WO2020110195A1 - 結合ループ回路、ノイズフィルタ回路及び回路生成方法 - Google Patents

結合ループ回路、ノイズフィルタ回路及び回路生成方法 Download PDF

Info

Publication number
WO2020110195A1
WO2020110195A1 PCT/JP2018/043557 JP2018043557W WO2020110195A1 WO 2020110195 A1 WO2020110195 A1 WO 2020110195A1 JP 2018043557 W JP2018043557 W JP 2018043557W WO 2020110195 A1 WO2020110195 A1 WO 2020110195A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
loop
circuit
plane
region
Prior art date
Application number
PCT/JP2018/043557
Other languages
English (en)
French (fr)
Inventor
諭 米田
健二 廣瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018008086.2T priority Critical patent/DE112018008086B4/de
Priority to PCT/JP2018/043557 priority patent/WO2020110195A1/ja
Priority to JP2020557432A priority patent/JP6880341B2/ja
Priority to CN201880099321.8A priority patent/CN113056872A/zh
Publication of WO2020110195A1 publication Critical patent/WO2020110195A1/ja
Priority to US17/206,965 priority patent/US11437969B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0138Electrical filters or coupling circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks

Definitions

  • the present invention relates to a coupling loop circuit including a plurality of conductors and a noise filter circuit.
  • the present invention also relates to a circuit generation method for wiring a conductor line on a substrate.
  • Patent Document 1 discloses a circuit module that ensures high isolation in a wide frequency band.
  • the circuit module disclosed in Patent Document 1 has a first connection line connected to the first element, a second connection line connected to the second element, and a connection point between the first connection line and the second connection line. , And a ground line connected to the ground via a bypass capacitor.
  • the first inductor is connected in series to the first connection line, and the second inductor is connected in series to the second connection line.
  • the first inductor and the second inductor are arranged so as to be electromagnetically coupled to each other, and the mutual inductance due to the electromagnetic field coupling cancels out the parasitic inductance of the bypass capacitor (hereinafter referred to as “parasitic inductance”). is doing.
  • the first inductor and the second inductor are laminated in different layers in the substrate, and the first inductor and the second inductor spatially overlap with each other. If there is no misalignment in the spatial overlap between the first inductor and the second inductor, the parasitic inductance will be canceled by the mutual inductance due to electromagnetic field coupling. However, when the spatial overlap between the first inductor and the second inductor is misaligned, the parasitic inductance is not canceled by the mutual inductance due to the electromagnetic field coupling.
  • the present invention has been made to solve the above problems, and includes a first loop region formed by first to fourth conductors and a second loop region formed by fifth to eighth conductors.
  • An object of the present invention is to obtain a coupling loop circuit and a noise filter circuit that can cancel parasitic inductance even if a positional deviation occurs in the spatial overlap with the loop region.
  • the present invention provides a circuit generation method for generating a circuit capable of canceling parasitic inductance even if a positional deviation occurs in the spatial overlap between the first loop region and the second loop region. To aim.
  • the first to fourth conductors are arranged in a loop to form the first loop area and the loop is formed to form the second loop area.
  • the first conductor and one end of the second conductor are connected, the other end of the second conductor and one end of the third conductor are connected,
  • the other end of the third conductor is connected to one end of the fourth conductor, the other end of the fourth conductor is connected to one end of the fifth conductor, and the other end of the fifth conductor is connected to the sixth conductor.
  • one end of the seventh conductor is connected to one end of the seventh conductor, the other end of the seventh conductor is connected to one end of the eighth conductor, and the sixth conductor is ,
  • the second conductor is crossed over with the second conductor, and the eighth conductor is crossed with each of the second conductor and the fourth conductor, and the first loop region and the second loop region are spatially separated from each other.
  • the first loop region and the second loop region overlap with each other and are formed by the second conductor, the fourth conductor, the sixth conductor, and the eighth conductor.
  • the sixth conductor is crossed over with the second conductor
  • the eighth conductor is crossed over with each of the second conductor and the fourth conductor
  • the first loop region is formed.
  • the second loop region are spatially overlapped with each other, and the overlapping region of the first loop region and the second loop region is the second conductor, the fourth conductor, the sixth conductor and the eighth conductor.
  • a coupled loop circuit was constructed as formed by the conductors. Therefore, the coupling loop circuit according to the present invention can cancel the parasitic inductance even if the spatial overlap between the first loop region and the second loop region is displaced.
  • FIG. 3 is a configuration diagram showing a noise filter circuit according to the first embodiment.
  • FIG. FIG. 3 is a plan view showing a first plane 1a on the substrate 1 on which the noise filter circuit according to the first embodiment is formed.
  • FIG. 3 is a plan view showing a second plane 1b on the substrate 1 on which the noise filter circuit according to the first embodiment is formed.
  • 4A is a configuration diagram showing the coupling loop circuit 10 according to the first embodiment
  • FIG. 4B is a first conductor 11, a second conductor 12, a third conductor 13, and a fourth conductor 14.
  • FIG. 4C is an explanatory view showing the first loop region 61 formed by the fifth conductor 15, the sixth conductor 16, the seventh conductor 17, and the eighth conductor 18.
  • FIG. 4D is an explanatory diagram showing the second loop region 62
  • FIG. 4D is an explanatory diagram showing a spatial overlapping region 63 of the first loop region 61 and the second loop region 62.
  • FIG. 5 is an explanatory diagram showing a conductor formed on a first plane 1a of the substrate 1 among the plurality of conductors in the coupled loop circuit 10 according to the first embodiment.
  • FIG. 5 is an explanatory diagram showing a conductor formed on a second plane 1b of the substrate 1 among the plurality of conductors in the coupled loop circuit 10 according to the first embodiment.
  • It is a circuit diagram which shows the noise filter circuit shown in FIG.
  • FIG. 8 is a circuit diagram obtained by converting the noise filter circuit shown in FIG. 7 into an equivalent circuit.
  • the first loop region 61 is an explanatory diagram showing a B z of the spatial overlap region 63 and the second loop region 62. It is explanatory drawing which shows the position of the 1st loop area
  • 3 is a side view showing the substrate 1 on which the noise filter circuit according to the first embodiment is formed.
  • FIG. 3 is a flowchart showing a circuit generation method according to the first embodiment.
  • FIG. 13A is an explanatory diagram showing a state in which the first loop region 61 is displaced from the second loop region 62 in the direction indicated by the arrow (the right direction in the drawing), and FIG. 13B shows the first loop region 61.
  • 13C is a diagram illustrating a state in which the loop region 61 of FIG. 3 is displaced from the second loop region 62 in the direction indicated by the arrow (downward in the figure). It is explanatory drawing which shows the state shifted
  • the circuit module disclosed in Patent Document 1 the transmission characteristics of the high-frequency signal in the case where there is a positional deviation in the spatial overlap between the first inductor and the second inductor and in the case where there is no positional deviation in the overlap
  • FIG. 1 is a configuration diagram showing another noise filter circuit according to the first embodiment.
  • FIG. 6 is a plan view showing a first plane 1a on the substrate 1 on which another noise filter circuit according to the first embodiment is formed.
  • FIG. 6 is a plan view showing a second plane 1b on the substrate 1 on which another noise filter circuit according to the first embodiment is formed.
  • FIG. 6 is a configuration diagram showing a noise filter circuit according to a second embodiment.
  • FIG. FIG. 7 is a plan view showing a first plane 1a on the substrate 1 on which the noise filter circuit according to the second embodiment is formed.
  • FIG. 9 is a plan view showing a second plane 1b on the substrate 1 on which the noise filter circuit according to the second embodiment is formed. It is a circuit diagram which shows the noise filter circuit shown in FIG. It is the circuit diagram which carried out equivalent circuit conversion of the noise filter circuit shown in FIG.
  • FIG. 1 is a configuration diagram showing a noise filter circuit according to the first embodiment.
  • FIG. 2 is a plan view showing a first plane 1a in the substrate 1 on which the noise filter circuit according to the first embodiment is formed
  • FIG. 3 is a substrate on which the noise filter circuit according to the first embodiment is formed. It is a top view which shows the 2nd plane 1b in 1.
  • FIG. 4A is a configuration diagram showing the coupling loop circuit 10 according to the first embodiment.
  • FIG. 4B is an explanatory diagram showing the first loop region 61 formed by the first conductor 11, the second conductor 12, the third conductor 13, and the fourth conductor 14.
  • FIG. 4C is an explanatory diagram showing the second loop region 62 formed by the fifth conductor 15, the sixth conductor 16, the seventh conductor 17, and the eighth conductor 18.
  • FIG. 4D is an explanatory diagram showing a spatial overlapping region 63 of the first loop region 61 and the second loop region 62.
  • FIG. 5 is an explanatory diagram showing a conductor formed on the first plane 1a of the substrate 1 among the plurality of conductors in the coupled loop circuit 10 according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a conductor formed on the second plane 1b of the substrate 1 among the plurality of conductors in the coupled loop circuit 10 according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a noise filter circuit, and is not a diagram that accurately represents the length and width of each conductor included in the noise filter circuit. Therefore, the length and width of each conductor are , The length and width of each conductor described in FIG. 4 are slightly different.
  • the noise filter circuit shown in FIG. 1 includes a coupling loop circuit 10, and the coupling loop circuit 10 includes a first conductor line and a second conductor line.
  • the first conductor line includes a first conductor 11, a second conductor 12, a third conductor 13, and a fourth conductor 14.
  • the first conductor 11, the second conductor 12, the third conductor 13, and the fourth conductor 14 are wired in a loop and form a first loop region 61.
  • the first loop region 61 is a hatched region in FIG. 4B.
  • the second conductor line includes a fifth conductor 15, a sixth conductor 16, a seventh conductor 17, and an eighth conductor 18.
  • the fifth conductor 15, the sixth conductor 16, the seventh conductor 17, and the eighth conductor 18 are wired in a loop shape and form a second loop region 62.
  • the second loop region 62 is a shaded region in FIG. 4C.
  • the first loop region 61 and the second loop region 62 spatially overlap.
  • a spatial overlapping region 63 of the first loop region 61 and the second loop region 62 is a hatched region in FIG. 4D.
  • the first conductor 11 is arranged on the first plane 1a. One end of the first conductor 11 is connected to one end of the second conductor 12 via the via 22, and the other end of the first conductor 11 is connected to the input/output terminal 2 via the via 21.
  • the second conductor 12 is arranged on the second plane 1b. One end of the second conductor 12 is connected to one end of the first conductor 11 via the via 22, and the other end of the second conductor 12 is connected to one end of the third conductor 13 via the via 23. ing.
  • the third conductor 13 is arranged on the first plane 1a.
  • One end of the third conductor 13 is connected to the other end of the second conductor 12 via the via 23, and the other end of the third conductor 13 is connected to one end of the fourth conductor 14 via the via 24.
  • the fourth conductor 14 is arranged on the second plane 1b. One end of the fourth conductor 14 is connected to the other end of the third conductor 13 via the via 24, and the other end of the fourth conductor 14 is connected to one end of the conductor 26 via the via 25. ..
  • the fifth conductor 15 is arranged on the second plane 1b. One end of the fifth conductor 15 is connected to the other end of the conductor 26 via the via 27, and the other end of the fifth conductor 15 is connected to one end of the sixth conductor 16 via the via 28. ..
  • the sixth conductor 16 is arranged on the first plane 1a. One end of the sixth conductor 16 is connected to the other end of the fifth conductor 15 via the via 28, and the other end of the sixth conductor 16 is connected to one end of the seventh conductor 17 via the via 29. Has been done.
  • the sixth conductor 16 is arranged so as to intersect the second conductor 12 in a three-dimensional manner.
  • the seventh conductor 17 is arranged on the second plane 1b.
  • the eighth conductor 18 is arranged on the first plane 1a. One end of the eighth conductor 18 is connected to the other end of the seventh conductor 17 via the via 30, and the other end of the eighth conductor 18 is connected to the input/output terminal 3 via the via 31. ..
  • the eighth conductor 18 is arranged so as to intersect with each of the second conductor 12 and the fourth conductor 14 in a three-dimensional manner.
  • the via 21 is inserted in the substrate 1 to electrically connect the input/output terminal 2 and the other end of the first conductor 11.
  • the via 22 is inserted in the substrate 1 to electrically connect one end of the first conductor 11 and one end of the second conductor 12.
  • the via 23 is inserted in the substrate 1 to electrically connect the other end of the second conductor 12 and one end of the third conductor 13.
  • the via 24 is inserted into the substrate 1 to electrically connect the other end of the third conductor 13 and one end of the fourth conductor 14.
  • the conductor 26 may be arranged on the second plane 1b.
  • the conductor 26 is arranged on the second plane 1b, one end of the conductor 26 is connected to the other end of the fourth conductor 14, and the other end of the conductor 26 is connected to one end of the fifth conductor 15.
  • the vias 25 and 27 are unnecessary.
  • the shape of the fourth conductor 14 is L-shaped, or the shape of the fifth conductor 15 is L-shaped, and the other end of the fourth conductor 14 and one end of the fifth conductor 15 are directly connected. If so, the conductor 26 is unnecessary.
  • the via 28 is inserted into the substrate 1 to electrically connect the other end of the fifth conductor 15 and one end of the sixth conductor 16.
  • the via 29 is inserted into the substrate 1 to electrically connect the other end of the sixth conductor 16 and one end of the seventh conductor 17.
  • the via 30 is inserted in the substrate 1 to electrically connect the other end of the seventh conductor 17 and one end of the eighth conductor 18.
  • the via 31 is inserted in the substrate 1 to electrically connect the other end of the eighth conductor 18 and the input/output terminal 3.
  • the capacitor 32 is arranged on the second plane 1b. One end of the capacitor 32 is connected to the via 27 that is a connecting portion between the first conductor line and the second conductor line, and the other end of the capacitor 32 is connected to the ground 34 via the via 33.
  • the via 33 is inserted in the substrate 1 to electrically connect the other end of the capacitor 32 and the ground 34.
  • the ground 34 is formed on the first plane 1a.
  • FIG. 7 is a circuit diagram showing the noise filter circuit shown in FIG.
  • 41 is the capacitance C of the capacitor 32.
  • Reference numeral 42 denotes a parasitic inductance L ESL of the ground path including the capacitor 32, which is the sum of the inductance parasitic on the capacitor 32 and the inductance of the substrate 1.
  • Reference numeral 43 is the inductance L 0 of the first conductor line, and 44 is the inductance L 0 of the second conductor line.
  • Reference numeral 45 is a mutual inductance M due to electromagnetic field coupling between the first conductor line and the second conductor line.
  • FIG. 8 is a circuit diagram obtained by converting the noise filter circuit shown in FIG. 7 into an equivalent circuit.
  • the noise filter circuit shown in FIG. 1 If the parasitic inductance 42 is close to 0, the noise filter circuit shown in FIG. 1 can efficiently remove high frequency noise even if the coupling loop circuit 10 is not provided. However, since the actual parasitic inductance 42 is not 0, the noise filter circuit shown in FIG. 1 includes the coupling loop circuit 10 to cancel the parasitic inductance 42. Specifically, the mutual inductance M due to the electromagnetic field coupling between the first conductor line and the second conductor line cancels the parasitic inductance 42.
  • FIG. 9 is an explanatory diagram showing the size B z of the spatially overlapping region 63 of the first loop region 61 and the second loop region 62.
  • the shaded area represents the spatial overlapping area 63.
  • x 0 y 0 .
  • FIG. 10 is an explanatory diagram showing the positions of the first loop area 61 and the second loop area 62.
  • the X axis is parallel to each of the second conductor 12, the fourth conductor 14, the fifth conductor 15, and the seventh conductor 17.
  • FIG. 11 is a side view showing the substrate 1 on which the noise filter circuit according to the first embodiment is formed.
  • the substrate 1 shown in FIG. 11 is a substrate having a thickness of h.
  • the mutual inductance M is expressed as shown in the following equation (1).
  • a x is the length of the overlapping region 63 in the X-axis direction
  • a y is the length of the overlapping region 63 in the Y-axis direction.
  • ⁇ x 1 is the protrusion length of the first loop region 61 with respect to the second loop region 62 in the ⁇ X axis direction
  • ⁇ x 2 is the protrusion length of the first loop region 61 with respect to the second loop region 62 in the +X axis direction. Is the length.
  • FIG. 12 is a flowchart showing the circuit generation method according to the first embodiment. The contents of steps ST1 to ST3 will be specifically described below.
  • Step ST1 In the circuit generation method shown in FIG. 12, each of the first conductor 11 and the third conductor 13 is wired on the first plane 1a of the substrate 1 as a conductor included in the first conductor line, The conductor 26 is wired on the plane 1a. Further, in the circuit generation method shown in FIG. 12, each of the sixth conductor 16 and the eighth conductor 18 is wired on the first plane 1a as the conductor included in the second conductor line.
  • Step ST2 In the circuit generating method shown in FIG. 12, each of the second conductor 12 and the fourth conductor 14 is wired on the second plane 1b of the substrate 1 as a conductor included in the first conductor line. Further, in the circuit generating method shown in FIG. 12, the fifth conductor 15 and the seventh conductor 17 are wired as the conductors included in the second conductor line on the second plane 1b.
  • step ST1 each of the first conductor 11, the third conductor 13, the sixth conductor 16, the eighth conductor 18, and the conductor 26 is wired on the first plane 1a. ..
  • step ST2 each of the second conductor 12, the fourth conductor 14, the fifth conductor 15, and the seventh conductor 17 is wired on the second plane 1b. Therefore, for example, even if the position of each conductor wired on the first plane 1a coincides with the desired position, which is, for example, the designed position, each conductor wired on the second plane 1b is The position of the conductor may be displaced from the desired position.
  • the position of the first loop region 61 is the same as the first position when the position is the same as the desired position.
  • the position of the loop area 61 (hereinafter, referred to as “the normal position of the first loop area 61”) may be displaced.
  • the position of the second loop region 62 is the same as the desired position.
  • the position of the second loop area 62 may be deviated from the position (hereinafter, referred to as “normal position of the second loop area 62”).
  • the positions of the conductors wired on the second plane 1b coincide with the desired positions, the positions of the conductors wired on the first plane 1a are changed from the desired positions. It may be out of alignment.
  • the position of each conductor wired on the first plane 1a is deviated from the desired position, the position of the first loop region 61 is deviated from the normal position of the first loop region 61.
  • the positions of the respective conductors wired on the first plane 1 a are displaced from the desired positions, the position of the second loop region 62 is displaced from the normal position of the second loop region 62. It may happen.
  • FIG. 13A to 13C are explanatory diagrams showing an example of the spatial positional deviation between the first loop region 61 and the second loop region 62.
  • FIG. 13A shows a state in which the first loop area 61 is displaced from the second loop area 62 in the direction indicated by the arrow (rightward in the figure).
  • FIG. 13B shows a state in which the first loop area 61 is displaced from the second loop area 62 in the direction indicated by the arrow (downward in the figure).
  • FIG. 13C shows a state in which the first loop region 61 is displaced from the second loop region 62 in the direction indicated by the arrow (upper right direction in the figure).
  • step ST1 when the sixth conductor 16 is wired on the first plane 1a, the sixth conductor 16 intersects with the second conductor 12 in a three-dimensional intersection (hereinafter, referred to as “the first conductor”). 1). Further, in step ST1, when wiring the eighth conductor 18 on the first plane 1a, the eighth conductor 18 crosses the second conductor 12 and the fourth conductor 14 respectively (hereinafter, referred to as “second It is referred to as the "overpass”.
  • the size B z of the overlapping area 63 does not change.
  • the mutual inductance M due to electromagnetic field coupling is as shown in FIG. It is added to each of L 0 and the inductance L 0 of the second conductor line. Further, the parasitic inductance 42 of the ground path including the capacitor 32 is obtained by subtracting twice the mutual inductance M from the parasitic inductance LESL . Therefore, as twice the mutual inductance M is coincident with the parasitic inductance L ESL, if the mutual inductance M is designed, it is possible to cancel the parasitic inductance L ESL.
  • the overlap region 63 has a length ⁇ x in the X-axis direction and the overlap region 63 has the Y-axis direction so that twice the mutual inductance M matches the parasitic inductance L ESL.
  • the length ⁇ y , the thickness h of the substrate 1 and the magnetic permeability ⁇ are designed respectively.
  • FIG. 14 shows a high-frequency signal in the circuit module disclosed in Patent Document 1 in the case where there is a positional deviation in the spatial overlap between the first inductor and the second inductor and in the case where there is no positional deviation in the overlap. It is explanatory drawing which shows the simulation result of the transmission characteristic of.
  • FIG. 15 shows a case where the positions of the respective conductors on the first plane 1a or the second plane 1b deviate from a desired position in the noise filter circuit shown in FIG. It is explanatory drawing which shows the simulation result of the transmission characteristic of the high frequency signal of FIG.
  • FIG. 16 is an explanatory diagram showing the distance between the conductors arranged on the same plane as the simulation condition of the transmission characteristic of the high frequency signal.
  • the transmission characteristics of the high-frequency signal when there is a positional deviation in the spatial overlap between the first inductor and the second inductor have a spatial overlap. This is different from the transmission characteristic of the high frequency signal when there is no positional deviation in the. Therefore, in the circuit module, the mutual inductance when there is a positional deviation in the spatial overlap between the first inductor and the second inductor and the mutual inductance when there is no positional deviation in the spatial overlap are different.
  • the noise filter circuit shown in FIG. 1 as shown in FIG.
  • the sixth conductor 16 is three-dimensionally crossed with the second conductor 12
  • the eighth conductor 18 is three-dimensionally crossed with each of the second conductor 12 and the fourth conductor 14
  • the first loop region 61 and the second loop region 62 are spatially overlapped with each other, and the overlapping region 63 of the first loop region 61 and the second loop region 62 is the second conductor 12 and the fourth loop region 62.
  • the coupling loop circuit 10 is configured so as to be formed by the conductor 14, the sixth conductor 16, and the eighth conductor 18. Therefore, the coupling loop circuit 10 reduces the parasitic inductance L ESL of the ground path including the capacitor 32 even if the spatial overlap between the first loop region 61 and the second loop region 62 is displaced. You can cancel.
  • the first loop region 61 has a rectangular shape
  • the second loop region 62 has a rectangular shape.
  • the shape of the first loop region 61 may be a parallelogram and the shape of the second loop region 62 may be a parallelogram, for example.
  • the third conductor 13, the sixth conductor 16, and the eighth conductor 18 respectively It is arranged in parallel with the first conductor 11.
  • each of the fourth conductor 14, the fifth conductor 15, and the seventh conductor 17 is arranged in parallel with the second conductor 12.
  • the sixth conductor 16 intersects with the second conductor 12 in a three-dimensional manner
  • the eighth conductor 18 intersects with each of the second conductor 12 and the fourth conductor 14 in a three-dimensional manner.
  • each of the first conductor line and the second conductor line has a conductor arranged on the first plane 1a and a second conductor line. And a conductor arranged on the plane 1b.
  • each of the first conductor 11, the third conductor 13, the sixth conductor 16, and the eighth conductor 18 is arranged on the first plane 1a
  • the second conductor 12, the fourth conductor 14, the fifth conductor 15, and the seventh conductor 17 are arranged on the second plane 1b.
  • the first conductor line has only the conductors arranged in the first plane 1a
  • the second conductor line is arranged in the second plane 1b.
  • FIG. 17 is a configuration diagram showing another noise filter circuit according to the first embodiment.
  • 18 is a plan view showing a first plane 1a in the substrate 1 on which another noise filter circuit according to the first embodiment is formed, and
  • FIG. 19 shows another noise filter circuit according to the first embodiment.
  • the conductor 26 is unnecessary.
  • the first conductor line has only the conductors arranged on the second plane 1b
  • the second conductor line has only the conductors arranged on the first plane 1a. It may be the loop circuit 10. Specifically, each of the first conductor 11, the second conductor 12, the third conductor 13, and the fourth conductor 14 is arranged on the second plane 1b, and the fifth conductor 15 and the sixth conductor
  • the coupling loop circuit 10 in which each of the 16, the seventh conductor 17, and the eighth conductor 18 is arranged on the first plane 1a may be used.
  • Embodiment 2 The noise filter circuit of the first embodiment is a single end type noise filter circuit. In the second embodiment, a differential noise filter circuit will be described.
  • the noise filter circuit shown in FIG. 20 includes a first coupling loop circuit 10a and a second coupling loop circuit 10b.
  • the respective configurations of the first coupling loop circuit 10a and the second coupling loop circuit 10b are the same as the configurations of the coupling loop circuit 10 shown in FIG.
  • one end of the first conductor 11 included in the first coupling loop circuit 10a is connected to the input/output terminal 2a
  • the eighth conductor 18 included in the first coupling loop circuit is The other end is connected to the input/output terminal 3a.
  • One end of the first conductor 11 included in the second coupling loop circuit 10b is connected to the input/output terminal 3b
  • the eighth conductor 18 included in the second coupling loop circuit 10b is turned on. It is connected to the output terminal 2b.
  • the input/output terminal 2a and the input/output terminal 2b are a pair of differential input/output ports, and are shown as Port(1) in FIG.
  • the input/output terminal 3a and the input/output terminal 3b are a pair of differential input/output ports, and are shown as Port(2) in FIG.
  • the first conductor 11 included in the first conductor line is connected to the input/output terminal 3b, and the eighth conductor included in the second conductor line is included. Is connected to the input/output terminal 2b.
  • the first conductor 11 included in the first conductor line is connected to the input/output terminal 2b, and the eighth conductor included in the second conductor line is included.
  • the conductor 18 may be connected to the input/output terminal 3b.
  • the capacitor 35 has one end connected to one end of the fifth conductor 15 included in the first coupling loop circuit 10a and the other end of the fifth conductor 15 included in the second coupling loop circuit 10b. It is connected to one end.
  • the first coupling loop circuit 10a has the first and second loop regions 61 and 62 even if there is a displacement between the first loop region 61 and the second loop region 62.
  • the size B z of the overlapping region 63 does not change as long as the positional displacement is within the range in which two grade separations are realized.
  • the first conductor line included in the first coupling loop circuit 10a and the second conductor line included in the first coupling loop circuit 10a are arranged at positions where electromagnetic coupling occurs.
  • the mutual inductance M due to electromagnetic field coupling is included in the inductance L 0 of the first conductor line included in the first coupling loop circuit 10a and the first coupling loop circuit 10a. It is added to each of the inductances L 0 of the second conductor lines.
  • the first conductor line included in the second coupling loop circuit 10b and the second conductor line included in the second coupling loop circuit 10b are arranged at positions where electromagnetic field coupling is generated. As shown in FIG.
  • the mutual inductance M due to electromagnetic field coupling is included in the inductance L 0 of the first conductor line included in the second coupling loop circuit 10b and the second coupling loop circuit 10b. It is added to each of the inductances L 0 of the second conductor lines. Further, the parasitic inductance 52 of the path including the capacitor 35 is obtained by subtracting twice the mutual inductance M from the parasitic inductance LESL .
  • Each of the first coupling loop circuit 10a and the second coupling loop circuit 10b in the noise filter circuit shown in FIG. 20 includes a first conductor line and a second conductor loop line in which twice the mutual inductance M matches the parasitic inductance LESL. It has a second conductor line.
  • the overlap region 63 has a length ⁇ x in the X-axis direction and the overlap region 63 has the Y-axis direction so that twice the mutual inductance M matches the parasitic inductance L ESL.
  • the length ⁇ y , the thickness h of the substrate 1 and the magnetic permeability ⁇ are designed respectively.
  • the invention of the present application is capable of freely combining the embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
  • the present invention is suitable for a coupling loop circuit and a noise filter circuit including a plurality of conductors. Further, the present invention is suitable for a circuit generation method for wiring a conductor line on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Filters And Equalizers (AREA)

Abstract

第6の導体(16)が、第2の導体(12)と立体交差され、第8の導体(18)が、第2の導体(12)及び第4の導体(14)のそれぞれと立体交差され、第1のループ領域(61)と第2のループ領域(62)とが空間的に重なっており、第1のループ領域(61)と第2のループ領域(62)との重なり領域(63)が、第2の導体(12)、第4の導体(14)、第6の導体(16)及び第8の導体(18)によって形成されているように、結合ループ回路(10)を構成した。

Description

結合ループ回路、ノイズフィルタ回路及び回路生成方法
 この発明は、複数の導体を備える結合ループ回路及びノイズフィルタ回路とに関するものである。
 また、この発明は、導体線路を基板に配線する回路生成方法に関するものである。
 以下の特許文献1には、広い周波数帯域で高いアイソレーションを確保している回路モジュールが開示されている。
 特許文献1に開示されている回路モジュールは、第1素子に接続する第1接続ラインと、第2素子に接続する第2接続ラインと、第1接続ラインと第2接続ラインとの接続点を、バイパスコンデンサを介して、グランドへ接続する接地ラインとを備えている。
 また、第1接続ラインには、第1インダクタが直列に接続され、第2接続ラインには、第2インダクタが直列に接続されている。
 第1インダクタと第2インダクタとは、互いに電磁界結合するように配置されており、電磁界結合による相互インダクタンスが、バイパスコンデンサに寄生しているインダクタンス(以下、「寄生インダクタンス」と称する)を相殺している。
特開2013-077663号公報
 特許文献1に開示されている回路モジュールは、第1インダクタと第2インダクタとが、基板内の互いに異なる層に積層されており、第1インダクタと第2インダクタとが空間的に重なっている。第1インダクタと第2インダクタとの間の空間的な重なりに位置ずれがなければ、寄生インダクタンスは、電磁界結合による相互インダクタンスによって相殺される。
 しかし、第1インダクタと第2インダクタとの間の空間的な重なりに位置ずれが生じている場合、寄生インダクタンスが、電磁界結合による相互インダクタンスによって相殺されないという課題があった。
 この発明は上記のような課題を解決するためになされたもので、第1から第4の導体によって形成される第1のループ領域と、第5から第8の導体によって形成される第2のループ領域との間の空間的な重なりに位置ずれが生じていても、寄生インダクタンスをキャンセルすることができる結合ループ回路及びノイズフィルタ回路を得ることを目的とする。
 また、この発明は、第1のループ領域と第2のループ領域との間の空間的な重なりに位置ずれが生じていても、寄生インダクタンスをキャンセルできる回路を生成する回路生成方法を得ることを目的とする。
 この発明に係る結合ループ回路は、第1のループ領域を形成するためにループ状に配線されている第1から第4の導体と、第2のループ領域を形成するためにループ状に配線されている第5から第8の導体とを備え、第1の導体の一端と第2の導体の一端とが接続され、第2の導体の他端と第3の導体の一端とが接続され、第3の導体の他端と第4の導体の一端とが接続され、第4の導体の他端と第5の導体の一端とが接続され、第5の導体の他端と第6の導体の一端とが接続され、第6の導体の他端と第7の導体の一端とが接続され、第7の導体の他端と第8の導体の一端とが接続され、第6の導体は、第2の導体と立体交差され、第8の導体は、第2の導体及び第4の導体のそれぞれと立体交差されており、第1のループ領域と第2のループ領域とが空間的に重なっており、第1のループ領域と第2のループ領域との重なり領域が、第2の導体、第4の導体、第6の導体及び第8の導体によって形成されているものである。
 この発明によれば、第6の導体が、第2の導体と立体交差され、第8の導体が、第2の導体及び第4の導体のそれぞれと立体交差されており、第1のループ領域と第2のループ領域とが空間的に重なっており、第1のループ領域と第2のループ領域との重なり領域が、第2の導体、第4の導体、第6の導体及び第8の導体によって形成されているように、結合ループ回路を構成した。したがって、この発明に係る結合ループ回路は、第1のループ領域と第2のループ領域との間の空間的な重なりに位置ずれが生じていても、寄生インダクタンスをキャンセルすることができる。
実施の形態1に係るノイズフィルタ回路を示す構成図である。 実施の形態1に係るノイズフィルタ回路が形成される基板1における第1の平面1aを示す平面図である。 実施の形態1に係るノイズフィルタ回路が形成される基板1における第2の平面1bを示す平面図である。 図4Aは、実施の形態1に係る結合ループ回路10を示す構成図、図4Bは、第1の導体11と、第2の導体12と、第3の導体13と、第4の導体14とによって形成されている第1のループ領域61を示す説明図、図4Cは、第5の導体15と、第6の導体16と、第7の導体17と、第8の導体18とによって形成されている第2のループ領域62を示す説明図、図4Dは、第1のループ領域61と第2のループ領域62との空間的な重なり領域63を示す説明図である。 実施の形態1に係る結合ループ回路10における複数の導体のうち、基板1における第1の平面1aに形成される導体を示す説明図である。 実施の形態1に係る結合ループ回路10における複数の導体のうち、基板1における第2の平面1bに形成される導体を示す説明図である。 図1に示すノイズフィルタ回路を示す回路図である。 図7に示すノイズフィルタ回路を等価回路変換した回路図である。 第1のループ領域61と第2のループ領域62との空間的な重なり領域63の大きさBを示す説明図である。 第1のループ領域61の位置及び第2のループ領域62の位置を示す説明図である。 実施の形態1に係るノイズフィルタ回路が形成される基板1を示す側面図である。 実施の形態1に係る回路生成方法を示すフローチャートである。 図13Aは、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向(図中、右方向)にずれてしまっている状態を示す説明図、図13Bは、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向(図中、下方向)にずれてしまっている状態を示す説明図、図13Cは、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向(図中、右上方向)にずれてしまっている状態を示す説明図である。 特許文献1に開示されている回路モジュールにおいて、第1インダクタと第2インダクタとの間の空間的な重なりに位置ずれが有る場合と、重なりに位置ずれが無い場合との高周波信号の透過特性のシミュレーション結果を示す説明図である。 図1に示すノイズフィルタ回路において、第1の平面1a又は第2の平面1bにおけるそれぞれの導体の位置が所望の位置からずれている場合と、所望の位置からずれていない場合との高周波信号の透過特性のシミュレーション結果を示す説明図である。 高周波信号の透過特性のシミュレーション条件として、同一の平面に配置されるそれぞれの導体の間の間隔等を示す説明図である。 実施の形態1に係る他のノイズフィルタ回路を示す構成図である。 実施の形態1に係る他のノイズフィルタ回路が形成される基板1における第1の平面1aを示す平面図である。 実施の形態1に係る他のノイズフィルタ回路が形成される基板1における第2の平面1bを示す平面図である。 実施の形態2に係るノイズフィルタ回路を示す構成図である。 実施の形態2に係るノイズフィルタ回路が形成される基板1における第1の平面1aを示す平面図である。 実施の形態2に係るノイズフィルタ回路が形成される基板1における第2の平面1bを示す平面図である。 図20に示すノイズフィルタ回路を示す回路図である。 図23に示すノイズフィルタ回路を等価回路変換した回路図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るノイズフィルタ回路を示す構成図である。
 図2は、実施の形態1に係るノイズフィルタ回路が形成される基板1における第1の平面1aを示す平面図であり、図3は、実施の形態1に係るノイズフィルタ回路が形成される基板1における第2の平面1bを示す平面図である。
 図4Aは、実施の形態1に係る結合ループ回路10を示す構成図である。
 図4Bは、第1の導体11と、第2の導体12と、第3の導体13と、第4の導体14とによって形成されている第1のループ領域61を示す説明図である。
 図4Cは、第5の導体15と、第6の導体16と、第7の導体17と、第8の導体18とによって形成されている第2のループ領域62を示す説明図である。
 図4Dは、第1のループ領域61と第2のループ領域62との空間的な重なり領域63を示す説明図である。
 図5は、実施の形態1に係る結合ループ回路10における複数の導体のうち、基板1における第1の平面1aに形成される導体を示す説明図である。
 図6は、実施の形態1に係る結合ループ回路10における複数の導体のうち、基板1における第2の平面1bに形成される導体を示す説明図である。
 図1は、基板1における第2の平面1bを見たときに、第1の平面1aに形成されている導体等が見えているものとして表記している。
 図1は、ノイズフィルタ回路の構成を示す図面であって、ノイズフィルタ回路に含まれるそれぞれの導体の長さ及び幅を正確に表している図面ではないため、それぞれの導体の長さ及び幅は、図4に記載されているそれぞれの導体の長さ及び幅と若干相違している。
 図1から図6において、基板1は、第1の平面1aと第2の平面1bとを有している。
 第1の平面1aは、基板1の裏面であり、第2の平面1bは、基板1の表面である。
 しかし、これは一例に過ぎず、第1の平面1aが基板1の表面であり、第2の平面1bが基板1の裏面であってもよい。
 入出力端子2は、高周波信号を入出力するための端子である。図1では、入出力端子2をPort(1)と表記している。
 入出力端子3は、高周波信号を入出力するための端子である。図1では、入出力端子3をPort(2)と表記している。
 図1に示すノイズフィルタ回路では、例えば、入出力端子2が高周波信号を入力するための端子として用いられ、入出力端子3が高周波信号を出力するための端子として用いられる。
 図1に示すノイズフィルタ回路は、結合ループ回路10を備えており、結合ループ回路10は、第1の導体線路及び第2の導体線路を備えている。
 第1の導体線路は、第1の導体11と、第2の導体12と、第3の導体13と、第4の導体14とを含んでいる。第1の導体11と、第2の導体12と、第3の導体13と、第4の導体14とは、ループ状に配線されており、第1のループ領域61を形成している。第1のループ領域61は、図4Bにおいて、斜線が施されている領域である。
 第2の導体線路は、第5の導体15と、第6の導体16と、第7の導体17と、第8の導体18とを含んでいる。第5の導体15と、第6の導体16と、第7の導体17と、第8の導体18とは、ループ状に配線されており、第2のループ領域62を形成している。第2のループ領域62は、図4Cにおいて、斜線が施されている領域である。
 第1のループ領域61と第2のループ領域62とは、空間的に重なっている。
 第1のループ領域61と第2のループ領域62との空間的な重なり領域63は、図4Dにおいて、斜線が施されている領域である。
 第1の導体11は、第1の平面1aに配置されている。第1の導体11の一端は、ビア22を介して第2の導体12の一端と接続され、第1の導体11の他端は、ビア21を介して入出力端子2と接続されている。
 第2の導体12は、第2の平面1bに配置されている。第2の導体12の一端は、ビア22を介して第1の導体11の一端と接続され、第2の導体12の他端は、ビア23を介して第3の導体13の一端と接続されている。
 第3の導体13は、第1の平面1aに配置されている。第3の導体13の一端は、ビア23を介して第2の導体12の他端と接続され、第3の導体13の他端は、ビア24を介して第4の導体14の一端と接続されている。
 第4の導体14は、第2の平面1bに配置されている。第4の導体14の一端は、ビア24を介して第3の導体13の他端と接続され、第4の導体14の他端は、ビア25を介して導体26の一端と接続されている。
 第5の導体15は、第2の平面1bに配置されている。第5の導体15の一端は、ビア27を介して導体26の他端と接続され、第5の導体15の他端は、ビア28を介して第6の導体16の一端と接続されている。
 第6の導体16は、第1の平面1aに配置されている。第6の導体16の一端は、ビア28を介して第5の導体15の他端と接続され、第6の導体16の他端は、ビア29を介して第7の導体17の一端と接続されている。
 第6の導体16は、第2の導体12と立体交差するように配置されている。
 第7の導体17は、第2の平面1bに配置されている。第7の導体17の一端は、ビア29を介して第6の導体16の他端と接続され、第7の導体17の他端は、ビア30を介して第8の導体18の一端と接続されている。
 第8の導体18は、第1の平面1aに配置されている。第8の導体18の一端は、ビア30を介して第7の導体17の他端と接続され、第8の導体18の他端は、ビア31を介して入出力端子3と接続されている。
 第8の導体18は、第2の導体12及び第4の導体14のそれぞれと立体交差するように配置されている。
 ビア21は、入出力端子2と第1の導体11の他端とを電気的に接続するために、基板1に挿入されている。
 ビア22は、第1の導体11の一端と第2の導体12の一端とを電気的に接続するために、基板1に挿入されている。
 ビア23は、第2の導体12の他端と第3の導体13の一端とを電気的に接続するために、基板1に挿入されている。
 ビア24は、第3の導体13の他端と第4の導体14の一端とを電気的に接続するために、基板1に挿入されている。
 ビア25は、第4の導体14の他端と導体26の一端とを電気的に接続するために、基板1に挿入されている。
 導体26は、第1の平面1aに配置されている。導体26の一端は、ビア25を介して第4の導体14の他端と接続され、導体26の他端は、ビア27を介して第5の導体15の一端と接続されている。
 ビア27は、導体26の他端と第5の導体15の一端とを電気的に接続するために、基板1に挿入されている。ビア25、導体26及びビア27は、第1の導体線路と第2の導体線路との接続部である。
 図1から図3に示すノイズフィルタ回路では、導体26が第1の平面1aが配置されている。しかし、これに限るものではなく、導体26は、第2の平面1bに配置されていてもよい。
 導体26が第2の平面1bに配置されている場合、導体26の一端が第4の導体14の他端と接続され、導体26の他端が第5の導体15の一端と接続される。導体26が第2の平面1bに配置されている場合、ビア25,27は、不要である。
 例えば、第4の導体14の形状がL字型、又は、第5の導体15の形状がL字型であり、第4の導体14の他端と第5の導体15の一端とが直接接続される場合、導体26は、不要である。
 ビア28は、第5の導体15の他端と第6の導体16の一端とを電気的に接続するために、基板1に挿入されている。
 ビア29は、第6の導体16の他端と第7の導体17の一端とを電気的に接続するために、基板1に挿入されている。
 ビア30は、第7の導体17の他端と第8の導体18の一端とを電気的に接続するために、基板1に挿入されている。
 ビア31は、第8の導体18の他端と入出力端子3とを電気的に接続するために、基板1に挿入されている。
 コンデンサ32は、第2の平面1bに配置されている。コンデンサ32の一端は、第1の導体線路と第2の導体線路との接続部であるビア27と接続され、コンデンサ32の他端は、ビア33を介してグランド34と接続されている。
 ビア33は、コンデンサ32の他端とグランド34とを電気的に接続するために、基板1に挿入されている。
 グランド34は、第1の平面1aに形成されている。
 図7は、図1に示すノイズフィルタ回路を示す回路図である。
 図7において、41は、コンデンサ32のキャパシタンスCである。
 42は、コンデンサ32を含む接地経路の寄生インダクタンスLESLであり、コンデンサ32に寄生しているインダクタンスと、基板1のインダクタンスとの総和である。
 43は、第1の導体線路のインダクタンスL、44は、第2の導体線路のインダクタンスLである。
 45は、第1の導体線路と第2の導体線路との電磁界結合による相互インダクタンスMである。
 図8は、図7に示すノイズフィルタ回路を等価回路変換した回路図である。
 次に、図1に示すノイズフィルタ回路の動作について説明する。
 図1に示すノイズフィルタ回路は、寄生インダクタンス42が0に近ければ、結合ループ回路10を備えていなくても、高周波ノイズを効率よく除去することができる。
 しかし、実際の寄生インダクタンス42は、0ではないため、図1に示すノイズフィルタ回路は、結合ループ回路10を備えることで、寄生インダクタンス42をキャンセルしている。
 具体的には、第1の導体線路と第2の導体線路との電磁界結合による相互インダクタンスMが、寄生インダクタンス42をキャンセルしている。
 相互インダクタンスMは、第1の導体線路に電流が流れることで生じる磁束が、第2の導体線路と鎖交する量である鎖交量Φによって決定される。
 鎖交量Φは、第1の導体線路と第2の導体線路との空間的な重なり領域63の大きさBが大きい程、大きくなり、重なり領域63の大きさBが変化しなければ、一定である。
 したがって、相互インダクタンスMについても、重なり領域63の大きさBが変化しなければ、一定である。
 図9は、第1のループ領域61と第2のループ領域62との空間的な重なり領域63の大きさBを示す説明図である。図9において、斜線が施されている領域が、空間的な重なり領域63を表している。
 重なり領域63の大きさBは、B=x×yで表される。図9の例では、x=yである。しかし、これは一例に過ぎず、x≠yであってもよい。
 図10は、第1のループ領域61の位置及び第2のループ領域62の位置を示す説明図である。
 図10において、X軸は、第2の導体12、第4の導体14、第5の導体15及び第7の導体17のそれぞれと平行である。Y軸は、第1の導体11、第3の導体13、第6の導体16及び第8の導体18のそれぞれと平行である。
 図11は、実施の形態1に係るノイズフィルタ回路が形成される基板1を示す側面図である。図11示す基板1は、厚みがhの基板である。
 相互インダクタンスMは、以下の式(1)に示すように表される。

Figure JPOXMLDOC01-appb-I000001

 式(1)において、i=1,2、j=1,2である。aは、重なり領域63のX軸方向の長さ、aは、重なり領域63のY軸方向の長さである。
 δxは、第2のループ領域62に対する第1のループ領域61の-X軸方向のでっぱり長さ、δxは、第2のループ領域62に対する第1のループ領域61の+X軸方向のでっぱり長さである。
 δyは、第1のループ領域61に対する第2のループ領域62の-Y軸方向のでっぱり長さ、δyは、第1のループ領域61に対する第2のループ領域62の+Y軸方向のでっぱり長さである。
 μは、第1のループ領域61と第2のループ領域62との間の透磁率である。
 ここで、結合ループ回路10の回路生成方法は、図12に示すように、ステップST1~ST3で表され、ステップST1~ST3が実行されることで、結合ループ回路10が生成される。
 図12は、実施の形態1に係る回路生成方法を示すフローチャートである。
 以下、ステップST1~ST3の内容を具体的に説明する。
ステップST1
 図12に示す回路生成方法では、基板1の第1の平面1aに、第1の導体線路に含まれる導体として、第1の導体11及び第3の導体13のそれぞれを配線し、第1の平面1aに、導体26を配線する。
 また、図12に示す回路生成方法では、第1の平面1aに、第2の導体線路に含まれる導体として、第6の導体16及び第8の導体18のそれぞれを配線する。
ステップST2
 図12に示す回路生成方法では、基板1の第2の平面1bに、第1の導体線路に含まれる導体として、第2の導体12及び第4の導体14のそれぞれを配線する。
 また、図12に示す回路生成方法では、第2の平面1bに、第2の導体線路に含まれる導体として、第5の導体15及び第7の導体17のそれぞれを配線する。
ステップST3
 図12に示す回路生成方法では、基板1に複数のビアを施すことで、第1の平面1aに配線されているそれぞれの導体と、第2の平面1bに配線されているそれぞれの導体等との接続を行う。
 具体的には、以下の通りである。
(a)基板1にビア21を施すことで、入出力端子2と第1の導体11の他端とを接続する。
(b)基板1にビア22を施すことで、第1の導体11の一端と第2の導体12の一端とを接続する。
(c)基板1にビア23を施すことで、第2の導体12の他端と第3の導体13の一端とを接続する。
(d)基板1にビア24を施すことで、第3の導体13の他端と第4の導体14の一端とを接続する。
(e)基板1にビア25を施すことで、第4の導体14の他端と導体26の一端とを接続する。
(f)基板1にビア27を施すことで、導体26の他端と第5の導体15の一端とを接続する。
(g)基板1にビア28を施すことで、第5の導体15の他端と第6の導体16の一端とを接続する。
(h)基板1にビア29を施すことで、第6の導体16の他端と第7の導体17の一端とを接続する。
(i)基板1にビア30を施すことで、第7の導体17の他端と第8の導体18の一端とを接続する。
(j)基板1にビア31を施すことで、第8の導体18の他端と入出力端子3とを接続する。
 図12に示す回路生成方法では、ステップST1において、第1の導体11、第3の導体13、第6の導体16、第8の導体18及び導体26のそれぞれを第1の平面1aに配線する。その後、ステップST2において、第2の導体12、第4の導体14、第5の導体15及び第7の導体17のそれぞれを第2の平面1bに配線している。
 したがって、例えば、第1の平面1aに配線されたそれぞれの導体の位置が、例えば、設計された位置である所望の位置と一致しているとしても、第2の平面1bに配線されたそれぞれの導体の位置が、所望の位置からずれてしまっていることがある。
 第2の平面1bに配線されたそれぞれの導体の位置が、所望の位置からずれてしまっている場合、第1のループ領域61の位置は、所望の位置と一致している場合の第1のループ領域61の位置(以下、「第1のループ領域61の正位置」と称する)からずれてしまうことがある。また、第2の平面1bに配線されたそれぞれの導体の位置が、所望の位置からずれてしまっている場合、第2のループ領域62の位置は、所望の位置と一致している場合の第2のループ領域62の位置(以下、「第2のループ領域62の正位置」と称する)からずれてしまうことがある。
 逆に、第2の平面1bに配線されたそれぞれの導体の位置が、所望の位置と一致しているとしても、第1の平面1aに配線されたそれぞれの導体の位置が、所望の位置からずれてしまっていることがある。
 第1の平面1aに配線されたそれぞれの導体の位置が、所望の位置からずれてしまっている場合、第1のループ領域61の位置は、第1のループ領域61の正位置からずれてしまうことがある。また、第1の平面1aに配線されたそれぞれの導体の位置が、所望の位置からずれてしまっている場合、第2のループ領域62の位置は、第2のループ領域62の正位置からずれてしまうことがある。
 図13A~図13Cは、第1のループ領域61と第2のループ領域62との間の空間的な位置ずれの一例を示す説明図である。
 図13Aは、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向(図中、右方向)にずれてしまっている状態を示している。
 図13Bは、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向(図中、下方向)にずれてしまっている状態を示している。
 図13Cは、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向(図中、右上方向)にずれてしまっている状態を示している。
 しかし、図12に示す回路生成方法では、ステップST1において、第6の導体16を第1の平面1aに配線する際、第6の導体16を第2の導体12と立体交差(以下、「第1の立体交差」と称する)させている。
 また、ステップST1において、第8の導体18を第1の平面1aに配線する際、第8の導体18を第2の導体12及び第4の導体14のそれぞれと立体交差(以下、「第2の立体交差」と称する)させている。
 したがって、第1のループ領域61が第2のループ領域62に対して、矢印が示す方向にずれてしまっても、第1及び第2の立体交差が実現される範囲でのずれであれば、重なり領域63の大きさBは、変動しない。
 図13A~図13Cに示す重なり領域63の大きさB=x×yと、図9に示す重なり領域63の大きさB=x×yとは、同じである。
 重なり領域63の大きさBが変動しなければ、第1の導体線路と第2の導体線路との電磁界結合による相互インダクタンスMは、変動しない。
 第1の導体線路と第2の導体線路とが、電磁界結合を生じる位置に配置されている場合、電磁界結合による相互インダクタンスMは、図8に示すように、第1の導体線路のインダクタンスL及び第2の導体線路のインダクタンスLのそれぞれに加わる。
 また、コンデンサ32を含む接地経路の寄生インダクタンス42は、寄生インダクタンスLESLから相互インダクタンスMの2倍が減算される。
 したがって、相互インダクタンスMの2倍が寄生インダクタンスLESLと一致するように、相互インダクタンスMが設計されていれば、寄生インダクタンスLESLをキャンセルすることができる。
 図1に示すノイズフィルタ回路は、相互インダクタンスMの2倍が寄生インダクタンスLESLと一致するような、第1の導体線路及び第2の導体線路を有している。
 第1の導体線路及び第2の導体線路は、相互インダクタンスMの2倍が寄生インダクタンスLESLと一致するように、重なり領域63のX軸方向の長さα、重なり領域63のY軸方向の長さα、基板1の厚みh及び透磁率μのそれぞれが設計されている。
 図14は、特許文献1に開示されている回路モジュールにおいて、第1インダクタと第2インダクタとの間の空間的な重なりに位置ずれが有る場合と、重なりに位置ずれが無い場合との高周波信号の透過特性のシミュレーション結果を示す説明図である。
 図15は、図1に示すノイズフィルタ回路において、第1の平面1a又は第2の平面1bにおけるそれぞれの導体の位置が所望の位置からずれている場合と、所望の位置からずれていない場合との高周波信号の透過特性のシミュレーション結果を示す説明図である。
 図14及び図15において、縦軸は、Sパラメータの1つであるS21のパラメータ、横軸は、回路モジュール又はノイズフィルタ回路に入力される高周波信号の周波数である。
 図16は、高周波信号の透過特性のシミュレーション条件として、同一の平面に配置されるそれぞれの導体の間の間隔等を示す説明図である。
 第2の導体12と、第4の導体14との間の間隔は、y=3.2mmである。
 第2の導体12と、第7の導体17との間の間隔は、1mmであり、第5の導体15と、第7の導体17との間の間隔は、y+5=8.2mmである。
 第6の導体16と、第8の導体18との間の間隔は、x=3.2mmである。
 第1の導体11と、第3の導体13との間の間隔は、x+5=8.2mmである。
 特許文献1に開示されている回路モジュールでは、図14に示すように、第1インダクタと第2インダクタとの空間的な重なりに位置ずれが有る場合の高周波信号の透過特性が、空間的な重なりに位置ずれが無い場合の高周波信号の透過特性と異なっている。
 したがって、当該回路モジュールでは、第1インダクタと第2インダクタとの空間的な重なりに位置ずれが有る場合の相互インダクタンスと、空間的な重なりに位置ずれが無い場合の相互インダクタンスとは、異なる。
 図1に示すノイズフィルタ回路では、図15に示すように、第1の平面1a又は第2の平面1bにおけるそれぞれの導体の位置が所望の位置からずれている場合の高周波信号の透過特性と、所望の位置からずれていない場合の高周波信号の透過特性とがほぼ一致している。
 したがって、図1に示すノイズフィルタ回路では、それぞれの導体の位置が所望の位置からずれている場合の相互インダクタンスMと、それぞれの導体の位置が所望の位置からずれていない場合の相互インダクタンスMとは、ほぼ一致する。
 以上の実施の形態1は、第6の導体16が、第2の導体12と立体交差され、第8の導体18が、第2の導体12及び第4の導体14のそれぞれと立体交差され、第1のループ領域61と第2のループ領域62とが空間的に重なっており、第1のループ領域61と第2のループ領域62との重なり領域63が、第2の導体12、第4の導体14、第6の導体16及び第8の導体18によって形成されているように、結合ループ回路10を構成した。したがって、結合ループ回路10は、第1のループ領域61と第2のループ領域62との間の空間的な重なりに位置ずれが生じていても、コンデンサ32を含む接地経路の寄生インダクタンスLESLをキャンセルすることができる。
 図4に示す結合ループ回路10では、第1のループ領域61の形状が長方形であり、第2のループ領域62の形状が長方形である。
 しかし、これは一例に過ぎず、例えば、第1のループ領域61の形状が平行四辺形であり、第2のループ領域62の形状が平行四辺形であってもよい。
 ただし、第1のループ領域61の形状及び第2のループ領域62の形状のそれぞれが平行四辺形である場合でも、第3の導体13、第6の導体16及び第8の導体18のそれぞれが第1の導体11と平行に配置されている。また、第4の導体14、第5の導体15及び第7の導体17のそれぞれが第2の導体12と平行に配置されている。
 また、第6の導体16が、第2の導体12と立体交差しており、第8の導体18が、第2の導体12及び第4の導体14のそれぞれと立体交差している。
 図1から図3に示すノイズフィルタ回路に含まれる結合ループ回路10では、第1の導体線路及び第2の導体線路のそれぞれが、第1の平面1aに配置されている導体と、第2の平面1bに配置されている導体とを有している。
 具体的には、第1の導体11、第3の導体13、第6の導体16及び第8の導体18のそれぞれが第1の平面1aに配置され、第2の導体12、第4の導体14、第5の導体15及び第7の導体17のそれぞれが第2の平面1bに配置されている。
 しかし、これは一例に過ぎず、第1の導体線路が、第1の平面1aに配置されている導体のみを有し、第2の導体線路が、第2の平面1bに配置されている導体のみを有している結合ループ回路10であってもよい。
 具体的には、図17から図19に示すように、第1の導体11、第2の導体12、第3の導体13及び第4の導体14のそれぞれが第1の平面1aに配置され、第5の導体15、第6の導体16、第7の導体17及び第8の導体18のそれぞれが第2の平面1bに配置されている結合ループ回路10であってもよい。なお、導体26は、第2の平面1bに配置されており、ビア21~25、28~30は、不要である。
 図17は、実施の形態1に係る他のノイズフィルタ回路を示す構成図である。
 図18は、実施の形態1に係る他のノイズフィルタ回路が形成される基板1における第1の平面1aを示す平面図であり、図19は、実施の形態1に係る他のノイズフィルタ回路が形成される基板1における第2の平面1bを示す平面図である。
 例えば、第4の導体14の形状がL字型であり、第4の導体14の他端が、ビア27と直接接続される場合、導体26は、不要である。
 また、第1の導体線路が、第2の平面1bに配置されている導体のみを有し、第2の導体線路が、第1の平面1aに配置されている導体のみを有している結合ループ回路10であってもよい。
 具体的には、第1の導体11、第2の導体12、第3の導体13及び第4の導体14のそれぞれが第2の平面1bに配置され、第5の導体15、第6の導体16、第7の導体17及び第8の導体18のそれぞれが第1の平面1aに配置されている結合ループ回路10であってもよい。
実施の形態2.
 実施の形態1のノイズフィルタ回路は、シングルエンド方式のノイズフィルタ回路である。
 実施の形態2では、差動方式のノイズフィルタ回路について説明する。
 図20は、実施の形態2に係るノイズフィルタ回路を示す構成図である。
 図21は、実施の形態2に係るノイズフィルタ回路が形成される基板1における第1の平面1aを示す平面図であり、図22は、実施の形態2に係るノイズフィルタ回路が形成される基板1における第2の平面1bを示す平面図である。
 図20は、基板1における第2の平面1bを見たときに、第1の平面1aに形成されている導体等が見えているものとして表記している。
 図20から図22において、図1から図3と同一符号は同一又は相当部分を示すので説明を省略する。
 図20に示すノイズフィルタ回路は、第1の結合ループ回路10a及び第2の結合ループ回路10bを備えている。
 第1の結合ループ回路10a及び第2の結合ループ回路10bのそれぞれの構成は、図4に示す結合ループ回路10の構成と同じである。
 ただし、第1の結合ループ回路10aに含まれている第1の導体11は、一端が入出力端子2aと接続されて、第1の結合ループ回路に含まれている第8の導体18は、他端が入出力端子3aと接続されている。
 第2の結合ループ回路10bに含まれている第1の導体11は、一端が入出力端子3bと接続されて、第2の結合ループ回路10bに含まれている第8の導体18は、入出力端子2bと接続されている。
 入出力端子2aと入出力端子2bとは、一対の差動入出力ポートであり、図20では、Port(1)と表記されている。
 入出力端子3aと入出力端子3bとは、一対の差動入出力ポートであり、図20では、Port(2)と表記されている。
 図20に示すノイズフィルタ回路では、第2の結合ループ回路10bにおいて、第1の導体線路に含まれる第1の導体11が入出力端子3bと接続され、第2の導体線路に含まれる第8の導体18が入出力端子2bと接続されている。しかし、これは一例に過ぎず、第2の結合ループ回路10bにおいて、第1の導体線路に含まれる第1の導体11が入出力端子2bと接続され、第2の導体線路に含まれる第8の導体18が入出力端子3bと接続されていてもよい。
 コンデンサ35は、一端が第1の結合ループ回路10aに含まれている第5の導体15の一端と接続され、他端が第2の結合ループ回路10bに含まれている第5の導体15の一端と接続されている。
 第1の結合ループ回路10aは、図4に示す結合ループ回路10と同様に、第1のループ領域61と第2のループ領域62との間に位置ずれが生じていても、第1及び第2の立体交差が実現される範囲での位置ずれであれば、重なり領域63の大きさBは、変動しない。
 また、第2の結合ループ回路10bにおいても、第1のループ領域61と第2のループ領域62との間に位置ずれが生じていても、第1及び第2の立体交差が実現される範囲での位置ずれであれば、重なり領域63の大きさBは、変動しない。
 図23は、図20に示すノイズフィルタ回路を示す回路図である。図23において、図7及び図20と同一符号は同一又は相当部分を示すので説明を省略する。
 51は、コンデンサ35のキャパシタンスCである。
 52は、コンデンサ35を含む経路の寄生インダクタンスLESLであり、コンデンサ35に寄生しているインダクタンスと、基板1のインダクタンスとの総和である。
 図24は、図23に示すノイズフィルタ回路を等価回路変換した回路図である。
 第1の結合ループ回路10aに含まれている第1の導体線路と第1の結合ループ回路10aに含まれている第2の導体線路とは、電磁界結合を生じる位置に配置されている。電磁界結合による相互インダクタンスMは、図24に示すように、第1の結合ループ回路10aに含まれている第1の導体線路のインダクタンスL及び第1の結合ループ回路10aに含まれている第2の導体線路のインダクタンスLのそれぞれに加わる。
 第2の結合ループ回路10bに含まれている第1の導体線路と第2の結合ループ回路10bに含まれている第2の導体線路とは、電磁界結合を生じる位置に配置されている。電磁界結合による相互インダクタンスMは、図24に示すように、第2の結合ループ回路10bに含まれている第1の導体線路のインダクタンスL及び第2の結合ループ回路10bに含まれている第2の導体線路のインダクタンスLのそれぞれに加わる。
 また、コンデンサ35を含む経路の寄生インダクタンス52は、寄生インダクタンスLESLから相互インダクタンスMの2倍が減算される。
 したがって、相互インダクタンスMの2倍が寄生インダクタンスLESLと一致するように、相互インダクタンスMが設計されていれば、寄生インダクタンスLESLをキャンセルすることができる。
 図20に示すノイズフィルタ回路における第1の結合ループ回路10a及び第2の結合ループ回路10bのそれぞれは、相互インダクタンスMの2倍が寄生インダクタンスLESLと一致するような、第1の導体線路及び第2の導体線路を有している。
 第1の導体線路及び第2の導体線路は、相互インダクタンスMの2倍が寄生インダクタンスLESLと一致するように、重なり領域63のX軸方向の長さα、重なり領域63のY軸方向の長さα、基板1の厚みh及び透磁率μのそれぞれが設計されている。
 以上の実施の形態2は、第1の結合ループ回路10a及び第2の結合ループ回路10bのそれぞれにおいて、第6の導体16が、第2の導体12と立体交差しており、第8の導体18が、第2の導体12及び第4の導体14のそれぞれと立体交差しているように、ノイズフィルタ回路を構成した。したがって、ノイズフィルタ回路は、第1のループ領域61と第2のループ領域62との間の空間的な重なりに位置ずれが生じていても、コンデンサ35を含む経路の寄生インダクタンスLESLをキャンセルすることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、複数の導体を備える結合ループ回路及びノイズフィルタ回路に適している。
 また、この発明は、導体線路を基板に配線する回路生成方法に適している。
 1 基板、1a 第1の平面、1b 第2の平面、2,2a,2b 入出力端子、3,3a,3b 入出力端子、10 結合ループ回路、10a 第1の結合ループ回路、10b 第2の結合ループ回路、11 第1の導体、12 第2の導体、13 第3の導体、14 第4の導体、15 第5の導体、16 第6の導体、17 第7の導体、18 第8の導体、21~25 ビア、26 導体、27~31,33 ビア、32 コンデンサ、34 グランド、35 コンデンサ、41,51 キャパシタンス、42,52 寄生インダクタンス、43,44 インダクタンス、45 相互インダクタンス、61 第1のループ領域、62 第2のループ領域、63 重なり領域。

Claims (7)

  1.  第1のループ領域を形成するためにループ状に配線されている第1から第4の導体と、
     第2のループ領域を形成するためにループ状に配線されている第5から第8の導体とを備え、
     前記第1の導体の一端と前記第2の導体の一端とが接続され、
     前記第2の導体の他端と前記第3の導体の一端とが接続され、
     前記第3の導体の他端と前記第4の導体の一端とが接続され、
     前記第4の導体の他端と前記第5の導体の一端とが接続され、
     前記第5の導体の他端と前記第6の導体の一端とが接続され、
     前記第6の導体の他端と前記第7の導体の一端とが接続され、
     前記第7の導体の他端と前記第8の導体の一端とが接続され、
     前記第6の導体は、前記第2の導体と立体交差され、
     前記第8の導体は、前記第2の導体及び前記第4の導体のそれぞれと立体交差され、
     前記第1のループ領域と前記第2のループ領域とが空間的に重なっており、前記第1のループ領域と前記第2のループ領域との重なり領域が、前記第2の導体、前記第4の導体、前記第6の導体及び前記第8の導体によって形成されていることを特徴とする結合ループ回路。
  2.  前記第1の導体は、基板の第1の平面に配置されており、
     前記第2の導体は、前記基板の第2の平面に配置されて、一端がビアを介して前記第1の導体の一端と接続されており、
     前記第3の導体は、前記第1の平面に配置されて、一端がビアを介して前記第2の導体の他端と接続されており、
     前記第4の導体は、前記第2の平面に配置されて、一端がビアを介して前記第3の導体の他端と接続されており、
     前記第5の導体は、前記第2の平面に配置されて、一端が前記第4の導体の他端と接続されており、
     前記第6の導体は、前記第1の平面に配置されて、一端がビアを介して前記第5の導体の他端と接続されており、
     前記第7の導体は、前記第2の平面に配置されて、一端がビアを介して前記第6の導体の他端と接続されており、
     前記第8の導体は、前記第1の平面に配置されて、一端がビアを介して前記第7の導体の他端と接続されていることを特徴とする請求項1記載の結合ループ回路。
  3.  前記第1の導体、前記第2の導体、前記第3の導体及び前記第4の導体のそれぞれは、基板の第1の平面に配置されており、
     前記第5の導体、前記第6の導体、前記第7の導体及び前記第8の導体のそれぞれは、前記基板の第2の平面に配置されており、
     前記第4の導体の他端と前記第5の導体の一端とがビアを介して接続されていることを特徴とする請求項1記載の結合ループ回路。
  4.  前記第3の導体は、前記第1の導体と平行に配置され、
     前記第4の導体は、前記第2の導体と平行に配置され、
     前記第5の導体は、前記第2の導体と平行に配置され、
     前記第6の導体は、前記第1の導体と平行に配置され、
     前記第7の導体は、前記第2の導体と平行に配置され、
     前記第8の導体は、前記第1の導体と平行に配置されていることを特徴とする請求項1記載の結合ループ回路。
  5.  第1のループ領域を形成するためにループ状に配線されている第1から第4の導体を含む第1の導体線路と、
     第2のループ領域を形成するためにループ状に配線されている第5から第8の導体を含む第2の導体線路と、
     前記第1の導体線路と前記第2の導体線路との接続部と一端が接続され、他端がグランドと接続されているコンデンサとを備え、
     前記第1の導体の一端と前記第2の導体の一端とが接続され、
     前記第2の導体の他端と前記第3の導体の一端とが接続され、
     前記第3の導体の他端と前記第4の導体の一端とが接続され、
     前記第4の導体の他端と前記第5の導体の一端とが接続され、
     前記第5の導体の他端と前記第6の導体の一端とが接続され、
     前記第6の導体の他端と前記第7の導体の一端とが接続され、
     前記第7の導体の他端と前記第8の導体の一端とが接続され、
     前記第6の導体は、前記第2の導体と立体交差され、
     前記第8の導体は、前記第2の導体及び前記第4の導体のそれぞれと立体交差され、
     前記第1のループ領域と前記第2のループ領域とが空間的に重なっており、前記第1のループ領域と前記第2のループ領域との重なり領域が、前記第2の導体、前記第4の導体、前記第6の導体及び前記第8の導体によって形成されていることを特徴とするノイズフィルタ回路。
  6.  前記第1の導体線路と前記第2の導体線路とを有する第1の結合ループ回路と、
     前記第1の導体線路と前記第2の導体線路とを有する第2の結合ループ回路とを備えており、
     前記コンデンサは、一端が前記第1の結合ループ回路に含まれている第5の導体の一端と接続され、他端がグランドと接続される代わりに、前記第2の結合ループ回路に含まれている第5の導体の一端と接続されており、
     前記第1の結合ループ回路に含まれている第6の導体は、前記第1の結合ループ回路に含まれている第2の導体と立体交差されており、
     前記第1の結合ループ回路に含まれている第8の導体は、前記第1の結合ループ回路に含まれている第2の導体及び前記第1の結合ループ回路に含まれている第4の導体のそれぞれと立体交差されており、
     前記第2の結合ループ回路に含まれている第6の導体は、前記第2の結合ループ回路に含まれている第2の導体と立体交差されており、
     前記第2の結合ループ回路に含まれている第8の導体は、前記第2の結合ループ回路に含まれている第2の導体及び前記第2の結合ループ回路に含まれている第4の導体のそれぞれと立体交差されていることを特徴とする請求項5記載のノイズフィルタ回路。
  7.  第1のループ領域を形成するために、線路の形状がループ状である第1から第4の導体を含む第1の導体線路を基板に配線し、
     第2のループ領域を形成するために、線路の形状がループ状である第5から第8の導体を含む第2の導体線路を前記基板に配線し、
     前記第1の導体の一端と前記第2の導体の一端とを接続し、
     前記第2の導体の他端と前記第3の導体の一端とを接続し、
     前記第3の導体の他端と前記第4の導体の一端とを接続し、
     前記第4の導体の他端と前記第5の導体の一端とを接続し、
     前記第5の導体の他端と前記第6の導体の一端とを接続し、
     前記第6の導体の他端と前記第7の導体の一端とを接続し、
     前記第7の導体の他端と前記第8の導体の一端とを接続し、
     前記第1の導体線路及び前記第2の導体線路のそれぞれを前記基板に配線する際、前記第1のループ領域と前記第2のループ領域とが空間的に重なるように、前記第6の導体を、前記第2の導体と立体交差させるとともに、前記第8の導体を、前記第2の導体及び前記第4の導体のそれぞれと立体交差させ、前記第1のループ領域と前記第2のループ領域との重なり領域が、前記第2の導体、前記第4の導体、前記第6の導体及び前記第8の導体によって形成されていることを特徴とする回路生成方法。
PCT/JP2018/043557 2018-11-27 2018-11-27 結合ループ回路、ノイズフィルタ回路及び回路生成方法 WO2020110195A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112018008086.2T DE112018008086B4 (de) 2018-11-27 2018-11-27 Kopplungsschleifenschaltung, störfilterschaltung und schaltungserzeugungsverfahren
PCT/JP2018/043557 WO2020110195A1 (ja) 2018-11-27 2018-11-27 結合ループ回路、ノイズフィルタ回路及び回路生成方法
JP2020557432A JP6880341B2 (ja) 2018-11-27 2018-11-27 結合ループ回路、ノイズフィルタ回路及び回路生成方法
CN201880099321.8A CN113056872A (zh) 2018-11-27 2018-11-27 耦合环路电路、噪声滤波器电路以及电路生成方法
US17/206,965 US11437969B2 (en) 2018-11-27 2021-03-19 Coupling loop circuit, noise filter circuit, and circuit generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043557 WO2020110195A1 (ja) 2018-11-27 2018-11-27 結合ループ回路、ノイズフィルタ回路及び回路生成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,965 Continuation US11437969B2 (en) 2018-11-27 2021-03-19 Coupling loop circuit, noise filter circuit, and circuit generation method

Publications (1)

Publication Number Publication Date
WO2020110195A1 true WO2020110195A1 (ja) 2020-06-04

Family

ID=70853972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043557 WO2020110195A1 (ja) 2018-11-27 2018-11-27 結合ループ回路、ノイズフィルタ回路及び回路生成方法

Country Status (5)

Country Link
US (1) US11437969B2 (ja)
JP (1) JP6880341B2 (ja)
CN (1) CN113056872A (ja)
DE (1) DE112018008086B4 (ja)
WO (1) WO2020110195A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188054A1 (ja) * 2022-03-30 2023-10-05 三菱電機株式会社 ノイズフィルタ回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009244A (ja) * 2000-06-21 2002-01-11 Hitachi Ltd 半導体集積回路および半導体集積回路の設計方法
JP2009277842A (ja) * 2008-05-14 2009-11-26 Keio Gijuku インダクタ素子、集積回路装置、及び、三次元実装回路装置
JP2016031965A (ja) * 2014-07-28 2016-03-07 三菱電機株式会社 プリント基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511478B2 (ja) * 2005-04-25 2010-07-28 京セラ株式会社 バンドパスフィルタ及び高周波モジュール、並びにこれを用いた無線通信機器
JP2007305860A (ja) 2006-05-12 2007-11-22 Alps Electric Co Ltd 相互インダクタンス素子および平衡不平衡変換器
KR101416998B1 (ko) * 2007-07-24 2014-07-08 엘지이노텍 주식회사 Sir형 밴드패스필터
JP5724804B2 (ja) * 2011-09-30 2015-05-27 株式会社村田製作所 回路モジュール
WO2014061351A1 (ja) 2012-10-19 2014-04-24 株式会社村田製作所 コモンモードフィルタ
JP6500989B2 (ja) * 2015-07-28 2019-04-17 株式会社村田製作所 回路基板、これを用いたフィルタ回路およびキャパシタンス素子
US10181375B1 (en) * 2016-09-19 2019-01-15 Vanntec Llc High-density, folded electromagnetic coil
WO2018150881A1 (ja) * 2017-02-14 2018-08-23 株式会社村田製作所 コモンモードチョークコイル、モジュール部品および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009244A (ja) * 2000-06-21 2002-01-11 Hitachi Ltd 半導体集積回路および半導体集積回路の設計方法
JP2009277842A (ja) * 2008-05-14 2009-11-26 Keio Gijuku インダクタ素子、集積回路装置、及び、三次元実装回路装置
JP2016031965A (ja) * 2014-07-28 2016-03-07 三菱電機株式会社 プリント基板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188054A1 (ja) * 2022-03-30 2023-10-05 三菱電機株式会社 ノイズフィルタ回路
JP7486692B2 (ja) 2022-03-30 2024-05-17 三菱電機株式会社 ノイズフィルタ回路

Also Published As

Publication number Publication date
US20210211113A1 (en) 2021-07-08
JP6880341B2 (ja) 2021-06-02
DE112018008086T5 (de) 2021-08-19
DE112018008086B4 (de) 2022-06-23
CN113056872A (zh) 2021-06-29
JPWO2020110195A1 (ja) 2021-03-11
US11437969B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP6791107B2 (ja) 積層帯域通過フィルタ
JP4135928B2 (ja) バラン
JP5660087B2 (ja) バラントランス
JP5946024B2 (ja) 方向性結合器
JPWO2006134916A1 (ja) 積層フィルタ
US20060284698A1 (en) Low-loss microstrip transmission line structure and a method for its implementation
TWI641182B (zh) Directional coupler
WO2020110195A1 (ja) 結合ループ回路、ノイズフィルタ回路及び回路生成方法
CN107710606B (zh) Lc滤波器
JP6904433B2 (ja) バンドパスフィルタ
JP6176242B2 (ja) Ebg特性を有する導波路構造
JP4509826B2 (ja) インダクタ
US7839253B2 (en) Coupled inductor structure
US10049812B2 (en) Circuit arrangement
JP2012231279A (ja) フィルタ回路
JP6344482B2 (ja) プリント基板へのフレキシブルケーブルの接続構造
JP6984788B2 (ja) 回路素子
US20200412323A1 (en) Balun
JP2016106445A (ja) Lcフィルタ素体およびlcフィルタ
TWI818720B (zh) 積層型電子零件
US20230246621A1 (en) Filter circuit and multilayered filter device
TWI820903B (zh) 積層型電子零件
TWI849500B (zh) 積層型電子零件
TW202320483A (zh) 積層型電子零件
JP7003955B2 (ja) ノイズフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557432

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18941687

Country of ref document: EP

Kind code of ref document: A1