WO2020105377A1 - 放熱構造体およびそれを備えるバッテリー - Google Patents

放熱構造体およびそれを備えるバッテリー

Info

Publication number
WO2020105377A1
WO2020105377A1 PCT/JP2019/042192 JP2019042192W WO2020105377A1 WO 2020105377 A1 WO2020105377 A1 WO 2020105377A1 JP 2019042192 W JP2019042192 W JP 2019042192W WO 2020105377 A1 WO2020105377 A1 WO 2020105377A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
dissipation structure
conductive sheet
battery
Prior art date
Application number
PCT/JP2019/042192
Other languages
English (en)
French (fr)
Inventor
知彦 桑原
均 安藤
清水 隆男
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to KR1020217017621A priority Critical patent/KR102637678B1/ko
Priority to CN201980070929.2A priority patent/CN112930619B/zh
Priority to EP19886476.1A priority patent/EP3886237B1/en
Priority to US17/294,724 priority patent/US20220013830A1/en
Priority to JP2020558202A priority patent/JP6857783B2/ja
Publication of WO2020105377A1 publication Critical patent/WO2020105377A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a heat dissipation structure and a battery including the same.
  • the circuit board itself is made of a material having excellent heat dissipation, a heat sink is attached, or a means for driving a heat dissipation fan is used singly or in combination.
  • a material having excellent heat dissipation for example, diamond, aluminum nitride (AlN), cubic boron nitride (cBN), etc. makes the cost of the circuit board extremely high.
  • the arrangement of the heat radiation fan causes a problem that the fan, which is a rotating device, is broken, maintenance is required to prevent the failure, and it is difficult to secure an installation space.
  • the radiating fin has a large number of pillar-shaped or flat-plate-shaped protruding portions made of a metal (for example, aluminum) having high heat conductivity, so that the surface area can be increased and the heat radiation can be further improved. Since it is such a member, it is widely used as a heat dissipation component (see Patent Document 1).
  • a water cooling pipe is placed in a metal housing with excellent thermal conductivity such as aluminum, a large number of battery cells are placed in the housing, and the battery cells and the bottom surface of the housing are placed. Adhesive rubber sheet is sandwiched between and. In the battery having such a structure, the battery cell transfers heat to the housing through the rubber sheet and is effectively removed by water cooling.
  • the rubber sheet has lower thermal conductivity than aluminum or graphite, so it is difficult to efficiently transfer heat from the battery cell to the housing.
  • a method of sandwiching a spacer such as graphite instead of the rubber sheet may be considered, but since the lower surfaces of the plurality of battery cells are not flat and have steps, a gap is created between the battery cells and the spacer, and heat transfer efficiency is improved. descend.
  • the battery cell can take various forms (including unevenness such as steps or surface condition), it is possible to adapt to various forms of the battery cell and realize high heat transfer efficiency. Are increasing in demand.
  • the present invention has been made in view of the above problems, is adaptable to various forms of heat sources, is lightweight, is highly elastically deformable, and has excellent heat dissipation efficiency, and the heat dissipation structure. It aims at providing the battery provided with.
  • a heat dissipation structure is a heat dissipation structure in which a plurality of heat dissipation members that enhance heat dissipation from a heat source are connected, and the heat dissipation member is provided from the heat source.
  • a heat-conducting sheet having a shape that advances in a spiral shape for transmitting heat, and a cushion that is provided on the annular back surface of the heat-conducting sheet and that is easier to deform according to the surface shape of the heat source than the heat-conducting sheet.
  • the cushion member is a tubular cushion member having the through passage in its length direction, and the heat conductive sheet is the tubular cushion.
  • the outer surface of the member is spirally wound.
  • the cushion member is a spiral cushion member that is spirally wound along the annular back surface of the heat conductive sheet.
  • the connecting member is formed of a yarn, and a twisted portion to which a twist is added is provided between the plurality of heat dissipation members.
  • the heat radiating member is connected by the thread in a direction orthogonal to the direction in which the heat conducting sheet advances while being wound.
  • the plurality of heat dissipation members are arranged at a distance of 0.114 times or more the circle equivalent diameter of the heat dissipation members.
  • the surface of the heat conductive sheet has a heat conductive oil for increasing heat conductivity from a heat source in contact with the surface to the surface.
  • the thermally conductive oil has a silicone oil and a thermal conductivity higher than that of the silicone oil and is made of one or more of metal, ceramics or carbon. With a hydrophilic filler.
  • the battery according to one embodiment is a battery including one or more battery cells as a heat source in a housing having a structure for flowing a cooling member, and between the battery cell and the housing.
  • the heat dissipation structure according to any one of the above is provided.
  • a heat dissipation structure that is adaptable to various forms of heat sources, is lightweight, is highly elastically deformable, and has excellent heat dissipation efficiency, and a battery including the heat dissipation structure.
  • FIG. 1A shows a plan view of a heat dissipation structure according to the first embodiment.
  • FIG. 1B is a sectional view taken along line AA in FIG. 1A.
  • FIG. 1C shows an enlarged view of region B in FIG. 1B.
  • FIG. 2A is a vertical cross-sectional view of a heat dissipation structure according to the first embodiment and a battery including the heat dissipation structure.
  • FIG. 2B is a cross-sectional view showing a shape change of the heat dissipation structure before and after the heat dissipation structure is compressed by the battery cell in FIG. 2A.
  • FIG. 3A is a diagram illustrating a part of the method of manufacturing the heat dissipation structure of FIG. 1A.
  • FIG. 3B is a diagram illustrating a part of the method of manufacturing the heat dissipation structure of FIG. 1A.
  • FIG. 3C is a diagram illustrating a part of the method of manufacturing the heat dissipation structure of FIG. 1A.
  • FIG. 4A shows a plan view of the heat dissipation structure according to the second embodiment.
  • FIG. 4B is a sectional view taken along line CC in FIG. 4A.
  • FIG. 4C shows an enlarged view of region D in FIG. 4B.
  • FIG. 5A is a vertical cross-sectional view of a heat dissipation structure according to the second embodiment and a battery including the heat dissipation structure.
  • FIG. 5B is a cross-sectional view of a shape change of the heat dissipation structure before and after the heat dissipation structure is compressed by the battery cell in FIG. 5A.
  • FIG. 6 is a vertical cross-sectional view of a heat dissipation structure according to the third embodiment and a battery including the heat dissipation structure.
  • FIG. 7A shows a part of the manufacturing state of the heat dissipation structure of FIG. 6.
  • 7B shows a plan view of a part of the manufacturing state of FIG. 7A.
  • FIG. 8 is a cross-sectional view of a battery cell placed laterally on the heat dissipation structure so that the side surfaces of the battery cell are in contact with each other, a partially enlarged view of the battery cell, and a partial cross-sectional view of the battery cell when expanded during charging and discharging. Shown respectively.
  • FIG. 1A shows a plan view of a heat dissipation structure according to the first embodiment.
  • FIG. 1B is a sectional view taken along line AA in FIG. 1A.
  • FIG. 1C shows an enlarged view of region B in FIG. 1B.
  • FIG. 2A is a vertical cross-sectional view of a heat dissipation structure according to the first embodiment and a battery including the heat dissipation structure.
  • FIG. 2B is a cross-sectional view showing a shape change of the heat dissipation structure before and after the heat dissipation structure is compressed by the battery cell in FIG. 2A.
  • the battery 1 has a structure in which a plurality of battery cells 20 are provided in the housing 11 that contacts the cooling member 15.
  • the heat dissipation structure 25 is preferably an end portion (lower end portion) of the battery cell 20, which is an example of a heat source, closer to the cooling member 15 and a part of the housing 11 (bottom portion 12) closer to the cooling member 15. It is equipped between.
  • 11 battery cells 20 are mounted on the heat dissipation structure 25, but the number of battery cells 20 mounted on the heat dissipation structure 25 is not limited to 11.
  • the number of the heat dissipation members 28 that form the heat dissipation structure 25 provided in the battery 1 is not particularly limited.
  • the heat dissipation structure 25 is a structure in which a plurality of heat dissipation members 28 that enhance heat dissipation from the battery cells 20 are connected.
  • the heat radiating member 28 is provided on the heat conducting sheet 30 in a spiral shape for transmitting heat from the battery cells 20, and on the annular back surface of the heat conducting sheet 30.
  • a cushion member 31 that is easily deformable according to the surface shape of the cell 20 and a through path 32 that penetrates in the direction in which the heat conductive sheet 30 advances while being wound are provided.
  • the plurality of heat dissipation members 28 are connected by the connecting member 35 in a state of being aligned in a direction orthogonal to the direction in which the heat conductive sheet 30 advances while being wound.
  • the heat conductive sheet 30 is preferably made of a material having higher heat conductivity than the cushion member 31.
  • the cushion member 31 is preferably a tubular cushion member having a through passage 32 in its length direction.
  • the heat conductive sheet 30 is formed by spirally winding the outer surface of the tubular cushion member.
  • the heat dissipation structure 25 preferably has a heat conductive oil on the surface and / or inside of the heat conductive sheet 30 for increasing the heat conductivity from the battery cells 20 in contact with the surface to the surface. ..
  • the plurality of heat dissipating members 28 constituting the heat dissipating structure 25 have a substantially cylindrical shape when the battery cell 20 is not mounted, but when the battery cell 20 is mounted, the plurality of heat dissipating members 28 are compressed and flattened by their weight. Take the form.
  • the heat conductive sheet 30 is a strip-shaped sheet that advances in the substantially cylindrical length direction while spirally winding the outer surface of the heat dissipation member 28.
  • the heat conductive sheet 30 is a sheet containing at least one of metal, carbon, or ceramics and has a function of conducting heat from the battery cells 20 to the cooling member 15.
  • the “cross section” or the “vertical cross section” means a cross section in a direction perpendicular to the upper opening surface in the inside 14 of the housing 11 of the battery 1 to the bottom portion 12.
  • the battery 1 is, for example, a battery for an electric vehicle, and includes a large number of battery cells (may be simply referred to as cells) 20.
  • the battery 1 includes a bottomed case 11 having an opening on one side.
  • the housing 11 is preferably made of aluminum or an aluminum-based alloy.
  • the battery cell 20 is arranged inside the housing 11.
  • An electrode (not shown) is provided above the battery cell 20 so as to project.
  • the plurality of battery cells 20 are preferably brought into close contact with each other in the housing 11 by being applied with a force from both sides in a direction of compression by using screws or the like (not shown).
  • the bottom portion 12 of the housing 11 is provided with one or a plurality of water cooling pipes 13 for flowing cooling water, which is an example of the cooling member 15.
  • the cooling member may be referred to as a cooling medium or a coolant.
  • the battery cell 20 is arranged in the housing 11 such that the heat dissipation structure 25 is sandwiched between the battery cell 20 and the bottom portion 12. In the battery 1 having such a structure, the battery cell 20 transfers heat to the housing 11 through the heat dissipation structure 25 and is effectively removed by water cooling.
  • the cooling member 15 is not limited to cooling water, and is also interpreted to include liquid nitrogen, an organic solvent such as ethanol, or the like.
  • the cooling member 15 is not limited to a liquid under the condition of being used for cooling, but may be a gas or a solid.
  • the heat conduction sheet 30 is preferably a sheet containing carbon, and more preferably a sheet containing carbon filler and resin.
  • the resin may be synthetic fiber, and in that case, aramid fiber may be preferably used.
  • the "carbon” in the present application includes any structure having carbon (element symbol: C) such as graphite, carbon black having a lower crystallinity than graphite, expanded graphite, diamond, diamond-like carbon having a structure similar to diamond. Is interpreted in a broad sense.
  • the heat conductive sheet 30 can be a thin sheet obtained by curing a material in which graphite fibers and carbon particles are mixed and dispersed in resin.
  • the heat conductive sheet 30 may be a carbon fiber knitted in a mesh shape, and may further be mixed-spun or mixed-knitted. Note that various fillers such as graphite fiber, carbon particles, or carbon fiber are all included in the concept of carbon filler.
  • the amount of the resin may be 50% by mass or less than 50% by mass based on the total mass of the thermal conductive sheet 30. That is, the heat conductive sheet 30 may or may not be made of resin as a main material as long as it does not significantly affect heat conduction.
  • a thermoplastic resin can be preferably used.
  • the thermoplastic resin is preferably a resin having a high melting point that does not melt when conducting heat from the battery cell 20, which is an example of a heat source, and examples thereof include polyphenylene sulfide (PPS) and polyether ether ketone (PEEK).
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • Preferable examples thereof include polyamide imide (PAI) and aromatic polyamide (aramid fiber).
  • the resin is dispersed, for example, in the form of particles or fibers in the gaps between the carbon fillers before the heat conductive sheet 30 is molded.
  • the heat conductive sheet 30 may have AlN or diamond dispersed therein as a filler for enhancing heat conduction, in addition to the carbon filler and the resin. Further, instead of the resin, an elastomer softer than the resin may be used.
  • the heat conductive sheet 30 may be a sheet containing metal and / or ceramics instead of or together with carbon as described above.
  • the metal one having relatively high thermal conductivity such as aluminum, copper, or an alloy containing at least one of them can be selected.
  • the ceramic one having relatively high thermal conductivity such as AlN, cBN or hBN can be selected.
  • the heat conductive sheet 30 may or may not have excellent conductivity.
  • the thermal conductivity of the thermal conductive sheet 30 is preferably 10 W / mK or more.
  • the heat conducting sheet 30 is preferably a strip-shaped plate of graphite, aluminum, aluminum alloy, copper or stainless steel, and is made of a material having excellent thermal conductivity and electrical conductivity.
  • the heat conductive sheet 30 is preferably a sheet having excellent bendability (or flexibility), and the thickness thereof is not limited, but is preferably 0.02 to 3 mm, more preferably 0.03 to 0.5 mm. However, since the thermal conductivity of the thermal conductive sheet 30 decreases as the thickness thereof increases, it is necessary to determine the thickness by comprehensively considering the strength, flexibility and thermal conductivity of the sheet. preferable.
  • cushion member 31 The important functions of the cushion member 31 are easiness of deformation and resilience.
  • the recovery force is due to elastic deformability.
  • Deformability is a characteristic required to follow the shape of the battery cell 20, and in particular, a semi-solid material such as a lithium-ion battery or a content having a liquid property is contained in a package that is easily deformed.
  • a semi-solid material such as a lithium-ion battery or a content having a liquid property is contained in a package that is easily deformed.
  • the amorphous shape or the dimensional accuracy cannot be improved in terms of design dimensions. For this reason, it is important to retain the recovery force for retaining the deformability and the following force of the cushion member 31.
  • the cushion member 31 is a tubular cushion member having a through passage 32 in this embodiment.
  • the cushion member 31 makes good contact between the heat conduction sheet 30 and the lower end portions even when the lower end portions of the plurality of battery cells 20 are not flat.
  • the through passage 32 has a function of facilitating the deformation of the cushion member 31, contributing to the weight reduction of the heat dissipation structure 25, and enhancing the contact between the heat conduction sheet 30 and the lower end portion of the battery cell 20. ..
  • the cushion member 31 has a function between the battery cell 20 and the bottom portion 12 to exert cushioning properties, and also has a function as a protection member for preventing the heat conducting sheet 30 from being damaged by a load applied to the heat conducting sheet 30.
  • the cushion member 31 is a member having a lower thermal conductivity than the thermal conductive sheet 30.
  • the cushion member 31 is preferably a thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); urethane type.
  • a thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); urethane type.
  • NBR nitrile rubber
  • SBR styrene butadiene rubber
  • the cushion member 31 is preferably made of a material having a high heat resistance such that the cushion member 31 can maintain its shape without being melted or decomposed by the heat transmitted through the heat conductive sheet 30.
  • the cushion member 31 is more preferably made of urethane-based elastomer impregnated with silicone or silicone rubber.
  • the cushion member 31 may be configured by dispersing fillers represented by AlN, cBN, hBN, diamond particles, or the like in rubber in order to enhance the thermal conductivity of the cushion member 31.
  • the cushion member 31 may not contain bubbles in addition to the one containing bubbles therein.
  • the “cushion member” means a member that is highly flexible and elastically deformable so as to be in close contact with the surface of the heat source, and can be read as “rubber-like elastic body” in this sense.
  • a metal may be used instead of the rubber-like elastic body.
  • the cushion member can be made of spring steel.
  • the spirally wound metal may be made of spring steel and disposed as a cushion member on the annular back surface of the heat conductive sheet 30.
  • the connecting member 35 is, for example, a member such as a thread or a rubber made of a deformable material at least in a portion located between the plurality of heat radiating members 28.
  • the connecting member 35 is preferably made of a thread, and more preferably a thread that can withstand a temperature rise due to heat radiation from the battery cells 20. More specifically, the connecting member 35 is a yarn that can withstand a high temperature of about 120 ° C., and is preferably a twisted yarn made of fibers such as natural fibers, synthetic fibers, carbon fibers, and metal fibers.
  • the connecting member 35 preferably includes a twisted portion 37 in which a twist is added between the plurality of heat dissipation members 28 (see FIG. 1C).
  • the connecting member 35 bends following the deformation of the heat dissipation member 28, so that the heat dissipation member 28 follows and adheres to the surface of the battery cell 20. can do.
  • the heat dissipation structure 25 is provided with the twisted portion 37 between the plurality of heat dissipation members 28, so that the heat dissipation structure 25 can further follow and adhere to the surface of the battery cell 20.
  • the connecting member 35 does not necessarily have to have the twisted portion 37.
  • the gap L1 between the heat dissipating members 28 becomes narrower when the heat dissipating member 28 receives pressure from the battery cells 20 and collapses. If the heat dissipation member 28 is hardly crushed, the adhesion between the heat conductive sheet 30 and the battery cell 20 and the bottom portion 12 may be low.
  • the “circle-converted diameter” means the diameter of a perfect circle having the same area as the cross section of the pipe when the heat dissipation member 28 is cut perpendicularly to its length direction.
  • the heat radiating member 28 is a cylinder having a perfect circular cross section, its diameter is the same as the circle-converted diameter. It can be considered that when the heat dissipation member 28 receives the above compression, the surface contacting the battery cell 20 and the bottom portion 12 becomes a flat surface, and the direction of the gap L1 between the heat dissipation members 28 becomes a substantially arc cross section (FIG. 1C).
  • the gap L1 is set to 11.4% or more of the circle-converted diameter D of the heat-dissipating member 28, the heat-dissipating members 28 come into contact with each other when the heat-dissipating member 28 is compressed and deformed to a thickness of 80% of the circle-converted diameter D. Thus, it is possible to prevent the deformation from becoming an obstacle.
  • the gap L1 is 0.6D.
  • the thermally conductive oil preferably contains silicone oil and a thermally conductive filler having higher thermal conductivity than silicone oil and made of one or more of metal, ceramics or carbon. Microscopically, the heat conductive sheet 30 has a gap (hole or recess). Air is usually present in the gap, which may adversely affect the thermal conductivity. The thermally conductive oil fills the gap and is present instead of air, and has a function of improving the thermal conductivity of the thermally conductive sheet 30.
  • the heat conductive oil is provided on the surface of the heat conductive sheet 30, at least the surface where the battery cell 2 and the heat conductive sheet 30 contact each other.
  • the “oil” of the heat conductive oil refers to a non-water-soluble liquid or semi-solid flammable substance at room temperature (any temperature within the range of 20 to 25 ° C.). Instead of the word “oil”, “grease” or “wax” can be used.
  • the heat-conducting oil is an oil that does not obstruct heat conduction when transferring heat from the battery cells 20 to the heat-conducting sheet 30. Hydrocarbon-based oil or silicone oil can be used as the heat conductive oil.
  • the thermally conductive oil preferably contains silicone oil and a thermally conductive filler having higher thermal conductivity than silicone oil and made of one or more of metal, ceramics or carbon.
  • the silicone oil preferably comprises a molecule having a linear structure with 2000 or less siloxane bonds.
  • Silicone oils are roughly classified into straight silicone oils and modified silicone oils.
  • Examples of the straight silicone oil include dimethyl silicone oil, methylphenyl silicone oil and methylhydrogen silicone oil.
  • Examples of the modified silicone oil include reactive silicone oil and non-reactive silicone oil.
  • the reactive silicone oil includes various silicone oils such as amino-modified type, epoxy-modified type, carboxy-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type and phenol-modified type.
  • the non-reactive silicone oil includes various silicone oils such as polyether modified type, methylstyryl modified type, alkyl modified type, higher fatty acid ester modified type, hydrophilic special modified type, higher fatty acid containing type and fluorine modified type. Since silicone oil is an oil having excellent heat resistance, cold resistance, viscosity stability, and thermal conductivity, it is applied to the surface of the thermal conductive sheet 30 and is interposed between the battery cell 20 and the thermal conductive sheet 30. It is particularly suitable as a heat conductive oil.
  • the heat conductive oil preferably contains, in addition to the oil component, a heat conductive filler made of one or more of metal, ceramics or carbon.
  • a heat conductive filler made of one or more of metal, ceramics or carbon.
  • the metal include gold, silver, copper, aluminum, beryllium, and tungsten.
  • ceramics include alumina, aluminum nitride, cubic boron nitride, and hexagonal boron nitride.
  • Examples of carbon include diamond, graphite, diamond-like carbon, amorphous carbon, and carbon nanotube.
  • the heat conductive oil is preferably interposed between the battery cell 2 and the heat conductive sheet 30 and also between the heat conductive sheet 30 and the housing 11.
  • the heat conductive oil may be applied to the entire surface of the heat conductive sheet 30 or a part of the heat conductive sheet 30.
  • the method for allowing the heat conductive sheet 30 to be present in the heat conductive sheet 30 is not particularly limited, and spraying using a spray, coating using a brush or the like, dipping the heat conductive sheet 30 in the heat conductive oil, or the like, Any method may be used.
  • the heat conductive oil is not an essential component for the heat dissipation structure 25 or the battery 1, but is an additional component that can be suitably provided. This also applies to the second and subsequent embodiments.
  • 3A, 3B, and 3C are views for explaining a part of the manufacturing method of the heat dissipation structure of FIG. 1A.
  • the cushion member 31 is molded.
  • the band-shaped heat conduction sheet 30 is spirally wound around the outer surface of the cushion member 31.
  • the heat conductive sheet 30 is wound around the outer surface of the cushion member 31, and then the cushion member 31 is completely hardened by heating.
  • heat conductive oil is applied to the surface of the heat conductive sheet 30.
  • the heat dissipating member 28 thus formed has a form projecting from the outer surface of the cushion member 31 by the thickness of the heat conductive sheet 30.
  • the heat conduction sheet 30 and the cushion member 31 may be flush with each other.
  • the heat conductive oil may be applied to at least the surface of the heat conductive sheet 30 that is in contact with the battery cells 20.
  • the step of cutting the portion of the heat conductive sheet 30 that protrudes from both ends of the cushion member 31 and the step of applying the heat conductive oil are not limited to being performed at the above-described timing, and at least the heat conductive sheet 30 should be provided on the cushion member 31. You can go anytime after winding.
  • the heat conduction sheet 30 may be wound around the outer side surface of the cushion member 31 in a completely cured state. In this case, if the outer surface of the cushion member 31 is not tacky, the heat conductive sheet 30 may be fixed to the cushion member 31 using an adhesive or the like.
  • the heat dissipation structure 25 is formed by connecting the plurality of heat dissipation members 28 manufactured by the manufacturing method described above in a state orthogonal to the direction in which the heat conduction sheet 30 advances while being wound, by connecting the connection members 35. Manufactured. More specifically, the heat dissipation structure 25 is connected by sewing a thread by hand with the plurality of heat dissipation members 28 arranged. At this time, the plurality of heat dissipation members 28 are preferably arranged with the gap L1 being 0.114D or more (see FIG. 1C). In addition, it is preferable to sew so that the twisted portion 37 is formed between the plurality of heat dissipation members 28.
  • the heat dissipation members 28 since the plurality of heat dissipation members 28 are connected in a blind shape, the heat dissipation members 28 follow the surface of the battery cells 20 in the vertical and horizontal directions when compressed by the battery cells 20. When the battery cell 20 is removed, the elastic member of the heat dissipation member 28 can restore the original shape. Further, in the heat dissipation structure 25, since the plurality of heat dissipation members 28 are connected in a blind shape, it is possible to suppress the situation where the heat dissipation members 28 are unevenly distributed due to, for example, vibration of an automobile, and the workability is improved.
  • the heat dissipation structure 25 has a structure in which each heat dissipation member 28 has the heat conduction sheet 30 spirally wound on the outer surface of the cushion member 31, and therefore, is not excessively restrained against deformation of the cushion member 31. ..
  • FIG. 4A shows a plan view of the heat dissipation structure according to the second embodiment.
  • FIG. 4B is a sectional view taken along line CC in FIG. 4A.
  • FIG. 4C shows an enlarged view of region D in FIG. 4B.
  • FIG. 5A is a vertical cross-sectional view of a heat dissipation structure according to the second embodiment and a battery including the heat dissipation structure.
  • FIG. 5B is a cross-sectional view of a shape change of the heat dissipation structure before and after the heat dissipation structure is compressed by the battery cell in FIG. 5A.
  • the battery 1a according to the second embodiment includes a heat dissipation structure 25a in which a plurality of heat dissipation members 28 are connected by a connecting member 35a.
  • the configuration other than the connecting member 35a is common to that of the first embodiment, and thus the description thereof is omitted.
  • the connecting member 35a is a member such as a thread or a rubber which is formed of a deformable material at least in a portion located between the plurality of heat radiating members 28.
  • the connecting member 35 is preferably made of a thread, and more preferably a thread that can withstand a temperature rise due to heat radiation from the battery cells 20.
  • the connecting member 35a is a member for sewing the plurality of heat dissipation members 28 using a sewing machine or the like.
  • the sewing method of the connecting member 35a is not particularly limited, and any sewing method such as hand sewing, lock stitch, zigzag stitch, single chain stitch, double chain stitch, overlock stitch, flat stitch, safety stitch, and overlock may be used.
  • suitable sewing methods are “101”, “209”, “301”, “304”, “401”, “406”, “407”, “410”. , “501”, “502”, “503”, “504", “505", “509”, “512”, “514", “602” and “605" It can be illustrated.
  • the connecting member 35a does not include the twisted portion 37 between the plurality of heat dissipating members 28, unlike the connecting member 35 according to the first embodiment.
  • the heat dissipation structure 25a includes a plurality of heat dissipation members 28 manufactured by the same manufacturing method as in the first embodiment arranged in a direction orthogonal to a direction in which the heat conduction sheet 30 advances while being wound, and the connection member 35a. It is manufactured by connecting with. More specifically, the heat dissipation structure 25a is connected by sewing a plurality of heat dissipation members 28 side by side with a thread using a sewing machine or the like. At this time, the heat dissipating members 28 are arranged so as to be spaced apart from each other so that the distance L2 between the plurality of heat dissipating members 28 is smaller than L1 described above (see FIG. 4C).
  • the gap L2 is set to 0.114D or more, when the heat dissipation member 28 is compressed and deformed to a thickness of 80% or less of the circle-converted diameter D, the adjacent heat dissipation member 28 does not hinder the deformation. Note that the narrower the distance L2 between the plurality of heat radiating members 28, the more stably the plurality of heat radiating members 28 can be connected when sewing with a sewing machine or the like.
  • the heat dissipation member 28 has a room to be crushed in the up, down, left, and right directions up to the position where the adjacent heat dissipation members 28 contact each other, and can follow and adhere to the surface of the battery cell 20. Further, the heat dissipation structure 25a can return to its original shape by the elastic force of the heat dissipation member 28 in the state where the battery cells 20 are removed. Further, in the heat dissipation structure 25a, since the plurality of heat dissipation members 28 are connected in a blind shape, it is possible to suppress the situation where the heat dissipation members 28 are unevenly distributed due to, for example, vibration of an automobile, and the workability is improved.
  • the heat dissipation structure 25a uses the sewing machine or the like to connect the plurality of heat dissipation members 28 with the connecting member 35a, the workability is further improved when the number of the heat dissipation members 28 forming the heat dissipation structure 25a is large. ..
  • FIG. 6 shows a vertical cross-sectional view of a heat dissipation structure according to the third embodiment and a battery including the heat dissipation structure.
  • FIG. 7A shows a part of the manufacturing state of the heat dissipation structure of FIG. 6.
  • 7B is a plan view showing a part of the manufacturing state of the heat dissipation structure completed by the manufacturing method of FIG. 7A.
  • the battery 1b according to the third embodiment includes a heat dissipation structure 25b that is different from the heat dissipation structure 25 arranged in the battery 1 according to the first embodiment, and otherwise has the same structure as the battery 1.
  • a plurality of heat dissipation members 28b different from the heat dissipation member 28 according to the first embodiment are connected by a connecting member 35.
  • the heat dissipation member 28b is a strip-shaped cushion member provided on the back side of the heat conductive sheet 30 without forming the cushion member 31 as a tubular cushion member, and has a spiral shape wound spirally together with the heat conductive sheet 30. Use as a cushion member.
  • a laminated body 40 including two layers of the heat conductive sheet 30 and the cushion member 31 having substantially the same width is manufactured.
  • heat conductive oil is applied to the surface of the heat conductive sheet 30.
  • the laminated body 40 coated with the heat conductive oil is wound in a spiral shape (may be referred to as a coil shape) so as to advance in one direction.
  • the heat conductive oil may be applied on the heat conductive sheet 30 before manufacturing the laminated body 40, or may be finally applied on the heat conductive sheet 30.
  • the heat conduction sheet 30 is laminated on the cushion member 31 in an uncured state where the cushion member 31 is not completely cured, and then the cushion member 31 is completely cured by heating. Formed.
  • the heat dissipation structure 25b is manufactured by connecting the plurality of heat dissipation members 28b in the direction orthogonal to the direction in which the heat conduction sheet 30 is wound and advancing with the connection member 35. Since the method of connecting the plurality of heat dissipation members 28b with the connecting member 35 is the same as that of the first embodiment, detailed description thereof will be omitted.
  • the heat radiating member 28b has a through passage 33 penetrating in the length direction thereof, but unlike the heat radiating member 28 according to the first embodiment, the heat radiating member 28b also penetrates in the outer surface direction of the heat radiating member 28b. Since the heat dissipation member 28b has a spiral shape, it is easier to expand and contract in the length direction of the heat dissipation member 28b (the direction of the white arrow in FIG. 7B) than the heat dissipation member 28 described above.
  • the heat dissipation structure 25b can be arranged not only between the battery cells 20 and the bottom portion 12 of the housing 11, but also in the clearance between the battery cells 20 and the inner surface of the housing 11 and / or the clearance between the battery cells 20. Is.
  • the heat dissipation structures 25, 25a, 25b (when the heat dissipation structures are collectively referred to as “heat dissipation structure 25 and the like”), the plurality of heat dissipation members enhance heat dissipation from the battery cells 20.
  • 28, 28a, 28b (when the heat dissipating members are collectively referred to as "heat dissipating member 28 or the like"), the heat dissipating structure is connected, and the heat dissipating member 28 or the like transfers heat from the battery cells 20.
  • the heat conduction sheet 30 having a shape that advances while spirally winding, and a cushion member that is provided on the annular back surface of the heat conduction sheet 30 and that is easier to deform according to the surface shape of the battery cell 20 than the heat conduction sheet 30 31 and through-passages 32 and 33 penetrating in a direction in which the heat-conducting sheet 30 advances while being wound. Further, the plurality of heat dissipation members 28 and the like are connected by the connecting members 35 and 35a in a state of being aligned in a direction orthogonal to the direction in which the heat conducting sheet 30 advances while being wound.
  • the heat dissipation structure 25 and the like By configuring the heat dissipation structure 25 and the like in this way, it is possible to adapt to various forms of the battery cell 20, and the structure is excellent in elastic deformability and heat dissipation efficiency. Further, the heat dissipation structure 25 and the like become lighter due to the through passages 32 and 33.
  • the cushion member 31 constituting the heat dissipation structure 25, 25a is a tubular cushion member having a through passage 33 in the length direction thereof, and the heat conductive sheet 30 has a spiral outer surface of the tubular cushion member. It is wound around.
  • the batteries 1, 1a, 1b are provided in the housing 11 by bringing the heat dissipation structures 25, 25a, 25b into contact with the battery cells 20.
  • the heat conduction sheet 30 partially covers the outer surface of the tubular cushion member and is spirally wound in the longitudinal direction of the tubular cushion member.
  • the heat dissipation structures 25 and 25 a are arranged at least between the battery 20 and the cooling member 15. For this reason, the heat dissipation structures 25 and 25a are less likely to be constrained by the heat conductive sheet 30, and can be deformed following the unevenness of the surface of the battery cell 20.
  • the cushion member 31 is a spiral cushion member that is spirally wound along the annular back surface of the heat conductive sheet 30.
  • the heat dissipation structure 25b is arranged at least between the battery 20 and the cooling member 15.
  • the heat dissipation structure 25b may be arranged between the inner surface of the housing 11 and the battery cells 20 and / or between the battery cells 20. Since the entire heat dissipation structure 25b has a spiral shape, it is easier to adapt to various sizes of the battery cell 20. More specifically, it is as follows.
  • the heat conductive sheet 30 can be deformed with a low load and can follow and adhere to the surface of the battery cell 20. Further, even if the deformation amount is partially different, the adhesion followability is improved. Further, since the cushion member 31 is also cut in a spiral shape, it is possible to cause deformation as if the spirals for each rotation were substantially independent. Therefore, the heat dissipation structure 25b can increase the degree of freedom of local deformation. In addition, since the heat dissipation structure 25b includes not only the through passage 33 but also a spiral through groove that extends from the through passage 33 to the side surface, the heat dissipation structure 25b becomes lighter in weight.
  • the connecting member 35 is made of yarn, and is provided with a twisted portion 37 in which a twist is added between the plurality of heat dissipation members 28 and the like.
  • the plurality of heat dissipation members 28 and the like are connected by a thread in a direction orthogonal to the direction in which the heat conductive sheet 30 advances while being wound. Therefore, in the heat dissipation structure 25 and the like, since the plurality of heat dissipation members 28 and the like are connected like a blind, it is possible to suppress the situation where the heat dissipation members 28 and the like are unevenly distributed due to, for example, vibration of an automobile, and the workability is improved.
  • the plurality of heat dissipation members 28 and the like are arranged at a distance of 0.114 times or more the circle equivalent diameter D of the heat dissipation members 28 and the like.
  • the connecting member 35 is preferably contractible or deformable between the plurality of heat dissipation members 28 and the like. Therefore, even when the heat dissipation member 28 or the like is compressed to 80% of the original height in the battery cell 20, the adjacent heat dissipation member 28 or the like is in a flat state without overlapping, so that the battery cell 20 It is possible to further improve the followability and adhesion to the surface of.
  • the thermal conductivity with the member 28 and the like can be further enhanced.
  • the surface of the heat conductive sheet 30 has a heat conductive oil for increasing the heat conductivity from the battery cells 20 contacting the surface to the surface.
  • the heat conductive sheet 30 has a gap (hole or recess). Air is usually present in the gap, which may adversely affect the thermal conductivity.
  • the thermally conductive oil fills the gap and is present instead of air, and has a function of improving the thermal conductivity of the thermally conductive sheet 30.
  • the heat conductive oil includes silicone oil and a heat conductive filler having higher heat conductivity than silicone oil and made of one or more of metal, ceramics or carbon. Since silicone oil is an oil having excellent heat resistance, cold resistance, viscosity stability, and thermal conductivity, it is applied to the surface of the thermal conductive sheet 30 and is interposed between the battery cell 20 and the thermal conductive sheet 30. It is particularly suitable as a heat conductive oil. Further, since the heat conductive oil contains the heat conductive filler, the heat conductivity of the heat conductive sheet 30 can be enhanced.
  • Each of the batteries 1, 1a, 1b is a battery including one or more battery cells 20 as heat sources in a housing 11 having a structure for flowing the cooling member 15, and includes the above-described heat dissipation structure 25 and the like. ..
  • a plurality of heat dissipation members 28 and the like are connected to the heat dissipation structure 25 and the like, and a heat conduction sheet 30 having a shape that advances while being wound in a spiral shape for transmitting heat from the battery cells 20 to the heat dissipation member 28 and the like.
  • the through passages 32 and 33 are provided.
  • the plurality of heat dissipating members 28 and the like are connected by the connecting members 35 and 35a in a state of being aligned in a direction orthogonal to the direction in which the heat conducting sheet 30 advances while being wound.
  • FIG. 8 is a cross-sectional view of a battery cell placed laterally on the heat dissipation structure so that the side surfaces of the battery cell are in contact with each other, a partially enlarged view of the battery cell, and a partial cross-sectional view of the battery cell when expanded during charging and discharging. Shown respectively.
  • the battery cell 20 may be arranged such that the side surface of the battery cell 20 is in contact with each heat dissipation member 28 such as the heat dissipation structure 25.
  • the temperature of the battery cell 20 rises during charging and discharging. If the container itself of the battery cell 20 is formed of a highly flexible material, the side surface of the battery cell 20 may swell, especially. Even in such a case, as shown in FIG.
  • the heat source includes not only the battery cells 20 but also all objects that generate heat, such as the circuit board and the main body of the electronic device.
  • the heat source may be an electronic component such as a capacitor and an IC chip.
  • the cooling member 15 may be not only cooling water but also an organic solvent, liquid nitrogen, or a cooling gas.
  • the heat dissipation structure 25 and the like may be arranged in structures other than the battery 1 and the like, for example, electronic devices, home appliances, power generators, and the like.
  • spiral cushion member 31 of the heat dissipation member 28b is not limited to the same width as the heat conduction sheet 30, and may be larger or smaller than the width of the heat conduction sheet 30.
  • the plurality of constituent elements of each of the above-described embodiments can be freely combined, except when they cannot be combined with each other.
  • the heat dissipation structure 25b according to the third embodiment may be arranged instead of the heat dissipation structure 25 according to the first embodiment.
  • the heat dissipation structure according to the present invention can be used not only for automobile batteries, but also for various electronic devices such as automobiles, industrial robots, power generators, PCs, and household appliances. Further, the battery according to the present invention can be used not only as a battery for automobiles but also as a chargeable / dischargeable battery for home use and a battery for electronic equipment such as a PC.

Abstract

【課題】 熱源の種々の形態に順応可能であって、軽量で、弾性変形性に富み、かつ放熱効率に優れる放熱構造体、および当該放熱構造体を備えるバッテリーを提供する。 【解決手段】 本発明は、熱源20からの放熱を高める複数の放熱部材28が連結された放熱構造体25であって、放熱部材28は、熱源20からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シート30と、熱伝導シート30の環状裏面に備えられ、熱伝導シート30に比べて熱源20の表面形状に合わせて変形容易なクッション部材31と、熱伝導シート30の巻回しながら進行する方向に貫通する貫通路32と、を備え、複数の放熱部材28は、熱伝導シート30の巻回しながら進行する方向と直交する方向に並んだ状態で連結部材35により連結される放熱構造体25、およびそれを備えるバッテリー1に関する。

Description

放熱構造体およびそれを備えるバッテリー クロスリファレンス
 本出願は、2018年11月21日に日本国において出願された特願2018-218082に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。
 本発明は、放熱構造体およびそれを備えるバッテリーに関する。
 自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。
 回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは放熱ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム(AlN)、立方晶窒化ホウ素(cBN)などから構成する方法は、回路基板のコストを極めて高くしてしまう。また、放熱ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。
 ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、2040年までにガソリン車とディーゼル車から完全に電気自動車に切り替えることを宣言している。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置などが必要となる。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が重要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。
 バッテリーの速やかな放熱を実現するには、アルミニウム等の熱伝導性に優れた金属製の筐体に水冷パイプを配置し、当該筐体にバッテリーセルを多数配置し、バッテリーセルと筐体の底面との間に密着性のゴムシートを挟んだ構造が採用されている。このような構造のバッテリーでは、バッテリーセルは、ゴムシートを通じて筐体に伝熱して、水冷によって効果的に除熱される。
特開2008-243999
 しかし、上述のような従来のバッテリーにおいて、ゴムシートは、アルミニウムやグラファイトと比べて熱伝導性が低いため、バッテリーセルから筐体に効率よく熱を移動させることが難しい。また、ゴムシートに代えてグラファイト等のスペーサを挟む方法も考えられるが、複数のバッテリーセルの下面が平らではなく段差を有することから、バッテリーセルとスペーサとの間に隙間が生じ、伝熱効率が低下する。かかる一例にもみられるように、バッテリーセルは種々の形態(段差等の凹凸あるいは表面状態を含む)をとり得ることから、バッテリーセルの種々の形態に順応可能であって高い伝熱効率を実現することの要望が高まっている。さらには、バッテリーセルの容器の材質をより軽量で弾性変形することが要望されており、バッテリーセルの軽量化やバッテリーセルを除去したときに元の形状に近い形状に戻る放熱構造体が望まれている。これは、バッテリーセルのみならず、回路基板、電子部品あるいは電子機器本体のような他の熱源にも通じる。
 本発明は、上記課題に鑑みてなされたものであり、熱源の種々の形態に順応可能であって、軽量で、弾性変形性に富み、かつ放熱効率に優れる放熱構造体、および当該放熱構造体を備えるバッテリーを提供することを目的とする。
(1)上記目的を達成するための一実施形態に係る放熱構造体は、熱源からの放熱を高める複数の放熱部材が連結された放熱構造体であって、前記放熱部材は、前記熱源からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シートと、前記熱伝導シートの環状裏面に備えられ、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易なクッション部材と、前記熱伝導シートの巻回しながら進行する方向に貫通する貫通路と、を備え、前記複数の放熱部材は、前記熱伝導シートの巻回しながら進行する方向と直交する方向に並んだ状態で連結部材により連結される。
(2)別の実施形態に係る放熱構造体では、好ましくは、前記クッション部材は、その長さ方向に前記貫通路を有する筒状クッション部材であって、前記熱伝導シートは、前記筒状クッション部材の外側面をスパイラル状に巻回している。
(3)別の実施形態に係る放熱構造体では、好ましくは、前記クッション部材は、前記熱伝導シートの前記環状裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材である。
(4)別の実施形態に係る放熱構造体では、好ましくは、前記連結部材は、糸で構成されており、前記複数の放熱部材の間に、撚りが加えられた撚り部を備え、前記複数の放熱部材は、前記熱伝導シートの巻回しながら進行する方向と直交する方向に前記糸で連結される。
(5)別の実施形態に係る放熱構造体では、好ましくは、前記複数の放熱部材は、前記放熱部材の円換算直径の0.114倍以上離間して配置されている。
(6)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導シートの表面に、当該表面に接触する熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。
(7)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。
(8)一実施形態に係るバッテリーは、冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、上述のいずれか1項に記載の放熱構造体を備える。
 本発明によれば、熱源の種々の形態に順応可能であって、軽量で、弾性変形性に富み、かつ放熱効率に優れる放熱構造体、および当該放熱構造体を備えるバッテリーを提供できる。
図1Aは、第1実施形態に係る放熱構造体の平面図を示す。 図1Bは、図1AにおけるA-A線断面図を示す。 図1Cは、図1B中の領域Bの拡大図を示す。 図2Aは、第1実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図を示す。 図2Bは、図2A中のバッテリーセルによって放熱構造体を圧縮する前後の放熱構造体の形態変化の断面図を示す。 図3Aは、図1Aの放熱構造体の製造方法の一部を説明するための図を示す。 図3Bは、図1Aの放熱構造体の製造方法の一部を説明するための図を示す。 図3Cは、図1Aの放熱構造体の製造方法の一部を説明するための図を示す。 図4Aは、第2実施形態に係る放熱構造体の平面図を示す。 図4Bは、図4AにおけるC-C線断面図を示す。 図4Cは、図4B中の領域Dの拡大図を示す。 図5Aは、第2実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図を示す。 図5Bは、図5A中のバッテリーセルによって放熱構造体を圧縮する前後の放熱構造体の形態変化の断面図を示す。 図6は、第3実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図を示す。 図7Aは、図6の放熱構造体の製造状況の一部を示す。 図7Bは、図7Aの製造状況の一部の平面図を示す。 図8は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。
1,1a,1b・・・バッテリー、11・・・筐体、15・・・冷却部材、20・・・バッテリーセル(熱源の一例)、25,25a,25b・・放熱構造体、28,28a,28b・・・放熱部材、30・・・熱伝導シート、31・・・クッション部材、32,33・・・貫通路、35,35a・・・連結部材、37・・・撚り部。
 次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。
(第1実施形態)
 図1Aは、第1実施形態に係る放熱構造体の平面図を示す。図1Bは、図1AにおけるA-A線断面図を示す。図1Cは、図1B中の領域Bの拡大図を示す。図2Aは、第1実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図を示す。図2Bは、図2A中のバッテリーセルによって放熱構造体を圧縮する前後の放熱構造体の形態変化の断面図を示す。
 バッテリー1は、図2Aに示すように、冷却部材15を接触させる筐体11内に複数のバッテリーセル20を備えた構造を有する。放熱構造体25は、好ましくは、熱源の一例であるバッテリーセル20の冷却部材15に近い側の端部(下端部)と冷却部材15に近い側の筐体11の一部(底部12)との間に備えられている。ここでは、放熱構造体25は、11個のバッテリーセル20を載置しているが、放熱構造体25に載置するバッテリーセル20の個数は11個に限定されない。また、バッテリー1に備えられる放熱構造体25を構成する放熱部材28の個数についても、特に限定されない。
 放熱構造体25は、バッテリーセル20からの放熱を高める複数の放熱部材28が連結された構造体である。放熱部材28は、バッテリーセル20からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シート30と、熱伝導シート30の環状裏面に備えられ、熱伝導シート30に比べてバッテリーセル20の表面形状に合わせて変形容易なクッション部材31と、熱伝導シート30の巻回しながら進行する方向に貫通する貫通路32と、を備える。また、複数の放熱部材28は、熱伝導シート30の巻回しながら進行する方向と直交する方向に並んだ状態で連結部材35により連結される。ここでは、熱伝導シート30は、好ましくは、クッション部材31に比べて熱伝導性に優れる材料からなる。クッション部材31は、好ましくは、その長さ方向に貫通路32を有する筒状クッション部材である。熱伝導シート30は、当該筒状クッション部材の外側面をスパイラル状に巻回している。また、放熱構造体25は、好ましくは、熱伝導シート30の表面および/またはその内部に、当該表面に接触するバッテリーセル20から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。放熱構造体25を構成する複数の放熱部材28は、バッテリーセル20を載置していない状態では略円筒形状を有しているが、バッテリーセル20を載置するとその重さで圧縮され扁平した形態になる。
 熱伝導シート30は、放熱部材28の外側面をスパイラル状に巻回しながら略円筒の長さ方向に進行する帯状のシートである。熱伝導シート30は、金属、炭素若しくはセラミックスの少なくとも1つを含むシートであってバッテリーセル20からの熱を冷却部材15へと伝導させる機能を有する。なお、本願では、「断面」あるいは「縦断面」とは、バッテリー1の筐体11の内部14における上方開口面から底部12へと垂直に切断する方向の断面を意味する。
 次に、バッテリー1の概略構成および放熱構造体25の構成部材について、より詳しく説明する。
(1)バッテリーの構成の概略
 この実施形態において、バッテリー1は、例えば、電気自動車用のバッテリーであって、多数のバッテリーセル(単に、セルと称しても良い。)20を備える。バッテリー1は、一方に開口する有底型の筐体11を備える。筐体11は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。バッテリーセル20は、筐体11の内部14に配置される。バッテリーセル20の上方には、電極(不図示)が突出して設けられている。複数のバッテリーセル20は、好ましくは、筐体11内において、その両側からネジ等を利用して圧縮する方向に力を与えられて、互いに密着するようになっている(不図示)。筐体11の底部12には、冷却部材15の一例である冷却水を流すために、1または複数の水冷パイプ13が備えられている。冷却部材は、冷却媒体あるいは冷却剤と称しても良い。バッテリーセル20は、底部12との間に、放熱構造体25を挟むようにして筐体11内に配置されている。このような構造のバッテリー1では、バッテリーセル20は、放熱構造体25を通じて筐体11に伝熱して、水冷によって効果的に除熱される。なお、冷却部材15は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却部材15は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。
(2)熱伝導シート
 熱伝導シート30は、好ましくは炭素を含むシートであり、さらに好ましくは炭素フィラーと樹脂とを含むシートである。樹脂を合成繊維とすることもでき、その場合には、好適に、アラミド繊維を用いることもできる。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、膨張黒鉛、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。熱伝導シート30は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。熱伝導シート30は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。なお、グラファイト繊維、カーボン粒子あるいはカーボンファイバーといった各種フィラーも、すべて、炭素フィラーの概念に含まれる。
 熱伝導シート30に樹脂を含む場合には、当該樹脂が熱伝導シート30の全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、熱伝導シート30は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源の一例であるバッテリーセル20からの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、芳香族ポリアミド(アラミド繊維)等を好適に挙げることができる。樹脂は、熱伝導シート30の成形前の状態において、炭素フィラーの隙間に、例えば粒子状あるいは繊維状に分散している。熱伝導シート30は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。熱伝導シート30は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。
 熱伝導シート30は、導電性に優れるか否かは問わない。熱伝導シート30の熱伝導率は、好ましくは10W/mK以上である。この実施形態では、熱伝導シート30は、好ましくは、グラファイト、アルミニウム、アルミニウム合金、銅あるいはステンレススチールの帯状の板であり、熱伝導性と導電性に優れる材料から成る。熱伝導シート30は、湾曲性(若しくは屈曲性)に優れるシートであるのが好ましく、その厚さに制約はないが、0.02~3mmが好ましく、0.03~0.5mmがより好ましい。ただし、熱伝導シート30の熱伝導率は、その厚さが増加するほど低下するため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。
(3)クッション部材
 クッション部材31の重要な機能は変形容易性と、回復力である。回復力は、弾性変形性による。変形容易性は、バッテリーセル20の形状に追従するために必要な特性であり、特にリチウムイオンバッテリーなどの半固形物、液体的性状も持つ内容物などを変形しやすいパッケージに収めてあるようなバッテリーセル20の場合には、設計寸法的にも不定形または寸法精度があげられない場合が多い。このため、クッション部材31の変形容易性や追従力を保持するための回復力の保持は重要である。
 クッション部材31は、この実施形態では貫通路32を備える筒状クッション部材である。クッション部材31は、複数のバッテリーセル20の下端部が平坦でない場合でも、熱伝導シート30と当該下端部との接触を良好にする。さらに、貫通路32は、クッション部材31の変形を容易にし、加えて放熱構造体25の軽量化に寄与し、また、熱伝導シート30とバッテリーセル20の下端部との接触を高める機能を有する。クッション部材31は、バッテリーセル20と底部12との間にあってクッション性を発揮させる機能の他に、熱伝導シート30に加わる荷重によって熱伝導シート30が破損等しないようにする保護部材としての機能も有する。この実施形態では、クッション部材31は、熱伝導シート30に比べて低熱伝導性の部材である。
 クッション部材31は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。クッション部材31は、熱伝導シート30を伝わる熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されるのが好ましい。この実施形態では、クッション部材31は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。クッション部材31は、その熱伝導性を少しでも高めるために、ゴム中にAlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。クッション部材31は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「クッション部材」は、柔軟性に富み、熱源の表面に密着可能に弾性変形可能な部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。さらに、クッション部材31の変形例としては、上記ゴム状弾性体ではなく、金属を用いて構成することもできる。例えば、クッション部材は、バネ鋼で構成することも可能である。さらに、クッション部材として、コイルバネを配置することも可能である。また、スパイラル状に巻いた金属をバネ鋼にしてクッション部材として熱伝導シート30の環状裏面に配置しても良い。
(4)連結部材
 連結部材35は、例えば、糸やゴム等、少なくとも複数の放熱部材28の間に位置する部分が変形自在な材料で構成された部材である。本実施形態において、連結部材35は、糸で構成されることが好ましく、バッテリーセル20からの放熱による温度上昇に耐え得る糸であることがより好ましい。より具体的には、連結部材35は、120℃程度の高温に耐え得る糸であって、天然繊維、合成繊維、カーボン繊維、金属繊維等の繊維からなる撚糸で構成されることが好ましい。また、連結部材35は、好ましくは、複数の放熱部材28の間に、撚りが加えられた撚り部37を備える(図1C参照)。放熱構造体25は、放熱部材28がバッテリーセル20により圧縮され扁平した形態となっても、放熱部材28の変形に追従して連結部材35が撓むため、バッテリーセル20の表面に追従・密着することができる。また、放熱構造体25は、複数の放熱部材28の間に撚り部37を備えることにより、バッテリーセル20の表面への追従・密着性をより高めることができる。なお、連結部材35は、必ずしも、撚り部37を有していなくても良い。
 放熱部材28同士の隙間L1は、放熱部材28がバッテリーセル20からの押圧を受けて潰れる際に、狭くなる。放熱部材28がほとんど潰れない場合には、熱伝導シート30とバッテリーセル20および底部12との密着性が低くなる可能性がある。かかるリスクを低減するのに適切な放熱部材28の上下方向、すなわちバッテリーセル20の底から底部12の面に向かう垂線方向に圧縮されたときの厚みは、少なくとも、放熱部材28の管径(=円換算直径:D)の80%である。ここで、「円換算直径」とは、放熱部材28をその長さ方向と垂直に切断したときの管断面の面積と同じ面積の真円の直径を意味する。放熱部材28が真円の断面をもった円筒の場合には、その直径は円換算直径と同一である。放熱部材28は、上記の圧縮を受けると、バッテリーセル20および底部12と接する面を平面とし、放熱部材28間の隙間L1の方向を略円弧断面とするように変形するとみなすことができる(図1Cを参照)。放熱部材28が円換算直径Dの80%に相当する0.8Dの厚さに潰れた場合、放熱部材28がどの程度、隙間L1の方向に拡がるかを計算する。図1Cに示すように、潰れた放熱部材28において、その左右方向に存在する半円弧の長さの総長は、0.8πDである。また、底部12に接する平面の長さは、放熱部材28の管円周から、上記の半円弧の長さの総長を差し引いた長さの半分であるから、(πD-0.8πD)/2=0.314Dである。平面の左右方向に拡張した円弧部分の長さは、0.4D×2=0.8Dである。したがって、潰れた放熱部材28が元の放熱部材28から隙間L1の方向に拡がった距離は、0.314D+0.8D-D=0.114Dとなる。隙間L1を十分に大きくすれば、放熱部材28は隣の放熱部材28と接触しない。逆に、隙間L1が小さすぎると、放熱部材28が上下方向に圧縮されても、隣の放熱部材28に接触して、それ以上に潰れなくなる可能性がある。隙間L1を放熱部材28の円換算直径Dの11.4%以上にすれば、放熱部材28が円換算直径Dの80%の厚さに圧縮されて変形する際に、放熱部材28同士が接触して、当該変形の障害となることを防止できる。なお、この実施形態では、隙間L1を0.6Dとしている。
(5)熱伝導性オイル
 熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。熱伝導シート30は、微視的に、隙間(孔あるいは凹部)を有する。通常、当該隙間には空気が存在し、熱伝導性に悪影響を及ぼす可能性が有る。熱伝導性オイルは、その隙間を埋めて、空気に代わって存在することになり、熱伝導シート30の熱伝導性を向上させる機能を有する。
 熱伝導性オイルは、熱伝導シート30の表面、少なくともバッテリーセル2と熱伝導シート30とが接触する面に備えられている。本願において、熱伝導性オイルの「オイル」は、非水溶性の常温(20~25℃の範囲の任意の温度)で液状若しくは半固形状の可燃物質をいう。「オイル」という文言に代え、「グリース」あるいは「ワックス」を用いることもできる。熱伝導性オイルは、バッテリーセル20から熱伝導シート30に熱を伝える際に熱伝導の障害にならない性質のオイルである。熱伝導性オイルには、炭化水素系のオイル、シリコーンオイルを用いることができる。熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。
 シリコーンオイルは、好ましくは、シロキサン結合が2000以下の直鎖構造の分子から成る。シリコーンオイルは、ストレートシリコーンオイルと、変性シリコーンオイルとに大別される。ストレートシリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルを例示できる。変性シリコーンオイルとしては、反応性シリコーンオイル、非反応性シリコーンオイルを例示できる。反応性シリコーンオイルは、例えば、アミノ変性タイプ、エポキシ変性タイプ、カルボキシ変性タイプ、カルビノール変性タイプ、メタクリル変性タイプ、メルカプト変性タイプ、フェノール変性タイプ等の各種シリコーンオイルを含む。非反応性シリコーンオイルは、ポリエーテル変性タイプ、メチルスチリル変性タイプ、アルキル変性タイプ、高級脂肪酸エステル変性タイプ、親水性特殊変性タイプ、高級脂肪酸含有タイプ、フッ素変性タイプ等の各種シリコーンオイルを含む。シリコーンオイルは、耐熱性、耐寒性、粘度安定性、熱伝導性に優れたオイルであるため、熱伝導シート30の表面に塗布して、バッテリーセル20と熱伝導シート30との間に介在させる熱伝導性オイルとして特に好適である。
 熱伝導性オイルは、好ましくは、油分以外に、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーを含む。金属としては、金、銀、銅、アルミニウム、ベリリウム、タングステンなどを例示できる。セラミックスとしては、アルミナ、窒化アルミニウム、キュービック窒化ホウ素、ヘキサゴナル窒化ホウ素などを例示できる。炭素としては、ダイヤモンド、グラファイト、ダイヤモンドライクカーボン、アモルファスカーボン、カーボンナノチューブなどを例示できる。
 熱伝導性オイルは、バッテリーセル2と熱伝導シート30との間に介在する他、熱伝導シート30と筐体11との間に介在する方が好ましい。熱伝導性オイルは、熱伝導シート30の全面に塗布されていても、熱伝導シート30の一部分に塗布されていても良い。熱伝導性オイルを熱伝導シート30に存在させる方法は、特に制約されることなく、スプレーを用いた噴霧、刷毛等を用いた塗布、熱伝導性オイル中への熱伝導シート30の浸漬など、如何なる方法によるものでも良い。なお、熱伝導性オイルは、放熱構造体25あるいはバッテリー1にとって必須の構成ではなく、好適に備えることのできる追加的な構成である。これは、第2実施形態以降でも同様である。
 図3A、図3Bおよび図3Cは、図1Aの放熱構造体の製造方法の一部を説明するための図を示す。
 まず、クッション部材31を成形する。次に、帯状の熱伝導シート30をクッション部材31の外側面にスパイラル状に巻く。このとき、クッション部材31が完全には硬化していない未硬化状態で、熱伝導シート30をクッション部材31の外側面に巻き、その後、加温によりクッション部材31を完全に硬化させる。そして、帯状の熱伝導シート30のクッション部材31の両端からはみ出した部分があればカットする。最後に、熱伝導シート30の表面に、熱伝導性オイルを塗布する。放熱部材28をこのように製造することにより、熱伝導シート30の微視的な隙間に未硬化状態のクッション部材31が入り込んだ状態で硬化されるため、接着剤等を使用しなくともクッション部材31と熱伝導シート30とを強固に固定することができる。
 こうして出来上がった放熱部材28は、クッション部材31の外側面よりも熱伝導シート30の厚さ分だけ突出した形態を有する。ただし、熱伝導シート30とクッション部材31とは、面一であっても良い。また、熱伝導性オイルは、熱伝導シート30のうち少なくともバッテリーセル20と接触する面に塗布されれば良い。熱伝導シート30のクッション部材31の両端からはみ出した部分をカットする工程および熱伝導性オイルを塗布する工程は、上述のタイミングで行うことに限定されず、少なくともクッション部材31に熱伝導シート30を巻いた後であれば、いつ行ってもよい。また、熱伝導シート30は、クッション部材31を完全に硬化させた状態で、その外側面に巻いてもよい。この場合、クッション部材31の外側面が粘着性を有していなければ、接着剤等を使用して熱伝導シート30をクッション部材31に固定してもよい。
 放熱構造体25は、上述の製造方法により製造された複数の放熱部材28を、熱伝導シート30の巻回しながら進行する方向と直交する方向に並べた状態で、連結部材35で連結することにより製造される。より具体的には、放熱構造体25は、複数の放熱部材28を並べた状態で、手縫いで糸を縫い付けることにより連結される。このとき、複数の放熱部材28は、隙間L1を0.114D以上として並べられることが好ましい(図1C参照)。また、複数の放熱部材28の間に、撚り部37が形成されるように縫い付けることが好ましい。このように、放熱構造体25は、複数の放熱部材28が簾状に連結されるため、バッテリーセル20で圧縮された状態においてはバッテリーセル20の表面に追従して放熱部材28が上下左右方向に潰れ、且つ、バッテリーセル20を除いた状態においては放熱部材28の弾性力により元の形状に戻ることができる。また、放熱構造体25は、複数の放熱部材28が簾状に連結されることにより、例えば、自動車の振動等により放熱部材28が偏在する事態を抑制でき、施工性が高くなる。また、放熱構造体25は、各放熱部材28がクッション部材31の外側面に熱伝導シート30をスパイラル状に巻いた構造を有しているため、クッション部材31の変形に対して過度に拘束しない。
(第2実施形態)
 次に、第2実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。第1実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
 図4Aは、第2実施形態に係る放熱構造体の平面図を示す。図4Bは、図4AにおけるC-C線断面図を示す。図4Cは、図4B中の領域Dの拡大図を示す。図5Aは、第2実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図を示す。図5Bは、図5A中のバッテリーセルによって放熱構造体を圧縮する前後の放熱構造体の形態変化の断面図を示す。
 第2実施形態に係るバッテリー1aは、第1実施形態に係るバッテリー1と異なり、複数の放熱部材28が連結部材35aで連結された放熱構造体25aを備える。連結部材35a以外の構成については、第1実施形態と共通するので、説明を省略する。
 連結部材35aは、第1実施形態と同様に、例えば、糸やゴム等、少なくとも複数の放熱部材28の間に位置する部分が変形自在な材料で構成された部材である。本実施形態において、連結部材35は、糸で構成されることが好ましく、バッテリーセル20からの放熱による温度上昇に耐え得る糸であることがより好ましい。連結部材35aは、ミシン等を用いて複数の放熱部材28を縫い付ける部材である。連結部材35aの縫い方は、特に限定されず、手縫い、本縫い、千鳥縫い、単環縫い、二重環縫い、縁かがり縫い、扁平縫い、安全縫い、オーバーロック等の如何なる縫い方でも良い。また、JIS L 0120の規定する表示記号によれば、好適な縫い方として、「101」、「209」、「301」、「304」、「401」、「406」、「407」、「410」、「501」、「502」、「503」、「504」、「505」、「509」、「512」、「514」、「602」および「605」の各種縫い目を構成する縫い方を例示できる。なお、連結部材35aは、第1実施形態に係る連結部材35と異なり、複数の放熱部材28の間に撚り部37を備えていない。
 放熱構造体25aは、第1実施形態と同様の製造方法により製造された複数の放熱部材28を、熱伝導シート30の巻回しながら進行する方向と直交する方向に並べた状態で、連結部材35aで連結することにより製造される。より具体的には、放熱構造体25aは、複数の放熱部材28を並べた状態で、ミシン等を用いて糸で縫い付けることにより連結される。このとき、放熱部材28は、複数の放熱部材28の間の距離L2が先に述べたL1より小さくなるように離間して並べられている(図4C参照)。具体的には、L2を、放熱部材28の円換算直径Dの11.4%の距離(=0.114D)に設定している。この条件下では、放熱部材28は、上下方向で、円換算直径Dの約80%の厚さまで潰れることが可能となる。隙間L2を0.114D以上にすれば、放熱部材28がその円換算直径Dの80%以下の厚さに圧縮変形する際に、隣の放熱部材28が当該変形の障害にならない。なお、複数の放熱部材28の間の距離L2が狭いほど、ミシン等で縫い付ける際に複数の放熱部材28をより安定して連結することができる。放熱部材28は、隣り合う放熱部材28同士が接触する位置までは上下左右方向に潰れる余地があり、バッテリーセル20の表面へ追従し、且つ、密着することができる。また、放熱構造体25aは、バッテリーセル20を除いた状態においては放熱部材28の弾性力により元の形状に戻ることができる。また、放熱構造体25aは、複数の放熱部材28が簾状に連結されることにより、例えば、自動車の振動等により放熱部材28が偏在する事態を抑制でき、施工性が高くなる。特に、放熱構造体25aは、ミシン等を用いて複数の放熱部材28を連結部材35aで連結するため、放熱構造体25aを構成する放熱部材28の個数が多い場合に、施工性がより高くなる。
(第3実施形態)
 次に、第3実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。前述の各実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
 図6は、第3実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図を示す。図7Aは、図6の放熱構造体の製造状況の一部を示す。図7Bは、図7Aの製造方法によって完成した放熱構造体の製造状況の一部の平面図を示す。
 第3実施形態に係るバッテリー1bは、第1実施形態に係るバッテリー1内に配置される放熱構造体25と異なる放熱構造体25bを備え、その他についてはバッテリー1と共通した構造を有する。この実施形態に用いられる放熱構造体25bは、第1実施形態に係る放熱部材28と異なる放熱部材28bが、連結部材35により複数連結している。放熱部材28bは、クッション部材31を、筒状クッション部材とせずに、熱伝導シート30の裏側に備えられる帯状のクッション部材であって熱伝導シート30と共にスパイラル状に巻回されているスパイラル状のクッション部材とする。
 上述のスパイラル状のクッション部材31(「スパイラル状クッション部材」ともいう)を備える放熱構造体25bの製造方法の一例は、次の通りである。
 まず、略同等の幅を持つ熱伝導シート30およびクッション部材31の二層からなる積層体40を製造する。次に、熱伝導シート30の表面に、熱伝導性オイルを塗布する。そして、熱伝導性オイルが塗布された積層体40をスパイラル状(コイル状と称しても良い)に、一方向に進行するように巻回する。こうして、積層体40をスパイラル状に巻回した細長い形状の放熱部材28bが完成する。なお、熱伝導性オイルは、積層体40を製造する前に熱伝導シート30上に塗布しても良いし、最後に熱伝導シート30上に塗布しても良い。また、積層体40は、好ましくは、クッション部材31が完全には硬化していない未硬化状態で、熱伝導シート30をクッション部材31に積層し、その後、加温によりクッション部材31を完全に硬化させて形成される。
 放熱構造体25bは、複数の放熱部材28bを、熱伝導シート30の巻回しながら進行する方向と直交する方向に並べた状態で、連結部材35で連結することにより製造される。なお、複数の放熱部材28bを連結部材35で連結する方法は、第1実施形態と同様であるため、詳細な説明は省略する。
 放熱部材28bは、その長さ方向に貫通する貫通路33を備えているが、第1実施形態に係る放熱部材28と異なり、放熱部材28bの外側面方向にも貫通している。放熱部材28bは、スパイラル状であるため、上述の放熱部材28に比べて、放熱部材28bの長さ方向(図7Bの白矢印方向)に伸縮容易である。
 放熱構造体25bは、バッテリーセル20と筐体11の底部12との間のみならず、バッテリーセル20と筐体11の内側面との隙間、および/またはバッテリーセル20同士の隙間にも配置可能である。
(各実施形態の作用・効果)
 以上説明したように、放熱構造体25,25a,25b(放熱構造体を総称する場合には、「放熱構造体25等」とも称する。)は、バッテリーセル20からの放熱を高める複数の放熱部材28,28a,28b(放熱部材を総称する場合には、「放熱部材28等」とも称する。)が連結された放熱構造体であって、放熱部材28等は、バッテリーセル20からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シート30と、熱伝導シート30の環状裏面に備えられ、熱伝導シート30に比べてバッテリーセル20の表面形状に合わせて変形容易なクッション部材31と、熱伝導シート30の巻回しながら進行する方向に貫通する貫通路32,33と、を備える。また、複数の放熱部材28等は、熱伝導シート30の巻回しながら進行する方向と直交する方向に並んだ状態で連結部材35,35aにより連結される。
 放熱構造体25等をこのように構成することによって、バッテリーセル20の種々の形態に順応可能であって、弾性変形性および放熱効率に優れた構造体となる。また、放熱構造体25等は、貫通路32,33に起因してより軽量になる。
 また、放熱構造体25,25aを構成するクッション部材31は、その長さ方向に貫通路33を有する筒状クッション部材であって、熱伝導シート30は、筒状クッション部材の外側面をスパイラル状に巻回している。バッテリー1,1a,1bは、かかる放熱構造体25,25a,25bをバッテリーセル20に接触させて筐体11に備える。熱伝導シート30は、筒状クッション部材の外側面を部分的に覆っていて、かつスパイラル状に筒状クッション部材の長さ方向に巻回している。バッテリー1,1aは、放熱構造体25,25aを、少なくともバッテリー20と冷却部材15との間に配置している。このため、放熱構造体25,25aは、熱伝導シート30による拘束を受けにくく、バッテリーセル20の表面の凹凸等に追従して変形可能となる。
 また、放熱構造体25bにおいて、クッション部材31は、熱伝導シート30の環状裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材である。バッテリー1bは、放熱構造体25bを、少なくともバッテリー20と冷却部材15との間に配置している。放熱構造体25bは、筐体11の内側面とバッテリーセル20との間および/またはバッテリーセル20同士の間に配置されていても良い。放熱構造体25bは、その全体がスパイラル形状になっているので、バッテリーセル20の種々のサイズに、より適応しやすい。より具体的には、次のとおりである。剛性の高い熱伝導シート30を備える場合でも、低荷重で熱伝導シート30を変形させ、バッテリーセル20の表面に追従・密着させることができる。さらに、部分的に異なる量の変形量であっても、密着追従性が良くなる。また、クッション部材31もスパイラル状に切れているので、1回転ずつのスパイラルが概略独立しているかのような変形を起こすことができる。したがって、放熱構造体25bは、局所的な変形の自由度を高くできる。加えて、放熱構造体25bは、貫通路33のみならず、貫通路33から側面にも貫通するスパイラル状の貫通溝を備えているので、より軽量になる。
 また、連結部材35は、糸で構成されており、複数の放熱部材28等の間に、撚りが加えられた撚り部37を備える。複数の放熱部材28等は、熱伝導シート30の巻回しながら進行する方向と直交する方向に糸で連結される。このため、放熱構造体25等は、複数の放熱部材28等が簾状に連結されるため、例えば、自動車の振動等により放熱部材28等が偏在する事態を抑制でき、施工性が高くなる。
 また、複数の放熱部材28等は、放熱部材28等の円換算直径Dの0.114倍以上離間して配置されている。連結部材35は、好ましくは、複数の放熱部材28等の間にて収縮若しくは変形可能である。このため、放熱部材28等がバッテリーセル20で元の高さの80%に圧縮された場合であっても、隣り合う放熱部材28等同士が重なり合うことなく扁平した状態となるため、バッテリーセル20の表面への追従・密着性をより高めることができる。放熱部材28等同士を十分に圧縮変形させることにより、バッテリーセル20からの重さが加わったときに、バッテリーセル20と放熱部材28等とを十分に密着させ、これによって、バッテリーセル20と放熱部材28等との間の熱伝導性をより高めることができる。
 また、熱伝導シート30の表面に、当該表面に接触するバッテリーセル20から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。熱伝導シート30は、微視的に、隙間(孔あるいは凹部)を有する。通常、当該隙間には空気が存在し、熱伝導性に悪影響を及ぼす可能性が有る。熱伝導性オイルは、その隙間を埋めて、空気に代わって存在することになり、熱伝導シート30の熱伝導性を向上させる機能を有する。
 また、熱伝導性オイルは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。シリコーンオイルは、耐熱性、耐寒性、粘度安定性、熱伝導性に優れたオイルであるため、熱伝導シート30の表面に塗布して、バッテリーセル20と熱伝導シート30との間に介在させる熱伝導性オイルとして特に好適である。また、熱伝導性オイルは、熱伝導性フィラーを含むため、熱伝導シート30の熱伝導性を高めることができる。
 バッテリー1,1a,1bは、冷却部材15を流す構造を持つ筐体11内に、1または2以上の熱源としてのバッテリーセル20を備えたバッテリーであって、上述の放熱構造体25等を備える。放熱構造体25等は、複数の放熱部材28等が連結されており、放熱部材28等に、バッテリーセル20からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シート30と、熱伝導シート30の環状裏面に備えられ、熱伝導シート30に比べてバッテリーセル20の表面形状に合わせて変形容易なクッション部材31と、熱伝導シート30の巻回しながら進行する方向に貫通する貫通路32,33と、を備える。複数の放熱部材28等は、熱伝導シート30の巻回しながら進行する方向と直交する方向に並んだ状態で連結部材35,35aにより連結される。バッテリー1,1a,1bをこのように構成することによって、バッテリーセル20の種々の形態に順応可能であって、放熱効率に優れた放熱構造体25等を備えるバッテリーとなる。また、放熱構造体25等は、貫通路32,33に起因してより軽量になる。
(その他の実施形態)
 上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
 図8は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。
 先述の各実施形態では、バッテリーセル20を縦にしてその下端に放熱構造体25等を接触せしめている状況について説明したが、バッテリーセル20の配置形態は、これに限定されない。図8に示すように、バッテリーセル20の側面を放熱構造体25等の各放熱部材28等に接触させるように、バッテリーセル20を配置しても良い。バッテリーセル20は、充電および放電の際に温度上昇する。バッテリーセル20の容器自体が柔軟性に富む材料にて形成されていると、バッテリーセル20の特に側面が膨らむ可能性がある。そのような場合でも、図8に示すように、放熱構造体25等の構成している各放熱部材28等がバッテリーセル20の外面の形状に合わせて変形できるので、充放電時にも放熱性を高く維持できる。
 例えば、熱源は、バッテリーセル20のみならず、回路基板や電子機器本体などの熱を発する対象物を全て含む。例えば、熱源は、キャパシタおよびICチップ等の電子部品であっても良い。同様に、冷却部材15は、冷却用の水のみならず、有機溶剤、液体窒素、冷却用の気体であっても良い。また、放熱構造体25等は、バッテリー1等以外の構造物、例えば、電子機器、家電、発電装置等に配置されていても良い。
 また、放熱部材28bにおけるスパイラル状のクッション部材31は、熱伝導シート30の幅と同一に限定されず、熱伝導シート30の幅に対して大きくても、あるいは小さくても良い。
 また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。例えば、第3実施形態に係る放熱構造体25bを、第1実施形態に係る放熱構造体25に代えて配置しても良い。
 本発明に係る放熱構造体は、例えば、自動車用バッテリーの他、自動車、工業用ロボット、発電装置、PC、家庭用電化製品などの各種電子機器にも利用することができる。また、本発明に係るバッテリーは、自動車用のバッテリー以外に、家庭用の充放電可能なバッテリー、PC等の電子機器用のバッテリーにも利用できる。

Claims (8)

  1.  熱源からの放熱を高める複数の放熱部材が連結された放熱構造体であって、
     前記放熱部材は、
     前記熱源からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シートと、
     前記熱伝導シートの環状裏面に備えられ、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易なクッション部材と、
     前記熱伝導シートの巻回しながら進行する方向に貫通する貫通路と、
    を備え、
     前記複数の放熱部材は、前記熱伝導シートの巻回しながら進行する方向と直交する方向に並んだ状態で連結部材により連結される放熱構造体。
  2.  前記クッション部材は、その長さ方向に前記貫通路を有する筒状クッション部材であって、
     前記熱伝導シートは、前記筒状クッション部材の外側面をスパイラル状に巻回している請求項1に記載の放熱構造体。
  3.  前記クッション部材は、前記熱伝導シートの前記環状裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材である請求項1に記載の放熱構造体。
  4.  前記連結部材は、糸で構成されており、前記複数の放熱部材の間に、撚りが加えられた撚り部を備え、
     前記複数の放熱部材は、前記熱伝導シートの巻回しながら進行する方向と直交する方向に前記糸で連結される請求項1から3のいずれか1項に記載の放熱構造体。
  5.  前記複数の放熱部材は、前記放熱部材の円換算直径の0.114倍以上離間して配置されている請求項1から4のいずれか1項に記載の放熱構造体。
  6.  前記熱伝導シートの表面に、当該表面に接触する熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有する請求項1から5のいずれか1項に記載の放熱構造体。
  7.  前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む請求項6に記載の放熱構造体。
  8.  冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、請求項1から7のいずれか1項に記載の放熱構造体を備えるバッテリー。
PCT/JP2019/042192 2018-11-21 2019-10-28 放熱構造体およびそれを備えるバッテリー WO2020105377A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217017621A KR102637678B1 (ko) 2018-11-21 2019-10-28 방열 구조체 및 그것을 구비하는 배터리
CN201980070929.2A CN112930619B (zh) 2018-11-21 2019-10-28 散热结构体以及具备该散热结构体的电池
EP19886476.1A EP3886237B1 (en) 2018-11-21 2019-10-28 Heat dissipation structure and battery having same
US17/294,724 US20220013830A1 (en) 2018-11-21 2019-10-28 Heat dissipating structure and battery provided with the same
JP2020558202A JP6857783B2 (ja) 2018-11-21 2019-10-28 放熱構造体およびそれを備えるバッテリー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018218082 2018-11-21
JP2018-218082 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105377A1 true WO2020105377A1 (ja) 2020-05-28

Family

ID=70773588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042192 WO2020105377A1 (ja) 2018-11-21 2019-10-28 放熱構造体およびそれを備えるバッテリー

Country Status (6)

Country Link
US (1) US20220013830A1 (ja)
EP (1) EP3886237B1 (ja)
JP (1) JP6857783B2 (ja)
KR (1) KR102637678B1 (ja)
CN (1) CN112930619B (ja)
WO (1) WO2020105377A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034759A1 (ja) * 2020-08-12 2022-02-17 信越ポリマー株式会社 放熱部材、放熱構造体およびバッテリー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6994122B2 (ja) * 2019-02-07 2022-01-14 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243999A (ja) 2007-03-26 2008-10-09 Sumitomo Electric Ind Ltd 放熱部品および電子機器
WO2013023969A2 (de) * 2011-08-17 2013-02-21 Sgl Carbon Se Wärmeableiter und elektrischer energiespeicher
JP2015090750A (ja) * 2013-11-05 2015-05-11 信越ポリマー株式会社 熱伝導デバイス及びバッテリーモジュール
US20160006086A1 (en) * 2013-01-24 2016-01-07 Robert Bosch Gmbh Elastic Device for the Temperature Control of Battery Cells
JP2019125665A (ja) * 2018-01-16 2019-07-25 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー
WO2019181423A1 (ja) * 2018-03-23 2019-09-26 信越ポリマー株式会社 放熱部材およびそれを装着した放熱性発熱体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786635A (en) * 1996-12-16 1998-07-28 International Business Machines Corporation Electronic package with compressible heatsink structure
JP2006210185A (ja) * 2005-01-28 2006-08-10 Toyota Motor Corp 2次電池の冷却構造および組電池の冷却構造
DE102006045564A1 (de) * 2006-09-25 2008-04-03 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung elektrischer Elemente
US9196938B2 (en) * 2010-07-06 2015-11-24 Samsung Sdi Co., Ltd. Battery module
JP2012113843A (ja) * 2010-11-19 2012-06-14 Sony Corp 電池およびその製造方法、バッテリユニット、ならびにバッテリモジュール
JP2012123983A (ja) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd 二次電池の膨脹抑制構造およびこれを備えた二次電池
JP6527728B2 (ja) * 2015-03-19 2019-06-05 Fdk株式会社 二次電池セルを用いた蓄電装置における放熱機構
KR102322289B1 (ko) * 2017-01-03 2021-11-05 현대자동차주식회사 방열성 복합소재 및 이를 포함하는 수냉식 배터리 시스템
JP6894933B2 (ja) * 2019-02-07 2021-06-30 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243999A (ja) 2007-03-26 2008-10-09 Sumitomo Electric Ind Ltd 放熱部品および電子機器
WO2013023969A2 (de) * 2011-08-17 2013-02-21 Sgl Carbon Se Wärmeableiter und elektrischer energiespeicher
US20160006086A1 (en) * 2013-01-24 2016-01-07 Robert Bosch Gmbh Elastic Device for the Temperature Control of Battery Cells
JP2015090750A (ja) * 2013-11-05 2015-05-11 信越ポリマー株式会社 熱伝導デバイス及びバッテリーモジュール
JP2019125665A (ja) * 2018-01-16 2019-07-25 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー
WO2019181423A1 (ja) * 2018-03-23 2019-09-26 信越ポリマー株式会社 放熱部材およびそれを装着した放熱性発熱体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886237A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034759A1 (ja) * 2020-08-12 2022-02-17 信越ポリマー株式会社 放熱部材、放熱構造体およびバッテリー

Also Published As

Publication number Publication date
KR20210087535A (ko) 2021-07-12
US20220013830A1 (en) 2022-01-13
JP6857783B2 (ja) 2021-04-14
JPWO2020105377A1 (ja) 2021-04-01
EP3886237B1 (en) 2023-11-29
KR102637678B1 (ko) 2024-02-15
CN112930619B (zh) 2023-12-01
EP3886237A1 (en) 2021-09-29
EP3886237C0 (en) 2023-11-29
CN112930619A (zh) 2021-06-08
EP3886237A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JP6871183B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP6894933B2 (ja) 放熱構造体およびそれを備えるバッテリー
WO2020105377A1 (ja) 放熱構造体およびそれを備えるバッテリー
WO2020162161A1 (ja) 放熱構造体およびそれを備えるバッテリー
JP2020191171A (ja) 放熱構造体およびそれを備えるバッテリー
WO2021241161A1 (ja) 放熱構造体およびそれを備えるバッテリー
JP2020113393A (ja) 放熱構造体およびそれを備えるバッテリー
JP2020187885A (ja) 放熱構造体およびそれを備えるバッテリー
JP7402717B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP7394666B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP2021005582A (ja) 放熱構造体およびそれを備えるバッテリー
JP2021005508A (ja) 放熱構造体およびそれを備えるバッテリー
JP7402716B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP7399764B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP7399760B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP7254661B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP2020113388A (ja) 放熱構造体およびそれを備えるバッテリー
JP7376568B2 (ja) 放熱構造体シートおよび放熱構造体の製造方法
JP7429566B2 (ja) 放熱構造体およびそれを備えるバッテリー
JP2020136607A (ja) 放熱構造およびそれを備える機器
JP2021166140A (ja) 放熱部材、放熱構造体およびバッテリー
TW202130035A (zh) 散熱結構體以及具備該散熱結構體的電池
JP2020135952A (ja) 放熱構造体およびそれを備えるバッテリー
JP2021005446A (ja) 放熱構造体およびそれを備えるバッテリー
JP2021197295A (ja) 放熱構造体、バッテリーおよび電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217017621

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019886476

Country of ref document: EP

Effective date: 20210621