WO2020110289A1 - 制御装置及び空気調和装置 - Google Patents

制御装置及び空気調和装置 Download PDF

Info

Publication number
WO2020110289A1
WO2020110289A1 PCT/JP2018/044169 JP2018044169W WO2020110289A1 WO 2020110289 A1 WO2020110289 A1 WO 2020110289A1 JP 2018044169 W JP2018044169 W JP 2018044169W WO 2020110289 A1 WO2020110289 A1 WO 2020110289A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
outdoor
subcooling
degree
Prior art date
Application number
PCT/JP2018/044169
Other languages
English (en)
French (fr)
Inventor
裕昭 金子
章太郎 山本
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/044169 priority Critical patent/WO2020110289A1/ja
Priority to JP2019511510A priority patent/JP6557918B1/ja
Priority to CN201880019142.9A priority patent/CN111512102B/zh
Priority to EP18867314.9A priority patent/EP3889521A4/en
Priority to US16/444,162 priority patent/US11204188B2/en
Publication of WO2020110289A1 publication Critical patent/WO2020110289A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a control device and an air conditioner.
  • an imbalance may occur in the amount of refrigerant in the condenser of the outdoor unit when determining the amount of refrigerant in the refrigerant charging operation, and it may not be possible to determine an appropriate amount of refrigerant in the refrigeration cycle.
  • Patent Document 1 as the refrigerant amount balance control between the outdoor units, the degree of supercooling at the condenser outlet of the outdoor unit is determined, and the rotation speed of the compressor on the side with the lower degree of supercooling is changed to the side with the higher degree of supercooling.
  • the compressor and an example in which the fan rotation speed on the side with a low degree of supercooling is set higher than the fan rotation speed on the side with a high degree of supercooling.
  • Patent Document 1 on the assumption that the degree of supercooling can be appropriately obtained at the condenser outlet of each outdoor unit, the amount of refrigerant at the time of refrigerant charging operation is determined using the degree of subcooling at the condenser outlet of the outdoor unit. is doing.
  • the degree of subcooling at the condenser outlet of the outdoor unit cannot be appropriately obtained.
  • the amount of refrigerant during the refrigerant charging operation cannot be properly determined.
  • an object of the present invention is to make it possible to appropriately determine the amount of the refrigerant filled in the refrigerant circuit.
  • the present invention is a control device for an air conditioner having a plurality of outdoor units and an indoor unit connected to the plurality of outdoor units by piping, and to a refrigerant circuit including the plurality of outdoor units and the indoor unit.
  • the subcooling at the outlet of the subcooling circuit of each of the outdoor units is performed based on the temperature detected by the temperature sensor that detects the temperature of the refrigerant that has passed through the subcooling circuit of each of the outdoor units.
  • Degree the target value of the degree of supercooling is obtained based on the obtained plurality of degree of supercooling, and the degree of supercooling is adjusted so that the difference in degree of supercooling at the outlet of the subcooling circuit of each of the outdoor units becomes small.
  • the amount of the refrigerant filled in the refrigerant circuit can be appropriately determined.
  • FIG. 1 It is a figure which shows an example of a schematic structure of the air conditioning apparatus of Embodiment 1. It is a figure which shows an example of the hardware constitutions of a control part. It is a flow chart which shows an example of information processing.
  • 6 is a flowchart illustrating an example of a refrigerant amount balance control process according to the first embodiment.
  • 9 is a flowchart illustrating an example of a refrigerant amount balance control process according to the second embodiment.
  • 9 is a flowchart showing an example of a refrigerant amount balance control process of the third embodiment.
  • 13 is a flowchart showing an example of a refrigerant amount balance control process of the fourth embodiment.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of the air conditioning apparatus of the first embodiment.
  • the outdoor units 10a, 10b and the indoor units 40a, 40b, 40c, 40d are connected by the liquid pipe 31 and the gas pipe 30 to form a closed circuit.
  • Refrigerant is enclosed in this closed circuit, and the refrigeration cycle is realized by circulating the refrigerant.
  • the number of connected outdoor units 10 may be plural, and may be more than two.
  • the number of connected indoor units 40 may be one.
  • the outdoor unit 10a is an example of a control device for an air conditioner.
  • the outdoor unit 10a includes a compressor 11a whose rotation frequency can be varied by an inverter, a four-way valve (reversible valve) 12a, an outdoor heat exchanger 13a for exchanging heat with outdoor air, and a refrigerant flow rate of the outdoor heat exchanger 13a.
  • An outdoor expansion valve 14a configured by an electronic expansion valve or the like for adjustment, a supercooling circuit 20a, a gas blocking valve 16a, a liquid blocking valve 17a, etc. are connected by piping.
  • the outdoor unit 10a is provided with a supercooling bypass pipe 22a as a cooling source of the supercooling circuit 20a.
  • the supercooling bypass pipe 22a is provided so as to return a part of the refrigerant sent from the outdoor expansion valve 14a to the liquid pipe 31 to the compressor 11a. More specifically, the supercooling bypass pipe 22a is provided so as to be connected between the outdoor expansion valve 14a and the supercooling circuit 20a, the supercooling circuit 20a, and the suction port side of the compressor 11a. Further, the subcooling bypass pipe 22a is provided with a subcooling expansion valve 23a for adjusting the flow rate of the refrigerant flowing through the subcooling bypass pipe 22a.
  • a supercooling circuit outlet temperature sensor 60a is provided in the pipe near the outlet of the supercooling circuit 20a.
  • the supercooling circuit outlet temperature sensor 60a detects the temperature of the refrigerant in the pipe near the outlet of the supercooling circuit 20a.
  • the supercooling bypass pipe 22a is provided with a refrigerant charging port 81a which is a refrigerant charging port, and a refrigerant charging electromagnetic valve 80a for refrigerant charging is provided downstream of the refrigerant charging port 81a.
  • a refrigerant cylinder filled with a refrigerant is connected to the refrigerant filling port 81a via a filling hose.
  • a high pressure sensor 62a for detecting the pressure of the gas refrigerant discharged from the compressor 11a is provided in the discharge side pipe of the compressor 11a.
  • the outdoor unit 10a is also provided with a control unit 70a that controls the operation of the outdoor unit 10a.
  • the control unit 70a controls the outdoor fan 15a, the high pressure sensor 62a, the outdoor expansion valve 14a, the subcooling expansion valve 23a, the subcooling circuit outlet temperature sensor 60a, the compressor 11a, the refrigerant charging solenoid valve 80a, and the outdoor unit 10b.
  • 70b is connected via a signal line so that a signal can be sent and a signal can be received.
  • the configuration of the outdoor unit 10b is similar to that of the outdoor unit 10a.
  • the control unit 70a sends a signal to the control unit 70b and also controls the outdoor unit 10b via the control unit 70b.
  • the indoor unit 40a is connected to an indoor heat exchanger 41a for exchanging heat with indoor air, and an indoor expansion valve 42a configured by an electronic expansion valve or the like for adjusting the refrigerant flow rate of the indoor heat exchanger 41a.
  • an indoor expansion valve 42a configured by an electronic expansion valve or the like for adjusting the refrigerant flow rate of the indoor heat exchanger 41a.
  • the configurations of the indoor unit 40b, the indoor unit 40c, and the indoor unit 40d are similar to the configuration of the indoor unit 40a.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the control unit 70a.
  • the control unit 70a includes a CPU 201, a storage unit 202, an input unit 203, a display unit 204, and a communication unit 205.
  • the CPU 201 reads a program stored in the storage unit 202 and executes processing.
  • the storage unit 202 is used as a primary storage area such as a main memory and a work area when the CPU 201 executes a process, and stores data (for example, each threshold value described later) and a program used when the CPU 201 executes the process.
  • the storage unit 202 is an example of a storage medium.
  • the input unit 203 is, for example, a button or the like, receives an operation by the user, and inputs it to the CPU 201.
  • the display unit 204 is, for example, a display or the like, and displays the result of processing by the CPU 201.
  • the communication unit 205 communicates with the outdoor unit 10b and the like via a signal line.
  • the functions and processing of the control unit 70a are realized by the CPU 201 executing processing based on a program stored in the storage unit 202. As another example, a part of the function and processing of the control unit 70a may be realized by using a hardware circuit.
  • the hardware configuration of the control unit 70b is similar to that of the control unit 70a.
  • the control unit 70a performs processing for balancing the amount of refrigerant between the outdoor units 10a and 10b when the air conditioner is being charged with refrigerant. At the time of charging the refrigerant, it is necessary to determine whether or not the amount of the refrigerant filled in the air conditioner is appropriate, and when determining the amount of the refrigerant, the amounts of the refrigerant between the outdoor units 10a and 10b need to be balanced. There is. However, there are cases where the amounts of refrigerant in the outdoor units are not balanced due to external factors. On the other hand, the air conditioning apparatus of the present embodiment adjusts the balance of the refrigerant amount under the control of the control unit 70a, and determines whether the refrigerant amount is appropriate in the state where the balance of the refrigerant amount is appropriate.
  • the refrigerant charging will be described prior to the processing of the control unit 70a.
  • the outdoor units 10a and 10b and the indoor units 40a to 40d are installed, and the gas pipe 30 and the liquid pipe 31 connect the outdoor units 10a and 10b to the indoor units 40a to 40d.
  • a predetermined amount of refrigerant is sealed in the outdoor units 10a and 10b.
  • the gas blocking valves 16a and 16b and the liquid blocking valves 17a and 17b of the outdoor units 10a and 10b are opened to open the outdoor unit 10a in the refrigerant circuit.
  • the refrigerant enclosed in 10b is filled.
  • the operator who fills the refrigerant connects the refrigerant filling port 81a of the outdoor unit 10a and the refrigerant cylinder filled with the refrigerant via the filling hose.
  • the operator performs an operation for starting the refrigerant charging operation on the input unit 203 with the refrigerant cylinder valve opened.
  • the outdoor units 10a and 10b start the refrigerant charging operation in response to a signal from the CPU 201.
  • the CPU 201 sends a predetermined signal to the refrigerant charging electromagnetic valve 80a.
  • the refrigerant charging solenoid valve 80a opens the solenoid valve when receiving a predetermined signal.
  • the refrigerant filling solenoid valve 80a is opened with the valve of the refrigerant cylinder open, the refrigerant in the refrigerant cylinder is filled in the refrigerant circuit.
  • the refrigerant is charged while the outdoor units 10a, 10b and the indoor units 40a, 40b, 40c, 40d are in the cooling operation.
  • the outdoor units 10a and 10b and the compressors 11a and 11b are operated, the four-way valves 12a and 12b connect the gas pipe 30 and the compressor suction pipe, and the outdoor heat exchangers 13a and 13b and the compressor discharge pipe are connected. It is the direction to connect with. Since the flow of the refrigerant is in the same direction in the outdoor units 10a and 10b, the outdoor unit 10a will be described as a representative.
  • the high-pressure gas refrigerant compressed by the compressor 11a is sent to the four-way valve 12a and the outdoor heat exchanger 13a, exchanges heat with the outdoor suction air to be condensed and becomes a high-pressure liquid refrigerant, and passes through the outdoor expansion valve 14a.
  • the resistance of the expansion valve causes the hydraulic pressure to drop slightly.
  • the liquid refrigerant that is separately sent to the subcooling bypass pipe 22a and the subcooling circuit 20a and is bypassed is decompressed by the subcooling expansion valve 23a and exchanges heat with the remaining liquid refrigerant that has not been bypassed to be gasified and compressed. It is sent to the inhalation side.
  • the liquid refrigerant that has not been bypassed is cooled in the supercooling circuit 20 a and sent to the supercooling circuit outlet pipe 21 a and the liquid pipe 31.
  • the high-pressure liquid refrigerant is also sent from the outdoor unit 10b to the liquid pipe 31 and merges with each other, and is used as the low-pressure gas refrigerant by being used for the cooling operation in each of the indoor units 40a, 40b, 40c, 40d.
  • the low-pressure gas refrigerant discharged from each indoor unit is separately sent to the compressor suction side of the outdoor units 10a and 10b through the gas pipe 30, and is compressed again and recirculated.
  • FIG. 3 is a flowchart showing a refrigerant filling control process performed by the control unit 70a.
  • the refrigerant charging control process is a process executed during the refrigerant charging operation by the cooling operation as described above.
  • the CPU 201 performs control to balance the refrigerant amount between the outdoor unit 10a and the outdoor unit 10b. Details of the process of S301 will be described with reference to FIGS.
  • the CPU 201 determines whether or not the refrigerant amount (filling amount) of the air conditioner is appropriate after executing the standby process described later.
  • the CPU 201 sets the outdoor expansion valves 14a and 14b of the outdoor units 10a and 10b to a fixed opening degree (the maximum opening may be used) and the rotation speeds (air volumes) of the outdoor fans 15a and 15b at values corresponding to the cycle state. Control so that it stabilizes at an almost constant level. More specifically, the CPU 201 waits for a fixed time. Then, the CPU 201 determines the refrigerant amount of the air conditioner in a stable state.
  • the CPU 201 calculates the average temperature based on the temperature detected by the supercooling circuit outlet temperature sensor 60a of the outdoor unit 10a and the temperature detected by the supercooling circuit outlet temperature sensor 60b of the outdoor unit 10b. Whether or not the amount of refrigerant in the air conditioner is appropriate is determined based on whether or not it is below a predetermined threshold value. When the average temperature is equal to or lower than the threshold value, the CPU 201 determines that the amount of refrigerant in the air conditioner is appropriate. On the other hand, when the average temperature exceeds the threshold value, the CPU 201 determines that the amount of refrigerant in the air conditioner is not appropriate. If the CPU 201 determines that the amount of refrigerant in the air conditioner is not appropriate (insufficient), the process proceeds to step S303, and if it determines that the amount of refrigerant in the air conditioner is appropriate, proceeds to step S304.
  • the CPU 201 fills the refrigerant circuit with the refrigerant.
  • the CPU 201 sends a predetermined signal to the refrigerant charging electromagnetic valve 80a to open the refrigerant charging electromagnetic valve 80a for a predetermined time to fill the refrigerant circuit with a predetermined amount of refrigerant.
  • the predetermined time may be determined by the CPU 201 or the like according to the outside air temperature, for example.
  • the predetermined amount is not limited to a fixed amount, and may vary depending on, for example, the state of the refrigerant in the cycle and/or the remaining amount of the cylinder.
  • the CPU 201 returns to the process of S301, performs balance control of the refrigerant amount, then executes S302, and determines the refrigerant amount again.
  • the CPU 201 displays on the display unit 204 that the amount of the filled refrigerant is appropriate.
  • the CPU 201 ends the refrigerant filling control process.
  • the refrigerant charging control process ends, the refrigerant charging is completed.
  • the display unit 204 displays that the amount of the filled refrigerant is appropriate, the worker removes the filling hose from the refrigerant filling port 81a, and finishes the refrigerant filling work.
  • the amount of refrigerant in the outdoor heat exchanger is generally large when the heat exchanger outlet specific enthalpy is small and large when the degree of supercooling is large. Therefore, by operating the heat exchanger outlet specific enthalpy or the degree of supercooling to be approximately the same in the plurality of outdoor units, it is possible to maintain the balance of the refrigerant amounts in the plurality of outdoor units.
  • the number of rotations of the compressor is a factor that affects the refrigerant state at the outlet of the outdoor heat exchanger.
  • the opening degree of the outdoor expansion valve also affects the refrigerant state at the outlet of the heat exchanger
  • the control unit 70a according to the first embodiment balances the refrigerant amounts by controlling the compressor rotation speed, which has a greater influence.
  • FIG. 4 is a flowchart showing an example of the refrigerant amount balance control processing according to the first embodiment.
  • the CPU 201 determines the outlet of the supercooling circuit 20a of the outdoor unit 10a based on the difference between the temperature detected by the supercooling circuit outlet temperature sensor 60a of the outdoor unit 10a and the saturation temperature of the pressure detected by the high pressure sensor 62a. Find the degree of supercooling at. Further, the CPU 201 receives the temperature detected by the supercooling circuit outlet temperature sensor 60b of the outdoor unit 10b and the saturation temperature of the pressure detected by the high pressure sensor 62b via the control unit 70b.
  • the CPU 201 determines the degree of supercooling at the outlet of the subcooling circuit 20b of the outdoor unit 10b based on the difference between the temperature detected by the supercooling circuit outlet temperature sensor 60b and the saturation temperature of the pressure detected by the high pressure sensor 62b. Ask.
  • the CPU 201 of the control unit 70b may obtain the degree of supercooling at the outlet of the supercooling circuit 20b in the outdoor unit 10b.
  • the CPU 201 of the control unit 70a may receive the degree of supercooling at the outlet of the supercooling circuit 20b obtained by the control unit 70b from the control unit 70b.
  • the CPU 201 determines whether the difference between the degree of supercooling at the outlet of the subcooling circuit 20a of the outdoor unit 10a and the degree of supercooling at the outlet of the subcooling circuit 20b of the outdoor unit 10b is equal to or greater than a threshold value. If the CPU 201 determines that the difference is greater than or equal to the threshold value, the process proceeds to step S403, and if the difference is less than the threshold value, ends the refrigerant amount balance control process.
  • the CPU 201 obtains an average value of the degree of supercooling based on the degree of supercooling at the outlet of the subcooling circuit 20a of the outdoor unit 10a and the degree of subcooling at the outlet of the subcooling circuit 20b of the outdoor unit 10b.
  • the average value is an example of the target value.
  • the CPU 201 reduces the rotation speed of the compressor 11 of the outdoor unit 10 whose supercooling degree is smaller than the average value, and reduces the rotation speed of the compressor 11 of the outdoor unit 10 whose supercooling degree is higher than the average value. Control to increase. Although the principle will be described later, when the rotation speed of the compressor is decreased, the supercooling degree of the outdoor unit is increased, and when the rotation speed of the compressor is increased, the supercooling degree of the outdoor unit is decreased. Therefore, this processing can reduce the difference in the degree of subcooling between the plurality of outdoor units.
  • the process of S404 will be described more specifically.
  • the CPU 201 increases the number of revolutions of the compressor 11 of the outdoor unit 10 whose degree of supercooling is higher than the average value, and increases the number of revolutions of the compressor 11 of the outdoor unit 10 whose degree of supercooling is lower than the average value.
  • the rotation speed of each compressor 11 is determined so that An example of the increment and the increment is 2 hertz (Hz). That is, the CPU 201 raises the rotation speed of the compressor 11 of the outdoor unit 10 whose supercooling degree is larger than the average value by 2 hertz, and increases the rotation speed of the compressor 11 of the outdoor unit 10 whose supercooling degree is smaller than the average value by 2 Hz. Lower hertz.
  • the frequency change amount by the CPU 201 is constant regardless of the difference between the average value and the degree of supercooling. After the processing of S404, the CPU 201 proceeds to S401.
  • the supercooling circuit outlet refrigerant specific enthalpy Hso also becomes small when the capacity Qsc of the supercooling circuit is constant (see Formula 2). That is, the degree of supercooling becomes large. On the contrary, when the number of rotations of the compressor is increased, the degree of supercooling becomes smaller.
  • the degree of supercooling at the outlet of the supercooling circuit 20 is obtained based on the temperature of the outlet of the subcooling circuit 20, so that the degree of supercooling can be appropriately obtained. Further, according to the air conditioner of the first embodiment, the average value of the degree of supercooling is obtained, the rotation speed of the compressor 11 of the outdoor unit 10 having the degree of supercooling larger than the average value is increased, and the degree of supercooling is averaged. By controlling the number of rotations of the compressor 11 of the outdoor unit 10 smaller than the value, the amount of refrigerant between the outdoor units 10 can be balanced. Therefore, according to the air conditioner of the first embodiment, it is possible to appropriately determine the amount of the refrigerant filled in the refrigerant circuit.
  • the second embodiment will be described. Here, differences from the first embodiment will be mainly described.
  • the outdoor fan rotation speed is a factor that affects the refrigerant state at the outlet of the outdoor heat exchanger.
  • the control unit 70a according to the second embodiment balances the refrigerant amounts by controlling the outdoor fan rotation speed.
  • FIG. 5 is a flowchart showing an example of the refrigerant amount balance control processing of the second embodiment.
  • the processing from S501 to S503 is similar to the processing from S401 to S403 in FIG.
  • the CPU 201 performs control to increase the fan rotation speed of the outdoor unit 10 on the side where the supercooling degree is smaller than the average value and decrease the fan rotation speed of the outdoor unit 10 on the side where the supercooling degree is larger than the average value. ..
  • increasing the fan rotation speed increases the subcooling degree of the outdoor unit, and decreasing the fan rotation speed decreases the subcooling degree of the outdoor unit. Therefore, according to this processing, the degree of supercooling between the plurality of outdoor units can be reduced.
  • the CPU 201 determines that the fan rotation speed of the outdoor fan 15 of the outdoor unit 10 whose degree of supercooling is smaller than the average value and the outdoor unit whose degree of supercooling is higher than the average value.
  • the number of rotations of each outdoor fan 15 is determined so that the amount of decrease in the number of rotations of the outdoor fan 15 of 10 becomes equal to the amount of decrease.
  • the air conditioning apparatus of the second embodiment it is possible to balance the amount of refrigerant between the outdoor units 10 by controlling the rotation speed of the fan instead of the rotation speed of the compressor. Therefore, according to the air conditioner of the second embodiment, it is possible to appropriately determine the amount of the refrigerant filled in the refrigerant circuit.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of the air conditioning apparatus of the third embodiment.
  • the configuration of the outdoor unit 100a will be described.
  • the air conditioning apparatus of the third embodiment is different from the air conditioning apparatus of the first embodiment in that the outdoor unit 100a is provided with a supercooling circuit inlet temperature sensor 61a in a pipe near the inlet of the supercooling circuit 20a.
  • the control unit 70a includes the outdoor fan 15a, the high pressure sensor 62a, the outdoor expansion valve 14a, the subcooling expansion valve 23a, the subcooling circuit outlet temperature sensor 60a, the subcooling circuit inlet temperature sensor 61a, the compressor 11a, and the refrigerant.
  • the electromagnetic valve 80a for filling and the control unit 70b of the outdoor unit 100b are connected to each other via a signal line so that a signal can be sent or received.
  • the supercooling circuit inlet temperature sensor 61a detects the temperature of the refrigerant in the pipe near the inlet of the supercooling circuit 20a.
  • the configuration of the outdoor unit 100b is similar to that of the outdoor unit 100a.
  • FIG. 7 is a flowchart showing an example of the refrigerant amount balance control according to the third embodiment.
  • the CPU 201 determines whether the inlet of the subcooling circuit 20a is based on the temperature detected by the supercooling circuit inlet temperature sensor 61a of the outdoor unit 100a and the temperature detected by the supercooling circuit outlet temperature sensor 60a of the outdoor unit 100a. Find the temperature difference from the outlet. Further, the CPU 201 receives the temperature detected by the supercooling circuit inlet temperature sensor 61b of the outdoor unit 100b and the temperature detected by the supercooling circuit outlet temperature sensor 60b of the outdoor unit 100b via the control unit 70b.
  • the CPU 201 based on the temperature detected by the supercooling circuit inlet temperature sensor 61b of the outdoor unit 100b and the temperature detected by the supercooling circuit outlet temperature sensor 60b of the outdoor unit 100b, the inlet and the outlet of the supercooling circuit 20b. Find the temperature difference between and. It should be noted that the CPU 201 of the control unit 70b operates the supercooling circuit 20b based on the temperature detected by the supercooling circuit inlet temperature sensor 61b of the outdoor unit 100b and the temperature detected by the supercooling circuit outlet temperature sensor 60b of the outdoor unit 100b. You may make it obtain
  • the CPU 201 of the supercooling circuit 20a may receive the temperature difference between the inlet and the outlet of the supercooling circuit 20b, which is obtained by the control unit 70b, via the control unit 70b.
  • the third embodiment uses the temperature difference between the inlet and the outlet of the subcooling circuit 20.
  • step S ⁇ b>702 the CPU 201 determines whether the difference between the temperature difference between the inlet and the outlet of the supercooling circuit 20 a of the outdoor unit 100 a and the temperature difference between the inlet and the outlet of the supercooling circuit 20 b of the outdoor unit 100 b is a threshold value or more. To judge. If the CPU 201 determines that the difference is greater than or equal to the threshold value, the process proceeds to step S703, and if the difference is less than the threshold value, the process of the refrigerant amount balance control illustrated in FIG. 7 ends.
  • the CPU 201 determines the average value of the temperature difference based on the temperature difference between the inlet and the outlet of the supercooling circuit 20a of the outdoor unit 100a and the temperature difference between the inlet and the outlet of the supercooling circuit 20b of the outdoor unit 100b. Ask for.
  • the average value is an example of the target value.
  • the CPU 201 decreases the rotation speed of the compressor 11 of the outdoor unit 100 on the side where the temperature difference is smaller than the average value, and increases the rotation speed of the compressor 11 of the outdoor unit 100 on the side where the temperature difference is larger than the average value.
  • Control The CPU 201 determines whether the total amount of decrease in the rotation speed of the compressor 11 of the outdoor unit 100 on the side where the temperature difference is smaller than the average value and the rotation speed of the compressor 11 of the outdoor unit 100 on the side where the temperature difference is larger than the average value. The number of rotations of each compressor 11 is determined so that the total amount of the increase is equal.
  • the CPU 201 proceeds to S701.
  • the total amount is a preset value, for example, 2 hertz.
  • the temperature difference between the inlet and the outlet of the supercooling circuit 20 of the outdoor unit 100 can be used instead of the supercooling degree. That is, according to the air conditioner of the third embodiment, in addition to the effect of the first embodiment, it is not necessary to measure the pressure with the high-pressure pressure sensor 62 in order to further obtain the degree of supercooling, and when converting to the saturation temperature. The error can be reduced.
  • FIG. 8 is a flowchart showing an example of the refrigerant amount balance control processing according to the fourth embodiment.
  • the processing from S801 to S803 is the same as the processing from S701 to S703 in FIG.
  • the CPU 201 performs control to increase the fan rotation speed of the outdoor unit 100 on the side where the temperature difference is smaller than the average value and decrease the fan rotation speed of the outdoor unit 100 on the side where the temperature difference is larger than the average value.
  • the CPU 201 determines that the increase in the fan rotation speed of the outdoor fan 15 of the outdoor unit 100 on the side where the temperature difference is smaller than the average value and the outdoor fan 15 of the outdoor unit 100 where the temperature difference is larger than the average value.
  • the number of rotations of each outdoor fan 15 is determined so that the amount of decrease in the number of rotations of the fan becomes equal to.
  • the temperature difference between the inlet and the outlet of the supercooling circuit 20 of the outdoor unit 100 can be used instead of the supercooling degree. That is, according to the air conditioner of the fourth embodiment, in addition to the effect of the second embodiment, it is not necessary to measure the pressure with the high-pressure pressure sensor 62 in order to further obtain the degree of supercooling, and when converting to the saturation temperature. The error can be reduced.
  • the CPU 201 determines whether the difference between the maximum value and the minimum value of the supercooling degrees of all the outdoor units 10 is equal to or greater than the threshold value. When the CPU 201 determines that the difference between the maximum value and the minimum value of the supercooling degrees of all the outdoor units 10 is equal to or more than the threshold value, the CPU 201 proceeds to S403 and determines that the maximum value of the subcooling degrees of all the outdoor units 10 is the maximum value. When it is determined that the difference from the minimum value is less than the threshold value, the process of balance control of the refrigerant amount shown in FIG. 4 ends.
  • the CPU 201 determines the increase amount of each outdoor unit 10 on the large side by dividing the predetermined increase amount (2 hertz) by the number of outdoor units 10 on the side where the degree of supercooling is larger than the average value. To do. Similarly, a predetermined amount of decrease (2 hertz) is divided by the number of outdoor units 10 on the side where the degree of supercooling is smaller than the average value to determine the amount of decrease of each outdoor unit 10 on the smaller side. For example, when the number of outdoor units 10 on the large side is 2 and the number of outdoor units 10 on the small side is 1, the increment of each outdoor unit 10 is 1 Hertz. As a result, the total value of increase and the total value of decrease can always be kept at 2 hertz.
  • the CPU 201 may further control the rotation speed of each compressor 11 based on the stroke volume of each compressor 11.
  • the control unit 70a may store the stroke volume of each compressor 11 in the storage unit 202 in advance, or may inquire the stroke volume of each compressor 11 to the control unit 70 of each compressor 11, and the inquiry result may be obtained.
  • the stroke volume of each compressor 11 acquired as the above may be stored in the storage unit 202. Even when the same change amount and the number of revolutions of the compressor are increased, the CPU 201 sets the number of revolutions of the compressor having a smaller stroke volume to the reference stroke volume than the number of revolutions of the compressor having a larger stroke volume.
  • the control is performed such that the rotational speed of the compressor having a larger stroke volume is slightly lowered based on the ratio to the reference stroke volume than the rotational speed of the compressor having a smaller stroke volume.
  • the CPU 201 slightly increases the rotational speed of the compressor having a smaller stroke volume from 1 hertz so that the stroke volume of the compressor is The larger rotation speed is controlled to be slightly lower than 1 hertz. Also in this case, the CPU 201 adjusts the total amount of increase and the total amount of decrease to be 2 hertz in terms of the reference stroke volume.
  • the air conditioning apparatus of Modification 2 it is possible to perform balance control of the refrigerant amount between the outdoor units in consideration of the stroke volume of the compressor.
  • the first embodiment has been described as an example, but the same applies to the other embodiments.
  • the average value of the supercooling degree or the temperature difference (hereinafter, referred to as an index value) is used as an example of the target value, but the target value is a plurality of outdoor units.
  • the value is not limited to the embodiment as long as it is a value obtained based on the index value. More preferably, the target value may be a value between the maximum value and the minimum value among the plurality of index values. For example, the target value may be the median value of the plurality of index values. This makes it possible to efficiently balance the refrigerant amounts.
  • Modification 4 Modification 4 will be described.
  • the outdoor unit 10a, the control unit 70a of the outdoor unit 10a, or the like is described as an example of the control device that controls the air conditioning apparatus by performing the refrigerant charging control process.
  • the management device may perform the refrigerant charging control process.
  • the control device is not limited to the outdoor unit 10a.
  • the air conditioner is connected to the external device so as to be communicable with the external device via a wire or wirelessly, the external device may perform the refrigerant charging control process.
  • Modification 5 Modification 5 will be described.
  • the supercooling bypass pipe 22a and the like have been described as an example of the cooling source of the supercooling circuit 20a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

複数の室外ユニットと複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置の制御装置であって、複数の室外ユニットと室内ユニットとを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する温度センサが検出した温度に基づいて各室外ユニットの過冷却回路の出口における過冷却度を求め、求めた複数の過冷却度に基づいて過冷却度の目標値を求め、各室外ユニットの過冷却回路の出口における過冷却度の差が小さくなるように、過冷却度が目標値よりも大きい室外ユニットの圧縮機の回転数を増加させ、過冷却度が目標値よりも小さい室外ユニットの圧縮機の回転数を減少させるよう制御する制御手段を有する。

Description

制御装置及び空気調和装置
 本発明は、制御装置及び空気調和装置に関する。
 室外ユニットが複数ある空気調和装置の場合、冷媒充填運転の冷媒量判定時に室外ユニットの凝縮器内の冷媒量にアンバランスが生じ、冷凍サイクルとして適正な冷媒量が判定できない場合がある。
 特許文献1には、室外ユニット間の冷媒量バランス制御として、室外ユニットの凝縮器出口の過冷却度を判定し、過冷却度が小さい側の圧縮機の回転数を、過冷却度が大きい側の圧縮機回転数より小さくする例、及び、過冷却度が小さい側のファン回転数を、過冷却度が大きい側のファン回転数より大きくする例が記載されている。
特許第4803237号公報
 特許文献1では、それぞれの室外ユニットの凝縮器出口において適切に過冷却度を求めることができることを前提として、室外ユニットの凝縮器出口の過冷却度を用いて冷媒充填運転時の冷媒量を判定している。しかし、室外ユニットの凝縮器出口の冷媒が二相状態では温度変化がない。そのため、冷媒比エンタルピー変化があっても、その冷媒比エンタルピー変化を判断できず、室外ユニットの凝縮器出口の過冷却度を適切に求めることができなかった。その結果、冷媒充填運転時の冷媒量を適切に判定することができない問題があった。
 そこで、本発明は、冷媒回路に充填されている冷媒量を適切に判定可能とすることを目的とする。
 本発明は、複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置の制御装置であって、前記複数の室外ユニットと前記室内ユニットとを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する温度センサが検出した温度に基づいて前記各室外ユニットの前記過冷却回路の出口における過冷却度を求め、求めた複数の過冷却度に基づいて過冷却度の目標値を求め、前記各室外ユニットの前記過冷却回路の出口における過冷却度の差が小さくなるように、過冷却度が前記目標値よりも大きい前記室外ユニットの圧縮機の回転数を増加させ、過冷却度が前記目標値よりも小さい前記室外ユニットの圧縮機の回転数を減少させるよう制御する制御手段を有することを特徴とする。
 本発明によれば、冷媒回路に充填されている冷媒量を適切に判定可能とすることができる。
実施形態1の空気調和装置の概略構成の一例を示す図である。 制御部のハードウェア構成の一例を示す図である。 情報処理の一例を示すフローチャートである。 実施形態1の冷媒量のバランス制御処理の一例を示すフローチャートである。 実施形態2の冷媒量のバランス制御処理の一例を示すフローチャートである。 実施形態3の空気調和装置の概略構成の一例を示す図である。 実施形態3の冷媒量のバランス制御処理の一例を示すフローチャートである。 実施形態4の冷媒量のバランス制御処理の一例を示すフローチャートである。
 以下、本発明の実施形態について図面に基づいて説明する。
<実施形態1>
 実施形態1について説明する。図1は、実施形態1の空気調和装置の概略構成の一例を示す図である。空気調和装置は、室外ユニット10a、10b及び室内ユニット40a、40b、40c、40dが液管31とガス管30とで接続されて閉回路を構成している。この閉回路の中に冷媒が封入されており、冷媒が循環することで冷凍サイクルが実現される。ここで、室外ユニット10の接続台数は複数台であればよく、2台より多くてもよい。室内ユニット40の接続台数は、1台でもよい。室外ユニット10aは、空気調和装置の制御装置の一例である。
 まず、室外ユニット10aの構成について説明する。室外ユニット10aには、インバータにより回転周波数を可変できる圧縮機11aと、四方弁(可逆弁)12aと、室外空気と熱交換を行う室外熱交換器13aと、室外熱交換器13aの冷媒流量を調整するために電子膨張弁等で構成された室外膨張弁14aと、過冷却回路20aと、ガス阻止弁16aと、液阻止弁17a等とが配管接続されて設けられている。また、室外ユニット10aには、過冷却回路20aの冷却源としての過冷却バイパス管22aが設けられている。過冷却バイパス管22aは、室外膨張弁14aから液管31へ送られる冷媒の一部を圧縮機11aに戻すように設けられている。より具体的には、過冷却バイパス管22aは、室外膨張弁14aと過冷却回路20aとの間から過冷却回路20aを通り圧縮機11aの吸入口側に接続するように設けられている。さらに、過冷却バイパス管22aには、過冷却バイパス管22aを流れる冷媒の流量を調節するための過冷却膨張弁23aが設けられている。
 また、過冷却回路20aの出口付近の配管には、過冷却回路出口温度センサ60aが設けられている。過冷却回路出口温度センサ60aは、過冷却回路20aの出口付近の配管の冷媒の温度を検出する。また、過冷却バイパス管22aには、冷媒充填口である冷媒充填ポート81aが設けられ、冷媒充填ポート81aの下流には、冷媒充填用の冷媒充填用電磁弁80aが設けられている。充填時には、冷媒充填ポート81aに、冷媒が封入された冷媒ボンベが充填用ホースを介して接続される。また、圧縮機11aの吐出側の配管には、圧縮機11aより吐出されたガス冷媒の圧力を検出する高圧圧力センサ62aが設けられている。
 また、室外ユニット10aには、室外ユニット10aの動作を制御する制御部70aが設けられている。制御部70aは、室外ファン15a、高圧圧力センサ62a、室外膨張弁14a、過冷却膨張弁23a、過冷却回路出口温度センサ60a、圧縮機11a、冷媒充填用電磁弁80a、室外ユニット10bの制御部70bと、信号線を介して、信号を送ったり、信号を受け取ったりできるよう接続されている。室外ユニット10bの構成も室外ユニット10aの構成と同様である。以下、制御部70aは、制御部70bに対しても信号を送り、制御部70bを介して室外ユニット10bも制御するものとして説明を行う。
 次に、室内ユニット40aの構成について説明する。室内ユニット40aには、室内空気と熱交換を行う室内熱交換器41aと、室内熱交換器41aの冷媒流量を調整するために電子膨張弁等で構成された室内膨張弁42aとが配管接続されて設けられている。室内ユニット40b、室内ユニット40c、室内ユニット40dの構成も室内ユニット40aの構成と同様である。
 図2は、制御部70aのハードウェア構成の一例を示す図である。制御部70aは、CPU201と、記憶部202と、入力部203と、表示部204と、通信部205と、を含む。CPU201は、記憶部202に記憶されたプログラムを読み出して処理を実行する。記憶部202は、CPU201が処理を実行する際の主メモリ、ワークエリア等の一次記憶領域として用いられると共に、CPU201が処理を実行する際に用いるデータ(例えば、後述する各閾値)、プログラム等を記憶する。記憶部202は、記憶媒体の一例である。入力部203は、例えばボタン等であり、ユーザによる操作を受け付け、CPU201に入力する。表示部204は、例えばディスプレイ等であり、CPU201の処理の結果を表示する。通信部205は、信号線を介して室外ユニット10b等と通信を行う。制御部70aの機能及び処理は、CPU201が記憶部202に記憶されているプログラムに基づき処理を実行することによって実現される。他の例としては制御部70aの機能及び処理の一部はハードウェア回路を用いて実現されてもよい。制御部70bのハードウェア構成も制御部70aのハードウェア構成と同様である。
 実施形態1に係る制御部70aは、空気調和装置の冷媒充填時において、室外ユニット10a、10b間の冷媒量のバランスをとるための処理を行う。冷媒充填時には、空気調和装置に充填された冷媒量が適切か否かを判定する必要があり、冷媒量を判定する際には、室外ユニット10a、10b間の冷媒量のバランスがとれている必要がある。しかしながら、外的要因等により室外ユニット間の冷媒量のバランスが取れていない場合がある。これに対し、本実施形態の空気調和装置は、制御部70aの制御により冷媒量のバランスを調整し、冷媒量のバランスが適切な状態において、冷媒量が適切か否かを判定する。
 制御部70aの処理に先立ち、冷媒充填について説明する。まず、室外ユニット10a、10bと室内ユニット40a~40dが設置され、ガス管30と液管31で室外ユニット10a、10bと室内ユニット40a~40dとが接続される。なお、室外ユニット10a、10bには、所定量の冷媒が封入されている。室内ユニット40a~40d側の冷媒配管内の真空引きが行われた後、室外ユニット10a、10bのガス阻止弁16a、16b及び液阻止弁17a、17bが開かれ、冷媒回路内に室外ユニット10a、10bに封入された冷媒が充満される。
 次に、冷媒充填を行う作業者が、室外ユニット10aの冷媒充填ポート81aと、冷媒が封入された冷媒ボンベとを充填用ホースを介して接続する。接続完了後、作業者は、冷媒ボンベのバルブを開いた状態で入力部203に対して冷媒充填運転を開始するための操作を行う。入力部203に対して冷媒充填運転を開始するための操作が行われると、CPU201の信号により室外ユニット10a、10bは冷媒充填運転を開始する。冷媒充填運転中に冷媒充填が必要であると判断すると、CPU201は、所定の信号を冷媒充填用電磁弁80aに送る。冷媒充填用電磁弁80aは、所定の信号を受け取ると、電磁弁を開く。冷媒ボンベのバルブが開かれた状態で冷媒充填用電磁弁80aが開かれると冷媒ボンベの冷媒が冷媒回路内に充填される。
 実施形態1の空気調和装置においては、室外ユニット10a、10b、室内ユニット40a、40b、40c、40dが冷房運転している際に冷媒充填が行われる。冷房運転時には、室外ユニット10a、10b及び圧縮機11a、11bは稼働し、四方弁12a、12bはガス管30と圧縮機吸入配管とを接続し、室外熱交換器13a、13bと圧縮機吐出配管とを接続する向きとなる。冷媒の流れは、室外ユニット10a、10bは同じ方向となるため、室外ユニット10aを代表に説明する。圧縮機11aで圧縮された高圧ガス冷媒は、四方弁12a、室外熱交換器13aへ送られ、室外吸込空気と熱交換し凝縮し高圧液冷媒となり、室外膨張弁14aを通過する。この際、膨張弁の抵抗により液圧力が若干低下する。そして、過冷却バイパス管22aと過冷却回路20aに分かれて送られ、バイパスされた液冷媒は過冷却膨張弁23aにて減圧されバイパスされなかった残りの液冷媒と熱交換してガス化し圧縮機吸入側へ送られる。一方、バイパスされなかった液冷媒は過冷却回路20aで冷却され、過冷却回路出口管21a、そして液管31へ送られる。同様に室外ユニット10bからも高圧液冷媒が液管31へ送られ合流し、室内ユニット40a、40b、40c、40dそれぞれで冷房運転に使われ低圧ガス冷媒となる。各室内ユニットから出た低圧ガス冷媒は、ガス管30を通り室外ユニット10a、10bの圧縮機吸入側に分けて送られ、再び圧縮され再循環する。
 図3は、制御部70aが行う冷媒充填制御処理を示すフローチャートである。冷媒充填制御処理は、上述のように冷房運転による冷媒充填運転中に実行される処理である。
 S301において、CPU201は、室外ユニット10a及び室外ユニット10b間の冷媒量のバランスを取る制御を行う。S301の処理の詳細は、後述する図4及び図5等を用いて説明する。
 S302において、CPU201は、後述する待機処理を実行した後、空気調和装置の冷媒量(充填量)が適切か否かを判定する。待機処理として、CPU201は、室外ユニット10a、10bの室外膨張弁14a、14bを固定開度(最大開度でもよい)、室外ファン15a、15bの回転数(風量)をサイクル状態に見合った値でほぼ一定に安定するよう制御する。より具体的には、CPU201は、一定時間待機する。そして、CPU201は、安定した状態において、空気調和装置の冷媒量の判定を行う。CPU201は、室外ユニット10aの過冷却回路出口温度センサ60aで検出された温度と、室外ユニット10bの過冷却回路出口温度センサ60bで検出された温度と、に基づき、平均温度を求め、平均温度が予め定められた閾値以下か否かに基づき、空気調和装置の冷媒量が適切か否かを判定する。平均温度が閾値以下である場合、CPU201は、空気調和装置の冷媒量が適切であると判定する。一方、平均温度が閾値を超える場合、CPU201は、空気調和装置の冷媒量が適切でないと判定する。CPU201は、空気調和装置の冷媒量が適切でない(不足である)と判定すると、S303に進み、空気調和装置の冷媒量が適切であると判定すると、S304に進む。
 S303において、CPU201は、冷媒回路への冷媒の充填を行う。CPU201は、所定の信号を冷媒充填用電磁弁80aに送ることで、冷媒充填用電磁弁80aを所定の時間開き、冷媒回路内へ所定量の冷媒を充填する。ここで、所定の時間は、例えば、外気温度に応じてCPU201等が決定してもよい。また、所定量は、一定量に限られず、例えば、サイクル内の冷媒の状態及びボンベ残量のいずれか又は双方に応じて変動し得る。そして、CPU201は、S301の処理に戻り冷媒量のバランス制御を行った後、S302を実行し再度冷媒量の判定を行う。
 S304において、CPU201は、充填された冷媒量が適切である旨を表示部204に表示する。CPU201は、充填された冷媒量が適切である旨を表示部204に表示すると、冷媒充填制御処理を終了する。冷媒充填制御処理が終了すると、冷媒の充填が完了する。作業者は、充填された冷媒量が適切である旨が表示部204に表示された場合、冷媒充填ポート81aから充填用ホースを外す等し、冷媒充填の作業を終了する。
 次に、室外ユニット間の冷媒量のバランスを取る原理について説明する。まず、室外熱交換器内の冷媒量は一般に、熱交換器出口比エンタルピーが小さいと多く、過冷却度が大きいと多い。そのため、熱交換器出口比エンタルピー又は過冷却度が複数の室外ユニットにおいてにほぼ同等となるように操作することで、複数の室外ユニットにおける冷媒量のバランスを保つことができる。ここで、室外熱交換器の出口の冷媒状態に影響を与える要因としては圧縮機回転数がある。室外膨張弁の開度も熱交換器出口の冷媒状態に影響を与えるが、実施形態1の制御部70aは、より影響度の大きい圧縮機回転数を制御することで冷媒量をバランスさせる。
 図4は、実施形態1の冷媒量のバランス制御処理の一例を示すフローチャートである。S401において、CPU201は、室外ユニット10aの過冷却回路出口温度センサ60aで検出された温度と高圧圧力センサ62aで検出された圧力の飽和温度との差に基づき室外ユニット10aの過冷却回路20aの出口における過冷却度を求める。また、CPU201は、制御部70bを介して室外ユニット10bの過冷却回路出口温度センサ60bで検出された温度と高圧圧力センサ62bで検出された圧力の飽和温度とを受け取る。そして、CPU201は、過冷却回路出口温度センサ60bで検出された温度と高圧圧力センサ62bで検出された圧力の飽和温度との差に基づき室外ユニット10bの過冷却回路20bの出口における過冷却度を求める。なお、制御部70bのCPU201が室外ユニット10bにおける過冷却回路20bの出口における過冷却度を求めるようにしてもよい。そして、制御部70aのCPU201は、制御部70bによって求められた過冷却回路20bの出口における過冷却度を、制御部70bより受け取るようにしてもよい。
 S402において、CPU201は、室外ユニット10aの過冷却回路20aの出口における過冷却度と、室外ユニット10bの過冷却回路20bの出口における過冷却度と、の差分が閾値以上か否かを判定する。CPU201は、差分が閾値以上であると判定した場合、S403に進み、差分が閾値未満であると判定した場合、冷媒量のバランス制御処理を終了する。
 S403において、CPU201は、室外ユニット10aの過冷却回路20aの出口における過冷却度と、室外ユニット10bの過冷却回路20bの出口における過冷却度と、に基づき、過冷却度の平均値を求める。平均値は目標値の一例である。
 S404において、CPU201は、過冷却度が平均値より小さい側の室外ユニット10の圧縮機11の回転数を減少させ、過冷却度が平均値より大きい側の室外ユニット10の圧縮機11の回転数を増加させる制御を行う。原理については後述するが、圧縮機の回転数を減少させると室外ユニットの過冷却度が大きくなり、圧縮機の回転数を増加させると室外ユニットの過冷却度が小さくなる。したがって、本処理により、複数の室外ユニット間の過冷却度の差を小さくすることができる。
 S404の処理についてより具体的に説明する。CPU201は、過冷却度が平均値よりも大きい室外ユニット10の圧縮機11の回転数の増加分と、過冷却度が平均値よりも小さい室外ユニット10の圧縮機11の回転数の増加分と、が等しくなるように、各圧縮機11の回転数を決定する。増加分及び増加分の一例としては、2ヘルツ(Hz)である。すなわち、CPU201は、過冷却度が平均値よりも大きい室外ユニット10の圧縮機11の回転数を2ヘルツ上げ、過冷却度が平均値よりも小さい室外ユニット10の圧縮機11の回転数を2ヘルツ下げる。CPU201による周波数の変更量は、平均値や過冷却度の差分によらず、一定とする。S404の処理の後、CPU201は、S401へ進む。
 ここで、過冷却度と圧縮機の回転数の関係について説明する。圧縮機の回転数を減少させると、空気側から求まる熱交換量Qc=KA(Tc-Ta)はほとんど変化せずに、冷媒循環量Grのみが低下するためHi-Hoが大きくなる。室外熱交換器入口冷媒比エンタルピーHiはほとんど変化しないため室外熱交換器出口冷媒比エンタルピーHoが小さくなる(式1参照)。つまり、過冷却回路入口冷媒比エンタルピーが小さくなるため(Hsi=Ho)、過冷却回路の能力Qscが一定の場合、過冷却回路出口冷媒比エンタルピーHsoも小さくなる(式2参照)。すなわち、過冷却度が大きくなる。反対に、圧縮機の回転数を増加させると、過冷却度が小さくなる。
 Qc=KA(Tc-Ta)=Gr(Hi-Ho)      (式1)
   Qc:凝縮能力
    K:熱通過率・・・室外ファン風量、室外熱交換器諸元にて変化
    A:室外熱交換器伝熱面積
   Tc:凝縮温度・・・吐出圧力の飽和温度とほぼ同等
   Ta:外気温度
   Gr:冷媒循環量・・・圧縮機回転数と吸入冷媒状態にて変化
   Hi:室外熱交換器入口冷媒比エンタルピー
   Ho:室外熱交換器出口冷媒比エンタルピー
 Qsc=Gr(Hsi-Hso)             (式2)
  Qsc:過冷却能力
  Hsi:過冷却回路入口冷媒比エンタルピー
  Hso:過冷却回路出口冷媒比エンタルピー
 実施形態1の空気調和装置によれば、過冷却回路20の出口の温度に基づき過冷却回路20の出口における過冷却度を求めることで、適切に過冷却度を求めることができる。また、実施形態1の空気調和装置によれば、過冷却度の平均値を求め、過冷却度が平均値よりも大きい室外ユニット10の圧縮機11の回転数を増加させ、過冷却度が平均値よりも小さい室外ユニット10の圧縮機11の回転数を減少させるよう制御することにより、室外ユニット10間の冷媒量のバランスをとることができる。よって、実施形態1の空気調和装置によれば、冷媒回路に充填されている冷媒量を適切に判定可能とすることができる。
<実施形態2>
 実施形態2について説明する。ここでは、実施形態1と異なる点について主に説明する。室外熱交換器の出口の冷媒状態に影響を与える要因としては圧縮機回転数以外に室外ファン回転数がある。実施形態2の制御部70aは、室外ファン回転数を制御することで冷媒量をバランスさせる。
 図5は、実施形態2の冷媒量のバランス制御処理の一例を示すフローチャートである。S501からS503までの処理は、図4のS401からS403までの処理と同様であるため説明を省略する。S504において、CPU201は、過冷却度が平均値より小さい側の室外ユニット10のファン回転数を増加させ、過冷却度が平均値より大きい側の室外ユニット10のファン回転数を減少させる制御を行う。原理については後述するが、ファン回転数を増加させると室外ユニットの過冷却度が大きくなり、ファン回転数を減少させると室外ユニットの過冷却度が小さくなる。したがって、本処理によれば、複数の室外ユニット間の過冷却度を小さくすることができる。
 S504の処理についてより具体的に説明すると、CPU201は、過冷却度が平均値よりも小さい室外ユニット10の室外ファン15のファン回転数の増加分と、過冷却度が平均値よりも大きい室外ユニット10の室外ファン15のファン回転数の減少分と、が等しくなるように、各室外ファン15の回転数を決定する。
 ここで、過冷却度と室外ファンの回転数の関係について説明する。室外ファンの回転数を増加させると、熱通過率Kが大きくなるため凝縮能力Qcが増加する。冷媒循環量Gr、凝縮器入口冷媒比エンタルピーHiはほとんど変化しないため凝縮器出口冷媒比エンタルピーHoが小さくなる(式1参照)。つまり、過冷却回路入口冷媒比エンタルピーが小さくなるため(Hsi=Ho)、過冷却回路の能力Qscが一定の場合、過冷却回路出口冷媒比エンタルピーHsoも小さくなる(式2参照)。すなわち、過冷却度が大きくなる。反対に、室外ファンの回転数を減少させると、過冷却度が小さくなる。
 実施形態2の空気調和装置によれば、圧縮機の回転数に替えてファンの回転数を制御することで、室外ユニット10間の冷媒量のバランスをとることができる。よって、実施形態2の空気調和装置によれば、冷媒回路に充填されている冷媒量を適切に判定可能とすることができる。
<実施形態3>
 実施形態3について説明する。ここでは、上述した実施形態と異なる点について主に説明する。図6は、実施形態3の空気調和装置の概略構成の一例を示す図である。室外ユニット100aの構成について説明する。実施形態3の空気調和装置は、実施形態1の空気調和装置に対して、室外ユニット100aに、過冷却回路20aの入口付近の配管に過冷却回路入口温度センサ61aが設けられている。実施形態3の制御部70aは、室外ファン15a、高圧圧力センサ62a、室外膨張弁14a、過冷却膨張弁23a、過冷却回路出口温度センサ60a、過冷却回路入口温度センサ61a、圧縮機11a、冷媒充填用電磁弁80a、室外ユニット100bの制御部70bと、信号線を介して、信号を送ったり、信号を受け取ったりできるよう接続されている。過冷却回路入口温度センサ61aは、過冷却回路20aの入口付近の配管の冷媒の温度を検出する。室外ユニット100bの構成も室外ユニット100aの構成と同様である。
 図7は、実施形態3の冷媒量のバランス制御の一例を示すフローチャートである。S701において、CPU201は、室外ユニット100aの過冷却回路入口温度センサ61aで検出された温度と室外ユニット100aの過冷却回路出口温度センサ60aで検出された温度とに基づき、過冷却回路20aの入口と出口との温度差を求める。また、CPU201は、制御部70bを介して室外ユニット100bの過冷却回路入口温度センサ61bで検出された温度と室外ユニット100bの過冷却回路出口温度センサ60bで検出された温度とを受け取る。そして、CPU201は、室外ユニット100bの過冷却回路入口温度センサ61bで検出された温度と室外ユニット100bの過冷却回路出口温度センサ60bで検出された温度とに基づき、過冷却回路20bの入口と出口との温度差を求める。なお、制御部70bのCPU201が室外ユニット100bの過冷却回路入口温度センサ61bで検出された温度と室外ユニット100bの過冷却回路出口温度センサ60bで検出された温度とに基づき、過冷却回路20bの入口と出口との温度差を求めるようにしてもよい。そして、過冷却回路20aのCPU201は、制御部70bで求められた、過冷却回路20bの入口と出口との温度差を、制御部70bを介して受け取るようにしてもよい。実施形態1で示した過冷却回路20の出口における過冷却度の替わりに、実施形態3では、過冷却回路20の入口と出口との温度差を用いる。
 S702において、CPU201は、室外ユニット100aの過冷却回路20aの入口と出口との温度差と、室外ユニット100bの過冷却回路20bの入口と出口との温度差と、の差分が閾値以上か否かを判定する。CPU201は、差分が閾値以上であると判定した場合、S703に進み、差分が閾値未満であると判定した場合、図7に示す冷媒量のバランス制御の処理を終了する。
 S703において、CPU201は、室外ユニット100aの過冷却回路20aの入口と出口との温度差と、室外ユニット100bの過冷却回路20bの入口と出口との温度差と、に基づき、温度差の平均値を求める。平均値は目標値の一例である。
 S704において、CPU201は、温度差が平均値より小さい側の室外ユニット100の圧縮機11の回転数を減少させ、温度差が平均値より大きい側の室外ユニット100の圧縮機11の回転数を増加させる制御を行う。CPU201は、温度差が平均値より小さい側の室外ユニット100の圧縮機11の回転数の減少分の合計量と、温度差が平均値より大きい側の室外ユニット100の圧縮機11の回転数の増加分の合計量と、が等しくなるように、各圧縮機11の回転数を決定する。S704の処理の後、CPU201は、S701へ進む。合計量は、予め設定された値であり、例えば、2ヘルツである。
 実施形態3の空気調和装置によれば、過冷却度の替わりに、室外ユニット100の過冷却回路20の入口と出口との温度差を利用することができる。すなわち、実施形態3の空気調和装置によれば、実施形態1の効果を奏すると共に、さらに過冷却度を求めるために高圧圧力センサ62で圧力を測定する必要がなく、飽和温度に変換する際の誤差を減らすことができる。
<実施形態4>
 実施形態4について説明する。ここでは、実施形態3と異なる点について主に説明する。実施形態4の制御部70aは、室外ファン回転数を制御することで冷媒量をバランスさせる。図8は、実施形態4の冷媒量のバランス制御処理の一例を示すフローチャートである。S801からS803までの処理は、図7のS701からS703までの処理と同様であるため説明を省略する。S804において、CPU201は、温度差が平均値より小さい側の室外ユニット100のファン回転数を増加させ、温度差が平均値より大きい側の室外ユニット100のファン回転数を減少させる制御を行う。
 より具体的に説明すると、CPU201は、温度差が平均値より小さい側の室外ユニット100の室外ファン15のファン回転数の増加分と、温度差が平均値よりも大きい室外ユニット100の室外ファン15のファン回転数の減少分と、が等しくなるように、各室外ファン15の回転数を決定する。
 実施形態4の空気調和装置によれば、過冷却度の替わりに、室外ユニット100の過冷却回路20の入口と出口との温度差を利用することができる。すなわち、実施形態4の空気調和装置によれば、実施形態2の効果を奏すると共に、さらに過冷却度を求めるために高圧圧力センサ62で圧力を測定する必要がなく、飽和温度に変換する際の誤差を減らすことができる。
(変形例1)
 3台以上の場合について説明する。S402において、CPU201は、すべての室外ユニット10の過冷却度のうち最大値と最小値との差分が閾値以上か判定する。CPU201は、すべての室外ユニット10の過冷却度のうち最大値と最小値との差分が閾値以上であると判定した場合、S403に進み、すべての室外ユニット10の過冷却度のうち最大値と最小値との差分が閾値未満であると判定した場合、図4に示す冷媒量のバランス制御の処理を終了する。
 S404において、CPU201は、予め定められた増加分(2ヘルツ)を過冷却度が平均値より大きい側の室外ユニット10の数で除することで、大きい側の各室外ユニット10の増加分を決定する。同様に、予め定められた減少分(2ヘルツ)を過冷却度が平均値より小さい側の室外ユニット10の数で除することで、小さい側の各室外ユニット10の減少分を決定する。
 例えば、大きい側の室外ユニット10の数が2で小さい側の室外ユニット10の数が1の場合、各室外ユニット10の増加分は1ヘルツとなる。これにより、増加分の合計値と減少分の合計値とを常に2ヘルツに保つことができる。
(変形例2)
 変形例2について説明する。CPU201は、さらに、各圧縮機11の行程容積に基づいて、各圧縮機11の回転数を制御するようにしてもよい。制御部70aは、予め記憶部202に各圧縮機11の行程容積を記憶していてもよいし、各圧縮機11の制御部70に対して各圧縮機11の行程容積を問い合わせ、問い合わせの結果として取得した各圧縮機11の行程容積を記憶部202に記憶するようにしてもよい。同じ変更量、圧縮機の回転数を上げる場合であっても、CPU201は、圧縮機の行程容積が小さい方の回転数を圧縮機の行程容積が大きい方の回転数より基準となる行程容積との比に基づき若干上げ、圧縮機の行程容積が大きい方の回転数を圧縮機の行程容積が小さい方の回転数より基準となる行程容積との比に基づき若干下げるよう制御する。例えば2台の圧縮機の回転数を同じ1ヘルツ上げようとする場合であっても、CPU201は、圧縮機の行程容積が小さい方の回転数を1ヘルツより若干上げ、圧縮機の行程容積が大きい方の回転数を1ヘルツより若干下げるよう制御する。この場合も、CPU201は、増加分の合計量及び減少分の合計量がそれぞれ基準の行程容積換算で2ヘルツになるよう調整するものとする。
 変形例2の空気調和装置によれば、圧縮機の行程容積も考慮した室外ユニット間の冷媒量のバランス制御を行うことができる。変形例2では、実施形態1を例に説明を行ったが、他の実施形態でも同様である。
(変形例3)
 変形例3について説明する。上述した実施形態では、目標値の例として、過冷却度又は温度差(以下指標値と称する)の平均値を用いて説明したが、目標値は、複数の室外ユニットそれぞれについて得られた複数の指標値に基づいて得られる値であればよく、実施形態に限定されるものではない。より好ましくは、目標値は複数の指標値のうち最大値から最小値の間の値であればよい。例えば、目標値は、複数の指標値の中央値であってもよい。これにより、効率的に冷媒量のバランスを取ることができる。
(変形例4)
 変形例4について説明する。上述した各実施形態では、冷媒充填制御処理を行うことで空気調和装置を制御する制御装置の一例として、室外ユニット10a、又は室外ユニット10aの制御部70a等を例にあげて説明を行った。ただし、空気調和装置が室内ユニット及び室外ユニットの管理する管理装置をさらに有している場合において、管理装置が冷媒充填制御処理を行ってもよい。このように、制御装置は、室外ユニット10aに限定されるものではない。また他の例としては、空気調和装置が外部装置と有線又は無線を介して外部装置と通信可能に接続されている場合において、外部装置が冷媒充填制御処理を行ってもよい。
(変形例5)
 変形例5について説明する。上述した各実施形態では、過冷却回路20aの冷却源の一例として過冷却バイパス管22a等を例にあげて説明を行った。ただし、過冷却回路20aの冷却源としての外部熱源を利用するようにしてもよい。
 以上、上述した各実施形態によれば、冷媒回路に充填されている冷媒量を適切に判定可能とすることができる。
 以上、本発明の実施形態の一例について詳述したが、本発明は係る特定の実施形態に限定されるものではない。

Claims (17)

  1.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置の制御装置であって、
     前記複数の室外ユニットと前記室内ユニットとを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する温度センサが検出した温度に基づいて前記各室外ユニットの前記過冷却回路の出口における過冷却度を求め、求めた複数の過冷却度に基づいて過冷却度の目標値を求め、前記各室外ユニットの前記過冷却回路の出口における過冷却度の差が小さくなるように、過冷却度が前記目標値よりも大きい前記室外ユニットの圧縮機の回転数を増加させ、過冷却度が前記目標値よりも小さい前記室外ユニットの圧縮機の回転数を減少させるよう制御する制御手段を有することを特徴とする制御装置。
  2.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置の制御装置であって、
     前記複数の室外ユニットと前記室内ユニットとを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する温度センサが検出した温度に基づいて前記各室外ユニットの前記過冷却回路の出口における過冷却度を求め、求めた複数の過冷却度に基づいて過冷却度の目標値を求め、前記各室外ユニットの前記過冷却回路の出口における過冷却度の差が小さくなるように、過冷却度が前記目標値よりも大きい前記室外ユニットの熱交換器のファンの回転数を減少させ、過冷却度が前記目標値よりも小さい前記室外ユニットの熱交換器のファンの回転数を増加させるよう制御する制御手段を有することを特徴とする制御装置。
  3.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置の制御装置であって、
     前記複数の室外ユニットと前記室内ユニットとを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する第1の温度センサが検出した温度と各室外ユニットの前記過冷却回路を通過する前の冷媒の温度を検出する第2の温度センサが検出した温度とに基づいて前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差を求め、求めた複数の冷媒の温度差に基づいて温度差の目標値を求め、前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差の差が小さくなるように、温度差が前記目標値よりも大きい前記室外ユニットの圧縮機の回転数を増加させ、温度差が前記目標値よりも小さい前記室外ユニットの圧縮機の回転数を減少させるよう制御する制御手段を有することを特徴とする制御装置。
  4.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置の制御装置であって、
     前記複数の室外ユニットと前記室内ユニットとを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する第1の温度センサが検出した温度と各室外ユニットの前記過冷却回路を通過する前の冷媒の温度を検出する第2の温度センサが検出した温度とに基づいて前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差を求め、求めた複数の冷媒の温度差に基づいて温度差の目標値を求め、前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差の差が小さくなるように、温度差が前記目標値よりも大きい前記室外ユニットの熱交換器のファンの回転数を減少させ、温度差が前記目標値よりも小さい前記室外ユニットの熱交換器のファンの回転数を増加させるよう制御する制御手段を有することを特徴とする制御装置。
  5.  前記制御の後、前記制御手段は、前記冷媒回路への冷媒の充填量が適切か否かを判定することを特徴とする請求項1乃至4のいずれか1項に記載の制御装置。
  6.  前記制御手段は、過冷却度が前記目標値よりも大きい前記室外ユニットの圧縮機の回転数の増加分の合計量と、過冷却度が前記目標値よりも小さい前記室外ユニットの圧縮機の回転数の減少分の合計量と、が等しくなるように、各圧縮機の回転数を決定することを特徴とする請求項1又は3に記載の制御装置。
  7.  前記合計量は予め設定された値であることを特徴とする請求項6に記載の制御装置。
  8.  前記制御手段は、圧縮機の台数に基づいて各圧縮機の回転数を決定することを特徴とする請求項6又は7に記載の制御装置。
  9.  前記制御手段は、各圧縮機の行程容積に基づいて各圧縮機の回転数を決定することを特徴とする請求項6乃至8のいずれか1項に記載の制御装置。
  10.  前記制御手段は、前記求めた複数の過冷却度に基づいて、過冷却度の平均値を前記目標値として求めることを特徴とする請求項1又は2に記載の制御装置。
  11.  前記制御手段は、前記求めた複数の温度差に基づいて、温度差の平均値を前記目標値として求めることを特徴とする請求項3又は4に記載の制御装置。
  12.  前記制御手段は、前記求めた複数の過冷却度のうち差分が閾値以上のものがあるか否かを判定し、前記求めた複数の過冷却度のうち差分が閾値以上のものがある場合、前記求めた複数の過冷却度に基づいて前記過冷却度の目標値を求めることを特徴とする請求項1又は2に記載の制御装置。
  13.  前記制御手段は、前記求めた複数の温度差の差分が閾値以上のものがあるか否かを判定し、前記求めた複数の温度差のうち差分が閾値以上のものがある場合、前記求めた複数の温度差に基づいて前記温度差の目標値を求めることを特徴とする請求項3又は4に記載の制御装置。
  14.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置であって、
     前記複数の室外ユニットと前記室内ユニットを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する温度センサが検出した温度に基づいて前記各室外ユニットの前記過冷却回路の出口における過冷却度を求め、求めた複数の過冷却度に基づいて過冷却度の目標値を求め、前記各室外ユニットの前記過冷却回路の出口における過冷却度の差が小さくなるように、過冷却度が前記目標値よりも大きい前記室外ユニットの圧縮機の回転数を増加させ、過冷却度が前記目標値よりも小さい前記室外ユニットの圧縮機の回転数を減少させるよう制御する制御手段を有することを特徴とする空気調和装置。
  15.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置であって、
     前記複数の室外ユニットと前記室内ユニットを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する温度センサが検出した温度に基づいて前記各室外ユニットの前記過冷却回路の出口における過冷却度を求め、求めた複数の過冷却度に基づいて過冷却度の目標値を求め、前記各室外ユニットの前記過冷却回路の出口における過冷却度の差が小さくなるように、過冷却度が前記目標値よりも大きい前記室外ユニットの熱交換器のファンの回転数を減少させ、過冷却度が前記目標値よりも小さい前記室外ユニットの熱交換器のファンの回転数を増加させるよう制御する制御手段を有することを特徴とする空気調和装置。
  16.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置であって、
     前記複数の室外ユニットと前記室内ユニットを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する第1の温度センサが検出した温度と各室外ユニットの前記過冷却回路を通過する前の冷媒の温度を検出する第2の温度センサが検出した温度とに基づいて前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差を求め、求めた複数の冷媒の温度差に基づいて温度差の目標値を求め、前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差の差が小さくなるように、温度差が前記目標値よりも大きい前記室外ユニットの圧縮機の回転数を増加させ、温度差が前記目標値よりも小さい前記室外ユニットの圧縮機の回転数を減少させるよう制御する制御手段を有することを特徴とする空気調和装置。
  17.  複数の室外ユニットと前記複数の室外ユニットと配管で接続された室内ユニットとを有する空気調和装置であって、
     前記複数の室外ユニットと前記室内ユニットを含む冷媒回路への冷媒の充填が完了する前に、各室外ユニットが有する過冷却回路を通過した冷媒の温度を検出する第1の温度センサが検出した温度と各室外ユニットの前記過冷却回路を通過する前の冷媒の温度を検出する第2の温度センサが検出した温度とに基づいて前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差を求め、求めた複数の冷媒の温度差に基づいて温度差の目標値を求め、前記各室外ユニットの前記過冷却回路の入口と出口との冷媒の温度差の差が小さくなるように、温度差が前記目標値よりも大きい前記室外ユニットの熱交換器のファンの回転数を減少させ、温度差が前記目標値よりも小さい前記室外ユニットの熱交換器のファンの回転数を増加させるよう制御する制御手段を有することを特徴とする空気調和装置。
PCT/JP2018/044169 2018-11-30 2018-11-30 制御装置及び空気調和装置 WO2020110289A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/044169 WO2020110289A1 (ja) 2018-11-30 2018-11-30 制御装置及び空気調和装置
JP2019511510A JP6557918B1 (ja) 2018-11-30 2018-11-30 制御装置及び空気調和装置
CN201880019142.9A CN111512102B (zh) 2018-11-30 2018-11-30 控制装置及空调装置
EP18867314.9A EP3889521A4 (en) 2018-11-30 2018-11-30 CONTROL DEVICE AND AIR CONDITIONING DEVICE
US16/444,162 US11204188B2 (en) 2018-11-30 2019-06-18 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044169 WO2020110289A1 (ja) 2018-11-30 2018-11-30 制御装置及び空気調和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/444,162 Continuation US11204188B2 (en) 2018-11-30 2019-06-18 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2020110289A1 true WO2020110289A1 (ja) 2020-06-04

Family

ID=67614803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044169 WO2020110289A1 (ja) 2018-11-30 2018-11-30 制御装置及び空気調和装置

Country Status (5)

Country Link
US (1) US11204188B2 (ja)
EP (1) EP3889521A4 (ja)
JP (1) JP6557918B1 (ja)
CN (1) CN111512102B (ja)
WO (1) WO2020110289A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797680A (zh) * 2020-12-31 2021-05-14 珠海格力电器股份有限公司 一种自动灌注冷媒的控制装置、方法、系统及空调设备
CN114061107B (zh) * 2021-12-27 2023-11-28 上海美控智慧建筑有限公司 一种多联机空调系统的控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599540A (ja) * 1991-10-03 1993-04-20 Zexel Corp 車両用空調装置の冷媒過充填防止装置
JP2009008381A (ja) * 2007-05-30 2009-01-15 Daikin Ind Ltd 空気調和装置
JP4803237B2 (ja) 2007-05-30 2011-10-26 ダイキン工業株式会社 空気調和装置
JP2011247443A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 空気調和装置
JP2012047364A (ja) * 2010-08-25 2012-03-08 Hitachi Appliances Inc 冷凍サイクル装置
WO2017195248A1 (ja) * 2016-05-09 2017-11-16 三菱電機株式会社 冷凍装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601130B2 (ja) * 1995-10-06 2004-12-15 株式会社デンソー 冷凍装置
JP4440883B2 (ja) * 2003-03-28 2010-03-24 東芝キヤリア株式会社 空気調和機
US7472557B2 (en) * 2004-12-27 2009-01-06 Carrier Corporation Automatic refrigerant charging apparatus
JP4120682B2 (ja) * 2006-02-20 2008-07-16 ダイキン工業株式会社 空気調和装置および熱源ユニット
US20110011080A1 (en) * 2008-07-18 2011-01-20 Panasonic Corporation Refrigeration cycle apparatus
WO2010023894A1 (ja) * 2008-08-28 2010-03-04 ダイキン工業株式会社 空気調和装置
JP5582773B2 (ja) * 2009-12-10 2014-09-03 三菱重工業株式会社 空気調和機および空気調和機の冷媒量検出方法
JP5352512B2 (ja) * 2010-03-31 2013-11-27 日立アプライアンス株式会社 空気調和機
JP5516712B2 (ja) * 2012-05-28 2014-06-11 ダイキン工業株式会社 冷凍装置
JP6313950B2 (ja) 2013-10-23 2018-04-18 日立ジョンソンコントロールズ空調株式会社 空気調和機
KR102243860B1 (ko) * 2014-04-22 2021-04-23 엘지전자 주식회사 공기조화기의 제어방법
JP6242321B2 (ja) * 2014-10-03 2017-12-06 三菱電機株式会社 空気調和機
US10415846B2 (en) * 2015-01-23 2019-09-17 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6642903B2 (ja) * 2015-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 冷媒循環装置、冷媒循環方法、冷媒充填方法および冷媒循環装置の運転方法
CN106882007A (zh) * 2015-12-16 2017-06-23 杭州三花研究院有限公司 一种空调系统、控制装置及其控制方法
JP6569536B2 (ja) * 2016-01-08 2019-09-04 株式会社富士通ゼネラル 空気調和装置
CN106839340A (zh) * 2017-03-16 2017-06-13 广东美的制冷设备有限公司 一种空调制冷量测量方法、装置及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599540A (ja) * 1991-10-03 1993-04-20 Zexel Corp 車両用空調装置の冷媒過充填防止装置
JP2009008381A (ja) * 2007-05-30 2009-01-15 Daikin Ind Ltd 空気調和装置
JP4803237B2 (ja) 2007-05-30 2011-10-26 ダイキン工業株式会社 空気調和装置
JP2011247443A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 空気調和装置
JP2012047364A (ja) * 2010-08-25 2012-03-08 Hitachi Appliances Inc 冷凍サイクル装置
WO2017195248A1 (ja) * 2016-05-09 2017-11-16 三菱電機株式会社 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889521A4

Also Published As

Publication number Publication date
JPWO2020110289A1 (ja) 2021-02-15
JP6557918B1 (ja) 2019-08-14
EP3889521A4 (en) 2022-10-12
CN111512102B (zh) 2022-01-28
US11204188B2 (en) 2021-12-21
EP3889521A1 (en) 2021-10-06
CN111512102A (zh) 2020-08-07
US20200173694A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
EP3467406B1 (en) Air conditioner
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
EP2375188B1 (en) Air conditioner
US9188376B2 (en) Refrigerant charge assisting device, air-conditioning apparatus, and refrigerant charge assisting program
JP4588728B2 (ja) 空気調和装置
EP3279580B1 (en) Air-conditioning device
EP2829823B1 (en) Refrigeration cycle apparatus
WO2013099047A1 (ja) 空気調和装置
WO2016117128A1 (ja) 空気調和装置
JP5036790B2 (ja) 空気調和装置
WO2006013861A1 (ja) 冷凍装置
EP3859247B1 (en) Air-conditioning device
US20210055024A1 (en) Air-conditioning apparatus
WO2015140994A1 (ja) 熱源側ユニット及び空気調和装置
JP5034066B2 (ja) 空気調和装置
JP2012137281A (ja) 冷凍装置
WO2020110289A1 (ja) 制御装置及び空気調和装置
JP2009030954A (ja) 冷凍装置
JP4803237B2 (ja) 空気調和装置
JP2018204898A (ja) マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
JP5056794B2 (ja) 空気調和装置
JP6537629B2 (ja) 空気調和装置
JP2018054222A (ja) 冷凍装置
JP5573741B2 (ja) 空気調和装置
JPH04283361A (ja) 多室形空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867314

Country of ref document: EP

Effective date: 20210630