffusion portion 6c which is in contact with the shower head plate 13.
  • the hole 21a is provided with the ozone gas passage portion 14.
  • the shower head plate 13 is provided so as to face the processing surface of the film formation substrate 8.
  • the shower head plate 13 has holes 13a through which ozone gas passes and holes 13b through which mixed gas passes.
  • the holes 13a and 13b are arranged periodically (in the form of a plane lattice such as a rectangular lattice, an orthorhombic lattice, or a parallel body lattice or a concentric circle).
  • the shower head plate 13 is formed of, for example, quartz glass or SiC material in addition to aluminum or SUS material.
  • the film formation substrate 8 is formed.
  • the thickness of the formed CVD film (SiO 2 film in the embodiment) is less uneven, which is preferable.
  • the holes 13a and 13b of the shower head plate 13 are arranged in a square lattice, for example.
  • the holes 13a are arranged at equal intervals in two directions orthogonal to each other along the processing surface of the film-forming substrate 8 (two d 1 directions depicted in the vertical and horizontal directions in FIG. 3). They are arranged in a rectangular grid.
  • the holes 13b are displaced from the holes 13a along the processing surface of the film-forming substrate 8 (in FIG. 3, half of the arrangement interval of the holes 13a is displaced (to the face center side of the rectangular lattice related to the holes 13a). )), which are parallel to the two directions (in FIG.
  • two d 2 directions depicted in the up, down, left, and right directions in the drawing) are arranged at equal intervals in a rectangular grid pattern.
  • one of the holes 13a and 13b is located at the face center side position of the rectangular lattice, and the other is located (for example, the face center side position of the rectangular lattice related to the hole 13a.
  • the hole 13b is located at the position).
  • the arrangement of the holes 13a and 13b of the shower head plate 13 differs depending on the shape of the film-forming substrate 8.
  • the lattice spacings d 1 and d 2 of the holes 13a and 13b are, for example, preferably 1 mm to 100 mm, more preferably 5 mm to 30 mm.
  • the distance d 3 between the holes 13a and 13b is preferably, for example, 0.7 mm to 71 mm, more preferably 3.5 mm to 22 mm.
  • the intervals d 1 to d 3 are intervals between the centers of the holes 13a and 13b.
  • the hole diameter (diameter ⁇ ) of the holes 13a and 13b is, for example, preferably 0.1 mm to 10 mm, more preferably 0.5 mm to 2 mm.
  • the diameters of the holes 13a and 13b are determined according to the shapes of the ozone gas buffer space 17 and the mixed gas buffer space 21. For example, when the ozone gas buffer space 17 and the mixed gas buffer space 21 cannot be large in size, the gas flow velocity and pressure are likely to be non-uniform, so the hole diameters of the holes 13a and 13b are reduced to increase the pressure loss. As a result, the uniformity of gas distribution in the ozone gas buffer space 17 and the mixed gas buffer space 21 is improved.
  • holes 13a for supplying ozone gas may be formed along the outer periphery of the shower head plate 13, and holes 13a and 13b may be formed inside thereof. That is, by providing the hole 13a through which ozone gas is provided on the outermost side, unreacted substances that are easily adsorbed on the furnace wall of the furnace housing 6a are exposed to ozone. As a result, the reaction between the unreacted material and ozone is promoted, and the adhesion of the unreacted material to the furnace wall of the furnace housing 6a, the inner wall of the exhaust passage, and the like is suppressed.
  • the ozone gas is supplied to the ozone gas introduction part 19 through the pipe 2a.
  • the ozone gas introduced into the ozone gas introduction unit 19 is diffused in the ozone gas buffer space 17.
  • the size of the ozone gas buffer space 17 is designed so that the gas flow rate and pressure of the ozone gas passing through the holes 12a of the shield plate 12 and the ozone gas passages 14 are the same.
  • the volume of the ozone gas buffer space 17 is preferably as large as possible. For example, by setting the volume of the ozone gas buffer space 17 to be 1/2 or more of the space formed between the gas supply surface of the shower head plate 13 and the processing surface of the film formation substrate 8, The distribution of gas flow rate and pressure can be made uniform.
  • the gas flow diffusion plate 20 in the ozone gas buffer space 17, the flow velocity and pressure distribution of the ozone gas passing through each hole 12a of the shield plate 12 and each ozone gas passage portion 14 are made more uniform.
  • the ozone gas that has reached the shower head plate 13 is sprayed onto the film formation substrate 8 through the holes 13a.
  • the mixed gas (a mixed gas of ethylene gas, TEOS gas and nitrogen gas) is introduced into each mixed gas passage portion 18 from the pipe 3a.
  • the mixed gas introduced into the mixed gas passage portion 18 is diffused into the mixed gas buffer space 21.
  • the size of the mixed gas buffer space 21 is designed so that the gas flow and pressure of the mixed gas passing through the holes 21b of the mixed gas diffusion portion 6c and the holes 13b of the shower head plate 13 are uniform.
  • the larger the volume of the mixed gas buffer space 21 is, the more preferable it is. It is possible to make the gas flow rate and the pressure distribution of the gas uniform.
  • the ozone gas and the mixed gas ejected from the shower head plate 13 reach the film formation target substrate 8 while mixing and causing a chemical reaction in the space between the shower head plate 13 and the film formation target substrate 8. Then, the gas provided on the film formation substrate 8 and the gas after the reaction flow in the outer peripheral direction of the film formation substrate 8 and pass through a plurality of exhaust ports 22 provided in the side wall portion of the furnace casing 6a. Is exhausted to the outside of the processing furnace 6.
  • Ozone gas, a raw material gas containing various film-forming elements, and an unsaturated hydrocarbon gas are supplied to the processing furnace 6 in which the film-forming substrate 8 is arranged, and the film-forming substrate 8 is formed by a chemical vapor deposition method (CVD method). An oxide film is formed on top.
  • CVD method chemical vapor deposition method
  • the film-forming substrate 8 is a substrate, a film, or the like.
  • the oxide film forming method using ozone and unsaturated hydrocarbon can form an oxide film at a low temperature, so that not only a substrate having relatively high heat resistance such as a Si substrate but also heat resistance can be compared.
  • An oxide film can be formed on a substrate or film formed of a synthetic resin having a relatively low temperature.
  • the synthetic resin forming the substrate or film include polyester resin, aramid resin, olefin resin, polypropylene, PPS (polyphenylene sulfide), PET (polyethylene terephthalate) and the like.
  • PE polyethylene
  • POM polyoxymethylene or acetal resin
  • PEEK polyether ether ketone
  • ABS resin acrylonitrile, butadiene, styrene copolymer synthetic resin
  • PA polyamide
  • PFA fluorine
  • Polyethylene perfluoroalkoxyethylene copolymer
  • PI polyimide
  • PVD polyvinyl dichloride
  • the ozone concentration (volume% concentration) of ozone gas is preferably 20 to 100 vol%, more preferably 80 to 100 vol%. This is because the closer the ozone concentration is to 100 vol%, the higher the density of the reactive species (OH) generated from ozone can reach the surface of the film-forming substrate.
  • This reactive species (OH) reacts with carbon (C), which is an impurity in the film, in addition to the reaction required for chemical vapor deposition, and this carbon (C) can be removed as a gas. Therefore, by supplying a larger amount of reactive active species (OH) to the surface of the film-forming substrate, it is possible to form an oxide film with less impurities.
  • the higher the ozone concentration that is, the lower the oxygen concentration
  • the longer the life of atomic oxygen (O) generated by separation of ozone tends to be. Therefore, it is preferable to use a high concentration ozone gas. preferable. That is, by increasing the ozone concentration, the oxygen concentration decreases, and deactivation of atomic oxygen (O) due to collision with oxygen molecules is suppressed.
  • the process pressure of the oxide film forming process can be reduced by increasing the ozone concentration, it is preferable to use a high-concentration ozone gas from the viewpoint of gas flow controllability and gas flow improvement.
  • the flow rate of the ozone gas is, for example, preferably 0.2 sccm or more, more preferably 0.2 to 1000 sccm.
  • sccm is 1 atm (1013 hPa) and ccm (cm 3 /min) at 25°C.
  • the flow rate of the ozone gas is set to be at least twice the total flow rate of the unsaturated hydrocarbon gas and the raw material gas, so that the oxide film is formed at a good film formation rate. Can be formed.
  • High-concentration ozone gas can be obtained by liquefying and separating only ozone from the ozone-containing gas based on the difference in vapor pressure, and then vaporizing the liquefied ozone again.
  • An apparatus for obtaining high-concentration ozone gas is disclosed, for example, in Japanese Patent Laid-Open No. 2001-304756 and Japanese Patent Laid-Open No. 2003-20209. These devices that generate high-concentration ozone gas generate high-concentration ozone (ozone concentration ⁇ 100 vol%) by liquefying and separating only ozone based on the difference in vapor pressure between ozone and another gas (for example, oxygen). ing.
  • the source gas is an element that forms an oxide film (for example, lithium (Li), magnesium (Mg), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge), yttrium (Y), zirconium (Zr), molybdenum (Mo), ruthenium ( Ru), rhodium (Rh), indium (In), tin (Sn), tungsten (W), iridium (Ir), platinum (Pt), lead (Pb), etc., and these elements are hereinafter referred to as metals or metal elements.)
  • a raw material gas containing is used as a constituent element.
  • a raw material gas containing an organic silicon having a Si—O bond or a Si—C bond or an organic metal having a metal element-oxygen bond or a metal element-carbon bond, a metal halide, an organometallic complex, silicon or a metal Raw material gas such as hydride is used.
  • silane generally term for hydrogen silicate
  • TEOS TetraEthyl OrthoSillicate
  • TMS TriMthoxySilane
  • TES TriEthoxySilane
  • TMA TriMethylaluminum
  • TEMAZ Tetramethyl
  • TEMAZL Ethyl orchis
  • Tungsten silicide (WF 6 ) or the like is used.
  • a heterogeneous binuclear complex containing not only one kind of metal element but also plural kinds of metal elements can be used as a source gas.
  • the flow rate of the raw material gas is, for example, preferably 0.1 sccm or more, more preferably 0.1 to 500 sccm.
  • the unsaturated hydrocarbon a hydrocarbon having a double bond exemplified by ethylene (alkene) or a hydrocarbon having a triple bond exemplified by acetylene (alkyne) is used.
  • a low molecular weight unsaturated hydrocarbon such as butylene (for example, an unsaturated hydrocarbon having a carbon number n of 4 or less) is preferably used.
  • the flow rate of the unsaturated hydrocarbon gas is, for example, preferably 0.1 sccm or more, more preferably 0.1 to 500 sccm.
  • FIG. 4 shows the film thickness distribution of the SiO 2 film formed by the oxide film forming apparatus 1.
  • the oxide film forming apparatus 1 an apparatus capable of forming a film on the film forming substrate 8 having a diameter of 75 mm was used.
  • a Si substrate was used as the film-forming substrate 8.
  • film formation was performed for 3 minutes at a furnace pressure of the processing furnace 6 of about 30 Pa under the conditions of ozone gas 100 sccm (100 vol% concentration), ethylene gas 64 sccm, TEOS gas 1 sccm, and nitrogen gas 15 sccm.
  • the film thickness distribution within the range shown by the solid line in the figure ( ⁇ 60 mm from the substrate center) was within 5%, and uniformity was achieved. That is, as shown in FIG. 4B, a uniform film thickness was realized at 30 mm from the substrate center, and the film thickness decreased in the periphery of the film as the distance from the substrate center increased. It is considered that this is because in the peripheral portion of the substrate, it takes a long time for the gas ejected from the shower head plate 13 to reach the gas, so that the CVD reaction is partially completed before reaching the gas.
  • FIG. 5 shows the result of forming an oxide film on the deposition target substrate 8 (specifically, an 8-inch Si wafer) by chemical vapor deposition at room temperature (25° C.) without using the shower head plate 13 ( The film thickness distribution (nm) of SiO 2 is shown.
  • the film forming range in FIG. 5 corresponds to the range surrounded by the solid line in FIG.
  • an arrow A indicates a supply position of ozone gas
  • a range B surrounded by a dotted line indicates a supply position of ethylene gas and TEOS gas.
  • the ethylene gas and the TEOS gas were supplied from above the processing surface of the film formation substrate 8 toward the processing surface.
  • the arrow C indicates the position of the exhaust port 22.
  • the formation of the oxide film was performed for 3 minutes at a processing pressure of about 50 Pa in the processing furnace 6 under gas flow conditions in which the flow rate of ozone gas was 100 sccm, the flow rate of ethylene gas was 64 sccm, and the flow rate of TEOS gas was 0.3 sccm.
  • the maximum film thickness of the oxide film was 138 nm, and the maximum film formation rate was 46 nm/min.
  • the oxide film (SiO 2 film) could be formed at a high film formation rate.
  • a film is often formed at a portion where the ozone gas and the mixed gas collide with each other, such as the central portion of the film-forming substrate 8, and an oxide film is formed only about half of the central portion at the end portion on the downstream side of the ozone gas. Was not done. It is considered that this is because the film formation process did not proceed because ozone was consumed by the reaction for forming the oxide film.
  • the oxide film forming apparatus according to the second embodiment of the present invention differs from the oxide film forming apparatus 1 of the first embodiment in the structure of the shower head plate 23. Therefore, the same components as those of the oxide film forming apparatus 1 of the first embodiment are designated by the same reference numerals, and different portions will be described in detail.
  • the shower head plate 23 for supplying the ozone gas or the mixed gas to the film formation substrate 8 has a rectangular ejection hole (slit structure).
  • the oxide film forming apparatus includes a processing furnace 6.
  • the processing furnace 6 includes a furnace housing 6a, a furnace lid 6b, and a mixed gas diffusion portion 6c.
  • a shield plate 12 is provided inside the furnace cover 6b inside the furnace housing 6a, and a mixed gas diffusion portion 6c is provided on the furnace cover 6b via the shield plate 12.
  • a shower head plate 23 is provided on the surface of the mixed gas diffusion portion 6c opposite to the surface on which the shield plate 12 is provided.
  • the shower head plate 23 is provided so as to face the processing surface of the film formation substrate 8.
  • the shower head plate 23 is formed of, for example, quartz glass or SiC material in addition to aluminum or SUS material.
  • the distance L between the end surface (gas supply surface) of the shower head plate 23 and the processing surface of the film-forming substrate 8 is, for example, 1 mm to 100 mm, more preferably 5 mm to 30 mm, so that The thickness of the formed CVD film (SiO 2 film in the embodiment) is less uneven, which is preferable.
  • the shower head plate 23 is formed with a slit 23a through which ozone gas passes and a slit 23b through which a mixed gas (a mixed gas in which ethylene gas, TEOS gas and nitrogen gas are mixed) passes.
  • the slits 23a and 23b are alternately arranged adjacent to each other in the lateral direction of the slits 23a and 23b.
  • the distance d 4 between the slits 23a and 23a and the distance d 5 between the slits 23b and 23b are preferably 1 mm to 100 mm, more preferably 5 mm to 50 mm.
  • the distance d 6 between the slits 23a and the slits 23b is preferably 0.5 mm to 50 mm, more preferably 2.5 mm to 25 mm.
  • the distances d 4 to d 6 are the distances between the centers of the slits.
  • the slit width of the slits 23a and 23b (that is, the width of the openings of the slits 23a and 23b in the lateral direction) is preferably 0.1 mm to 10 mm, more preferably 0.5 mm to 2 mm.
  • the slit widths of the slits 23a and 23b are determined by the shapes of the ozone gas buffer space 17 and the mixed gas buffer space 21. That is, when the space size of the ozone gas buffer space 17 or the mixed gas buffer space 21 cannot be made large and the gas flow velocity and pressure are non-uniform, the slit width of the slit 23a (or the slit 23b) should be reduced to increase the pressure loss.
  • the slit lengths of the slits 23a and 23b are appropriately changed depending on the size of the film formation substrate 8. Further, by providing the slits 23a to which ozone gas is supplied in the outermost (uppermost and lowermost in FIG. 6) slits, the reaction between the ozone gas and the unreacted adsorbent is promoted, and the inner wall of the processing furnace 6 is promoted. And the deposits on the inner wall of the exhaust passage are reduced.
  • the ozone gas passage portion that connects the ozone gas buffer space 17 and the furnace housing 6a is a rectangular parallelepiped channel having the cross section of the slit 23a. Therefore, the mixed gas flowing through the mixed gas buffer space 21 flows so as to bypass the ozone gas passage portion.
  • the mixed gas passage portion 18 formed on the furnace lid 6b is provided so as to sandwich the slits 23a and 23b in the direction in which the slits 23a and 23b are aligned.
  • the mixed gas passage portion 18 is provided in the furnace lid 6b so as to be located above and below in FIG.
  • the shower head structure is provided, and the gas supply surfaces of the shower head plates 13 and 23 and the processing surface of the deposition target substrate 8 are processed.
  • the holes 13a and 13b or the slits 23a and 23b formed in the shower head plates 13 and 23 are set to predetermined values, the film thickness of the oxide film formed on the film-forming substrate 8 is set.
  • the distribution can be made more uniform. That is, since a uniform oxide film can be formed centering on the portion of the substrate 8 to be processed that faces the central portions of the shower head plates 13 and 23, a uniform oxide film is formed at the target position on the film-forming substrate 8. can do.
  • the oxide film forming apparatus not only has a small film-forming substrate 8 having a diameter of 6 cm, but also a large area having a diameter of 10 cm or more, further 30 cm or more. It is suitable as an apparatus for forming an oxide film having a more uniform film thickness distribution on the film forming substrate 8.
  • ozone gas and mixed gas are mixed after passing through the shower head plates 13 and 23 to generate active species. Further, by uniformly supplying the active species and the raw material gas to the processed surface of the film formation base 8, a more uniform oxide film can be formed on the film formation base 8.
  • adsorbed substances are generated on the shower head plates 13 and 23 in the film forming process. Therefore, by equipping the processing furnace 6 with the shower head plates 13 and 23 in a detachable manner, the shower head plates 13 and 23 can be removed periodically to be replaced or washed.
  • an oxide film can be formed on the film-forming substrate 8 at a low temperature of 200° C. or lower.
  • an oxide film can be formed on the film-forming substrate 8 (substrate or film) formed of a material having a low heat resistance temperature (for example, an organic material such as synthetic resin).
  • the oxide film can be formed on the film formation base 8 without using plasma, damage to the film formation base 8 is suppressed.
  • a thin film for example, a base film (mainly an organic thin film) that constitutes an electronic device) is formed in advance before forming an oxide film (for example, a SiO 2 film) on an electronic device or an organic film. Even in this case, the oxide film can be formed on the electronic device or the organic film without damaging the thin film such as dielectric breakdown.
  • the oxide film forming apparatus can form an oxide film at a high film forming rate under a processing condition of 200° C. or lower.
  • the oxide film formed in the example has a withstand voltage of 5 MV/cm, and the oxide film forming method according to the embodiment of the present invention forms an oxide film with excellent withstand voltage and gas barrier property. can do.
  • the temperature at which a film is formed on a material that requires gas barrier properties is 80°C or lower. Therefore, the oxide film forming method according to the embodiment of the present invention can be suitably applied to the oxide film formation for a material required to have a gas barrier property.
  • the oxide film forming apparatus of the present invention has been described above with reference to the specific embodiments, the oxide film forming apparatus of the present invention is not limited to the embodiments and is appropriately designed within a range that does not impair the characteristics thereof. Those that can be changed and whose design has been changed belong to the technical scope of the present invention.
  • the ozone gas is supplied to the central portion of the furnace lid, but it is also possible to supply the mixed gas to the central portion of the furnace lid.
  • the mixed gas may be individually supplied to the processing furnace and mixed in the processing furnace.
  • a gas buffer space similar to that of the embodiment may be provided between each gas supply pipe and the shower head plate.
  • the shower head plate When the shower head plate is provided with holes from which each gas is ejected, the distance between the shower head and the film-forming substrate, the distance between the holes from which ozone gas is ejected and the holes from which unsaturated hydrocarbon gas or source gas is ejected, and By setting the hole diameter from which the gas is ejected to the same range as in the embodiment, a uniform oxide film can be formed on the film formation substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

被成膜基体(8)が配置される炉筐体(6a)と炉蓋(6b)を備える酸化膜形成装置(1)である。炉蓋(6b)の内側に、遮蔽板(12)を介して混合ガス拡散部(6c)を設ける。混合ガス拡散部(6c)に混合ガスバッファ空間(21)を形成する。混合ガス拡散部(6c)にシャワーヘッド板(13)を設ける。炉蓋(6b)にオゾンガスバッファ空間(17)を形成し、オゾンガスバッファ空間(17)にガス流拡散板(20)を備える。シャワーヘッド板(13)に、オゾンガスが通過する孔(13a)と、混合ガスが通過する孔(13b)を形成する。孔(13a、13b)をそれぞれ矩形格子状に配置する。隣り合う孔13a(および隣り合う孔13b)の距離は1mm以上、100mm以下であり、孔(13a、13b)の穴径は0.1mm以上、10mm以下である。

Description

酸化膜形成装置
 本発明は、酸化膜を形成する元素を含む原料ガスを被成膜基体に供給して、被成膜基体に酸化膜を形成する酸化膜形成装置に関する。
 包装用や電子部品、フレキシブルデバイス等に用いられる有機材料では、表面保護や機能性付加のために無機膜の成膜が行われる。また、各種電気デバイスの多くにおいてフレキシブル化が検討されており、これらは、例えば、有機フィルム上での形成が求められる。そこで、有機フィルム等低耐熱基板上で成膜可能な低温成膜技術が検討されている。
 成膜技術としては、化学気相成長(CVD:Chemical Vapor Deposition)や物理気相成長(PVD:Physical Vapor Deposition)等、微細電子デバイスの製造プロセスにおいて、各種絶縁膜や導電膜等の形成に利用されている。一般的に、成膜速度や被覆性の点で、化学気相成長の方が優れている。
 化学気相成長では、各種成膜元素を有する化合物を含む原料ガス(例えば、シラン(ケイ素化合物の総称)、TEOS(TetraEthyl OrthoSillicate)、TMA(TriMethyl Alminium)、フッ化タングステン(WF6))等に、各種反応ガスを加えて反応させ、反応生成物を被成膜基体に堆積させ、膜を形成する。この技術は、ガス間の反応を促進させ、さらに被成膜基体上での膜質向上のために、数百℃以上の高温下で実施される。つまり、化学気相成長法は、低温化が難しく、多くの場合、有機材料の耐熱温度を超えてしまう。
 例えば、高濃度のオゾンガスを化学気相成長の技術に適用した場合でも、高濃度のオゾンガスとTEOSガスを用いて、数百℃以上の高温下で基板上にSiO2膜が形成されている(例えば、特許文献1)。
 低温で、化学気相成長を行い、良い膜質を得るためには、低温でも化学反応性が高い反応活物質の導入が必要となる。例えば、被成膜基体に堆積した被覆膜の酸化を100℃以下で行う手法(例えば、特許文献2)や、有機物の除去を目的としたアッシング技術において、室温での反応を行う手法がある(例えば、特許文献3、4)。これらの手法では、高濃度のオゾンと不飽和炭化水素の反応から生成される反応活性種を利用して、200℃以下の成膜プロセスを実現している。
特開2007-109984号公報 特開2013-207005号公報 特開2008-294170号公報 特開2009-141028号公報 特開2009-191311号公報
ニュースリリース 2018年"世界初 ピュアオゾンを使用し常温で酸化膜を作る技術を確立しました"、[オンライン]、2019年7月31日、株式会社明電舎ホームページ、インターネット、〈https://www.meidensha.co.jp/news/news_03/news_03_01/1227605_2469.html〉
 発明者らは、鋭意検討の結果、オゾンガスと不飽和炭化水素の反応から生成される反応活性種と、CVD原料ガスの反応により、被成膜基体上に酸化膜を形成する方法を発明した(例えば、非特許文献1)。
 この方法では、オゾンガス、不飽和炭化水素および原料ガスが混合された付近で、CVDによる成膜が行われる。よって、被成膜基体上に形成された酸化膜の膜厚に偏りが生じるおそれがある。
 本発明は、上記事情に鑑みてなされたものであり、オゾンガスと、不飽和炭化水素ガスと、原料ガスの反応により被成膜基体上に酸化膜を形成する際に、酸化膜の膜厚分布の偏りを低減する技術を提供することを目的としている。
 上記目的を達成する本発明の酸化膜形成装置の一態様は、被成膜基体に酸化膜を形成する酸化膜形成装置であって、前記被成膜基体が配置される処理炉と、前記被成膜基体の処理面と対向して備えられるシャワーヘッドと、を備え、前記シャワーヘッドは、前記被成膜基体にオゾンガスを供給する第1孔と、前記被成膜基体に不飽和炭化水素ガス、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガス、または、前記不飽和炭化水素ガスと前記原料ガスを混合した混合ガスを供給する第2孔と、を備える。そして、前記シャワーヘッドは、当該シャワーヘッドのガス供給面が前記被成膜基体の処理面に対して1mm以上、100mm以下離れた距離に向かい合って備えられ、前記第1孔および前記第2孔の直径は、0.1mm以上、10mm以下であり、隣り合う第1孔の間隔および隣り合う第2孔の間隔は、1mm以上、100mm以下である。
 また、前記処理炉は、前記オゾンガスが供給される第1ガス供給口と、前記不飽和炭化水素ガス、前記原料ガスまたは前記混合ガスが供給される第2ガス供給口と、を備え、前記第1ガス供給口と前記シャワーヘッドの間には、前記オゾンガスを拡散させる第1ガスバッファ空間が備えられ、前記第2ガス供給口と前記シャワーヘッドの間には、前記不飽和炭化水素ガス、前記原料ガスまたは前記混合ガスを拡散させる第2ガスバッファ空間が備えられたものでも良い。
 また、前記第1孔は、前記処理面に沿って互いに直交する2方向において等間隔で並んで矩形格子状に配置され、前記第2孔は、前記処理面に沿って前記第1孔から偏倚した位置であって、前記2方向にそれぞれ平行な方向において等間隔で並んで矩形格子状に配置されたものでも良い。
 また、前記シャワーヘッドの外周部に沿って、前記第1孔が形成されたものでも良い。
 また、前記シャワーヘッドは、前記処理炉内部に着脱可能に備えられる板であっても良い。
 酸化膜形成装置の他の態様は、被成膜基体に酸化膜を形成する酸化膜形成装置であって、前記被成膜基体が配置される処理炉と、前記被成膜基体の処理面と対向して備えられるシャワーヘッドと、を備え、前記シャワーヘッドは、前記被成膜基体にオゾンガスを供給する第1スリットと、前記被成膜基体に不飽和炭化水素ガス、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガス、または、前記不飽和炭化水素ガスと前記原料ガスを混合した混合ガスを供給する第2スリットと、を備え、前記第1スリットと前記第2スリットは、スリットの短手方向に交互に並んで備えられる。そして、前記シャワーヘッドは、当該シャワーヘッドのガス供給面が前記被成膜基体の処理面に対して1mm以上、100mm以下離れた距離に向かい合って備えられ、前記第1スリットおよび前記第2スリットのスリット幅は、0.1mm以上、10mm以下であり、隣り合う第1スリットのスリット中心間の間隔および隣り合う第2スリットのスリット中心間の間隔は、1mm以上、100mm以下である。
 以上の発明によれば、オゾンガスと、不飽和炭化水素ガスと、原料ガスの反応により被成膜基体上に酸化膜を形成する際に、酸化膜の膜厚分布の偏りが低減する。
本発明の第1実施形態に係る酸化膜形成装置の概略図である。 本発明の第1実施形態に係る酸化膜形成装置の要部断面図である。 本発明の第1実施形態に係る酸化膜形成装置に備えられるシャワーヘッドの平面図である。 (a)SiO2膜の面方向の膜厚計測結果を示す図、(b)SiO2膜のA-A断面における膜厚計測結果を示す図である。 シャワーヘッドを用いずに形成したSiO2膜の膜厚計測結果を示す図である。 本発明の第2実施形態に係る酸化膜形成装置に備えられるシャワーヘッドの平面図である。
 本発明の実施形態に係る酸化膜形成装置について、図面に基づいて詳細に説明する。なお、実施形態の説明では、オゾン濃度が100vol%のオゾンガス、不飽和炭化水素ガスとしてエチレンガスを用い、原料ガスとしてTEOSガス、キャリアガスとして窒素ガスを用いた例を示すが、濃度の異なるオゾンガスや、不飽和炭化水素ガス、原料ガスまたはキャリアガスとして、後に詳述する他のガスを用いた場合も同様に酸化膜を形成することができる。
 図1に示すように、本発明の第1実施形態に係る酸化膜形成装置1は、オゾンガス発生装置2(または、高濃度のオゾンガスが充填されたボンベ)、エチレンガスボンベ3、TEOSガスボンベ4、窒素ガスボンベ5および成膜処理を行う処理炉6(チャンバ)を備える。
 オゾンガス発生装置2は、処理炉6にオゾンガスを供給する。オゾンガス発生装置2は、配管2aを介して処理炉6に接続される。配管2aには、流量可変のバルブV1が設けられ、オゾンガスの流量制御が個別に行われる。配管2aの流量は、例えば、バルブV1の1次圧と2次圧の差圧および配管2aの断面積に基づいて算出される。このようにオゾンガスの流量計測では、圧力差で流量を計測するようなシステムを備えた装置を用いることが好ましい。これは、熱を加える方式の計測装置を用いると、オゾンの分解が起きるためである。
 エチレンガスボンベ3は、処理炉6にエチレンガスを供給する。エチレンガスボンベ3は、配管3aを介して処理炉6に接続される。配管3aには、流量可変のバルブV2が設けられ、エチレンガスの流量制御が個別に行われる。図示していないが、配管3aには、例えば、マスフローメータ等のエチレンガスの流量を計測する計測装置が備えられる。
 TEOSガスボンベ4は、処理炉6にTEOSガスを供給する。TEOSガスボンベ4は、配管4aおよび配管3aを介して処理炉6に接続される。配管4aには、流量可変のバルブV3が設けられ、TEOSガスの流量制御が個別に行われる。TEOSガスの流量は、例えば、バルブV3の1次圧と2次圧の差圧および配管4aの断面積に基づいて算出される。また、配管4aには、気化室7が備えられる。例えば、気化室7では、TEOSが70℃以上に加熱され、常温では液体であるTEOSが気化室7で気化されてから処理炉6に供給される。
 窒素ガスボンベ5は、TEOSガスを処理炉6に送るキャリアガスとして窒素ガスを供給する。キャリアガスとしては、窒素の他に、例えば、アルゴン等の不活性ガスが用いられる。窒素ガスボンベ5は、配管5a、配管4aおよび配管3aを介して処理炉6に接続される。配管5aには、流量可変のバルブV4が設けられ、窒素ガスの流量制御が個別に行われる。窒素ガスボンベ5から供される窒素ガス(および、他のキャリアガス)は、処理炉6内のガスを攪拌またはパージすることもできる。
 処理炉6には、酸化膜が形成される被成膜基体8が配置される。処理炉6において、化学気相成長法により被成膜基体8上に酸化膜(この実施例では、SiO2膜)が形成される。処理炉6が、コールドウォール炉であると、処理炉6壁面でのオゾン等の分解が抑制されるので好ましい。処理炉6には、排気用配管9が接続される。排気用配管9には、真空ポンプ10および排気後の残留ガスを分解するための除外筒11が備えられ、この除外筒11を介して処理炉6内のガスが大気中に放出される。排気用配管9には、流量可変のバルブV5が設けられ、このバルブV5により成膜プロセス中の処理炉6内の圧力が制御される。
 図2に処理炉6の詳細を示す。処理炉6は、被成膜基体8が配置される炉筐体6aと、炉蓋6bと、混合ガス拡散部6cを備える。炉蓋6bの炉筐体6a内部側には、遮蔽板12が設けられる。そして、遮蔽板12を介して炉蓋6bに混合ガス拡散部6cが設けられる。また、混合ガス拡散部6cの遮蔽板12が設けられた面と反対側の面には、シャワーヘッド板13が設けられる。処理炉6を構成する各部品は、例えば、処理炉6内の圧力を1Pa以下に到達可能な真空仕様で固定される構造を有する。
 遮蔽板12には、オゾンガスが通過する孔12aと、混合ガスが通過する孔12bが形成される。また、オゾンガスが通過する孔12aの混合ガス拡散部6cが設けられた側には、オゾンガスが通過するオゾンガス通過部14が備えられる。オゾンガス通過部14は、例えば、筒状の部材である。遮蔽板12の孔12aを通過したオゾンガスがオゾンガス通過部14を通ることで、混合ガス拡散部6c内においてオゾンガスが他のガスと混ざりあうことなく炉筐体6a内に供される。
 炉筐体6aは、例えば、アルミニウムまたはSUS材(ステンレス鋼)により形成される(炉蓋6b、混合ガス拡散部6c、遮蔽板12も同様である)。炉筐体6aには、試料台15(加熱サセプタ)が備えられ、試料台15の上に被成膜基体8が載置される。試料台15は、例えば、アルミニウムまたはSUS材の他、石英ガラスやSiC材により形成される。試料台15を加熱するヒータ(図示せず)は、例えば、半導体製造技術において加熱手段として用いられている赤外線を発する光源が適用される。試料台15を加熱することで、被成膜基体8が所定の温度に加熱される。加熱手段は、例えば、200℃程度まで加熱可能であることが好ましい。
 炉蓋6bは、炉筐体6aの上部に形成された開口16を塞ぐように設けられる。炉蓋6bには、オゾンガスバッファ空間17および混合ガス通過部18が形成される。
 オゾンガスバッファ空間17は、炉筐体6a側に開口を有し、この開口を覆うように遮蔽板12が設けられる。オゾンガスバッファ空間17の上部には、配管2aが接続されるオゾンガス導入部19が備えられ、オゾンガス導入部19を介して配管2aからオゾンガスバッファ空間17にオゾンガスが供給される。また、オゾンガスバッファ空間17には、ガス流拡散板20が備えられる。
 混合ガス通過部18は、炉蓋6bを貫通して形成される。混合ガス通過部18の炉筐体6aの外部側端部には、配管3aが接続される。また、混合ガス通過部18の炉筐体6aの内部側端部は、遮蔽板12に形成された孔12bを介して混合ガス拡散部6cの内部に連通している。したがって、エチレンガス、TEOSガスおよび窒素ガスが混合された混合ガスは、混合ガス通過部18を通って配管3aから混合ガス拡散部6c内部に供給される。混合ガス通過部18は、オゾンガスバッファ空間17の周囲に少なくとも1つ設けられる。なお、混合ガス通過部18を、オゾンガスバッファ空間17を囲むように等間隔に備えると、混合ガスの流量の偏りが低減される。また、混合ガス通過部18の流路断面積は、例えば、混合ガス通過部18に接続される配管3aの流路断面積と同じである。
 ガス流拡散板20は、例えば、円形の板状であり、オゾンガス導入部19の開口面と向かい合うように配置される。ガス流拡散板20は、フック等によりオゾンガスバッファ空間17の天井部に備えられる。ガス流拡散板20の大きさを、オゾンガス導入部19の開口面より大きい面積とすることで、オゾンガス導入部19から流入したオゾンガスが直接遮蔽板12に吹き付けられなく好ましい。また、ガス流拡散板20が大きくなると、ガス流拡散板20の近傍を通過するオゾンガスの流通抵抗が増加するので、ガス流拡散板20の直径は、例えば、オゾンガスバッファ空間17の横断面積の1/2程度が好ましい。また、ガス流拡散板20は、オゾンガスバッファ空間17の天井部と遮蔽板12の中間または中間よりもオゾンガス導入部19側に備えられる。ガス流拡散板20の厚さは、薄いほど好ましい。
 混合ガス拡散部6cは、遮蔽板12と接する端部に開口を有する箱体である。混合ガス拡散部6cの内壁面と遮蔽板12により、混合ガスバッファ空間21が形成される。混合ガス拡散部6cのシャワーヘッド板13と接する端面には、オゾンガスが通過する孔21aと、混合ガスが通過する孔21bが形成される。孔21aには、オゾンガス通過部14が備えられる。
 シャワーヘッド板13は、被成膜基体8の処理面と対向して備えられる。シャワーヘッド板13には、オゾンガスが通過する孔13aと、混合ガスが通過する孔13bが形成される。孔13a、13bは、それぞれ周期的(矩形格子、斜方格子、平行体格子など平面格子状または同心円状)に配置される。シャワーヘッド板13は、例えば、アルミニウムまたはSUS材の他、石英ガラスやSiC材により形成される。シャワーヘッド板13の端面(ガス供給面)と被成膜基体8の処理面との間隔Lを、例えば、1mm~100mm、より好ましくは5mm~30mmとすることで、被成膜基体8上に形成されるCVD膜(実施形態では、SiO2膜)の膜厚の偏りが少なくなり好ましい。
 図3に示すように、シャワーヘッド板13の孔13a、13bは、例えば、正方格子状に配置される。図3の場合、孔13aは、被成膜基体8の処理面に沿って互いに直交する2方向(図3では、図示上下左右方向に描写された2つのd1方向)において等間隔で並んで矩形格子状に配置されている。そして、孔13bは、被成膜基体8の処理面に沿って孔13aから偏倚した位置(図3では、孔13aの配置間隔の半分ずつ偏倚(孔13aに係る矩形格子の面心側に偏倚)した位置)であって、前記2方向にそれぞれ平行な方向(図3では、図示上下左右方向に描写された2つのd2方向)において等間隔で並んで矩形格子状に配置されている。これにより、シャワーヘッド板13においては、孔13a、13bの両者のうち一方の矩形格子の面心側位置に、他方が位置している構成(例えば、孔13aに係る矩形格子の面心側位置に、孔13bが位置している構成)となる。
 シャワーヘッド板13の孔13a、13bの配置態様は、被成膜基体8の形状によって異なる。例えば、被成膜基体8が円形の場合、異なる径を有する円周上であって交互に孔13a、13bが形成される。孔13a、13bの格子間隔d1、d2は、例えば、1mm~100mmが好ましく、5mm~30mmがより好ましい。また、孔13aと孔13bの間隔d3は、例えば、0.7mm~71mmが好ましく、3.5mm~22mmがより好ましい。間隔d1~d3は、孔13a、13bの中心間の間隔である。このように、シャワーヘッド板13の孔13a、13bの間隔寸法を適切に決めることにより、被成膜基体8上に偏りの少ないSiO2膜を形成することができる。
 また、孔13a、13bの穴径(直径φ)は、例えば、0.1mm~10mmが好ましく、0.5mm~2mmがより好ましい。孔13a、13bの穴径は、オゾンガスバッファ空間17と混合ガスバッファ空間21の形状に応じて定められる。例えば、オゾンガスバッファ空間17や混合ガスバッファ空間21サイズを大きく取れない場合は、ガス流速・圧力が不均一となり易いので、孔13a、13bの穴径を小さくして圧損を高める。これにより、オゾンガスバッファ空間17や混合ガスバッファ空間21のガス分布の均一性が向上する。
 なお、シャワーヘッド板13の外周に沿って、オゾンガスが供される孔13aを形成し、その内側に、孔13a、13bを形成してもよい。すなわち、最も外側に、オゾンガスが供される孔13aを設けることで、炉筐体6aの炉壁に吸着しやすい未反応物がオゾンに晒される。その結果、未反応物とオゾンの反応が促進され、炉筐体6aの炉壁や排気路の内壁などへの未反応物の付着が抑制される。
 図2に矢印で示すように、オゾンガスは、配管2aを通過してオゾンガス導入部19に供給される。オゾンガス導入部19に導入されたオゾンガスは、オゾンガスバッファ空間17内に拡散される。オゾンガスバッファ空間17の大きさは、遮蔽板12の各孔12aや各オゾンガス通過部14を通過するオゾンガスのガス流量や圧力が同じとなるよう設計される。オゾンガスバッファ空間17の容積は、大きいほど好ましく、例えば、シャワーヘッド板13のガス供給面と被成膜基体8の処理面の間に形成される空間の1/2以上とすることで、オゾンガスのガス流量や圧力の分布を均一にすることができる。また、オゾンガスバッファ空間17内にガス流拡散板20を設けることで、遮蔽板12の各孔12aや各オゾンガス通過部14を通過するオゾンガスの流速および圧力分布がより均一化される。シャワーヘッド板13に到達したオゾンガスは、孔13aを通って被成膜基体8に吹き付けられる。
 一方、混合ガス(エチレンガス、TEOSガスおよび窒素ガスの混合ガス)は、配管3aから各混合ガス通過部18へ導入される。混合ガス通過部18に導入された混合ガスは、混合ガスバッファ空間21に拡散される。混合ガスバッファ空間21の大きさは、混合ガス拡散部6cの各孔21bおよびシャワーヘッド板13の各孔13bを通過する混合ガスのガス流および圧力が均一となるように設計される。混合ガスバッファ空間21の容積は、大きいほど好ましく、例えば、シャワーヘッド板13のガス供給面と被成膜基体8の処理面の間に形成される空間の1/2以上とすることで、混合ガスのガス流量や圧力の分布を均一にすることができる。
 シャワーヘッド板13から噴出されたオゾンガスおよび混合ガスは、シャワーヘッド板13と被成膜基体8の間の空間で混じり合い化学反応を起こしながら、被成膜基体8に到達する。そして、被成膜基体8上に供されたガスおよび反応後のガスは、被成膜基体8の外周方向に流れ、炉筐体6aの側壁部に備えられた複数の排気口22を通って、処理炉6の外部に排気される。
 ここで、本発明の実施形態に係る酸化膜形成装置1による酸化膜形成方法について、詳細に説明する。
 被成膜基体8が配置された処理炉6に、オゾンガス、各種成膜元素を含む原料ガス、不飽和炭化水素ガスが供給され、化学気相成長法(CVD法)により、被成膜基体8上に酸化膜が形成される。
 被成膜基体8は、基板またはフィルム等である。特に、オゾンと不飽和炭化水素を用いた酸化膜形成方法では、低温で酸化膜を形成することが可能であるので、Si基板等の比較的耐熱性が高い基板だけでなく、耐熱性が比較的低い合成樹脂で形成された基板またはフィルムに酸化膜を形成することができる。基板またはフィルムを形成する合成樹脂としては、例えば、ポリエステル樹脂、アラミド樹脂、オレフィン樹脂、ポリプロピレン、PPS(ポリフェニレンサルファイド)、PET(ポリエチレンテレフタレート)等がある。その他、PE(ポリエチレン)、POM(ポリオキシメチレン、または、アセタール樹脂)、PEEK(ポリエーテルエーテルケトン)、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)、PA(ポリアミド)、PFA(4フッ化エチレン、パーフルオロアルコキシエチレン共重合体)、PI(ポリイミド)、PVD(ポリ二塩化ビニル)等が用いられる。
 オゾンガスは、オゾン濃度が高いほど好ましい。例えば、オゾンガスのオゾン濃度(体積%濃度)は、20~100vol%が好ましく、80~100vol%がより好ましい。これは、オゾン濃度が100vol%に近いほど、オゾンから生成される反応活性種(OH)をより高密度で被成膜基体表面に到達させることができるためである。この反応活性種(OH)は、化学気相成長に必要な反応に加え、膜中不純物のカーボン(C)と反応し、このカーボン(C)をガスとして除去することができる。したがって、より多くの反応活性種(OH)を被成膜基体表面に供給することで、不純物の少ない酸化膜の形成が可能となる。また、オゾン濃度が高いほど(すなわち、酸素濃度が低いほど)、オゾンが分離して発生する原子状酸素(O)の寿命が長くなる傾向があることからも、高濃度のオゾンガスを用いることが好ましい。すなわち、オゾン濃度を高くすることで、酸素濃度が低くなり、原子状酸素(O)が酸素分子との衝突によって失活することが抑制される。また、オゾン濃度を高くすることで、酸化膜形成プロセスのプロセス圧力を減圧にできるため、ガス流制御性・ガス流向上の観点からも、高濃度のオゾンガスを用いることが好ましい。
 オゾンガスの流量は、例えば、0.2sccm以上が好ましく、0.2~1000sccmがより好ましい。sccmは、1atm(1013hPa)、25℃におけるccm(cm3/min)である。また、オゾンガスの流量(供給量)は、不飽和炭化水素ガスの流量(供給量)の2倍以上が好ましい。不飽和炭化水素ガスがOH基へ分解する分解ステップが複数ステップから成るため、オゾン分子:不飽和炭化水素分子=1:1で供給した場合に、反応に必要なオゾン分子が不足し、OH基が十分な量得られないおそれがあるためである。なお、不飽和炭化水素ガスと原料ガスを供給する際には、オゾンガスの流量を不飽和炭化水素ガスと原料ガスの合計流量の2倍以上とすることで、良好な成膜レートで酸化膜を形成することができる。
 高濃度のオゾンガスは、オゾン含有ガスから蒸気圧の差に基づいてオゾンのみを液化分離した後、再び液化したオゾンを気化させて得ることができる。高濃度のオゾンガスを得るための装置は、例えば、特開2001-304756号公報や特開2003-20209号公報の特許文献に開示されている。これらの高濃度のオゾンガスを生成する装置は、オゾンと他のガス(例えば、酸素)の蒸気圧の差に基づきオゾンのみを液化分離して高濃度のオゾン(オゾン濃度≒100vol%)を生成している。特に、オゾンのみを液化および気化させるチャンバを複数備えると、これらのチャンバを個別に温度制御することにより、連続的に高濃度のオゾンガスを供給することができる。なお、高濃度のオゾンガスを生成する市販の装置として、例えば、明電舎製のピュアオゾンジェネレータ(MPOG-HM1A1)がある。
 原料ガスは、酸化膜を形成する元素(例えば、リチウム(Li)、マグネシウム(Mg)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、インジウム(In)、錫(Sn)、タングステン(W)、イリジウム(Ir)、白金(Pt)、鉛(Pb)等、以下これらの元素を金属または金属元素という)を構成元素として含む原料ガスが用いられる。例えば、Si-O結合若しくはSi-C結合を有する有機シリコンまたは金属元素-酸素結合若しくは金属元素-炭素結合を有する有機金属を含有する原料ガスや、金属ハロゲン化物や有機金属錯体またはケイ素や金属の水素化物等の原料ガスが用いられる。具体的には、原料ガスとして、シラン(ケイ化水素の総称)、TEOS(TetraEthyl OrthoSillicate)、TMS(TriMthoxySilane)、TES(TriEthoxySilane)、TMA(TriMethyl Alminium)、TEMAZ(Tetrakis(ethylmethylamino)zirconium)、フッ化タングステン(WF6)等が用いられる。また、金属元素1種類だけでなく複数種類の金属元素を含む異種複核錯体(例えば、特開2016-210742等に記載の錯体)を原料ガスとして用いることもできる。原料ガスの流量は、例えば、0.1sccm以上が好ましく、0.1~500sccmがより好ましい。
 不飽和炭化水素は、エチレンに例示される2重結合を有する炭化水素(アルケン)やアセチレンに例示される3重結合を有する炭化水素(アルキン)が用いられる。不飽和炭化水素としては、エチレンやアセチレンの他に、ブチレン等の低分子量の不飽和炭化水素(例えば、炭素数nが4以下の不飽和炭化水素)が好ましく用いられる。不飽和炭化水素ガスの流量は、例えば、0.1sccm以上が好ましく、0.1~500sccmがより好ましい。
 図4に、酸化膜形成装置1で成膜されたSiO2膜の膜厚分布を示す。酸化膜形成装置1は、φ75mmの被成膜基体8の成膜が可能である装置を用いた。この例では、被成膜基体8としてSi基板を用いた。また、SiO2膜の形成にあたり、オゾンガス100sccm(100vol%濃度)、エチレンガス64sccm、TEOSガス1sccm、窒素ガス15sccmの条件で、処理炉6の炉内圧力30Pa程度で3分成膜を行った。
 図4(a)に示すように、図中実線で示した範囲(基板中心からφ60mm)で膜厚分布が5%以内の均一度が実現できた。すなわち、図4(b)に示すように、基板中心から30mmで均一膜厚が実現し、その周辺では、基板中心から遠くなるに従い膜厚が減少した。これは、基板の周辺部では、ガス到達までにシャワーヘッド板13から噴き出したガスの到達に時間がかかるため、到達前にCVD反応が一部終了してしまっているためであると考えられる。
 図5は、シャワーヘッド板13を用いずに、室温(25℃)で化学気相成長法により被成膜基体8(具体的には、8インチSiウエハ)上に酸化膜を形成した結果(SiO2の膜厚分布(nm))を示す。図5の成膜範囲は、図4中に実線で囲んだ範囲に相当する。図中矢印Aは、オゾンガスの供給位置を示し、点線で囲った範囲Bは、エチレンガスおよびTEOSガスの供給位置を示す。エチレンガスおよびTEOSガスは、被成膜基体8の処理面の上方から処理面に向かうように供給した。また、矢印Cは、排気口22の位置を示す。酸化膜の形成は、オゾンガスの流量を100sccm、エチレンガスの流量を64sccm、TEOSガスの流量を0.3sccmとしたガスの流量条件で、処理炉6の処理圧50Pa程度で、3分間行った。酸化膜の膜厚の最大値は、138nmであり、成膜速度の最大値は、46nm/minであった。
 図5に示すように、シャワーヘッド板13を用いない場合でも、高い成膜速度で酸化膜(SiO2膜)を形成することができた。しかし、例えば、被成膜基体8の中央部のようなオゾンガスと混合ガスがぶつかる箇所での成膜が多く行われ、オゾンガスの下流側の端部では、酸化膜が中央部の半分ほどしか形成されなかった。これは、酸化膜の形成反応によってオゾンが消費されることにより、成膜処理が進行しなかったためと考えられる。
 次に、本発明の第2実施形態に係る酸化膜形成装置について、図6を参照して詳細に説明する。本発明の第2実施形態に係る酸化膜形成装置は、第1実施形態の酸化膜形成装置1とシャワーヘッド板23の構造が異なる。よって、第1実施形態の酸化膜形成装置1と同様の構成については、同じ符号を付し、異なる部分について詳細に説明する。本発明の第2実施形態に係る酸化膜形成装置は、被成膜基体8にオゾンガスや混合ガスを供給するシャワーヘッド板23が長方形の噴出し穴(スリット構造)を有する。
 本発明の第2実施形態に係る酸化膜形成装置は、処理炉6を備える。処理炉6は、炉筐体6aと、炉蓋6bと、混合ガス拡散部6cを備える。炉蓋6bの炉筐体6a内部側には、遮蔽板12が設けられ、この遮蔽板12を介して炉蓋6bに混合ガス拡散部6cが設けられる。また、混合ガス拡散部6cの遮蔽板12が設けられた面と反対側の面には、シャワーヘッド板23が設けられる。
 シャワーヘッド板23は、被成膜基体8の処理面と対向して備えられる。シャワーヘッド板23は、例えば、アルミニウムまたはSUS材の他、石英ガラスやSiC材により形成される。シャワーヘッド板23の端面(ガス供給面)と被成膜基体8の処理面との間隔Lは、例えば、1mm~100mm、より好ましくは5mm~30mmとすることで、被成膜基体8上に形成されるCVD膜(実施形態では、SiO2膜)の膜厚の偏りが少なくなり好ましい。
 図6に示すように、シャワーヘッド板23には、オゾンガスが通過するスリット23aと、混合ガス(エチレンガス、TEOSガスおよび窒素ガスが混合された混合ガス)が通過するスリット23bが形成される。スリット23a、23bは、各スリット23a、23bの短手方向に隣接して交互に配置される。スリット23aとスリット23aの間隔d4およびスリット23bとスリット23bの間隔d5は、1mm~100mmが好ましく、5mm~50mmがより好ましい。また、スリット23aとスリット23bの間隔d6は、0.5mm~50mmが好ましく、2.5mm~25mmがより好ましい。それぞれの間隔d4~d6は、スリットの中心間の間隔である。
 また、スリット23a、23bのスリット幅(すなわち、スリット23a、23bの開口部の短手方向の幅)は、0.1mm~10mmが好ましく、0.5mm~2mmがより好ましい。スリット23a、23bのスリット幅は、オゾンガスバッファ空間17や混合ガスバッファ空間21の形状で決まる。つまり、オゾンガスバッファ空間17や混合ガスバッファ空間21の空間サイズを大きく取れなく、ガス流速・圧力が不均一である場合、スリット23a(または、スリット23b)のスリット幅を小さくして圧損を高めることで、オゾンガスバッファ空間17や混合ガスバッファ空間21のガス分布の均一性が改善される。スリット23a、23bのスリット長は、被成膜基体8のサイズにより適宜変更される。また、最も外側(図6では最上段と最下段)スリットに、オゾンガスが供給されるスリット23aを設けることで、オゾンガスと吸着性のある未反応物との反応が促進され、処理炉6の内壁や排気路の内壁への付着物が低減される。
 なお、シャワーヘッド板23にスリット23a、23bを形成した場合、オゾンガスバッファ空間17と炉筐体6a内を連通するオゾンガス通過部は、スリット23aの断面を有する直方体上の流路となる。したがって、混合ガスバッファ空間21を流れる混合ガスは、このオゾンガス通過部を迂回するように流れることとなる。そして、炉蓋6bに形成される混合ガス通過部18は、スリット23a、23bの並んだ方向であって、スリット23a、23bを挟むように備えられる。例えば、図6中の上下に位置するように混合ガス通過部18が炉蓋6bに備えられる。
 以上のような、本発明の第1、第2実施形態に係る酸化膜形成装置によれば、シャワーヘッド構造を備え、シャワーヘッド板13、23のガス供給面と被成膜基体8の処理面の間の距離と、シャワーヘッド板13、23に形成される孔13a、13bまたはスリット23a、23bを、所定の値とすることで、被成膜基体8上に形成される酸化膜の膜厚分布をより均一にすることができる。つまり、被処理基体8のシャワーヘッド板13、23の中央部と向かい合う部分を中心として均一な酸化膜を形成することができるので、被成膜基体8の狙った位置に均一な酸化膜を形成することができる。その結果、高い成膜速度で酸化膜を形成できるだけでなく、大面積基板に均一な酸化膜を形成することができる。したがって、本発明の第1、第2実施形態に係る酸化膜形成装置は、直径6cmのような小さな被成膜基体8だけでなく、直径10cm以上、さらには直径30cm以上の大面積を有する被成膜基体8上により均一な膜厚分布を有する酸化膜を形成する装置として好適である。
 つまり、オゾンと不飽和炭化水素の反応により形成される活性種は、寿命が短いので、被成膜基体8の表面上で効率よく原料ガスと反応させる必要がある。本発明の第1、第2実施形態に係る酸化膜形成装置では、シャワーヘッド板13、23を通過後にオゾンガスと混合ガスを混合させ活性種を生じさせている。さらに、被成膜基体8の処理面に、この活性種と原料ガスを均等に供給することで、被成膜基体8上により均一な酸化膜を形成することができる。
 また、成膜工程において、シャワーヘッド板13、23に吸着物が発生する。そこで、シャワーヘッド板13、23を処理炉6内に着脱可能に備えることで、定期的にシャワーヘッド板13、23を取り外して交換または洗浄することができる。
 また、本発明の第1、第2実施形態に係る酸化膜形成装置では、200℃以下の低温で被成膜基体8上に酸化膜を形成することができる。その結果、耐熱温度が低い材料(例えば、合成樹脂等の有機材料)により形成された被成膜基体8(基板やフィルム)上に酸化膜を形成することができる。
 また、プラズマを用いることなく、被成膜基体8上に酸化膜を形成することができるので、被成膜基体8の損傷が抑制される。特に、電子デバイスや有機フィルム上に酸化膜(例えば、SiO2膜)を形成する前に、予め薄膜(例えば、電子デバイスを構成する下地膜(主に有機薄膜)等)が形成されている場合であっても、この薄膜に絶縁破壊等のダメージを与えることなく、電子デバイスや有機フィルム上に酸化膜を形成することができる。
 また、本発明の第1、第2実施形態に酸化膜形成装置では、200℃以下の処理条件で、高い成膜速度で酸化膜を形成することができる。また、実施例で形成された酸化膜は、5MV/cmの耐圧性を備えており、本発明の実施形態に係る酸化膜形成方法により、耐圧性に優れ、ガスバリア性に優れた酸化膜を形成することができる。
 従来、ガスバリア性を求められる材料に対する成膜の実施温度は、80℃以下である。したがって、本発明の実施形態に係る酸化膜形成方法は、ガスバリア性を求められる材料に対する酸化膜形成に好適に適用することができる。
 以上、具体的な実施形態を示して本発明の酸化膜形成装置について説明したが、本発明の酸化膜形成装置は、実施形態に限定されるものではなく、その特徴を損なわない範囲で適宜設計変更が可能であり、設計変更されたものも、本発明の技術的範囲に属する。
 例えば、実施形態の説明では、炉蓋の中央部にオゾンガスを供給しているが、炉蓋の中央部に混合ガスを供給する態様とすることもできる。また、混合ガスは、処理炉に個別に供給し、処理炉内で混合する態様とすることもできる。さらには、シャワーヘッド板に、オゾンガス、不飽和炭化水素ガス、原料ガスが噴き出す孔をそれぞれ形成する態様とすることもできる。この場合、それぞれのガス供給配管とシャワーヘッド板の間に実施例と同様のガスバッファ空間を備えてもよい。また、シャワーヘッド板に、各ガスが噴き出す孔をそれぞれ設けた場合、シャワーヘッドと被成膜基体間の距離、オゾンガスが噴き出す孔と不飽和炭化水素ガスや原料ガスが噴き出す孔の距離、および各ガスの噴き出す穴径は、実施例と同じ範囲とすることで、被成膜基体上に均一な酸化膜を形成することができる。

Claims (6)

  1.  被成膜基体に酸化膜を形成する酸化膜形成装置であって、
     前記被成膜基体が配置される処理炉と、
     前記被成膜基体の処理面と対向して備えられるシャワーヘッドと、を備え、
     前記シャワーヘッドは、
     前記被成膜基体にオゾンガスを供給する第1孔と、
     前記被成膜基体に不飽和炭化水素ガス、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガス、または、前記不飽和炭化水素ガスと前記原料ガスを混合した混合ガスを供給する第2孔と、を備え、
     前記シャワーヘッドは、当該シャワーヘッドのガス供給面が前記被成膜基体の処理面に対して1mm以上、100mm以下離れた距離に向かい合って備えられ、
     前記第1孔および前記第2孔の直径は、0.1mm以上、10mm以下であり、
     隣り合う第1孔の間隔および隣り合う第2孔の間隔は、1mm以上、100mm以下である、酸化膜形成装置。
  2.  前記処理炉は、
     前記オゾンガスが供給される第1ガス供給口と、
     前記不飽和炭化水素ガス、前記原料ガスまたは前記混合ガスが供給される第2ガス供給口と、を備え、
     前記第1ガス供給口と前記シャワーヘッドの間には、前記オゾンガスを拡散させる第1ガスバッファ空間が備えられ、
     前記第2ガス供給口と前記シャワーヘッドの間には、前記不飽和炭化水素ガス、前記原料ガスまたは前記混合ガスを拡散させる第2ガスバッファ空間が備えられた、請求項1に記載の酸化膜形成装置。
  3.  前記第1孔は、前記処理面に沿って互いに直交する2方向において等間隔で並んで矩形格子状に配置され、
     前記第2孔は、前記処理面に沿って前記第1孔から偏倚した位置であって、前記2方向にそれぞれ平行な方向において等間隔で並んで矩形格子状に配置された、請求項1または請求項2に記載の酸化膜形成装置。
  4.  前記シャワーヘッドの外周部に沿って、前記第1孔が形成された、請求項1から請求項3のいずれか1項に記載の酸化膜形成装置。
  5.  前記シャワーヘッドは、前記処理炉内部に着脱可能に備えられる板である、請求項1から請求項4のいずれか1項に記載の酸化膜形成装置。
  6.  被成膜基体に酸化膜を形成する酸化膜形成装置であって、
     前記被成膜基体が配置される処理炉と、
     前記被成膜基体の処理面と対向して備えられるシャワーヘッドと、を備え、
     前記シャワーヘッドは、
     前記被成膜基体にオゾンガスを供給する第1スリットと、
     前記被成膜基体に不飽和炭化水素ガス、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガス、または、前記不飽和炭化水素ガスと前記原料ガスを混合した混合ガスを供給する第2スリットと、を備え、
     前記第1スリットと前記第2スリットは、スリットの短手方向に交互に並んで備えられ、
     前記シャワーヘッドは、当該シャワーヘッドのガス供給面が前記被成膜基体の処理面に対して1mm以上、100mm以下離れた距離に向かい合って備えられ、
     前記第1スリットおよび前記第2スリットのスリット幅は、0.1mm以上、10mm以下であり、
     隣り合う第1スリットのスリット中心間の間隔および隣り合う第2スリットのスリット中心間の間隔は、1mm以上、100mm以下である、酸化膜形成装置。
PCT/JP2019/034881 2018-11-30 2019-09-05 酸化膜形成装置 WO2020110406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019551404A JP6702514B1 (ja) 2018-11-30 2019-09-05 酸化膜形成装置
CN201980078450.3A CN113196455B (zh) 2018-11-30 2019-09-05 氧化膜形成装置
US17/297,652 US11306396B2 (en) 2018-11-30 2019-09-05 Oxide film forming device
KR1020217019238A KR102390560B1 (ko) 2018-11-30 2019-09-05 산화막 형성 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-225083 2018-11-30
JP2018225083 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020110406A1 true WO2020110406A1 (ja) 2020-06-04

Family

ID=70852777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034881 WO2020110406A1 (ja) 2018-11-30 2019-09-05 酸化膜形成装置

Country Status (6)

Country Link
US (1) US11306396B2 (ja)
JP (1) JP6702514B1 (ja)
KR (1) KR102390560B1 (ja)
CN (1) CN113196455B (ja)
TW (1) TWI724536B (ja)
WO (1) WO2020110406A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244142A (ja) * 2007-03-27 2008-10-09 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2009088229A (ja) * 2007-09-28 2009-04-23 Tokyo Electron Ltd 成膜装置、成膜方法、記憶媒体及びガス供給装置
JP2013207005A (ja) * 2012-03-28 2013-10-07 Meidensha Corp 酸化膜の形成方法
JP2016108655A (ja) * 2014-12-02 2016-06-20 エーエスエム アイピー ホールディング ビー.ブイ. 成膜装置

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198512A (ja) 1991-10-04 1993-08-06 Ulvac Japan Ltd 光cvd装置
JP2765371B2 (ja) 1992-06-15 1998-06-11 三菱電機株式会社 成膜処理装置
JP3080809B2 (ja) * 1993-04-30 2000-08-28 シャープ株式会社 半導体装置の製造方法
US6200389B1 (en) * 1994-07-18 2001-03-13 Silicon Valley Group Thermal Systems Llc Single body injector and deposition chamber
JPH1055968A (ja) * 1996-08-08 1998-02-24 Nippon Asm Kk 半導体処理装置
JPH10209064A (ja) * 1997-01-23 1998-08-07 Toshiba Ceramics Co Ltd 半導体熱処理用ウエハボート部材及び半導体熱処理用ウエハボート
JP4285885B2 (ja) 2000-04-20 2009-06-24 独立行政法人産業技術総合研究所 オゾン生成装置
US6294483B1 (en) * 2000-05-09 2001-09-25 Taiwan Semiconductor Manufacturing Company Method for preventing delamination of APCVD BPSG films
JP3948913B2 (ja) 2001-07-04 2007-07-25 独立行政法人産業技術総合研究所 オゾン生成装置
JP2003092292A (ja) 2001-09-19 2003-03-28 Sumitomo Precision Prod Co Ltd オゾン処理装置
JP2003092290A (ja) 2001-09-19 2003-03-28 Sumitomo Precision Prod Co Ltd オゾン処理装置
FR2879607B1 (fr) 2004-12-16 2007-03-30 Seppic Sa Nouveaux latex inverse concentre, procede pour sa preparation, et utilisation dans l'industrie
KR100685809B1 (ko) * 2005-01-20 2007-02-22 삼성에스디아이 주식회사 화학 기상 증착 장치
JP4849863B2 (ja) 2005-10-14 2012-01-11 株式会社明電舎 酸化膜形成方法
US7413982B2 (en) * 2006-03-29 2008-08-19 Eastman Kodak Company Process for atomic layer deposition
US7456429B2 (en) * 2006-03-29 2008-11-25 Eastman Kodak Company Apparatus for atomic layer deposition
JP5052071B2 (ja) * 2006-08-25 2012-10-17 株式会社明電舎 酸化膜形成方法とその装置
JP5010234B2 (ja) * 2006-10-23 2012-08-29 北陸成型工業株式会社 ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法
US20080166880A1 (en) * 2007-01-08 2008-07-10 Levy David H Delivery device for deposition
US11136667B2 (en) * 2007-01-08 2021-10-05 Eastman Kodak Company Deposition system and method using a delivery head separated from a substrate by gas pressure
US7789961B2 (en) * 2007-01-08 2010-09-07 Eastman Kodak Company Delivery device comprising gas diffuser for thin film deposition
WO2008114363A1 (ja) 2007-03-16 2008-09-25 Fujitsu Microelectronics Limited 半導体装置の製造装置、および半導体装置の製造方法
JP4905253B2 (ja) 2007-05-23 2012-03-28 株式会社明電舎 レジスト除去方法及びその装置
US8211231B2 (en) * 2007-09-26 2012-07-03 Eastman Kodak Company Delivery device for deposition
US7572686B2 (en) * 2007-09-26 2009-08-11 Eastman Kodak Company System for thin film deposition utilizing compensating forces
US8398770B2 (en) * 2007-09-26 2013-03-19 Eastman Kodak Company Deposition system for thin film formation
CN101889330B (zh) 2007-12-04 2012-11-14 株式会社明电舍 除去抗蚀剂的方法和用于它的装置
JP4968028B2 (ja) 2007-12-04 2012-07-04 株式会社明電舎 レジスト除去装置
JP2009191311A (ja) 2008-02-14 2009-08-27 Mitsui Eng & Shipbuild Co Ltd 原子層成長装置
JP2009239082A (ja) 2008-03-27 2009-10-15 Tokyo Electron Ltd ガス供給装置、処理装置及び処理方法
CN105420688B (zh) * 2008-12-04 2019-01-22 威科仪器有限公司 用于化学气相沉积的进气口元件及其制造方法
US8758512B2 (en) * 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
US20110005682A1 (en) * 2009-07-08 2011-01-13 Stephen Edward Savas Apparatus for Plasma Processing
US20110097489A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Distribution manifold including multiple fluid communication ports
US20110097487A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including bonded plates
US20110097488A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including mirrored finish plate
US20110097491A1 (en) * 2009-10-27 2011-04-28 Levy David H Conveyance system including opposed fluid distribution manifolds
US20110097492A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold operating state management system
US20110097490A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including compliant plates
WO2012051485A1 (en) * 2010-10-16 2012-04-19 Cambridge Nanotech Inc. Ald coating system
TWI624560B (zh) * 2013-02-18 2018-05-21 應用材料股份有限公司 用於原子層沉積的氣體分配板及原子層沉積系統
US11267012B2 (en) * 2014-06-25 2022-03-08 Universal Display Corporation Spatial control of vapor condensation using convection
JP5952461B1 (ja) 2015-05-12 2016-07-13 田中貴金属工業株式会社 異種複核錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR102076467B1 (ko) * 2017-12-19 2020-02-13 주식회사 테스 박막증착장치
US11104988B2 (en) * 2018-02-22 2021-08-31 Universal Display Corporation Modular confined organic print head and system
US10916704B2 (en) * 2018-04-03 2021-02-09 Universal Display Corporation Vapor jet printing
US11121320B2 (en) * 2018-06-18 2021-09-14 Universal Display Corporation Organic vapor jet print head with redundant groups of depositors
JP6575641B1 (ja) * 2018-06-28 2019-09-18 株式会社明電舎 シャワーヘッドおよび処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244142A (ja) * 2007-03-27 2008-10-09 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2009088229A (ja) * 2007-09-28 2009-04-23 Tokyo Electron Ltd 成膜装置、成膜方法、記憶媒体及びガス供給装置
JP2013207005A (ja) * 2012-03-28 2013-10-07 Meidensha Corp 酸化膜の形成方法
JP2016108655A (ja) * 2014-12-02 2016-06-20 エーエスエム アイピー ホールディング ビー.ブイ. 成膜装置

Also Published As

Publication number Publication date
US11306396B2 (en) 2022-04-19
US20220010432A1 (en) 2022-01-13
KR20210088722A (ko) 2021-07-14
CN113196455A (zh) 2021-07-30
TWI724536B (zh) 2021-04-11
JPWO2020110406A1 (ja) 2021-02-15
TW202022151A (zh) 2020-06-16
CN113196455B (zh) 2023-06-13
KR102390560B1 (ko) 2022-04-26
JP6702514B1 (ja) 2020-06-03

Similar Documents

Publication Publication Date Title
KR101324367B1 (ko) 성막 장치, 성막 방법 및 컴퓨터 판독 가능 기억 매체
US8197599B2 (en) Gas head and thin-film manufacturing apparatus
WO2020170482A1 (ja) 原子層堆積方法および原子層堆積装置
JP6569831B1 (ja) 酸化膜形成方法
KR20150060583A (ko) 저온 ald 막들을 위한 챔버 언더코팅 준비 방법
JP2005303292A (ja) 薄膜形成装置
TWI717669B (zh) 氧化膜形成方法
JP6860048B2 (ja) 原子層堆積方法
US20240344200A1 (en) Oxide film forming device
US20220364235A1 (en) Atomic layer deposition method and atomic layer deposition device
JP6702514B1 (ja) 酸化膜形成装置
KR20180054448A (ko) 성막 장치
WO2024018811A1 (ja) 酸化膜形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019551404

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217019238

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19888870

Country of ref document: EP

Kind code of ref document: A1