WO2015088178A1 - 고수율 1,3-부타디엔의 제조방법 - Google Patents

고수율 1,3-부타디엔의 제조방법 Download PDF

Info

Publication number
WO2015088178A1
WO2015088178A1 PCT/KR2014/011782 KR2014011782W WO2015088178A1 WO 2015088178 A1 WO2015088178 A1 WO 2015088178A1 KR 2014011782 W KR2014011782 W KR 2014011782W WO 2015088178 A1 WO2015088178 A1 WO 2015088178A1
Authority
WO
WIPO (PCT)
Prior art keywords
butadiene
acid
high yield
butanediol
producing high
Prior art date
Application number
PCT/KR2014/011782
Other languages
English (en)
French (fr)
Inventor
김우영
신우균
필리모노브이고르
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Publication of WO2015088178A1 publication Critical patent/WO2015088178A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/173Alkadienes with five carbon atoms
    • C07C11/201, 3-Pentadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds

Definitions

  • the present invention relates to a process for producing high yield 1,3-butadiene.
  • 1,3-butadiene which is used as an intermediate of many petrochemical products such as synthetic rubber and electronic materials, is one of the most important basic oils in the petrochemical market, and its demand and value are gradually increasing.
  • Methods for obtaining 1,3-butadiene include naphtha cracking, direct dehydrogenation of normal-butene, and oxidative dehydrogenation of normal-butene.
  • the oxidative dehydrogenation of normal-butene (1-butene, trans-2-butene, cis-2-butene) is a reaction in which normal-butene and oxygen react to generate 1,3-butadiene and water.
  • this process is an effective alternative to prepare 1,3-butadiene alone, it has the disadvantage that many side reactions such as complete oxidation reaction occur because oxygen is used as a reactant in the process.
  • 2,3-butanediol is generally produced through a microbial fermentation process.
  • synthetic rubber instead of raw rubber during World War II, it was mass-produced as a raw material of butadiene.However, as 2,3-butanediol is produced at a low price by supplying butadiene from petroleum in bulk, some fine chemicals are used. Restricted to, greatly reduced.
  • the present invention comprises the steps of (a) esterifying the 2,3-butanediol and dicarboxylic acid to produce a reaction intermediate; And (b) pyrolysing the reaction intermediate produced in step (a), and then separating and purifying the 1,3-butadiene and dicarboxylic acid; and a method for producing a high yield 1,3-butadiene comprising To provide.
  • the present invention comprises the steps of (a) esterifying the 2,3-butanediol and dicarboxylic acid to produce a reaction intermediate; And (b) pyrolysing the reaction intermediate produced in step (a), and then separating and purifying the 1,3-butadiene and dicarboxylic acid; and a method for producing a high yield 1,3-butadiene comprising to provide.
  • step (c) recovering the dicarboxylic acid separated and purified in step (b) to step (a).
  • step (a) 2,3-butanediol and dicarboxylic acid may be included in the 2,3-butanediol fermentation solution produced through the microbial fermentation process.
  • the dicarboxylic acid may be succinic acid.
  • step (a) the molar ratio of 2,3-butanediol and dicarboxylic acid may be 1: 1 to 2: 1.
  • the molar ratio of 2,3-butanediol and dicarboxylic acid may be 1.3: 1 to 1.7: 1.
  • step (a) the esterification reaction may be performed in the presence of an acid catalyst.
  • the acid catalyst in step (a) may be an inorganic acid catalyst selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, carbonic acid, hypochlorous acid, hydrofluoric acid, and combinations thereof.
  • the acid catalyst in step (a) may be a solid acid catalyst selected from the group consisting of zeolite, silica-alumina, cation exchange resin, sulfuric acid supported metal oxide, heteropoly acid, and combinations thereof.
  • the esterification in step (a) may be carried out at a temperature of 100 °C to 200 °C.
  • step (a) the esterification reaction may be performed while removing water according to the esterification reaction.
  • reaction intermediate may include Formula 1 or Formula 2:
  • pyrolysis may be carried out at a temperature of 400 °C to 600 °C.
  • 1,3-butadiene isolated and purified in step (b) may be gaseous or liquid 1,3-butadiene.
  • the dicarboxylic acid separated and purified in step (b) may be a solid or liquid dicarboxylic acid.
  • the present invention comprises the steps of (a) esterifying the 2,3-butanediol and dicarboxylic acid to produce a reaction intermediate; And (b) pyrolysing the reaction intermediate produced in step (a), and then separating and purifying the 1,3-butadiene and dicarboxylic acid; to a method for producing high yield 1,3-butadiene, including
  • 2,3-butanediol and dicarboxylic acid contained in the 2,3-butanediol fermentation solution produced through the microbial fermentation process environmentally friendly and economically produced high yield 1,3-butadiene synthetic rubber It can be used for many petrochemical products such as electronic materials.
  • Figure 2 shows the reaction intermediate according to the esterification reaction of 2,3-butanediol and succinic acid by gas chromatography-mass spectrometry (GC-MS).
  • FIG. 3 shows the reaction intermediates represented by Chemical Formulas 1 and 2 according to the esterification of 2,3-butanediol and succinic acid by mass spectrometry (MS).
  • FIG. 4 shows that when the molar ratio of 2,3-butanediol and succinic acid is 1.3: 1, 1.5: 1, and 1.7: 1, 1,3-butadiene prepared is analyzed by gas chromatography-mass spectrometry (GC-MS). It is shown.
  • GC-MS gas chromatography-mass spectrometry
  • FIG. 5 shows the 1,3-butadiene prepared by the gas chromatography-mass spectrometer (GC-MS) when the pyrolysis temperatures are 400 ° C., 500 ° C., and 600 ° C.
  • GC-MS gas chromatography-mass spectrometer
  • the present inventors confirmed that by using 2,3-butanediol and dicarboxylic acid contained in the 2,3-butanediol fermentation solution produced through the microbial fermentation process, high yield 1,3-butadiene can be prepared.
  • the invention has been completed.
  • the present invention is a.
  • step (b) pyrolyzing the reaction intermediate produced in step (a), and then separating and purifying with 1,3-butadiene and dicarboxylic acid; providing a method for producing a high yield 1,3-butadiene comprising do.
  • step (b) pyrolysing the reaction intermediate produced in step (a), and then separating and purifying with 1,3-butadiene and dicarboxylic acid;
  • step (c) It provides a method for producing high yield 1,3-butadiene comprising the step of recovering the dicarboxylic acid separated and purified in step (b) in the step (a).
  • a typical reaction may be represented by the following schemes 1 and 2.
  • Scheme 1 Chemical Formula 1 [2,3-dimethyl-1,4-dioxocan-5,8-dione] Or as a reaction intermediate, as shown in Scheme 2, wherein Formula 2 [4,4 '-(butane-2,3-diylbis (oxy)) bis (4-oxobutanoic acid)) (4,4'-(butane-2) , 3-diylbis (oxy)) bis (4-oxobutanoic acid))].
  • Step (a) is a step of esterifying the 2,3-butanediol and dicarboxylic acid to generate a reaction intermediate.
  • the 2,3-butanediol may be produced through a chemical synthesis process and a microbial fermentation process, but the 2,3-butanediol may be included in a 2,3-butanediol fermentation solution produced through a microbial fermentation process.
  • the method for producing 2,3-butanediol fermentation solution through the microbial fermentation process is a method of producing a 2,3-butanediol, succinic acid, acetic acid, Conversion to a 2,3-butanediol fermentation solution containing acetoin, lactic acid, formic acid, ethanol and the like.
  • 2,3-butanediol fermentation solution is Klebsiella, Enterobacter, Bacillus. Produced by a variety of microorganisms, such as the Serratia Species.
  • K. pneumoniae, K. oxytoca and Penibacillus polymyxa produce relatively high amounts of 2,3-butanediol, in particular Kleb Ciella pneumoniae and Klebsiella oxytoca have the advantage of easy culture and fast growth rate.
  • the dicarboxylic acid is preferably selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and subric acid, more preferably the dicarboxylic acid is succinic acid.
  • the dicarboxylic acid is included in the 2,3-butanediol fermentation solution produced through the microbial fermentation process, it is particularly preferable that it is succinic acid.
  • succinic acid is included as a representative by-product in the 2,3-butanediol fermentation solution.
  • dicarboxylic acids such as succinic acid, which is a dicarboxylic acid contained in the 2,3-butanediol fermentation solution, only 2,3-butanediol and succinic acid remain in the 2,3-butanediol fermentation solution and the remaining by-products
  • the molar ratio of 2,3-butanediol and dicarboxylic acid is preferably 1: 1 to 2: 1, and the molar ratio of 2,3-butanediol and dicarboxylic acid is 1.3: 1 to 1.7: 1. Considering more preferred, but is not limited thereto.
  • the molar ratio of 2,3-butanediol and dicarboxylic acid is less than 1: 1, unreacted dicarboxylic acid is present, and the molar ratio of 2,3-butanediol and dicarboxylic acid is greater than 2: 1. In this case, there is a problem in that unreacted 2,3-butanediol exists.
  • the esterification reaction of the 2,3-butanediol and dicarboxylic acid is a reaction intermediate of Chemical Formula 1 [2,3-dimethyl-1,4-dioxocan-5,8-dione (2,3-dimethyl-1, 4-dioxocane-5,8-dione)] or a reaction intermediate of formula 2 [4,4 '-(butane-2,3-diylbis (oxy)) bis (4-oxobutanoic acid) as a reaction intermediate Considering the fact that (4,4 '-(butane-2,3-diylbis (oxy)) bis (4-oxobutanoic acid))] is also produced, the molar ratio of 2,3-butanediol to dicarboxylic acid is Particular preference is given to 1.3: 1. When the molar ratio of 2,3-butanediol and succinic acid is 1.3: 1, high yield 1,3-butadiene can be produced without producing by-product
  • the esterification reaction can be carried out quickly in the presence of an acid catalyst.
  • the acid catalyst speeds up the esterification reaction so that, under the acid catalyst, the esterification reaction is carried out for 4 to 10 hours.
  • the acid catalyst may be an inorganic acid catalyst or a solid acid catalyst
  • the inorganic acid catalyst may be selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, carbonic acid, hypochlorous acid, hydrofluoric acid, and combinations thereof
  • the solid acid catalyst may be zeolite, Silica-alumina, cation exchange resins, sulfuric acid-supported metal oxides, heteropolyacids, and combinations thereof.
  • the esterification reaction is preferably carried out at a temperature of 100 °C to 200 °C, the esterification reaction is particularly preferably carried out at a temperature of 130 °C, but is not limited thereto. If the esterification reaction is carried out at a temperature that is too low, there is a problem that the esterification reaction is not performed smoothly, when the esterification reaction is carried out at a high temperature, the resulting reaction intermediate is distilled off, ion exchange resin, etc. There is a problem that the stability of the acid catalyst is poor.
  • the esterification reaction can be carried out without an acid catalyst. In the absence of an acid catalyst, the esterification reaction is carried out for 30 to 60 hours.
  • esterification reaction is performed while removing the water according to the esterification reaction, thereby suppressing unnecessary reactions to increase the yield of the intermediate reactant.
  • the reaction intermediate is represented by the following Chemical Formula 1 [2,3-dimethyl-1,4-dioxocan-5,8-dione] or Chemical Formula 2 [4,4 '-(butane-2,3-diylbis (oxy)) bis (4-oxobutanoic acid)) (4,4'-(butane-2,3-diylbis (oxy)) bis (4- oxobutanoic acid))).
  • the reaction intermediate of Formula 1 and Formula 2 can be thermally decomposed into 1,3-butadiene and dicarboxylic acid.
  • Step (b) is a step of pyrolyzing the reaction intermediate produced in step (a), followed by separation and purification into 1,3-butadiene and dicarboxylic acid.
  • the pyrolysis may be carried out at a temperature of 400 °C to 600 °C.
  • a temperature that is too low there is a problem that pyrolysis is not performed smoothly and an undecomposed intermediate remains, and when pyrolysis is performed at a temperature that is too high, ancillary reactions occur too much and 1,3- There is a problem that the yield of butadiene falls.
  • pyrolysis is carried out at a temperature of 500 ° C., high yields 1,3-butadiene can be produced in high yields.
  • the separated and purified 1,3-butadiene is gaseous or liquid 1,3-butadiene, and the separated and purified dicarboxylic acid is preferably a solid or liquid dicarboxylic acid.
  • Step (c) is a step of recovering the dicarboxylic acid separated and purified in step (b) to step (a).
  • the separated and purified dicarboxylic acid can be recovered and used again as the dicarboxylic acid for esterification reaction, which is an economic advantage.
  • 1,3-butadiene prepared according to the present invention can be utilized in many petrochemical products such as synthetic rubber and electronic materials.
  • the microbial fermentation process produced a 2,3-butanediol fermentation solution having the composition shown in Table 1 below, and prepared 2,3-butanediol and succinic acid from the 2,3-butanediol fermentation solution.
  • the microbial fermentation process was carried out batch culture using 2,3-butanediol producing microorganisms (Klebsiella).
  • the Klebsiella strains were inoculated in 250 ml of complex medium containing 9 g / L glucose (50 mM, glucose) and incubated at 37 ° C. for 16 hours, and then the culture solution was inoculated in 3 L complex medium.
  • the fermentation conditions were a micro-aerobic condition (aerobic rate 1vvm, stirring speed 150rpm), 90g / L initial glucose concentration, pH6.8, the culture temperature 37 °C. 5N NH 4 OH was used to adjust the pH during fermentation.
  • a glucose solution of 700 g / L or more was fed.
  • the 2,3-butanediol production fermentation solution is passed through a fine filtration membrane (0.5 ⁇ m poresize) After removal of the microorganism using, strong acid cation exchange resin is a packed column (1L) at a flow rate of 40 mL / min Na +, K + More than 90% of cationic components such as NH4 + were removed.
  • the 2,3-butanediol fermentation solution from which the cationic component was removed was evaporated under 50 mbar and 50 ° C. in water, acetic acid, acetoin, lactic acid, formic acid and ethanol, and the concentration of 2,3-butanediol was 500 g / L or more and 70 g of succinic acid. Concentrated until it became more than / L.
  • the reaction intermediate was pyrolyzed at 1 atm and 500 ° C., and then separated and purified into gaseous 1,3-butadiene and solid / liquid succinic acid. That is, the product of the gaseous phase after pyrolysis was injected into a drum cooled to 5 ° C. to convert succinic acid into a solid / liquid phase and recovered. The 1,3-butadiene present in the gaseous phase was collected and analyzed. At this time, the separated and purified succinic acid was recovered again for use in the esterification reaction.
  • Example 2 The same procedure as in Example 1 was carried out except that pyrolysis of the reaction intermediate was performed at a temperature of 400 ° C.
  • Example 2 The same procedure as in Example 1 was carried out except that pyrolysis of the reaction intermediate was performed at a temperature of 600 ° C.
  • Figure 2 shows the reaction intermediate according to the esterification reaction of 2,3-butanediol and succinic acid by gas chromatography-mass spectrometry (GC-MS).
  • 2,3-butanediol and succinic acid were esterified according to Example 1, and 2,3-butanediol (2,3-BDO) and succinic acid remained mostly in reaction. No, it was confirmed that the reaction intermediate is produced in high yield.
  • FIG. 3 shows the reaction intermediates represented by Chemical Formulas 1 and 2 according to the esterification of 2,3-butanediol and succinic acid by mass spectrometry (MS).
  • reaction intermediates formed by esterifying 2,3-butanediol and succinic acid according to Example 1 were compounds represented by Chemical Formulas 1 and 2, and structural formulas were confirmed.
  • FIG. 4 shows that when the molar ratio of 2,3-butanediol and succinic acid is 1.3: 1, 1.5: 1, and 1.7: 1, 1,3-butadiene prepared is analyzed by gas chromatography-mass spectrometry (GC-MS). It is shown.
  • GC-MS gas chromatography-mass spectrometry
  • acetone (Acetone) shown in Figure 4 corresponds to a standard material, because the amount of the standard material used in the analysis is different because the size of each peak of acetone is different, and does not affect the experimental results.
  • FIG. 5 shows the 1,3-butadiene prepared by the gas chromatography-mass spectrometer (GC-MS) when the pyrolysis temperatures are 400 ° C., 500 ° C., and 600 ° C.
  • GC-MS gas chromatography-mass spectrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 (a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계; 및 (b) 상기 (a)에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계;를 포함하는 고수율 1,3-부타디엔의 제조방법에 관한 것이다.

Description

고수율 1,3-부타디엔의 제조방법
본 발명은 고수율 1,3-부타디엔의 제조방법에 관한 것이다.
합성고무와 전자재료 등 많은 석유화학 제품의 중간체로 이용되는 1,3-부타디엔은 현재 석유화학 시장에서 매우 중요한 기초 유분 중 하나이며, 그 수요와 가치가 점차 증가하고 있다.
1,3-부타디엔을 얻는 방법으로는 납사 크래킹, 노르말-부텐의 직접 탈수소화 반응, 노르말-부텐의 산화적 탈수소화 반응 등이 있다.
그러나, 1,3-부타디엔 공급의 90%를 담당하고 있는 납사 크래킹 공정은 높은 반응 온도로 인하여 에너지 소비량이 많을 뿐만 아니라, 1,3-부타디엔 단독 생산 공정이 아니기 때문에 납사 크래커에 대한 투자와 운영을 1,3-부타디엔의 생산수요에 최적으로 맞출 수 없는 문제점을 가지고 있다. 즉, 납사 크래커의 신·증설을 통해 늘어나는 1,3-부타디엔 수요를 충족시키려면, 필연적으로 1,3-부타디엔 이외에 또 다른 기초유분이 잉여로 생산된다는 문제점을 가지고 있어, 납사 크래커 신·증설은 늘어나는 1,3-부타디엔 수요를 충족시키기 위한 효과적인 대안이 될 수 없다.
또한, 노르말-부텐의 직접 탈수소화 반응은 흡열반응으로써 높은 수율의 1,3-부타디엔 생산을 위해 고온 및 저압의 조건이 요구되며, 열역학적으로도 불리하여 1,3-부타디엔을 생산하는 상용화 공정으로는 적합하지 않다.
또한, 노르말-부텐(1-부텐, 트랜스-2-부텐, 시스-2-부텐)의 산화적 탈수소화 반응은 노르말-부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응이다. 본 공정은 1,3-부타디엔을 단독으로 제조할 수 있는 효과적인 대안임에도 불구하고, 상기 공정에서는 산소를 반응물로 사용하기 때문에 완전 산화반응 등 많은 부반응이 일어나는 단점을 가지고 있다.
한편, 2,3-부탄디올은 일반적으로 미생물 발효 공정을 통해 생산된다. 특히 2차 세계 대전시 생고무대신, 합성고무의 수요 급등으로 인해, 부타디엔의 원료로 대량 생산되기도 하였으나, 석유로부터 부타디엔을 대량으로 저가로 공급하게 됨에 따라서 2,3-부탄디올의 생산은 일부 정밀화학제품 사용으로 제한되면서 크게 줄어들었다.
그러나, 최근 고유가로 인한 부타디엔의 원료인 납사 가격의 상승으로 납사 분해설비 가동률을 10~15% 정도 줄이고 있고, 최근 중동지역에서 에틸렌 분해설비 증설에 따른 납사 분해설비의 채산성 악화로 인해 가동률이 더욱 감소될 것이므로, 이로 인해 1,3-부타디엔의 수급에 큰 차질이 예상되어 1,3-부타디엔의 생산에 있어 석유 의존도를 줄이기 위해 석유 대체자원인 바이오매스(2,3-부탄디올)로부터 1,3-부타디엔을 제조하는 연구개발이 추진되고 있는 실정이다.
본 발명은 (a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계; 및 (b) 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계;를 포함하는 고수율 1,3-부타디엔의 제조방법을 제공하고자 한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 (a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계; 및 (b) 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계;를 포함하는 고수율 1,3-부타디엔의 제조방법을 제공한다.
(c) 상기 (b)단계에서 분리 및 정제된 디카르복실산을 상기 (a)단계로 회수시키는 단계를 포함할 수 있다.
상기 (a)단계에서 2,3-부탄디올과 디카르복실산은 미생물 발효 공정을 통해 생산된 2,3-부탄디올 발효 용액에 포함된 것일 수 있다.
상기 디카르복실산은 숙신산일 수 있다.
상기 (a)단계에서 2,3-부탄디올과 디카르복실산의 몰비는 1:1 내지 2:1일 수 있다.
상기 (a)단계에서 2,3-부탄디올과 디카르복실산의 몰비는 1.3:1 내지 1.7:1일 수 있다.
상기 (a)단계에서 에스테르화 반응은 산 촉매 존재 하에서 수행될 수 있다.
상기 (a)단계에서 산 촉매는 질산, 황산, 염산, 탄산, 차아염소산, 불산 및 이들의 조합으로 이루어진 군으로부터 선택된 무기산 촉매일 수 있다.
상기 (a)단계에서 산 촉매는 제올라이트, 실리카-알루미나, 양이온 교환 수지, 황산이 담지된 금속산화물, 헤테로폴리산 및 이들의 조합으로 이루어진 군으로부터 선택된 고체산 촉매일 수 있다.
상기 (a)단계에서 에스테르화 반응은 100℃ 내지 200℃의 온도에서 수행될 수 있다.
상기 (a)단계에서 에스테르화 반응은 상기 에스테르화 반응에 따른 물을 제거하면서 수행될 수 있다.
상기 (a)단계에서 반응 중간체는 하기 화학식 1 또는 화학식 2를 포함할 수 있다:
[화학식 1]
Figure PCTKR2014011782-appb-I000001
,
[화학식 2]
Figure PCTKR2014011782-appb-I000002
.
상기 (b)단계에서 열분해는 400℃ 내지 600℃의 온도에서 수행될 수 있다.
상기 (b)단계에서 분리 및 정제된 1,3-부타디엔은 기상 또는 액상의 1,3-부타디엔일 수 있다.
상기 (b)단계에서 분리 및 정제된 디카르복실산은 고상 또는 액상의 디카르복실산일 수 있다.
본 발명은 (a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계; 및 (b) 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계;를 포함하는 고수율 1,3-부타디엔의 제조방법에 관한 것으로, 미생물 발효 공정을 통해 생산된 2,3-부탄디올 발효 용액에 포함된 2,3-부탄디올과 디카르복실산을 사용함으로써, 친환경적이면서도 경제적으로 고수율 1,3-부타디엔을 제조하여 합성고무와 전자재료 등 많은 석유화학 제품으로 활용 가능하다.
도 1은 본 발명에 따른 고수율 1,3-부타디엔의 제조방법을 간략히 나타낸 것이다.
도 2는 2,3-부탄디올과 숙신산의 에스테르화 반응에 따른 반응 중간체를 기체 크로마토그래피-질량 분석기(GC-MS)로 분석하여 나타낸 것이다.
도 3은 2,3-부탄디올과 숙신산의 에스테르화 반응에 따른, 화학식 1 및 화학식 2로 표시되는 반응 중간체 각각을 질량분석기(MS)로 분석하여 나타낸 것이다.
도 4는 2,3-부탄디올과 숙신산의 몰비가 1.3:1, 1.5:1, 및 1.7:1인 경우, 제조되는 1,3-부타디엔을 기체 크로마토그래피-질량 분석기(GC-MS)로 분석하여 나타낸 것이다.
도 5는 열분해 온도가 400℃, 500℃, 및 600℃인 경우, 제조되는 1,3-부타디엔을 기체 크로마토그래피-질량 분석기(GC-MS)로 분석하여 나타낸 것이다.
본 발명자들은 미생물 발효 공정을 통해 생산된 2,3-부탄디올 발효 용액에 포함된 2,3-부탄디올과 디카르복실산을 사용함으로써, 고수율 1,3-부타디엔을 제조할 수 있음을 확인하고 본 발명을 완성하였다.
이하, 본 발명을 상세히 설명한다.
도 1은 본 발명에 따른 고수율 1,3-부타디엔의 제조방법을 간략히 나타낸 것이다.
본 발명은
(a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계; 및
(b) 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계;를 포함하는 고수율 1,3-부타디엔의 제조방법을 제공한다.
또한, 본 발명은
(a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계;
(b) 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계; 및
(c) 상기 (b)단계에서 분리 및 정제된 디카르복실산을 상기 (a)단계로 회수시키는 단계를 포함하는 고수율 1,3-부타디엔의 제조방법을 제공한다.
본 발명에 따른 고수율 1,3-부타디엔의 제조방법에 있어, 대표적인 반응은 하기 반응식 1 및 반응식 2로 나타낼 수 있다. 반응식 1과 같이 반응 중간체로 화학식 1[2,3-디메틸-1,4-디옥소칸-5,8-디온(2,3-dimethyl-1,4-dioxocane-5,8-dione)]이 생성되거나, 반응식 2와 같이 반응 중간체로 화학식 2[4,4'-(부탄-2,3-디일비스(옥시))비스(4-옥소부탄산))(4,4'-(butane-2,3-diylbis(oxy))bis(4-oxobutanoic acid))]가 생성되기도 한다.
[반응식 1]
Figure PCTKR2014011782-appb-I000003
,
[반응식 2]
Figure PCTKR2014011782-appb-I000004
.
상기 (a)단계는 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계이다.
상기 2,3-부탄디올은 화학적 합성 공정과 미생물 발효 공정을 통해 생산할 수 있지만, 상기 2,3-부탄디올은 미생물 발효 공정을 통해 생산된 2,3-부탄디올 발효 용액에 포함된 것일 수 있다.
미생물 발효 공정을 통한 2,3-부탄디올 발효 용액의 생산 방법은 2,3-부탄디올 생산능을 보유한 미생물의 발효를 통하여, 재생 가능한 바이오 원료물질(Biomass)을 2,3-부탄디올, 숙신산, 아세트산, 아세토인, 락트산, 포름산, 및 에탄올 등을 포함하는 2,3-부탄디올 발효 용액으로 전환하는 것이다. 2,3-부탄디올 발효 용액은 클렙시엘라(Klebsiella), 엔테로벡터(Enterobacter), 바실러스(Bacillus). 세라티아(Serratia) 종(Species) 등 다양한 종류의 미생물에 의하여 생산된다. 특히, 클렙시엘라 뉴모니에(K. pneumoniae), 클렙시엘라 옥시토카(K. oxytoca), 페니바실러스 폴리믹사(Paenibacillus polymyxa)가 상대적으로 많은 양의 2,3-부탄디올을 생산하며, 특히 클렙시엘라 뉴모니에와 클렙시엘라 옥시토카는 배양이 용이하고 생장 속도가 빠른 이점이 있다.
이때, 상기 디카르복실산은 옥살산, 말론산, 숙신산, 글루타르산, 아디프산, 피멜산 및 수베르산으로 이루어진 군으로부터 선택된 것이 바람직하고, 상기 디카르복실산은 숙신산인 것이 더욱 바람직하다.
상기 디카르복실산이 미생물 발효 공정을 통해 생성된 2,3-부탄디올 발효 용액에 포함된 경우, 숙신산인 것이 특히 바람직하다.
즉, 숙신산은 2,3-부탄디올 발효용액에 대표적인 부산물로 포함되어 있다. 2,3-부탄디올 발효용액에 포함된 디카르복실산인 숙신산 등 디카르복실산을 사용함으로써, 2,3-부탄디올 발효용액에서 2,3-부탄디올과 숙신산 등 디카르복실산만을 잔류시키고 나머지 부산물을 단순 정제/제거하여, 에스테르화 반응시키기 위한 2,3-부탄디올과 디카르복실산으로 직접 사용할 수 있는 이점이 있다.
상기 2,3-부탄디올과 디카르복실산의 몰비는 1:1 내지 2:1인 것이 바람직하고, 상기 2,3-부탄디올과 디카르복실산의 몰비는 1.3:1 내지 1.7:1인 것이 반응성을 고려할 경우 더욱 바람직하나, 이에 한정되지 않는다. 이때, 2,3-부탄디올과 디카르복실산의 몰비가 1:1 미만인 경우, 반응하지 않은 디카르복실산이 존재하고, 2,3-부탄디올과 디카르복실산의 몰비가 2:1을 초과하는 경우, 반응하지 않은 2,3-부탄디올이 존재하는 문제점이 있다.
상기 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체로 화학식 1[2,3-디메틸-1,4-디옥소칸-5,8-디온(2,3-dimethyl-1,4-dioxocane-5,8-dione)]이 생성되거나 반응식 2와 같이 반응 중간체로 화학식 2[4,4'-(부탄-2,3-디일비스(옥시))비스(4-옥소부탄산))(4,4'-(butane-2,3-diylbis(oxy))bis(4-oxobutanoic acid))]가 생성되기도 하는 점을 고려하면, 2,3-부탄디올과 디카르복실산의 몰비는 1.3:1인 것이 특히 바람직하다. 2,3-부탄디올과 숙신산의 몰비가 1.3:1인 경우, 2,3-부탄디올로 인한 부산물을 생성하지 아니하고, 고수율 1,3-부타디엔을 제조할 수 있다.
상기 에스테르화 반응은 산 촉매의 존재 하에서 빠르게 수행될 수 있다. 산 촉매는 에스테르화 반응 속도를 빠르게 하여, 산 촉매 하에서, 에스테르화 반응은 4 내지 10시간 동안 수행된다.
상기 산 촉매는 무기산 촉매 또는 고체산 촉매일 수 있는데, 상기 무기산 촉매는 질산, 황산, 염산, 탄산, 차아염소산, 불산 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있고, 상기 고체산 촉매는 제올라이트, 실리카-알루미나, 양이온 교환 수지, 황산이 담지된 금속산화물, 헤테로폴리산 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다.
상기 에스테르화 반응은 100℃ 내지 200℃의 온도에서 수행되는 것이 바람직하고, 에스테르화 반응은 130℃의 온도에서 수행되는 것이 특히 바람직하나, 이에 한정되지 않는다. 에스테르화 반응이 너무 낮은 온도에서 수행되는 경우, 에스테르화 반응이 원활하게 이루어지지 않는 문제점이 있고, 에스테르화 반응이 너무 높은 온도에서 수행되는 경우, 생성된 반응 중간체가 증류되어 버리거나, 이온 교환 수지 등 산 촉매의 안정성이 떨어지는 문제점이 있다.
상기 에스테르화 반응은 산 촉매 없이도 수행될 수 있다. 산촉매가 없는 경우, 에스테르화 반응은 30 내지 60시간 동안 수행된다.
또한, 상기 에스테르화 반응은 상기 에스테르화 반응에 따른 물을 제거하면서 수행됨으로써, 불필요한 반응을 억제하여 중간 반응체의 수율을 높일 수 있다.
상기 반응 중간체는 하기 화학식 1[2,3-디메틸-1,4-디옥소칸-5,8-디온(2,3-dimethyl-1,4-dioxocane-5,8-dione)] 또는 화학식 2[4,4'-(부탄-2,3-디일비스(옥시))비스(4-옥소부탄산))(4,4'-(butane-2,3-diylbis(oxy))bis(4-oxobutanoic acid))]를 포함할 수 있다. 이때, 하기 화학식 1 및 화학식 2의 반응 중간체는 1,3-부타디엔과 디카르복실산으로 열분해 가능하다.
[화학식 1]
Figure PCTKR2014011782-appb-I000005
,
[화학식 2]
Figure PCTKR2014011782-appb-I000006
.
상기 (b)단계는 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계이다.
상기 열분해는 400℃ 내지 600℃의 온도에서 수행될 수 있다. 열분해가 너무 낮은 온도에서 수행되는 경우, 열분해가 원활하게 이루어지지 않아 분해되지 않은 중간체가 남는 문제점이 있고, 열분해가 너무 높은 온도에서 수행되는 경우, 부수적인 반응이 너무 많이 발생하게 되어 1,3-부타디엔의 수율이 떨어지는 문제점이 있다. 열분해가 500℃의 온도에서 수행되는 경우, 높은 수율로 고수율 1,3-부타디엔을 제조할 수 있다.
상기 분리 및 정제된 1,3-부타디엔은 기상 또는 액상의 1,3-부타디엔이고, 상기 분리 및 정제된 디카르복실산은 고상 또는 액상의 디카르복실산인 것이 바람직하다.
상기 (c)단계는 상기 (b)단계에서 분리 및 정제된 디카르복실산을 상기 (a)단계로 회수시키는 단계이다. 분리 및 정제된 디카르복실산을 회수시켜, 에스테르화 반응시키기 위한 디카르복실산으로 다시 사용할 수 있어, 경제적인 이점이 있다.
본 발명에 따라 제조된 1,3-부타디엔은 합성고무와 전자재료 등 많은 석유화학 제품으로 활용 가능하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1
(1) 2,3-부탄디올과 숙신산의 준비
미생물 발효 공정을 통해 하기 표 1의 조성을 가진 2,3-부탄디올 발효 용액을 생산하였고, 2,3-부탄디올 발효 용액으로부터 2,3-부탄디올과 숙신산을 준비하였다.
구체적으로, 미생물 발효 공정은 2,3-부탄디올 생산 미생물들(클렙시엘라)을 이용하여 회분식 배양을 수행하였다. 먼저, 상기 클렙시엘라 균주들을 9g/L 포도당 (50mM, glucose)을 포함한 250ml의 복합배지에 접종하여 37℃에서 16 시간 동안 배양한 후, 이 배양액을 3L 복합배지에 접종하여 배양하였다. 이 때 발효 조건은 미세호기조건 (micro-aerobic condition; 호기 속도 1vvm, 교반 속도 150rpm), 90g/L 초기 포도당 농도, pH6.8, 배양 온도 37℃로 하였다. 발효 중 pH의 조정을 위하여 5N NH4OH를 사용하였다. 유가식 배양을 위해서는 발효 중 포도당 농도가 10 g/L 이하로 떨어지면 700 g/L 이상의 포도당 용액을 피딩(feeding)하였다.
표 1
조성 2,3-부탄디올 숙신산 아세트산 아세토인 락트산 포름산 에탄올
g/l 109.3 15.1 8.3 4.6 2.7 0.4 2.0
생산된 2,3-부탄디올 발효 용액은 미세여과막(0.5 ㎛ poresize)을 이용해 미생물을 제거한 후, 강산성 양이온교환수지가 충진된 컬럼(1L)을 40 mL/min의 유속으로 통과시켜 Na+, K+, NH4+ 와 같은 양이온 성분을 90% 이상 제거하였다. 양이온 성분이 제거된 2,3-부탄디올 발효 용액은 50 mbar, 50℃ 조건하에서 물, 아세트산, 아세토인, 락트산, 포름산, 에탄올을 증발시켜 2,3-부탄디올의 농도가 500g/L 이상, 숙신산 70g/L 이상이 될 때까지 농축하였다.
(2) 2,3-부탄디올과 숙신산의 에스테르화 반응
0.1 M 황산 존재 하에서, 2,3-부탄디올 1.3mol과 숙신산 1mol을 130℃에서 6시간 증류하면서 에스테르화 반응시켜 반응 중간체를 생성하였다.
(3) 1,3-부타디엔의 제조
반응중간체를 1기압, 500℃에서 열분해 시킨 후, 기상의 1,3-부타디엔과 고상/액상의 숙신산으로 분리 및 정제하였다. 즉, 열분해 후 나오는 기상의 생성물을 5℃로 냉각시킨 드럼에 주입하여 숙신산을 고상/액상으로 전환시켜 회수하였고 기상으로 존재하는 1,3-부타디엔을 포집하여 분석하였다. 이때, 분리 및 정제된 숙신산은 에스테르화 반응에 사용되도록 다시 회수시켰다.
실시예 2
산 촉매 없이, 2,3-부탄디올 1.3mol과 숙신산 1mol을 130℃에서 48시간 증류하면서 에스테르화 반응시켜 반응 중간체를 생성한 것을 제외하고는, 실시예 1과 동일하게 하였다.
실시예 3
산 촉매 없이, 2,3-부탄디올 1.5mol과 숙신산 1mol을 130℃에서 40시간 증류하면서 에스테르화 반응시켜 반응 중간체를 생성한 것을 제외하고는, 실시예 1과 동일하게 하였다.
실시예 4
산 촉매 없이, 2,3-부탄디올 1.7mol과 숙신산 1mol을 130℃에서 40시간 증류하면서 에스테르화 반응시켜 반응 중간체를 생성한 것을 제외하고는, 실시예 1과 동일하게 하였다.
실시예 5
반응 중간체의 열분해가 400℃의 온도에서 수행된 것을 제외하고는, 실시예 1과 동일하게 하였다.
실시예 6
반응 중간체의 열분해가 600℃의 온도에서 수행된 것을 제외하고는, 실시예 1과 동일하게 하였다.
도 2는 2,3-부탄디올과 숙신산의 에스테르화 반응에 따른 반응 중간체를 기체 크로마토그래피-질량 분석기(GC-MS)로 분석하여 나타낸 것이다.
도 2에 나타난 바와 같이, 실시예 1에 따라 2,3-부탄디올과 숙신산을 에스테르화 반응시켰는바, 2,3-부탄디올(2,3-BDO)과 숙신산(Succinic acid)은 대부분 반응하여 남아 있지 아니하고, 고수율로 반응 중간체가 생성되는 것을 확인할 수 있었다.
도 3은 2,3-부탄디올과 숙신산의 에스테르화 반응에 따른, 화학식 1 및 화학식 2로 표시되는 반응 중간체 각각을 질량분석기(MS)로 분석하여 나타낸 것이다.
도 3에 나타난 바와 같이, 실시예 1에 따라 2,3-부탄디올과 숙신산을 에스테르화 반응시켜 생성된 반응 중간체는 화학식 1 및 화학식 2로 표시되는 화합물인 것으로, 각각 구조식을 확인할 수 있었다.
도 4는 2,3-부탄디올과 숙신산의 몰비가 1.3:1, 1.5:1, 및 1.7:1인 경우, 제조되는 1,3-부타디엔을 기체 크로마토그래피-질량 분석기(GC-MS)로 분석하여 나타낸 것이다.
도 4에 나타난 바와 같이, 실시예 2에 따라 2,3-부탄디올(BDO)과 숙신산(SA)의 몰비가 1.3:1인 경우, 실시예 3에 따라 2,3-부탄디올(BDO)과 숙신산(SA)의 몰비가 1.5:1인 경우, 실시예 4에 따라 2,3-부탄디올(BDO)과 숙신산(SA)의 몰비가 1.7:1인 경우, 모두 1,3-부타디엔이 고수율로 제조될 수 있음을 확인할 수 있었다. 다만, 실시예 3에 따라 2,3-부탄디올과 숙신산의 몰비가 1.5:1인 경우 및 실시예 4에 따라 2,3-부탄디올과 숙신산의 몰비가 1.7:1인 경우에는 반응하지 않은 2,3-부탄디올이 고온에서 분해시 발생되는 부산물인 이소부틸알데히드(Isobutyraldehyde; IBA)가 생성됨을 확인할 수 있었다.
한편, 도 4에서 나타나는 아세톤(Acetone)은 표준 물질에 해당하는 것으로, 분석시 사용하는 표준 물질의 양이 다르기 때문에 아세톤의 각 피크의 크기가 다른 것일 뿐, 실험결과에 영향을 미치는 것이 아니다.
도 5는 열분해 온도가 400℃, 500℃, 및 600℃인 경우, 제조되는 1,3-부타디엔을 기체 크로마토그래피-질량 분석기(GC-MS)로 분석하여 나타낸 것이다.
도 5에 나타난 바와 같이, 실시예 5에 따라 열분해 온도가 400℃인 경우, 실시예 1에 따라 열분해 온도가 500℃인 경우, 실시예 6에 따라 열분해 온도가 600℃인 경우, 모두 1,3-부타디엔이 고수율로 제조될 수 있음을 확인할 수 있었다. 특히, 실시예 1에 따라 열분해 온도가 500℃인 경우, 부산물 없이 고수율 1,3-부타디엔을 제조할 수 있음을 확인할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (15)

  1. (a) 2,3-부탄디올과 디카르복실산을 에스테르화 반응시켜 반응 중간체를 생성하는 단계; 및
    (b) 상기 (a)단계에서 생성된 반응 중간체를 열분해 시킨 후, 1,3-부타디엔과 디카르복실산으로 분리 및 정제시키는 단계;를 포함하는
    고수율 1,3-부타디엔의 제조방법.
  2. 제 1항에 있어서,
    (c) 상기 (b)단계에서 분리 및 정제된 디카르복실산을 상기 (a)단계로 회수시키는 단계를 포함하는
    고수율 1,3-부타디엔의 제조방법.
  3. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 2,3-부탄디올과 디카르복실산은 미생물 발효 공정을 통해 생산된 2,3-부탄디올 발효 용액에 포함된 것인
    고수율 1,3-부타디엔의 제조방법.
  4. 제 3항에 있어서,
    상기 디카르복실산은 숙신산인
    고수율 1,3-부타디엔의 제조방법.
  5. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 2,3-부탄디올과 디카르복실산의 몰비는 1:1 내지 2:1인
    고수율 1,3-부타디엔의 제조방법.
  6. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 2,3-부탄디올과 디카르복실산의 몰비는 1.3:1 내지 1.7:1인
    고수율 1,3-부타디엔의 제조방법.
  7. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 에스테르화 반응은 산 촉매 존재 하에서 수행되는
    고수율 1,3-부타디엔의 제조방법.
  8. 제 7항에 있어서,
    상기 (a)단계에서 산 촉매는 질산, 황산, 염산, 탄산, 차아염소산, 불산 및 이들의 조합으로 이루어진 군으로부터 선택된 무기산 촉매인
    고수율 1,3-부타디엔의 제조방법.
  9. 제 7항에 있어서,
    상기 (a)단계에서 산 촉매는 제올라이트, 실리카-알루미나, 양이온 교환 수지, 황산이 담지된 금속산화물, 헤테로폴리산 및 이들의 조합으로 이루어진 군으로부터 선택된 고체산 촉매인
    고수율 1,3-부타디엔의 제조방법.
  10. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 에스테르화 반응은 100℃ 내지 200℃의 온도에서 수행되는
    고수율 1,3-부타디엔의 제조방법.
  11. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 에스테르화 반응은 상기 에스테르화 반응에 따른 물을 제거하면서 수행되는
    고수율 1,3-부타디엔의 제조방법.
  12. 제 1항 또는 제 2항에 있어서,
    상기 (a)단계에서 반응 중간체는 하기 화학식 1 또는 화학식 2를 포함하는
    고수율 1,3-부타디엔의 제조방법:
    [화학식 1]
    Figure PCTKR2014011782-appb-I000007
    ,
    [화학식 2]
    Figure PCTKR2014011782-appb-I000008
    .
  13. 제 1항 또는 제 2항에 있어서,
    상기 (b)단계에서 열분해는 400℃ 내지 600℃의 온도에서 수행되는
    고수율 1,3-부타디엔의 제조방법.
  14. 제 1항 또는 제 2항에 있어서,
    상기 (b)단계에서 분리 및 정제된 1,3-부타디엔은 기상 또는 액상의 1,3-부타디엔인
    고수율 1,3-부타디엔의 제조방법.
  15. 제 1항 또는 제 2항에 있어서,
    상기 (b)단계에서 분리 및 정제된 디카르복실산은 고상 또는 액상의 디카르복실산인
    고수율 1,3-부타디엔의 제조방법.
PCT/KR2014/011782 2013-12-13 2014-12-03 고수율 1,3-부타디엔의 제조방법 WO2015088178A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0155648 2013-12-13
KR1020130155648A KR20150069350A (ko) 2013-12-13 2013-12-13 고수율 1,3-부타디엔의 제조방법

Publications (1)

Publication Number Publication Date
WO2015088178A1 true WO2015088178A1 (ko) 2015-06-18

Family

ID=53371431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011782 WO2015088178A1 (ko) 2013-12-13 2014-12-03 고수율 1,3-부타디엔의 제조방법

Country Status (2)

Country Link
KR (1) KR20150069350A (ko)
WO (1) WO2015088178A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322978B2 (en) * 2015-02-18 2019-06-18 IFP Energies Nouvelles Method for producing 1,3-butadiene from 1,4-butanediol
CN110950830A (zh) * 2018-09-26 2020-04-03 中国石油化工股份有限公司 一种环状化合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990072137A (ko) * 1995-12-14 1999-09-27 이.아이,듀우판드네모아앤드캄파니 폴리에스테르 예비중합체의 제조 방법
JP2002528525A (ja) * 1998-10-30 2002-09-03 ビーピー ケミカルズ リミテッド ブタジエンからのn−ブチルエステルの製造方法
JP2012518658A (ja) * 2009-02-24 2012-08-16 ジーヴォ,インコーポレイテッド 再生可能なブタジエンおよび再生可能なイソプレンの製造方法
KR20120107353A (ko) * 2011-03-21 2012-10-02 한국화학연구원 2,3-부탄디올로부터 1,3-부타디엔을 제조하는 방법
KR101298672B1 (ko) * 2012-02-20 2013-08-21 한국화학연구원 2,3-부탄디올로부터 1,3-부타디엔을 제조하는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990072137A (ko) * 1995-12-14 1999-09-27 이.아이,듀우판드네모아앤드캄파니 폴리에스테르 예비중합체의 제조 방법
JP2002528525A (ja) * 1998-10-30 2002-09-03 ビーピー ケミカルズ リミテッド ブタジエンからのn−ブチルエステルの製造方法
JP2012518658A (ja) * 2009-02-24 2012-08-16 ジーヴォ,インコーポレイテッド 再生可能なブタジエンおよび再生可能なイソプレンの製造方法
KR20120107353A (ko) * 2011-03-21 2012-10-02 한국화학연구원 2,3-부탄디올로부터 1,3-부타디엔을 제조하는 방법
KR101298672B1 (ko) * 2012-02-20 2013-08-21 한국화학연구원 2,3-부탄디올로부터 1,3-부타디엔을 제조하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAEK, JAE YEON ET AL.: "Selective product ion of 1,3-butadiene using glucose fermentation liquor", GREEN CHEMISTRY, vol. 16, 19 May 2014 (2014-05-19), pages 3501 - 3507 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322978B2 (en) * 2015-02-18 2019-06-18 IFP Energies Nouvelles Method for producing 1,3-butadiene from 1,4-butanediol
CN110950830A (zh) * 2018-09-26 2020-04-03 中国石油化工股份有限公司 一种环状化合物及其制备方法和应用
CN110950830B (zh) * 2018-09-26 2023-08-15 中国石油化工股份有限公司 一种环状化合物及其制备方法和应用

Also Published As

Publication number Publication date
KR20150069350A (ko) 2015-06-23

Similar Documents

Publication Publication Date Title
EP2488505A2 (en) Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester
EP2123769A1 (en) Method for producing optically active 3-aminopiperidine or salt thereof
WO2009120042A2 (ko) 발효액으로부터 부티르산을 추출하고 부티르산을 바이오연료로 화학적으로 전환하는 방법
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
WO2014209065A1 (ko) 글리세롤로부터 아크릴산을 제조하는 방법
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
WO2015152541A1 (ko) 1,5-디아미노펜탄의 정제방법
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
CN114835670B (zh) 一种制备高纯度碳酸亚乙烯酯的方法
WO2015088178A1 (ko) 고수율 1,3-부타디엔의 제조방법
WO2010058983A2 (ko) (메트)아크릴산 에스테르의 회수방법
WO2015093832A1 (ko) 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2019013570A2 (ko) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법
CN110747241A (zh) 2,2,4-三甲基-1,2-二氢化喹啉的制备方法
WO2014209068A1 (ko) 알릴 알코올의 제조방법 및 이에 의하여 제조된 알릴 알코올
CN112522351A (zh) 一种鸟嘌呤的合成方法
WO2014065553A1 (ko) 1,4-디아미노부탄의 정제방법, 상기 방법으로 정제된 1,4-디아미노부탄 및 이로부터 제조되는 폴리아미드
JPH0674227B2 (ja) p,p′―ビフェノールの製造方法
CN113549026B (zh) 一种n-乙烯基噁唑烷酮类化合物的合成工艺
CN1077563C (zh) 制备柠康酸酐的方法
WO2020106123A1 (ko) 알킬 카르복실산 에스테르의 제조 방법 및 알킬 카르복실산 에스테르의 제조 장치
WO2016105106A2 (ko) 무수당 알코올의 연속적인 생산방법
WO2015046978A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2016129895A1 (ko) 다이올 생산용 재조합 미생물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870168

Country of ref document: EP

Kind code of ref document: A1