WO2020106123A1 - 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치 - Google Patents

알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치

Info

Publication number
WO2020106123A1
WO2020106123A1 PCT/KR2019/016270 KR2019016270W WO2020106123A1 WO 2020106123 A1 WO2020106123 A1 WO 2020106123A1 KR 2019016270 W KR2019016270 W KR 2019016270W WO 2020106123 A1 WO2020106123 A1 WO 2020106123A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
reactor
alcohol
stream
distillation column
Prior art date
Application number
PCT/KR2019/016270
Other languages
English (en)
French (fr)
Inventor
이경준
최인창
김우영
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Priority to CN201980077087.3A priority Critical patent/CN113166025A/zh
Priority to US17/296,083 priority patent/US11608307B2/en
Publication of WO2020106123A1 publication Critical patent/WO2020106123A1/ko
Priority to US18/109,444 priority patent/US20230183163A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/675Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
    • C07C69/68Lactic acid esters

Definitions

  • the present invention relates to a method for producing an alkyl carboxylic acid ester and an apparatus for producing an alkyl carboxylic acid ester. More specifically, the present invention relates to a method for producing an alkyl carboxylic acid ester through an esterification reaction of an alcohol and a carboxylic acid, and an apparatus for producing an alkyl carboxylic acid ester.
  • an alkyl carboxylic acid ester such as ethyl lactate is widely used as a solvent for various polishing liquids, etching solutions, photosensitive resin compositions, and resist compositions used in semiconductor manufacturing processes and display manufacturing processes.
  • each component of the composition In the case of a semiconductor manufacturing process requiring precision of tens or several nanoscales, it is required that each component of the composition also has a high purity, and when a small amount of impurities is included, reliability of the entire semiconductor manufacturing process may be reduced. Therefore, it is required to secure high purity ethyl lactate used in precision processing.
  • Ethyl lactate can be obtained, for example, through an esterification reaction of lactic acid and ethanol. Lactic acid can be synthesized on a bio-based basis through a fermentation reaction using microorganisms.
  • the lactic acid raw material may contain impurities derived from microorganisms, fermentation raw materials, and the like, thereby reducing the purity and selectivity of ethyl lactate.
  • the purity and selectivity of ethyl lactate may be lowered even by impurities through self-reaction of lactic acid.
  • the reactor is also required to be designed to have a high selectivity and high capacity for the esterification reaction, and high purity ethanol needs to be used.
  • the load of the reactor is excessively increased and may be expensive.
  • Korean Patent Publication No. 2005-0084179 discloses a method for producing a continuous ethyl lactate, but as described above, impurities from lactic acid are removed, and an esterification reaction process design with improved economic efficiency needs to be studied. There is.
  • One object of the present invention is to provide a method for producing an alkyl carboxylic acid ester having excellent purity and selectivity.
  • One object of the present invention is to provide an apparatus for producing an alkyl carboxylic acid ester having excellent purity and selectivity.
  • step of esterifying in the main reactor comprises converting an unreacted carboxylic acid stream into an ester in the pre-reactor.
  • the conversion rate of the ester in the pre-reactor is 50 to 80%, and the conversion rate of 95% or more is obtained in the main reactor, the production method of the alkyl carboxylic acid ester.
  • the alkyl carboxylic acid ester comprises ethyl lactate, alkyl Process for the production of carboxylic esters.
  • step of reacting in the pre-reactor further comprises the step of hydrolyzing the aggregate containing dimer, trimer or oligomer produced from lactic acid.
  • Pre-reactor for partial esterification of carboxylic acid through reaction with alcohol;
  • a separator for receiving the reactants from the pre-reactor and separating at least partially the water and alcohol;
  • a main reactor for receiving the reactants separated from water and alcohol from the distillation column to esterify unreacted carboxylic acid;
  • a separation and purification unit for collecting the alkyl carboxylic acid ester produced from the main reactor.
  • a pre-reactor is disposed in front of a main reactor including a reactive distillation reactor to pre-convert alcohol and carboxylic acid, or Partial conversion can be performed. Therefore, it is possible to prevent a decrease in selectivity due to overload in the main reactor and to improve the efficiency of the post-stage process.
  • the purity and selectivity of the ester product can be improved by decomposing aggregates such as dimers, trimers, and oligomers generated from lactic acid through hydrolysis in the preliminary reactor and removing impurities in advance. have.
  • water and alcohol included in the first reactant in which the partial esterification reaction is performed in the preliminary reactor may be at least partially removed through a distillation column. Accordingly, even if the reaction for preparing the alkyl carboxylic acid ester by the pre-reactor and the main reactor is repeatedly performed, it is prevented from excessively injecting water or the like generated in the pre-reactor into the main reactor, and the acid catalyst supported in the main reactor Damage to the back can be prevented. In addition, the reaction area in the main reactor is increased, so that the overall process yield and stability of the production process of the alkyl carboxylic acid ester can be improved.
  • high-purity alcohol may be directly injected into the main reactor. Accordingly, the concentration of the alcohol in the reactant increases, and the equilibrium of the ethyl lactate production reaction becomes the product direction, so that the conversion rate of lactic acid and the selectivity of ethyl lactate can be improved.
  • 1 is a flow chart for explaining an apparatus and method for producing an alkyl carboxylic acid ester according to exemplary embodiments.
  • FIG. 2 is a cross-sectional view showing the schematic structure and operation of a preliminary reactor according to exemplary embodiments.
  • FIG 3 is a cross-sectional view showing the schematic structure and operation of a distillation column according to example embodiments.
  • FIG. 4 is a cross-sectional view showing the schematic structure and operation of a main reactor according to exemplary embodiments.
  • Fig. 5 is a graph showing the conversion ratio of lactic acid and the selectivity of ethyl lactate according to the operating time of the ethyl lactate production process according to an exemplary embodiment.
  • Fig. 6 is a graph showing the conversion rate of lactic acid and the selectivity of ethyl lactate according to the operation time of the ethyl lactate production process according to an exemplary comparative example.
  • alkyl carboxylic acid ester refers to the product of the esterification reaction of carboxylic acids and alkyl alcohols.
  • lactic acid is used as the carboxylic acid
  • ethanol may be used as the alkyl alcohol.
  • ethyl lactate can be obtained as the alkyl carboxylic acid ester.
  • the scope of the present invention is not necessarily limited to the manufacturing method and manufacturing apparatus of ethyl lactate, and can be extended to a method and apparatus for esterification of various carboxylic acids and alkyl alcohols.
  • FIG. 1 is a flow chart for explaining an apparatus and method for producing an alkyl carboxylic acid ester according to exemplary embodiments of the present invention.
  • a lactic acid is used as a carboxylic acid
  • an ethyl lactate production apparatus and a manufacturing method in which ethanol is used as an alkyl alcohol are exemplarily illustrated.
  • an apparatus for producing an alkyl carboxylic acid ester includes a preliminary reactor 100, a distillation column 200, a main reactor 300, a reflux unit 400, and a separation and purification unit 500 ).
  • the preliminary reactor 100 may be connected to the carboxylic acid supply passage 70 and the first alcohol supply passage 90.
  • a lactic acid stream may be supplied into the pre-reactor 100 through the carboxylic acid supply channel 70 (for example, step S11).
  • the first ethanol stream may be supplied into the pre-reactor 100 through the first alcohol supply passage 90 (for example, step S13).
  • the lactic acid stream supply and the first ethanol stream supply may be performed simultaneously or sequentially.
  • the first ethanol stream may be lower in purity than the second ethanol stream described later. In some embodiments, the purity of the first ethanol stream may be about 80-97%. In one embodiment, the purity of the first ethanol stream may be about 80 to 95%. In one embodiment, the purity of the first ethanol stream may be about 80 to 90%.
  • purity as used in the present application may mean a weight percentage of the target material relative to the total weight.
  • 80% purity ethanol may mean a mixed solution of 20% by weight of water and 80% by weight of ethanol.
  • Lactic acid may be a fermentation product using microorganisms.
  • it can be obtained by saccharifying starch, sugar, cellulose, algae, and other organic products, and fermenting the saccharified product through a microorganism capable of fermenting lactic acid.
  • the lactic acid stream supplied to the pre-reactor 100 may include various bio-products such as the microorganism, protein, cell, and mineral.
  • the preliminary reactor 100 may include a Guard Reactor.
  • the guard reactor may include a bed of a solid acid catalyst, and in one embodiment, the solid acid catalyst may include a silica, zeolite, or Amberlyst-based catalyst.
  • a pre-esterification reaction of ethanol contained in the first ethanol stream and lactic acid contained in the lactic acid stream may proceed (eg, step S20).
  • the temperature of the pre-esterification reaction may be about 70 to 110 ° C, preferably about 80 to 100 ° C.
  • a part of lactic acid may be partially converted to ethyl lactate by the pre-esterification.
  • the partial conversion rate in the pre-reactor 100 may be about 50 to 80%.
  • the partial conversion in the preliminary reactor 100 is less than about 50%, the reaction load in the main reactor 200 to be described later is excessively increased, and it may be difficult to obtain ethyl lactate having a desired selectivity and purity.
  • the partial conversion rate exceeds about 80%, the esterification in the pre-reactor 100 is excessively increased, and the overall process efficiency may be lowered.
  • hydrolysis may be performed in the pre-reactor 100.
  • the hydrolysis may proceed through water contained in the first ethanol stream and the lactic acid stream itself, or may be performed by water generated according to a pre-esterification reaction in a pre-reactor.
  • lactic acid aggregates may be decomposed through hydrolysis.
  • the lactic acid aggregate may include dimers, trimers or oligomers of lactic acid molecules.
  • the selectivity of ethyl lactate may be reduced, and overall process efficiency may be reduced by increasing the load in the main reactor 200 or the separation and purification unit 500. have.
  • the hydrolysis in the pre-reactor 100 may be promoted through the solid acid catalyst included in the pre-reactor 100 to promote partial esterification.
  • the main reactor 300 or the separation and purification unit 500 It is possible to increase the selection ratio at and reduce the size of the separation and purification unit 500.
  • a stream (eg, the first reactant) may be supplied to the distillation column 200 through the first reactant flow passage 110.
  • the stream (for example, the first reactant) contains ethyl lactate partially converted in the pre-reactor 100, unreacted lactic acid in the lactic acid stream, unreacted ethanol and excess water in the first ethanol stream. It can contain.
  • removal or separation of ethanol and water may be performed through the distillation column 200 such that the content of ethanol and water in the second reactant supplied to the main reactor 300 is about 1% by weight or less, respectively. .
  • the distillation column 200 may include a vacuum distillation column or a vacuum distillation column.
  • the temperature and pressure of the distillation column 200 may be adjusted to selectively distill water and ethanol, for example, a pressure of about 0.1 to 1 bar, and a temperature of about 90 to 110 ° C.
  • ethanol and water are separated and removed from the top of the distillation column 200, and partially converted ethyl lactate and lactic acid may be discharged from the bottom of the distillation column 200.
  • ethanol and water have a lower boiling point than partially converted ethyl lactate and lactic acid, and thus can be removed to the top of the distillation column 200.
  • a second reactant in which ethanol and water are at least partially removed is discharged from the bottom of the distillation column 200 to be supplied to the main reactor 300.
  • the second reactant includes ethyl lactate and unreacted lactic acid partially converted in the preliminary reactor 100, and may include extra or trace amounts of ethanol and water.
  • the second reactants may each contain 1% by weight or less of ethanol and water.
  • the main reactor 300 may include a single reactive distillation column. As partial esterification is performed in the preliminary reactor 100, the number of columns of the main reactor 300 or the process load can be reduced. In some embodiments, main reactor 300 may include a plurality of reactive distillation columns connected in series or in parallel.
  • the reactive distillation column can be filled with a catalyst-supported medium such as, for example, a solid acid catalyst.
  • a catalyst-supported medium such as, for example, a solid acid catalyst.
  • an ion exchange resin containing a sulfonic acid group can be filled in the reactive distillation column.
  • the ion exchange resin may include, for example, polysiloxane, polystyrene, polydivinylbenzene, and the like.
  • the ion exchange resin may be surface-treated with, for example, a metal such as zirconium or titanium, or oxides thereof.
  • unreacted lactic acid contained in the stream (for example, the first reactant) may be converted to ethyl lactate by esterification reaction with ethanol (for example, step S50).
  • an ethyl lactate conversion of about 95% or more may be obtained in the main reactor 300.
  • an ethyl lactate conversion of at least about 98% may be obtained through the main reactor 300, preferably an ethyl lactate conversion of substantially 100%.
  • the temperature of the esterification reaction in the main reactor 300 may be about 70 to 110 ° C, preferably 80 to 100 ° C.
  • a second ethanol stream may be fed into the main reactor 300 (eg, step S40).
  • the second ethanol stream may be supplied through a second alcohol supply channel 150 separately connected to the main reactor 300.
  • the second ethanol stream may have a higher purity than the first ethanol stream introduced into the pre-reactor 100, as described above, using the relatively low-purity first ethanol stream in the pre-reactor 100
  • Some of the lactic acid can be partially converted.
  • the purity of the second ethanol stream may have a purity of about 95% or higher, preferably about 99% or higher.
  • the purity of ethanol directly introduced into the main reactor 300 is increased, the equilibrium of the ethyl lactate production reaction moves in the product direction, thereby improving the selectivity of the ethyl lactate obtained.
  • the low-purity unreacted first ethanol stream among the first reactants generated from the preliminary reactor 100 is removed together with water through the distillation column 200, the high-purity above introduced directly into the main reactor 300
  • the selectivity of the esterification reaction through the second ethanol stream is improved, and the equilibrium of the esterification reaction can be promoted in the product direction. Therefore, the conversion rate of lactic acid and the selectivity of ethyl lactate can be further improved.
  • a stream (eg, a third reactant) may be introduced into the separation and purification unit 500 after the main reaction through the third reactant flow path 220 at the bottom of the main reactor 300.
  • partial esterification is performed by continuously supplying relatively low-purity ethanol to the pre-reactor 100 through the reflux unit, and high-purity ethanol is separately supplied to the main reactor 200, thereby Economics and efficiency are improved, and the selectivity of ethyl lactate and the conversion rate of lactic acid can be improved.
  • the separation and purification unit 500 a process of concentrating and / or collecting a target ester from a product (for example, a third reactant) after the main reaction generated in the main reactor 300 may be performed (for example, Step S60).
  • the separation and purification unit 500 is disposed at the rear end of the main reactor 200 and can concentrate and / or collect the target ester.
  • the separation and purification unit 500 may include a distillation unit (eg, a vacuum distillation column). As described above, a product (for example, a third reactant) after the main reaction may be supplied to the distillation unit from the third reactant flow path 220 connected to the lower portion of the main reactor 300.
  • a distillation unit eg, a vacuum distillation column.
  • a product for example, a third reactant
  • the main reaction may be supplied to the distillation unit from the third reactant flow path 220 connected to the lower portion of the main reactor 300.
  • the product (for example, the third reactant) may include ethyl lactate, residual ethanol, and by-products generated from the main reactor 300.
  • the by-products may include aggregates such as dimers, trimers or oligomers produced from lactic acid, bio-derived residues, and the like.
  • the by-products since the by-products may be at least partially decomposed through hydrolysis in the preliminary reactor 100, the amount of by-products in the product after the reaction may be significantly reduced.
  • ethyl lactate having a low boiling point in the product can be taken out from the top of the vacuum distillation column and obtained as a target ester.
  • the byproduct having a high boiling point in the product may be removed and removed from the bottom of the vacuum distillation column.
  • the load of the post-process may be reduced. Accordingly, it is possible to increase the process efficiency by removing the additionally performed subsequent processes, for example, a unit of ester hydrolysis and / or trans esterification (TE) or reducing the scale.
  • TE trans esterification
  • residual ethanol and water generated in the distillation column 200 and / or the main reactor 300 may be supplied to the reflux unit 400.
  • ethanol and water separated and removed from the first reactant through the distillation column 200 may be supplied to the reflux unit 400 through the first alcohol collection channel 210.
  • Residual ethanol and water generated as a by-product of the esterification reaction in the main reactor 300 may be supplied to the reflux unit 400 through the second alcohol collection flow path 230.
  • the reflux unit 400 may include a distillation column or a distillation drum. Water is at least partially removed through the reflux unit 400 so that the concentrated ethanol is refluxed back to the pre-reactor 100 through the reflux flow path 310 and merged with the first ethanol stream (for example, step S70). ).
  • the reflux stream supplied through the reflux flow path 310 may have substantially the same purity as the first ethanol stream.
  • lactic acid LA
  • EtOH 80% by weight ethanol
  • the molar ratio of lactic acid and ethanol was adjusted to 1: 1.
  • bio-derived products produced from the fermentation process were used.
  • the esterification reaction was carried out under atmospheric pressure at a temperature of about 80 ° C. in a preliminary reactor in the form of a single bed filled with a solid acid catalyst to produce a first reactant.
  • the first reactant included 32% by weight of ethanol, 32% by weight of ethyl lactate, 20% by weight of water, and 16% by weight of lactic acid and other by-products.
  • the first reactant partially converted to ethyl lactate through a pre-reactor, was used as feed for the distillation column.
  • a vacuum distillation column (Vacuum Distillation Column) was used as a vacuum column.
  • a distillation process was performed under a pressure of -0.9 bar (gauge) and a temperature of 125 ° C.
  • the gaseous water and alcohol are discharged to the top of the vacuum distillation column, and a second reactant including ethyl lactate, lactic acid, ethanol and water is discharged to the bottom.
  • the second reactant discharged to the bottom included 40% by weight of ethyl lactate, 58% by weight of lactic acid, 1% by weight of ethanol, and 1% by weight of water.
  • a second reactant in which water and ethanol were at least partially removed through the vacuum distillation column was used as a feed of the main reactor.
  • a reactive distillation (RD) column filled with a solid acid catalyst was used as the main reactor (see FIG. 4).
  • the second reactants were introduced into the upper layer of the main reactor, and 99% ethanol was introduced into the lower layer of the main reactor, respectively, and the esterification reaction was completed under temperature and atmospheric pressure of about 80 ° C.
  • the volume ratio of the feed and the injected ethanol was adjusted to 1: 0.5.
  • the product obtained from the bottom of the main reactor column (stripping section, see FIG. 4) is cooled by means of a cooling device, using an Agilent 7890 restek RTx-VRX GC Column for the flame ionization detectors (FIDs). Liquid composition was measured.
  • the ethyl lactate production process according to the examples was repeatedly performed, and the composition of the product obtained from the bottom of the main reactor column was measured. Based on the composition data of the product, a graph of the conversion of lactic acid (LA conversion) and the selectivity of ethyl lactate (EL selectivity) according to the operation time of the ethyl lactate production process is shown in FIG. 5.
  • the process of preparing ethyl lactate was performed in the same manner as in Example, except that the ethanol / water removal process in the distillation column was not performed.
  • the ethyl lactate production process according to the comparative example was repeatedly performed, and the composition of the product obtained from the bottom of the main reactor column was measured. Based on the composition data of the product, a graph showing the conversion of lactic acid (LA conversion) and the selectivity of ethyl lactate (EL selectivity) according to the operating time of the ethyl lactate production process is shown in FIG. 6.
  • the conversion ratio of ethyl lactate and the selectivity of ethyl lactate were generally increased in Examples and Comparative Examples that were subjected to pre-reactors.
  • distillation column 210 first alcohol collection passage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명의 실시예들에 따른 알킬 카르복실산 에스테르의 제조 방법에 있어서, 카르복실산 스트림 및 제1 알코올 스트림을 예비 반응기 내에서 반응시켜 제1 반응물을 생성한다. 제1 반응물로부터 알코올과 물을 적어도 부분적으로 제거하여 제2 반응물을 생성한다. 제2 반응물을 주 반응기 내에서 제2 알코올 스트림과 반응시켜 에스테르화 시킨다. 주 반응기로부터 알킬 카르복실산 에스테르를 회수한다.

Description

알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치
본 발명은 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치에 관한 것이다. 보다 상세하게는, 알코올 및 카르복실산의 에스테르화 반응을 통한 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치에 관한 것이다.
예를 들면, 에틸 락테이트(ethyl lactate)와 같은 알킬 카르복실산 에스테르는 반도체 제조 공정, 디스플레이 제조 공정에 사용되는 각종 연마액, 식각액, 감광성 수지 조성물, 레지스트 조성물 등의 용매로서 널리 사용된다.
수십 또는 수 나노스케일의 정밀도가 요구되는 반도체 제조 공정의 경우, 조성물 각 성분들도 높은 순도를 가질 것이 요구되며 미량의 불순물이 포함되는 경우 반도체 제조 공정 전체의 신뢰도를 저하시킬 수 있다. 따라서, 정밀 공정에 사용되는 고순도의 에틸 락테이트의 확보가 요구된다.
에틸 락테이트는 예를 들면, 락트산(lactic acid) 및 에탄올의 에스테르화(esterification) 반응을 통해 수득될 수 있다. 락트산은 미생물을 이용한 발효 반응을 통해 바이오 기반으로 합성될 수 있다.
이 경우, 락트산 원료는 미생물, 발효 원료 등으로부터 유래한 불순물들이 함유될 수 있으며, 이에 따라 에틸 락테이트의 순도 및 선택비를 저하시킬 수 있다. 또한, 락트산의 자가 반응을 통한 불순물들에 의해서도 에틸 락테이트의 순도 및 선택비가 저하될 수 있다.
따라서, 고순도, 고선택비의 에틸 락테이트 합성 공정을 위해서는 반응기 역시 에스테르화 반응에 대해 고선택비 및 고용량을 갖도록 설계될 것이 요구되며, 고순도의 에탄올이 사용될 필요가 있다. 이 경우 반응기의 부하가 지나치게 증가하며 고비용이 소요될 수 있다.
예를 들면, 한국공개특허공보 제2005-0084179에서 연속식 에틸 락테이트의 제조 방법을 개시하고 있으나, 상술한 바와 같이 락트산으로부터의 불순물을 제거하고, 경제성이 향상된 에스테르화 반응 공정 설계가 연구될 필요가 있다.
[선행기술문헌]
한국공개특허공보 제2005-0084179호(2005.08.26.)
본 발명의 일 과제는 우수한 순도 및 선택비를 갖는 알킬 카르복실산 에스테르의 제조 방법을 제공하는 것이다.
본 발명의 일 과제는 우수한 순도 및 선택비를 갖는 알킬 카르복실산 에스테르 제조 장치를 제공하는 것이다.
1. 카르복실산 스트림 및 제1 알코올 스트림을 예비 반응기 내에서 반응시켜 제1 반응물을 생성하는 단계; 상기 제1 반응물로부터 알코올과 물을 적어도 부분적으로 제거하여 제2 반응물을 생성하는 단계; 상기 제2 반응물을 주 반응기 내에서 제2 알코올 스트림과 반응시켜 에스테르화 시키는 단계; 및 상기 주 반응기로부터 알킬 카르복실산 에스테르를 회수하는 단계를 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
2. 위 1에 있어서, 상기 알코올과 상기 물을 적어도 부분적으로 제거하는 단계는 증류 컬럼을 통해 행해지는, 알킬 카르복실산 에스테르의 제조 방법.
3. 위 1에 있어서, 상기 예비 반응기 내에서 상기 제1 반응물을 생성하는 단계는 상기 카르복실산 스트림의 일부를 에스테르로 전환시키는 것을 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
4. 위 1에 있어서, 상기 주 반응기 내에서 에스테르화시키는 단계는, 상기 예비 반응기 내에서 미반응된 카르복실산 스트림을 에스테르로 전환시키는 것을 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
5. 위 1에 있어서, 상기 예비 반응기 내에서 에스테르 전환율은 50 내지 80%이며, 상기 주 반응기 내에서 95% 이상의 전환율이 획득되는, 알킬 카르복실산 에스테르의 제조 방법.
6. 위 2에 있어서, 상기 카르복실산 스트림은 락트산을 포함하며, 상기 제1 알코올 스트림 및 상기 제2 알코올 스트림은 에탄올을 포함하며, 상기 알킬 카르복실산 에스테르는 에틸 락테이트를 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
7. 위 6에 있어서, 상기 증류 컬럼의 상부로부터 에탄올 및 물이 적어도 부분적으로 분리되어 제거되며, 상기 증류 컬럼의 하부로부터 부분 전환된 에틸 락테이트 및 락트산이 배출되는, 알킬 카르복실산 에스테르의 제조 방법.
8. 위 6에 있어서, 상기 예비 반응기 내에서 반응시키는 단계는 락트산으로부터 생성된 다이머, 트라이머 또는 올리고머를 포함하는 응집체를 가수분해하는 단계를 더 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
9. 위 1에 있어서, 상기 제1 알코올 스트림은 상기 제2 알코올 스트림보다 낮은 순도를 갖는, 알킬 카르복실산 에스테르의 제조 방법.
10. 위 2 있어서, 상기 증류 컬럼에서 상기 제1 반응물로부터 제거된 알코올을 상기 제1 알코올 스트림으로 환류시키는 단계를 더 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
11. 위 1에 있어서, 상기 주 반응기로부터 반응 후 잔여 알코올을 상기 제1 알코올 스트림으로 환류시키는 단계를 더 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
12. 카르복실산을 알코올과 반응을 통해 부분 에스테르화 시키는 예비 반응기; 상기 예비 반응기로부터 반응물을 수용하여 상기 물 및 알코올을 적어도 부분적으로 분리하는 분리기; 상기 증류 컬럼으로부터 물 및 알코올이 분리된 반응물을 수용하여 미반응 카르복실산을 에스테르화 시키는 주 반응기; 및 상기 주 반응기로부터 생성된 알킬 카르복실산 에스테르를 수집하는 분리 정제 유닛을 포함하는, 알킬 카르복실산 에스테르의 제조 장치.
13. 위 12에 있어서, 상기 분리기는 증류 컬럼인, 알킬 카르복실산 에스테르의 제조 장치.
14. 위 12에 있어서, 상기 예비 반응기와 연결된 카르복실산 공급 유로 및 제1 알코올 공급 유로; 및 상기 주 반응기와 연결된 제2 알코올 공급 유로를 더 포함하는, 알킬 카르복실산 에스테르의 제조 장치.
15. 위 13에 있어서, 상기 증류 컬럼에서 분리된 물 및 알코올을 회수하는 환류 유닛을 더 포함하는, 알킬 카르복실산 에스테르의 제조 장치.
본 발명의 실시예들에 의한 알킬 카르복실산 에스테르의 제조 방법 및 제조 장치에 따르면, 예를 들면 반응성 증류 반응기를 포함하는 주 반응기의 전단에 예비 반응기를 배치하여 알코올 및 카르복실산의 예비 전환 또는 부분 전환을 수행할 수 있다. 따라서, 상기 주 반응기에서의 과부하에 의한 선택비 저하를 방지하고, 후단 공정의 효율성을 향상시킬 수 있다.
또한, 상기 예비 반응기 내에서 가수분해를 통해 락트산으로부터 생성되는 다이머(dimer), 트라이머(trimer), 올리고머 등의 응집체를 분해하고, 불순물을 미리 제거함으로써 에스테르 산물의 순도 및 선택비를 향상시킬 수 있다.
또한, 상기 예비 반응기에서 부분 전환이 수행됨에 따라, 상대적으로 사용되는 알코올의 순도를 낮출 수 있으며, 공정의 경제성을 추가로 향상시킬 수 있다.
예시적인 실시예들에 따르면, 상기 예비 반응기에서 부분 에스테르화 반응이 수행된 제1 반응물에 포함된 물 및 알코올을 증류 컬럼을 통해 적어도 부분적으로 제거할 수 있다. 이에 따라, 예비 반응기 및 주 반응기에 의한 알킬 카르복실산 에스테르 제조 반응이 반복적으로 수행되더라도, 상기 예비 반응기에서 생성된 물 등이 주 반응기로 과도하게 주입되는 것을 방지하여, 주 반응기 내 담지된 산 촉매 등의 손상을 방지할 수 있다. 또한 주 반응기 내의 반응 면적이 증가되어, 알킬 카르복실산 에스테르의 제조 공정의 전체적인 공정 수율 및 안정성이 향상될 수 있다.
또한, 예비 반응기에 주입되었으나, 부분 에스테르화 반응에 참여하지 않은 저순도의 알코올을 증류 컬럼을 통해 물과 함께 제거한 후, 고순도의 알코올이 주반응기에 직접 주입될 수 있다. 이에 따라, 반응물 내 알코올의 농도가 증가하여 에틸 락테이트 제조 반응의 평형이 생성물 방향으로 되어, 락트산의 전환률 및 에틸 락테이트의 선택비가 향상될 수 있다.
도 1은 예시적인 실시예들에 따른 알킬 카르복실산 에스테르의 제조 장치 및 제조 방법을 설명하기 위한 흐름도이다.
도 2는 예시적인 실시예들에 따른 예비 반응기의 개략적인 구조 및 동작을 나타내는 단면도이다.
도 3는 예시적인 실시예들에 따른 증류 컬럼의 개략적인 구조 및 동작을 나타내는 단면도이다.
도 4은 예시적인 실시예들에 따른 주 반응기의 개략적인 구조 및 동작을 나타내는 단면도이다.
도 5는 예시적인 실시예에 따른 에틸 락테이트 제조 공정의 운전시간에 따른 락트산의 전환률 및 에틸 락테이트의 선택비를 나타내는 그래프이다.
도 6은 예시적인 비교예에 따른 에틸 락테이트 제조 공정의 운전시간에 따른 락트산의 전환률 및 에틸 락테이트의 선택비를 나타내는 그래프이다.
이하, 본 발명의 바람직한 실시예들을 제시하나, 이들 실시예들은 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예들에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
본 출원에서 사용되는 용어 "알킬 카르복실산 에스테르"는 카르복실산 및 알킬 알코올의 에스테르화 반응 산물을 지칭한다. 본 발명의 예시적인 실시예들에 따르면, 상기 카르복실산으로서 락트산이 사용되며, 상기 알킬 알코올로서 에탄올이 사용될 수 있다. 이 경우, 상기 알킬 카르복실산 에스테르로서 에틸 락테이트(ethyl lactate)가 수득될 수 있다.
그러나, 본 발명의 범위가 반드시 에틸 락테이트의 제조 방법 및 제조 장치로만 한정되는 것은 아니며, 다양한 카르복실산 및 알킬 알코올의 에스테르화를 위한 방법 및 장치로 확장될 수 있다.
도 1은 본 발명의 예시적일 실시예들에 따른 알킬 카르복실산 에스테르의 제조 장치 및 제조 방법을 설명하기 위한 흐름도이다. 도 1에서는 카르복실산으로서 락트산이 사용되며, 알킬 알코올로서 에탄올이 사용되는 에틸 락테이트의 제조 장치 및 제조 방법이 예시적으로 도시되어 있다.
도 1을 참조하면, 예시적인 실시예들에 따른 알킬 카르복실산 에스테르 제조 장치는 예비 반응기(100), 증류컬럼(200), 주 반응기(300), 환류 유닛(400) 및 분리 정제 유닛(500)을 포함할 수 있다.
예비 반응기(100)는 카르복실산 공급 유로(70) 및 제1 알코올 공급 유로(90)와 연결될 수 있다. 카르복실산 공급 유로(70)를 통해 예비 반응기(100) 내로 락트산 스트림이 공급될 수 있다(예를 들면, S11 단계). 제1 알코올 공급 유로(90)를 통해 예비 반응기(100) 내로 제1 에탄올 스트림이 공급될 수 있다(예를 들면, S13 단계). 상기 락트산 스트림 공급 및 상기 제1 에탄올 스트림 공급은 동시에, 또는 순차적으로 수행될 수 있다.
상기 제1 에탄올 스트림은 후술하는 제2 에탄올 스트림에 비해 저순도일 수 있다. 일부 실시예들에 있어서, 상기 제1 에탄올 스트림의 순도는 약 80 내지 97%일 수 있다. 일 실시예에 있어서, 상기 제1 에탄올 스트림의 순도는 약 80 내지 95%일 수 있다. 일 실시예에 있어서, 상기 제1 에탄올 스트림의 순도는 약 80 내지 90%일 수 있다.
본 출원에서 사용되는 용어 "순도"는 총 중량 대비 대상 물질의 중량%를 의미할 수 있다. 예를 들면, 80% 순도의 에탄올은 물 20중량% 및 에탄올 80중량%의 혼합액을 의미할 수 있다.
락트산은 미생물을 이용한 발효산물일 수 있다. 예를 들면, 전분, 설탕, 셀룰로오스, 조류, 기타 유기성 산물을 당화시키고, 당화된 산물을 젖산 발효가 가능한 미생물을 통해 발효시켜 수득될 수 있다.
이에 따라, 예비 반응기(100)로 공급되는 상기 락트산 스트림은 상기 미생물, 단백질, 세포, 미네랄 등과 같은 각종 바이오 부산물을 포함할 수 있다.
예시적인 실시예들에 따르면, 예비 반응기(100)는 가드 리액터(Guard Reactor)를 포함할 수 있다. 상기 가드 리액터는 고체산 촉매 베드(bed)를 포함할 수 있으며, 일 실시예로 상기 고체산 촉매로는 실리카, 제올라이트, Amberlyst계 촉매를 포함할 수 있다.
예비 반응기(100) 내부에서는 상기 제1 에탄올 스트림에 포함된 에탄올과 상기 락트산 스트림에 포함된 락트산의 예비 에스테르화 반응이 진행될 수 있다(예를 들면, S20 단계). 일부 실시예들에 있어서, 상기 예비 에스테르화 반응의 온도는 약 70 내지 110℃일 수 있으며, 바람직하게는 약 80 내지 100℃일 수 있다.
예비 반응기(100) 내에서는, 상기 예비 에스테르화에 의해 락트산의 일부가 에틸 락테이트로 부분 전환될 수 있다. 예시적인 실시예들에 따르면, 예비 반응기(100)에서의 부분 전환율은 약 50 내지 80%일 수 있다.
예비 반응기(100) 내에서의 상기 부분 전환율이 약 50% 미만인 경우, 후술하는 주 반응기(200)에서의 반응 부하가 지나치게 상승하며, 원하는 선택비 및 순도의 에틸 락테이트 획득이 곤란할 수 있다. 상기 부분 전환율이 약 80%를 초과하는 경우, 예비 반응기(100)에서의 에스테르화가 지나치게 상승하여 전체적인 공정 효율이 저하될 수 있다.
일부 실시예들에 있어서, 예비 반응기(100) 내에서는 가수분해가 함께 진행될 수 있다. 상기 제1 에탄올 스트림 및 락트산 스트림에 자체 함유된 물을 통해 상기 가수분해가 진행될 수 있으며, 예비 반응기 내의 예비 에스테르화 반응에 따라 생성된 물에 의해서 수행될 수도 있다.
예시적인 실시예들에 따르면, 가수분해를 통해 락트산 응집체가 분해될 수 있다. 상기 락트산 응집체는 락트산 분자의 다이머, 트라이머 또는 올리고머 등을 포함할 수 있다. 락트산 응집체가 상기 락트산 스트림 내에 다량 포함되는 경우, 에틸 락테이트의 선택비를 저감시킬 수 있으며, 주 반응기(200) 또는 분리정제 유닛(500)에서의 부하를 높임에 따라 전체적인 공정 효율이 감소될 수 있다.
일 실시예에 있어서, 예비 반응기(100) 내부에 포함되어 부분 에스테르화 수행 촉진을 위한 상기 고체산 촉매를 통해 예비 반응기(100) 내에서 가수분해가 함께 촉진될 수도 있다.
본 발명의 예시적인 실시예에 따르면, 예비 반응기(100) 내에서 예비 에스테르화 또는 부분 전환 수행과 함께 상기 락트산 응집체의 가수분해가 함께 수행됨에 따라, 주 반응기(300) 또는 분리정제유닛(500)에서의 선택비를 상승시키고, 분리정제유닛(500)의 규모를 감소시킬 수 있다.
예비 반응기(100)로부터 부분 전환 후 스트림(예를 들면, 제1 반응물)이 증류 컬럼(200)으로 제1 반응물 유로(110)를 통해 공급될 수 있다. 상기 부분 전환 후 스트림(예를 들면, 제1 반응물)은 예비 반응기(100)에서 부분 전환된 에틸 락테이트, 상기 락트산 스트림 중 미반응 락트산, 상기 제1 에탄올 스트림 중 미반응 에탄올 및 여분의 물을 포함할 수 있다.
증류 컬럼(200) 내부에서는 예비 반응기(100)로부터 제1 반응물 유로(110)를 통해 공급되는 상기 제1 반응물에 포함된 미반응 에탄올 및 여분의 물이 적어도 부분적으로 제거 될 수 있다(예를 들면, S30 단계).
일부 실시예들에 있어서, 주 반응기(300)로 공급되는 제2 반응물 내 에탄올 및 물의 함량이 각각 약 1중량% 이하가 되도록 증류 컬럼(200)을 통해 에탄올 및 물의 제거 또는 분리가 수행될 수 있다.
예를 들면, 증류 컬럼(200)은 진공 증류 컬럼(Vacuum Distillation Column) 또는 감압 증류 컬럼을 포함할 수 있다. 증류 컬럼(200)의 온도 및 압력은 물 및 에탄올을 선택적으로 증류시킬 수 있도록 조절될 수 있으며, 예를 들면 압력 약 0.1 내지 1bar, 온도 약 90 내지 110℃ 조건으로 조절될 수 있다.
예를 들면, 증류 컬럼(200)의 상부로부터 에탄올 및 물이 분리되어 제거되며, 증류 컬럼(200)의 하부로부터 부분 전환된 에틸 락테이트 및 락트산이 배출될 수 있다. 예를 들면, 에탄올 및 물은 부분 전환된 에틸 락테이트 및 락트산보다 낮은 끓는점을 가지며, 이에 따라 증류 컬럼(200)의 상부로 제거될 수 있다.
상술한 바와 같이, 증류 컬럼(200)의 하부로부터 에탄올 및 물이 적어도 부분적으로 제거된 제2 반응물이 배출되어 주 반응기(300)로 공급될 수 있다. 상기 제2 반응물은 예비 반응기(100)에서 부분 전환된 에틸 락테이트 및 미반응 락트산을 포함하며, 여분 혹은 미량의 에탄올 및 물을 포함할 수도 있다. 상술한 바와 같이, 일 실시예에 있어서, 상기 제2 반응물은 각각 1중량% 이하의 에탄올 및 물을 포함할 수 있다.
증류 컬럼(200)을 통해 예비 반응기(100)에서 부분 에스테르화 반응의 부생성물로 발생하는 물이 제거됨에 따라, 주 반응기(300)에서의 촉매 손상이 방지될 수 있다. 또한, 물에 의해 주 반응기(300)의 반응 사이트가 힌더링(hindering)되는 것을 방지하여 충분한 에스테르화 반응 면적으로 확보할 수 있다.
예시적인 실시예들에 따르면, 주 반응기(300)는 단일 반응성 증류(Reactive Distillation) 칼럼을 포함할 수 있다. 예비 반응기(100)에서 부분 에스테르화가 수행됨에 따라, 주 반응기(300)의 칼럼 수, 또는 공정 로드를 감소시킬 수 있다. 일부 실시예들에 있어서, 주 반응기(300)는 직렬 또는 병렬로 연결된 복수의 반응성 증류 칼럼들을 포함할 수도 있다.
상기 반응성 증류 칼럼은 예를 들면, 고체 산 촉매와 같은 촉매 담지된 매질로 충진될 수 있다. 예를 들면, 술폰산기를 포함하는 이온 교환 수지가 상기 반응성 증류 칼럼에 충진될 수 있다. 상기 이온 교환 수지는 예를 들면, 폴리실록산, 폴리스티렌, 폴리디비닐벤젠 등을 포함할 수 있다. 상기 이온 교환 수지는 예를 들면, 지르코늄 혹은 티타늄과 같은 금속, 또는 이들의 산화물로 표면 처리될 수도 있다.
주 반응기(300) 내에서는 상기 부분 전환 후 스트림(예를 들면, 제1 반응물)에 포함된 미반응 락트산이 에탄올과 에스테르화 반응하여 에틸 락테이트로 전환될 수 있다(예를 들면, S50 단계).
예시적인 실시예들에 따르면 주 반응기(300)에서 약 95% 이상의 에틸 락테이트 전환율이 획득될 수 있다. 일 실시예에 있어서, 주 반응기(300)를 통해 약 98% 이상의 에틸 락테이트 전환율이 획득될 수 있으며, 바람직하게는 실질적으로 100%의 에틸 락테이트 전환율이 획득될 수 있다.
일부 실시예들에 있어서, 주 반응기(300)에서의 에스테르화 반응의 온도는 약 70 내지 110℃일 수 있으며, 바람직하게는 80 내지 100℃일 수 있다.
일부 실시예들에 있어서, 주 반응기(300)내로 제2 에탄올 스트림이 공급될 수 있다(예를 들면, S40 단계). 예를 들면, 주 반응기(300)와 별도로 연결된 제2 알코올 공급 유로(150)를 통해 상기 제2 에탄올 스트림이 공급될 수 있다.
상기 제2 에탄올 스트림은 예비 반응기(100)내로 도입되는 상기 제1 에탄올 스트림 보다 높은 순도를 가질 수 있으며, 상술한 바와 같이, 예비 반응기(100)에서 상대적으로 저순도의 제1 에탄올 스트림을 사용하여 락트산의 일부를 부분 전환시킬 수 있다. 예비 반응기(100)에서 상대적으로 저순도의 제1 에탄올 스트림을 사용하여 락트산의 일부를 부분 전환시킴에 따라, 원하는 에틸 락테이트의 선택비를 유지하면서, 고비용의 고순도 에탄올의 사용량을 감소시킬 수 있으며, 공정 전체의 경제성 및 효율을 향상시킬 수 있다.
예시적인 실시예들에 있어서, 상기 제2 에탄올 스트림의 순도는 약 95% 이상, 바람직하게는 약 99% 이상의 순도를 가질 수 있다. 주 반응기(300)에 직접 도입되는 에탄올의 순도를 증가시킴에 따라, 에틸 락테이트 제조 반응의 평형이 생성물 방향으로 이동하여, 수득되는 에틸 락테이트의 선택비를 향상시킬 수 있다.
또한, 예비 반응기(100)로부터 생성된 상기 제1 반응물 중 저순도의 미반응 제1 에탄올 스트림이 증류 컬럼(200)을 통해 물과 함께 제거되므로, 주 반응기(300)에 직접 도입되는 고순도의 상기 제2 에탄올 스트림을 통한 에스테르화 반응의 선택비가 향상되며, 에스테르화 반응의 평형이 생성물 방향으로 촉진될 수 있다. 따라서, 락트산의 전환률 및 에틸 락테이트의 선택비가 추가로 향상될 수 있다.
예를 들면, 주 반응기(300)의 하부에서는 제3 반응물 유로(220)를 통해 주 반응 후 스트림(예를 들면, 제3 반응물)이 분리정제 유닛(500)으로 도입될 수 있다.
상술한 바와 같이, 상대적으로 저순도의 에탄올을 환류 유닛을 통해 연속적으로 예비 반응기(100)로 공급하여 부분 에스테르화를 수행하고, 고순도의 에탄올을 별도로 주 반응기(200)로 공급함으로써, 전체 공정의 경제성 및 효율성이 향상되어, 에틸 락테이트의 선택성 및 락트산의 전환률이 향상될 수 있다.
분리정제 유닛(500)에서는 주반응기(300)에서 생성된 상기 주 반응 후 생성물(예를 들면, 제3 반응물)로부터 타겟 에스테르의 농축 및/또는 수집하는 공정을 수행할 수 있다(예를들면, S60 단계). 예시적인 실시예들에 따르면, 분리정제 유닛(500)은 주 반응기(200) 후단에 배치되며 타겟 에스테르의 농축 및/또는 수집할 수 있다.
일부 실시예들에 있어서, 분리정제 유닛(500)은 증류 유닛(예를 들면, 진공 증류 칼럼)을 포함할 수 있다. 상술한 바와 같이, 주 반응기(300)의 하부와 연결된 제3 반응물 유로(220)로부터 상기 주 반응 후 생성물(예를 들면, 제3 반응물)이 상기 증류 유닛으로 공급될 수 있다.
상기 주 반응 후 생성물(예를 들면, 제3 반응물)은 주 반응기(300)로부터 생성된 에틸 락테이트, 잔여 에탄올 및 부산물을 포함할 수 있다. 예를 들면, 상기 부산물은 락트산으로부터 생성된 다이머, 트라이머 또는 올리고머와 같은 응집체, 바이오 유래 잔여물 등을 포함할 수 있다. 상술한 바와 같이, 예비 반응기(100)에서의 가수분해를 통해 상기 부산물이 적어도 부분적으로 분해될 수 있으므로, 상기 반응 후 생성물에서의 부산물 양이 현저히 감소될 수 있다.
상기 반응 후 생성물 중 끓는 점이 낮은 에틸 락테이트는 상기 진공 증류 칼럼의 상부로부터 취출되어 타겟 에스테르로 수득될 수 있다. 상기 반응 후 생성물 중 끓는 점이 높은 상기 부산물은 상기 진공 증류 칼럼의 하부로부터 취출되어 제거될 수 있다.
도 1을 참조로 설명한 바와 같이, 예비 반응기(100) 내의 가수분해를 통해 락트산의 다이머, 트라이머, 올리고머 등의 응집체들이 예비적으로 분해 또는 제거됨에 따라, 후공정의 공정의 부하가 감소될 수 있다. 따라서, 추가로 수행되는 후속공정, 예를 들어 에스테르 수화반응 (hydrolysis) 및/또는 에스테르 교환 반응(Trans Esterification: TE) 유닛을 제거하거나, 그 규모를 축소시켜 공정 효율을 증가시킬 수 있다.
일부 실시예들에 있어서, 증류 컬럼(200) 및/또는 주 반응기(300)에서 생성된 잔여 에탄올 및 물은 환류 유닛(400)으로 공급될 수 있다. 예를 들면, 상술한 바와 같이 증류 컬럼(200)을 통해 상기 제1 반응물에서 분리, 제거된 에탄올 및 물은 제1 알코올 수집 유로(210)를 통해 환류 유닛(400)으로 공급될 수 있다. 주 반응기(300) 내의 잔여 에탄올 및 에스테르화 반응의 부산물로 생성되는 물은 제2 알코올 수집 유로(230)를 통해 환류 유닛(400)으로 공급될 수 있다.
예시적인 실시예들에 따르면, 환류 유닛(400)은 증류 컬럼 또는 증류 드럼을 포함할 수 있다. 환류 유닛(400)을 통해 물이 적어도 부분적으로 제거되어 농축된 에탄올이 다시 환류 유로(310)를 통해 예비 반응기(100)로 환류되어 제1 에탄올 스트림과 병합될 수 있다(예를 들면, S70 단계). 환류 유로(310)를 통해 공급되는 환류 스트림은 제1 에탄올 스트림과 실질적으로 동일한 순도를 가질 수 있다.
이하에서는, 구체적인 실험예들을 참조하여, 본 발명의 실시예들에 따른 알킬 카르복실산 에스테르의 제조 방법에 대해 상세히 설명한다. 실험예에 포함된 실시예 및 비교예들은 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예
1) 예비 반응기에서의 에틸 락테이트 전환
88중량% 락트산(LA) 및 80중량% 에탄올(EtOH)을 혼합하여 예비반응기의 피드(feed)로 사용하였다. 락트산 및 에탄올의 몰비는 1:1로 조절되었다. 락트산은 발효공정으로부터 생산된 바이오 유래 산물을 사용하였다.
도 2에 도시된 바와 같은, 고체산 촉매가 충진된 단일 베드 형태의 예비 반응기에서 80℃ 내외의 온도로 대기압 하에서 에스테르화 반응을 수행하여 제1 반응물을 생성하였다.
제1 반응물은 에탄올 32중량%, 에틸 락테이트 32중량%, 물 20중량%, 락트산 및 기타 부산물 16중량%를 포함하였다.
2) 증류 컬럼에서의 에탄올 및 물 제거
예비 반응기를 통해 에틸 락테이트로 부분 전환된 제1 반응물이 증류 컬럼의 피드(feed)로 사용되었다. 도 3에 도시된 바와 같이, 진공 증류 컬럼(Vacuum Distillation Column)이 진공 컬럼으로 사용되었다. 상기 진공 증류 컬럼 내에서 압력 -0.9bar(gauge), 온도 125℃ 조건으로 증류 공정을 수행하였다.
상기 진공 증류 컬럼의 상부로는 기체 상태의 물과 알코올이 배출되며, 하부로는 에틸 락테이트, 락트산, 에탄올 및 물을 포함하는 제2 반응물이 배출되었다. 하부로 배출되는 제2 반응물은 에틸 락테이트 40중량%, 락트산 58중량%, 에탄올 1중량% 및 물 1 중량%를 포함하였다.
3) 주 반응기에서의 에틸 락테이트 전환
상기 진공 증류 컬럼을 통해 물과 에탄올이 적어도 부분적으로 제거된 제2 반응물이 주 반응기의 피드(feed)로 사용되었다. 고체산 촉매가 충진된 반응성 증류(RD) 칼럼이 주 반응기로 사용되었다(도 4 참조).
상기 제2 반응물은 주 반응기의 상층부로, 99% 에탄올은 주 반응기의 하층부로 각각 투입되며 80℃ 내외의 온도 및 대기압 하에서 에스테르화 반응을 완료하였다. 상기 피드 및 투입된 에탄올의 부피비는 1:0.5로 조절되었다.
주반응기 컬럼의 하단(스트리핑(stripping) 부, 도 4 참조)으로부터 얻어진 생성물은 냉각 장치에 의해 냉각시키고, 불꽃 이온화 검출기(the flame ionization detectors, FIDs)용 Agilent 7890 restek RTx-VRX GC Column을 사용하여 액체 조성을 측정하였다.
실시예에 따른 에틸 락테이트 제조 공정을 반복적으로 수행하며, 주반응기 컬럼의 하단으로부터 얻어지는 생성물의 조성을 측정하였다. 상기 생성물의 조성 데이터를 기초로 에틸 락테이트 제조 공정의 운전시간에 따른 락트산의 전환률(LA conversion) 및 에틸 락테이트의 선택비(EL selectivity) 그래프를 도 5에 나타내었다.
비교예
증류 컬럼에서의 에탄올/물 제거 공정이 수행되지 않은 것을 제외하고는 실시예와 동일하게 에틸 락테이트의 제조 공정을 수행하였다.
비교예에 따른 에틸 락테이트 제조 공정을 반복적으로 수행하며, 주반응기 컬럼의 하단으로부터 얻어지는 생성물의 조성을 측정하였다. 상기 생성물의 조성 데이터를 기초로 에틸 락테이트 제조 공정의 운전시간에 따른 락트산의 전환률(LA conversion) 및 에틸 락테이트의 선택비(EL selectivity) 그래프를 도 6에 나타내었다.
도 5 및 도 6을 참조하면, 반응 초기에는 예비 반응기를 거친 실시예 및 비교예에서 전반적으로 에틸 락테이트의 전환율 및 에틸 락테이트의 선택비가 상승하였다.
이를 통해 주 반응 이전에 가드 리액터를 활용한 부분 에스테르화를 통해 미리 락트산 응집체를 가수분해함에 따라, 주 반응기에서의 로드 및 반응 효율이 상승되었음을 알 수 있다.
그러나, 예비 반응기 후 증류 컬럼을 거친 실시예의 경우 비교예 대비 에틸 락테이트의 제조 공정이 반복적으로 수행되어도, 운전 시간에 따른 락트산의 전환률(LA conversion) 및 에틸 락테이트의 선택비(EL selectivity)가 일정하게 유지되었다.
이를 통해 예비 반응기 후 주 반응기로 반응물을 주입하기 전 증류 컬럼을 통해 물 및 에탄올을 제거할 경우 주 반응기 내에 담지된 산 촉매 등의 손상을 방지하여, 에틸 락테이트 전환을 위한 반응 면적이 증가되고 전체적인 공정 수율 및 안정성이 향상되었음을 알 수 있다.
[부호의 설명]
70: 카르복실산 공급 유로 90: 제1 알코올 공급 유로
100: 예비 반응기 110: 제1 반응물 유로
130: 제2 반응물 유로 150: 제2 알코올 공급 유로
200: 증류 컬럼 210: 제1 알코올 수집 유로
220: 제3 반응물 유로 230: 제2 알코올 수집 유로
300: 주 반응기 310: 환류 유로
400: 환류 유닛 500: 분리 정제 유닛

Claims (15)

  1. 카르복실산 스트림 및 제1 알코올 스트림을 예비 반응기 내에서 반응시켜 제1 반응물을 생성하는 단계;
    상기 제1 반응물로부터 알코올과 물을 적어도 부분적으로 제거하여 제2 반응물을 생성하는 단계;
    상기 제2 반응물을 주 반응기 내에서 제2 알코올 스트림과 반응시켜 에스테르화 시키는 단계; 및
    상기 주 반응기로부터 알킬 카르복실산 에스테르를 회수하는 단계를 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  2. 청구항 1에 있어서, 상기 알코올과 상기 물을 적어도 부분적으로 제거하는 단계는 증류 컬럼을 통해 행해지는, 알킬 카르복실산 에스테르의 제조 방법.
  3. 청구항 1에 있어서, 상기 예비 반응기 내에서 상기 제1 반응물을 생성하는 단계는 상기 카르복실산 스트림의 일부를 에스테르로 전환시키는 것을 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  4. 청구항 1에 있어서, 상기 주 반응기 내에서 에스테르화시키는 단계는, 상기 예비 반응기 내에서 미반응된 카르복실산 스트림을 에스테르로 전환시키는 것을 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  5. 청구항 1에 있어서, 상기 예비 반응기 내에서 에스테르 전환율은 50 내지 80%이며, 상기 주 반응기 내에서 에스테르 전환율은 95% 이상인, 알킬 카르복실산 에스테르의 제조 방법.
  6. 청구항 2에 있어서, 상기 카르복실산 스트림은 락트산을 포함하며, 상기 제1 알코올 스트림 및 상기 제2 알코올 스트림은 에탄올을 포함하며, 상기 알킬 카르복실산 에스테르는 에틸 락테이트를 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  7. 청구항 6에 있어서, 상기 증류 컬럼의 상부로부터 에탄올 및 물이 적어도 부분적으로 분리되어 제거되며, 상기 증류 컬럼의 하부로부터 부분 전환된 에틸 락테이트 및 락트산이 배출되는, 알킬 카르복실산 에스테르의 제조 방법.
  8. 청구항 6에 있어서, 상기 예비 반응기 내에서 반응시키는 단계는 락트산으로부터 생성된 다이머, 트라이머 또는 올리고머를 포함하는 응집체를 가수분해하는 단계를 더 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  9. 청구항 1에 있어서, 상기 제1 알코올 스트림은 상기 제2 알코올 스트림보다 낮은 순도를 갖는, 알킬 카르복실산 에스테르의 제조 방법.
  10. 청구항 2에 있어서, 상기 증류 컬럼에서 상기 제1 반응물로부터 제거된 알코올을 상기 제1 알코올 스트림으로 환류시키는 단계를 더 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  11. 청구항 1에 있어서, 상기 주 반응기로부터 반응 후 잔여 알코올을 상기 제1 알코올 스트림으로 환류시키는 단계를 더 포함하는, 알킬 카르복실산 에스테르의 제조 방법.
  12. 카르복실산을 알코올과 반응을 통해 부분 에스테르화 시키는 예비 반응기;
    상기 예비 반응기로부터 반응물을 수용하여 물 및 알코올을 적어도 부분적으로 분리하는 분리기;
    상기 증류 컬럼으로부터 물 및 알코올이 분리된 반응물을 수용하여 미반응 카르복실산을 에스테르화 시키는 주 반응기; 및
    상기 주 반응기로부터 생성된 알킬 카르복실산 에스테르를 수집하는 분리 정제 유닛을 포함하는, 알킬 카르복실산 에스테르의 제조 장치.
  13. 청구항 12에 있어서, 상기 분리기는 증류 컬럼인, 알킬 카르복실산 에스테르의 제조 장치.
  14. 청구항 12에 있어서, 상기 예비 반응기와 연결된 카르복실산 공급 유로 및 제1 알코올 공급 유로; 및
    상기 주 반응기와 연결된 제2 알코올 공급 유로를 더 포함하는, 알킬 카르복실산 에스테르의 제조 장치.
  15. 청구항 13에 있어서, 상기 증류 컬럼에서 분리된 물 및 알코올을 회수하는 환류 유닛을 더 포함하는, 알킬 카르복실산 에스테르의 제조 장치.
PCT/KR2019/016270 2018-11-23 2019-11-25 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치 WO2020106123A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980077087.3A CN113166025A (zh) 2018-11-23 2019-11-25 烷基羧酸酯的制备方法及烷基羧酸酯的制备装置
US17/296,083 US11608307B2 (en) 2018-11-23 2019-11-25 Method for preparing alkyl carboxylic acid ester and apparatus for preparing alkyl carboxylic acid ester
US18/109,444 US20230183163A1 (en) 2018-11-23 2023-02-14 Method for preparing alkyl carboxylic acid ester and apparatus for preparing alkyl carboxylic acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180146734A KR102151747B1 (ko) 2018-11-23 2018-11-23 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치
KR10-2018-0146734 2018-11-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/296,083 A-371-Of-International US11608307B2 (en) 2018-11-23 2019-11-25 Method for preparing alkyl carboxylic acid ester and apparatus for preparing alkyl carboxylic acid ester
US18/109,444 Division US20230183163A1 (en) 2018-11-23 2023-02-14 Method for preparing alkyl carboxylic acid ester and apparatus for preparing alkyl carboxylic acid ester

Publications (1)

Publication Number Publication Date
WO2020106123A1 true WO2020106123A1 (ko) 2020-05-28

Family

ID=70773296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016270 WO2020106123A1 (ko) 2018-11-23 2019-11-25 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치

Country Status (4)

Country Link
US (2) US11608307B2 (ko)
KR (1) KR102151747B1 (ko)
CN (1) CN113166025A (ko)
WO (1) WO2020106123A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057773A (zh) * 2022-07-18 2022-09-16 西安交通大学 一种用于乳酸乙酯合成的制备方法及反应装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013081B1 (ko) * 1986-08-01 1995-10-24 데이비 프로세스 테크놀러지 리미티드 디알킬 말리에이트의 제조방법
KR20050084179A (ko) * 2002-12-05 2005-08-26 아르끄마 연속식 에틸 락테이트 제조 방법
KR20080036107A (ko) * 2005-07-25 2008-04-24 비디아이 바이오디젤 인터내셔널 아게 카르복실레이트 알킬 에스테르의 제조 방법
KR101136783B1 (ko) * 2003-02-28 2012-04-19 알케마 인코포레이티드 평형 제한 반응의 수행방법
KR20160055178A (ko) * 2013-09-12 2016-05-17 존슨 매티 데이비 테크놀로지스 리미티드 카르복실산 에스테르의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8618888D0 (en) * 1986-08-01 1986-09-10 Davy Mckee Ltd Process
KR950013081A (ko) 1993-10-28 1995-05-17 배순훈 라디오의 채널 자동 유지 장치
US7652167B2 (en) * 2004-07-19 2010-01-26 Board Of Trustees Of Michigan State University Process for production of organic acid esters
KR101554607B1 (ko) * 2008-11-07 2015-09-22 에스케이케미칼주식회사 지방산을 이용한 지방산알킬에스테르의 제조방법 및 장치
MX2017000367A (es) * 2014-07-10 2017-08-25 Archer Daniels Midland Co Proceso novedoso de recuperacion de acido lactico.
WO2018169181A1 (ko) * 2017-03-15 2018-09-20 씨제이제일제당 (주) 알킬 락테이트의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013081B1 (ko) * 1986-08-01 1995-10-24 데이비 프로세스 테크놀러지 리미티드 디알킬 말리에이트의 제조방법
KR20050084179A (ko) * 2002-12-05 2005-08-26 아르끄마 연속식 에틸 락테이트 제조 방법
KR101136783B1 (ko) * 2003-02-28 2012-04-19 알케마 인코포레이티드 평형 제한 반응의 수행방법
KR20080036107A (ko) * 2005-07-25 2008-04-24 비디아이 바이오디젤 인터내셔널 아게 카르복실레이트 알킬 에스테르의 제조 방법
KR20160055178A (ko) * 2013-09-12 2016-05-17 존슨 매티 데이비 테크놀로지스 리미티드 카르복실산 에스테르의 제조 방법

Also Published As

Publication number Publication date
CN113166025A (zh) 2021-07-23
US20230183163A1 (en) 2023-06-15
KR102151747B1 (ko) 2020-09-03
US11608307B2 (en) 2023-03-21
KR20200061219A (ko) 2020-06-02
US20220009872A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
WO2010058983A2 (ko) (메트)아크릴산 에스테르의 회수방법
WO2021172898A1 (ko) 프로필렌 글리콜 메틸 에테르 아세테이트 제조 장치 및 제조 방법
WO2017043785A1 (ko) 글리콜의 제조장치 및 제조방법
WO2012033359A2 (ko) 미생물 발효액으로부터의 알킬부틸레이트 제조방법
WO2020106123A1 (ko) 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치
WO2019083188A1 (ko) 트리메틸올프로판의 제조방법
WO2012002648A2 (ko) 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR100513482B1 (ko) 알킬 (메트)아크릴레이트 제조방법
WO2012002652A2 (ko) 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
JP2003238479A (ja) 高級アルコールのテレフタル酸エステルの製造方法
WO2018216934A1 (ko) 알킬 카르복실산 에스테르의 제조 방법 및 제조 장치
WO2015088178A1 (ko) 고수율 1,3-부타디엔의 제조방법
WO2016105107A2 (ko) 무수당 알코올의 효과적인 생산 및 정제 방법
WO2012002651A2 (ko) 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
WO2016105106A2 (ko) 무수당 알코올의 연속적인 생산방법
US4578501A (en) Preparation of terephthalic acid from a crude dimethyl terephthalate
WO2022169165A1 (ko) 1,4-사이클로헥산디메탄올 조성물 및 이의 정제 방법
WO2018194429A1 (ko) 고순도 2-에틸헥실글리세롤에테르, 이의 제조방법 및 이의 용도
JP2008106019A (ja) (メタ)アクリル酸エステルの製造法
CN113549026A (zh) 一种n-乙烯基噁唑烷酮类化合物的合成工艺
WO2010068052A2 (ko) 카르복시산으로부터 단일 공정을 통해 알코올을 제조하는 방법
WO2012002649A2 (ko) 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
CN113896646B (zh) 一种4-甲基-3-氧代-n-苯基戊酰胺的高效绿色制备方法
KR102224268B1 (ko) 트리메틸올프로판의 제조장치 및 이를 이용한 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887340

Country of ref document: EP

Kind code of ref document: A1