WO2020103279A1 - 一种提高碳化硅粉料产率的方法 - Google Patents

一种提高碳化硅粉料产率的方法

Info

Publication number
WO2020103279A1
WO2020103279A1 PCT/CN2018/123720 CN2018123720W WO2020103279A1 WO 2020103279 A1 WO2020103279 A1 WO 2020103279A1 CN 2018123720 W CN2018123720 W CN 2018123720W WO 2020103279 A1 WO2020103279 A1 WO 2020103279A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
silicon carbide
purity
silicon
reaction
Prior art date
Application number
PCT/CN2018/123720
Other languages
English (en)
French (fr)
Inventor
布乐琴科⋅耶夫亨
Original Assignee
山东天岳先进材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东天岳先进材料科技有限公司 filed Critical 山东天岳先进材料科技有限公司
Publication of WO2020103279A1 publication Critical patent/WO2020103279A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the application relates to a method for improving the yield of silicon carbide powder, which belongs to the field of semiconductor material preparation.
  • silicon carbide single crystal is widely used in civilian lighting and screens due to its advantages of wide band gap, strong voltage breakdown resistance, high thermal conductivity, and high saturation electron migration rate. Display, aerospace, high temperature radiation environment, petroleum exploration, radar communication and automotive electronics. Silicon carbide single crystal is usually prepared from silicon carbide powder by sublimation method, so the purity, particle size and crystal type of silicon carbide powder used in sublimation method have a significant impact on the quality of silicon carbide single crystal.
  • the most commonly used synthesis method of SiC powder in production is the self-propagating high-temperature synthesis method, which is to heat high-purity carbon powder and silicon powder in an intermediate frequency electromagnetic induction furnace to above 2000 °C in an argon or helium atmosphere (or argon Under the mixed atmosphere of gas and helium), silicon carbide powder is synthesized.
  • silicon carbide powder is synthesized.
  • the amount of silicon carbide powder required for a single furnace for ingot growth increases.
  • the diameter and height of the graphite crucible used to produce silicon carbide powder are increased, and the quality of the single-loaded mixture of high-purity carbon powder and high-purity silicon powder is increased.
  • the current patents mainly improve the purity of silicon carbide powder through synthetic material reaction process, raw material pretreatment and product processing, but do not involve how to increase the yield of silicon carbide powder.
  • the present application provides a method for increasing the yield of silicon carbide powder.
  • the method mainly includes adding granular sugars during the mixing of the carbon powder and the silicon powder so that the mixed material is not layered in the early stage of the reaction, so that the reaction of the carbon powder and the silicon powder is thoroughly carried out, and the purpose of improving the yield is achieved.
  • the method for increasing the yield of silicon carbide powder is to add high-purity solid sugar to the high-purity carbon powder silicon powder mixture, without introducing other impurities, with the help of the sugar as the temperature increases, the resulting The viscous liquid has high viscosity, which can prevent the stratification of carbon powder and silicon powder in the early stage of the reaction.
  • the sugar decomposes to produce carbon dioxide, carbon monoxide and other products. These substances can be pumped before reaching the reaction temperature of the mixture. Removal in vacuum keeps the unmixed mixture, which promotes a more complete reaction, thereby increasing the yield of silicon carbide powder.
  • the carbohydrate is selected from at least one of monosaccharides, disaccharides, and oligosaccharides.
  • the method for improving the yield of silicon carbide powder includes the step of using high-temperature self-propagating method to prepare silicon carbide powder by using carbon powder and silicon powder, adding sugar substances, the method includes the following The steps described:
  • the carbohydrate is selected from at least one of monosaccharides, disaccharides, and oligosaccharides.
  • the sugars are solid particles.
  • the sugar is solid particles at room temperature.
  • the sugars are solid particles with a particle size not greater than 100 ⁇ m.
  • the sugars are solid particles with a particle size not greater than 80 ⁇ m at room temperature.
  • the purity of the sugar is not less than 99%. Further, the purity of the sugar is not less than 99.99%
  • the sugar is selected from at least one of sucrose, fructose, glucose, and isomalt oligosaccharides.
  • the sugar is sucrose.
  • the mass ratio of the carbon powder and silicon powder to the mass of sugar is 1: 0.02-0.12.
  • the lower limit of the mass ratio of the carbon powder and silicon powder to the mass of sugar is selected from 1: 0.03, 1: 0.04, 1: 0.05, 1: 0.06, 1: 0.07, 1: 0.08, 1: 0.09 , 1: 0.1 or 1: 0.11
  • the upper limit is selected from 1: 0.03, 1: 0.04, 1: 0.05, 1: 0.06, 1: 0.07, 1: 0.08, 1: 0.09, 1: 0.1 or 1: 0.11.
  • the mass ratio of the carbon powder and the silicon powder to the sugar is 1: 0.03-0.1.
  • the molar ratio of the carbon powder and the silicon powder is 0.7-1.3: 1.
  • the lower limit of the molar ratio of the carbon powder and the silicon powder is selected from 0.8: 1, 0.85: 1, 0.9: 1, 1.0: 1, 1.1: 1, 1.15: 1, or 1.2: 1 and the upper limit is selected from 0.8: 1. 0.85: 1, 0.9: 1, 1.0: 1, 1.1: 1, 1.15: 1 or 1.2: 1.
  • the molar ratio of the carbon powder and silicon powder is 0.85-1.15: 1.
  • the particle size of the carbon powder and silicon powder is not greater than 100 ⁇ m, and the purity of the carbon powder and silicon powder is not less than 99%.
  • the particle size of the carbon powder and silicon powder is not greater than 80 ⁇ m.
  • the purity of the carbon powder and silicon powder is not less than 99.99%.
  • the high-temperature reaction of the mixture in step 2) includes the following steps: 1
  • the reaction is not less than 5 hours at a vacuum of no more than 1 ⁇ 10 -3 mbar and a temperature of 1200-1600 ° C, that is, high-purity ⁇ carbonation is prepared Silicon powder.
  • the conditions for the high-temperature reaction of the mixture in step 2) are as follows: 1 Reaction at a vacuum of no more than 1 ⁇ 10 -4 mbar and a temperature of 1300-1500 ° C for 5-15 hours, that is, high-purity ⁇ silicon carbide powder is prepared material.
  • the high-temperature reaction of the mixture in step 2) further includes: 2 filling the inert gas at the temperature of step 1 to 800-1000 mbar, raising the temperature to 1800-2400 ° C, and reacting for at least 10 hours to prepare High purity ⁇ silicon carbide powder.
  • the conditions for the high-temperature reaction of the mixture in step 2) are as follows: at step 1, the inert gas is charged to 800-1000 mbar, the temperature is increased to 1800-2300 ° C, and the reaction is at least 10h-40h Get high purity ⁇ silicon carbide powder.
  • the mixing time of the mixture prepared by mixing carbon powder, silicon powder and sugar is not less than 3h.
  • the lower limit of the mixing time of the mixture prepared by mixing carbon powder, silicon powder and sugar is selected from 5h, 10h, 15h, 20h or 25h, and the upper limit is selected from 5h, 10h, 15h, 20h 25h.
  • the mixing time of the carbon powder, the silicon powder and the sugar to prepare the mixture is 3h-25h.
  • the inert gas is argon and / or helium.
  • the method for improving the yield of silicon carbide powder includes the following steps:
  • High-purity carbon powder, high-purity silicon powder and high-purity sucrose are mixed in the mixer for a mixing time of 3-25 hours to obtain a uniformly mixed mixture; wherein, the mass ratio of carbon powder to silicon powder is 0.85-1.15, The quality of high-purity sucrose accounts for 3% -10% of the total mass of carbon silicon powder;
  • step 2) 1 Put the mixture mentioned in step 1) in a graphite crucible, put the graphite crucible and heat preservation into an electromagnetic heating furnace, evacuate the equipment to make the vacuum degree reach 1 ⁇ 10 ⁇ 4 mbar, and raise the temperature to 1200 ⁇ Carry out a synthesis reaction at 1500 ° C, the reaction lasts for 5-15 hours to produce high-purity ⁇ silicon carbide powder;
  • the high-purity carbon powder, high-purity silicon powder and high-purity sucrose are heated to 150-180 ° C under vacuum to melt the sugar into a viscous liquid, and then cooled to normal temperature to obtain a lump raw material ;
  • the bulk material is put into a crystal furnace for crystal growth.
  • the use of the filler method can prevent the stratification of the carbon powder and the silicon powder in the early stage of the reaction for preparing the silicon carbide powder, and promote a more complete reaction, thereby improving the yield of the silicon carbide powder.
  • the silicon carbide powder described in this application includes high-purity ⁇ silicon carbide powder and high-purity ⁇ silicon carbide powder.
  • the method of improving the yield of silicon carbide powder in this application is to add granular sugars, and the sugars melt into a viscous liquid in the early stage of the reaction, which prevents the layering of the high-purity carbon powder and the high-purity silicon powder, so that the high-purity carbon powder Fully react with silicon powder, thereby improving the yield of silicon carbide, among which sugars such as high-purity sucrose.
  • the sugar in the method for improving the yield of silicon carbide powder in this application is composed of C, H and O.
  • the sugar is decomposed and the impurities can be removed by vacuum to ensure that Introduce new impurities, such as high-purity sucrose.
  • the method for improving the yield of silicon carbide powder of the present application does not need to change other processes or additional equipment, and only needs to add granular sugar in the mixing process, the process is simple, and there is no additional cost.
  • the sugars in the method for improving the yield of silicon carbide powder in the present application such as high-purity sucrose
  • the residual coke after high-temperature decomposition can also be used as a carbon source to participate in the reaction, and the price of high-purity sucrose is much lower than that of high-purity carbon powder. Reduce the cost of preparing silicon carbide powder.
  • High-purity carbon powder, high-purity silicon powder and high-purity sucrose are mixed in the mixer for a mixing time of 3-25 hours to obtain a uniformly mixed mixture; among them, the mass ratio of carbon powder to silicon powder is 0.7-1.3: 1.
  • the mass ratio of carbon powder and silicon powder to high-purity sucrose is 1: 0.02-0.12;
  • step 2) 1 Place the mixture mentioned in step 1) in a graphite crucible. After assembling the graphite crucible and heat preservation, place it in an electromagnetic heating furnace, evacuate the equipment so that the vacuum degree is not greater than 1 ⁇ 10 -3 mbar, and heat up to 1200 -Carry out synthesis reaction at 1600 °C for at least 5h;
  • the inert gas to 800-1000mbar at the temperature mentioned in step 1, slowly increase the temperature to 1800-2400 °C to carry out the conversion reaction, the reaction synthesis time is at least 10h, and the high-purity silicon carbide powder is prepared.
  • silicon carbide powder is prepared. Specific implementation parameters different from the above preparation method are shown in Table 1. Silicon carbide powder 1 #, silicon carbide powder 2 #, silicon carbide powder 3 #, silicon carbide powder are prepared respectively 4 #, silicon carbide powder 5 #, contrast silicon carbide powder D1 #, contrast silicon carbide powder D2 #, contrast silicon carbide powder D3 # and contrast silicon carbide powder D4 #; among them, the purity of carbon powder, silicon powder and sugar is greater than 99.99%; the inert gas is high purity gas; the particle size of the carbon powder, silicon powder and sugar is uniform or non-uniform, for example, the "particle size is less than 100 ⁇ m" means the maximum particle size is less than 100 ⁇ m .
  • the production range of the silicon carbide powder 1 # -5 # prepared by the preparation method of the embodiment is 58.9-73.0%.
  • the prepared silicon carbide powder has a uniform color distribution, and there is no other black material except for part of the powder material carbonized near the crucible wall.
  • the yield range of silicon carbide powder prepared in the comparative example is 42.1-62.0%.
  • silicon carbide powder has unevenly distributed black materials and ash materials. These black materials and ash materials are reduced.
  • the yield of silicon carbide powder, and make the product quality decline. Adding sugars in the preparation of silicon carbide powder in the present application can effectively improve the yield of silicon carbide powder, and the purity of silicon carbide powder prepared by this method is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请公开了一种提高碳化硅粉料产率的方法,属于半导体材料制备领域。本申请通过在高纯碳粉硅粉混合料中加入固态糖类,在不引入其它杂质的条件下,借助该糖类随着温度增加,糖类熔化后产生的粘稠液体粘度高的性质,可在反应前期阻止碳粉硅粉分层,随着温度继续升高,糖类分解产生二氧化碳、一氧化碳等其它产物,在达到混合料反应温度前,这些物质可通过抽真空除去,保留下未分层的混合料,促使反应进行的更完全,从而提高碳化硅粉料的产率。

Description

一种提高碳化硅粉料产率的方法 技术领域
本申请涉及一种提高碳化硅粉料产率的方法,属于半导体材料制备领域。
背景技术
作为最重要的第三代半导体材料之一,碳化硅单晶因其宽带隙、抗电压击穿能力强、热导率高、饱和电子迁移速率高等优点,而被广泛应用于民用灯光照明、屏幕显示、航空航天、高温辐射环境、石油勘探、雷达通信与汽车电子化等领域。碳化硅单晶通常通过升华法由碳化硅粉料制备而成,因此升华法所使用的碳化硅粉料的纯度、粒度以及晶型均对碳化硅单晶质量有着显著影响。
目前生产中最常用的SiC粉料合成方法为自蔓延高温合成法,是在中频电磁感应炉中将高纯的碳粉和硅粉加热到2000℃以上,在氩气或氦气气氛(或氩气与氦气的混合气氛)下合成碳化硅粉料。但是随着对碳化硅衬底直径需求的增加,晶锭生长单炉所需的碳化硅粉料量随之增加。为提高碳化硅粉料产量,所使用的生产碳化硅粉料的石墨坩埚直径增大,高度增高,单次装载的高纯碳粉与高纯硅粉混合料的质量增加。由于高纯碳粉与高纯硅粉的粒度不完全一致,而大坩埚中碳化硅粉料合成时间往往长达3到4天,因此合成过程中会发生一定程度的分层,使碳粉硅粉无法均匀混合,导致反应进行不彻底,从而降低碳化硅粉体的产量。
目前的专利主要都是通过合成料反应过程、原料预处理以及产品处理来提高碳化硅粉料的纯度,而并未涉及如何提高碳化硅粉料的产率。
发明内容
为了解决上述问题,本申请提供了一种提高碳化硅粉料产率的方法。所述方法主要通过在碳粉硅粉混料时加入颗粒状糖类使混合料在反应前期不分层,从而使碳粉和硅粉反应进行彻底,达到提高产率的目的。
所述提高碳化硅粉料产率的方法通过在高纯碳粉硅粉混合料中加入高纯固态糖,在不引入其它杂质的条件下,借助该糖类随着温度增加,熔化后产生的粘稠液体粘度高的性质,可在反应前期阻止碳粉硅粉分层,温度继续升高时,糖类分解产生二氧化碳、一氧化碳等其它产物,在达到混合料反应温度前,这些物质可通过抽真空除去,保留下未分层的混合料,促使反应进行的更完全,从而提高碳化硅粉料的产率。
所述提高碳化硅粉料产率的方法,其特征在于,包括下述步骤:
1)将碳粉、硅粉和糖类混合制得混合料;
2)将混合料进行高温反应,制得高纯碳化硅粉料;
所述糖类选自单糖、双糖和低聚糖中的至少一种。
进一步地,所述提高碳化硅粉料产率的方法,所述方法包括在利用碳粉和硅粉采用高温自蔓延法制备碳化硅粉料的步骤中,加入糖类物质,所述方法包括下述步骤:
1)将碳粉、硅粉和糖类混合制得混合料;
2)将混合料进行高温反应,制得高纯碳化硅粉料;
所述糖类选自单糖、双糖和低聚糖中的至少一种。
可选地,所述糖类为固态颗粒。进一步地,所述糖类在室温下为固态颗粒。
可选地,所述糖类为粒度不大于100μm的固态颗粒。可选地,所述糖类室温下为粒度不大于80μm的固态颗粒。
可选地,所述糖类的纯度不低于99%。进一步地,所述糖类的纯度 不低于99.99%
可选地,所述糖类选自蔗糖、果糖、葡萄糖和异麦芽低聚糖中的至少一种。优选地,所述糖类为蔗糖。
可选地,所述碳粉和硅粉的质量总和与糖类的质量比1:0.02‐0.12。进一步地,所述碳粉和硅粉的质量总和与糖类的质量比的下限选自1:0.03、1:0.04、1:0.05、1:0.06、1:0.07、1:0.08、1:0.09、1:0.1或1:0.11,上限选自1:0.03、1:0.04、1:0.05、1:0.06、1:0.07、1:0.08、1:0.09、1:0.1或1:0.11。优选地,所述碳粉和硅粉质量总和与糖类的质量比1:0.03‐0.1。
可选地,所述碳粉和硅粉的摩尔比0.7‐1.3:1。进一步地,所述碳粉和硅粉的摩尔比的下限选自0.8:1、0.85:1、0.9:1、1.0:1、1.1:1、1.15:1或1.2:1,上限选自0.8:1、0.85:1、0.9:1、1.0:1、1.1:1、1.15:1或1.2:1。优选地,所述碳粉和硅粉的摩尔比0.85‐1.15:1。
可选地,所述碳粉和硅粉的粒度不大于100μm,所述碳粉和硅粉的纯度不低于99%。优选地,所述碳粉和硅粉的粒度不大于80μm。优选地,所述碳粉和硅粉的纯度不低于99.99%。
可选地,所述步骤2)的混合料进行高温反应包括下述步骤:①在真空度不大于1×10 ‐3mbar和温度1200‐1600℃反应不小于5h,即制得高纯β碳化硅粉料。
优选地,所述步骤2)的混合料进行高温反应的条件为:①在真空度不大于1×10 ‐4mbar和温度1300‐1500℃反应5‐15h,即制得高纯β碳化硅粉料。
可选地,所述步骤2)的混合料进行高温反应还包括:②在步骤①的温度下充入惰性气体至800‐1000mbar,升高温度至1800‐2400℃,反应至少10h,即制得高纯α碳化硅粉料。
优选地,所述步骤2)的混合料进行高温反应的条件为:在步骤①的温度下充入惰性气体至800‐1000mbar,升高温度至1800‐2300℃,反应至少10h‐40h,即制得高纯α碳化硅粉料。
可选地,所述步骤1)将碳粉、硅粉和糖类混合制得混合料的混合时间不低于3h。进一步地,所述步骤1)将碳粉、硅粉和糖类混合制得混合料的混合时间的下限选自5h、10h、15h、20h或25h,上限选自5h、10h、15h、20h或25h。更进一步地,所述步骤1)将碳粉、硅粉和糖类混合制得混合料的混合时间为3h‐25h。
优选地,所述惰性气体为氩气和/或氦气。
作为一种实施方式,所述的提高碳化硅粉料产率的方法包括下述步骤:
1)提供高纯硅粉,高纯碳粉和高纯蔗糖;其中,所使用的高纯硅粉、高纯碳粉和高纯蔗糖粒度都小于100um,纯度高于99.99%;
将高纯碳粉、高纯硅粉与高纯蔗糖在混料机中进行混合,混合时间为3‐25h,得到混合均匀的混合料;其中,碳粉与硅粉质量比为0.85‐1.15,高纯蔗糖质量占碳硅粉总质量的3%‐10%;
2)①将步骤1)所述的混合料置于石墨坩埚中,石墨坩埚与保温组装后置于电磁加热炉中,将设备抽真空使真空度达到1×10 ‐4mbar,升温至1200‐1500℃进行合成反应,反应持续5‐15h,制得到高纯α碳化硅粉料;
②在步骤①所述温度下注入高纯氩气或/或氦气至800‐1000mbar,缓慢升温至1800‐2300℃进行转化反应,反应合成时间10‐40h,制得到高纯β碳化硅粉料。
作为另一种实施方式,将高纯碳粉、高纯硅粉与高纯蔗糖后在真空条件下加热至150‐180℃,使糖类融化为黏稠液体,再冷却至常温,得到 块状原料;将该块状原料投入晶体炉内进行长晶。使用该填料方式可以阻止制备碳化硅粉料的反应前期的碳粉和硅粉分层,促使反应进行的更完全,从而提高碳化硅粉料的产率。
本申请中所述的碳化硅粉料包括高纯α碳化硅粉料和高纯β碳化硅粉料。
本申请的有益效果包括但不限于:
1、本申请的提高碳化硅粉料产率的方法通过加入颗粒状糖类,在反应前期糖类熔化变为粘稠液体阻碍高纯碳粉与高纯硅粉分层,使高纯碳粉与硅粉充分反应,从而提高碳化硅产率,其中的糖类如高纯蔗糖。
2、本申请的提高碳化硅粉料产率的方法中的糖类由C、H、O组成,在接近碳粉和硅粉反应温度时,糖类分解,杂质可通过抽真空除去,确保不引入新的杂质,其中的糖类如高纯蔗糖。
3、本申请的提高碳化硅粉料产率的方法无需改变其它工艺,无需额外设备,仅需在混料过程中加入颗粒状糖类,工艺简单,无额外成本。
4、本申请的提高碳化硅粉料产率的方法中的糖类如高纯蔗糖高温分解后残余的焦炭也可作为碳源参与反应,而高纯蔗糖价格远低于高纯碳粉,可以降低制备碳化硅粉料的成本。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的涉及的原料等均通过商业途径购买。
实施例1 碳化硅粉1#—5#、对比碳化硅粉D1#—D4#的制备
1)提供高纯硅粉,高纯碳粉和高纯蔗糖;其中,所使用的高纯硅粉、高纯碳粉和高纯蔗糖粒度都小于100um,纯度高于99.99%;
将高纯碳粉、高纯硅粉与高纯蔗糖在混料机中进行混合,混合时间 为3‐25h,得到混合均匀的混合料;其中,碳粉与硅粉质量比为0.7‐1.3:1,碳粉和硅粉总质量与高纯蔗糖的质量比为1:0.02‐0.12;
2)①将步骤1)所述的混合料置于石墨坩埚中,石墨坩埚与保温组装后置于电磁加热炉中,将设备抽真空使真空度不大于1×10 ‐3mbar,升温至1200‐1600℃进行合成反应,反应至少5h;
②在步骤①所述温度下充入惰性气体至800‐1000mbar,缓慢升温至1800‐2400℃进行转化反应,反应合成时间至少10h,制得到高纯碳化硅粉料。
按照上述制备方法制备碳化硅粉料,与上述制备方法不同的具体的实施参数如表1所示,分别制得碳化硅粉1#、碳化硅粉2#、碳化硅粉3#、碳化硅粉4#、碳化硅粉5#、对比碳化硅粉D1#、对比碳化硅粉D2#、对比碳化硅粉D3#和对比碳化硅粉D4#;其中,碳粉、硅粉和糖类的纯度大于99.99%;所述惰性气体为高纯气;所述碳粉、硅粉和糖类的粒径是均匀的或非均匀的,例如所述的“粒径小于100μm”是指最大粒径小于100μm。
表1
Figure PCTCN2018123720-appb-000001
Figure PCTCN2018123720-appb-000002
实施例的制备方法制备的碳化硅粉1#‐5#的产率范围为58.9‐73.0%,制备的碳化硅粉颜色分布均匀,除近坩埚壁处部分粉料碳化外,无其它黑料。对比例制备的碳化硅粉的产率范围为42.1‐62.0%,碳化硅粉除近坩埚壁处部分粉料碳化外,有不均匀分布的黑料、灰料,这些黑料、灰料降低了碳化硅粉的产率,并使产品质量下降。本申请制备碳化硅粉时添加糖类可有效的提高碳化硅粉的产率,并且使用该方法制备的碳化硅粉的纯度高。
以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种提高碳化硅粉料产率的方法,其特征在于,包括下述步骤:
    1)将碳粉、硅粉和糖类混合制得混合料;
    2)将混合料进行高温反应,制得高纯碳化硅粉料;
    所述糖类选自单糖、双糖和低聚糖中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,所述糖类为固态颗粒。
  3. 根据权利要求1所述的方法,其特征在于,所述糖类为粒度不大于100μm的固态颗粒。
  4. 根据权利要求1所述的方法,其特征在于,所述糖类的纯度不低于99%。
  5. 根据权利要求1所述的方法,其特征在于,所述糖类选自蔗糖、果糖、葡萄糖和异麦芽低聚糖中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,所述糖类为蔗糖。
  7. 根据权利要求1所述的方法,其特征在于,所述碳粉和硅粉的质量总和与糖类的质量比1:0.02‐0.12。
  8. 根据权利要求7所述的方法,其特征在于,所述碳粉和硅粉质量总和与糖类的质量比1:0.03‐0.1。
  9. 根据权利要求1所述的方法,其特征在于,所述碳粉和硅粉摩尔比0.7‐1.3:1。
  10. 根据权利要求9所述的方法,其特征在于,所述碳粉和硅粉的摩尔比0.85‐1.15:1。
  11. 根据权利要求1所述的方法,其特征在于,所述碳粉和硅粉的粒度不大于100μm,所述碳粉和硅粉的纯度不低于99%。
  12. 根据权利要求1所述的方法,其特征在于,所述步骤2)的混合 料进行高温反应包括下述步骤:①在真空度不大于1×10 ‐3mbar和温度1200‐1600℃反应不小于5h,即制得高纯β碳化硅粉料。
  13. 根据权利要求12所述的方法,其特征在于,所述步骤2)的混合料进行高温反应的条件为:①在真空度不大于1×10 ‐4mbar和温度1300‐1500℃反应5‐15h,即制得高纯β碳化硅粉料。
  14. 根据权利要求12所述的方法,其特征在于,所述步骤2)的混合料进行高温反应还包括:②在步骤①的温度下充入惰性气体至800‐1000mbar,升高温度至1800‐2400℃,反应至少10h,即制得高纯α碳化硅粉料。
  15. 根据权利要求14所述的方法,其特征在于,所述步骤2)的混合料进行高温反应的条件为:在步骤①的温度下充入惰性气体至800‐1000mbar,升高温度至1800‐2300℃,反应至少10h‐40h,即制得高纯α碳化硅粉料。
PCT/CN2018/123720 2018-11-23 2018-12-26 一种提高碳化硅粉料产率的方法 WO2020103279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811402978.5A CN109502590B (zh) 2018-11-23 2018-11-23 一种提高碳化硅粉料产率的方法
CN201811402978.5 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103279A1 true WO2020103279A1 (zh) 2020-05-28

Family

ID=65749689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123720 WO2020103279A1 (zh) 2018-11-23 2018-12-26 一种提高碳化硅粉料产率的方法

Country Status (2)

Country Link
CN (1) CN109502590B (zh)
WO (1) WO2020103279A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502590B (zh) * 2018-11-23 2020-07-03 山东天岳先进材料科技有限公司 一种提高碳化硅粉料产率的方法
CN112010311B (zh) * 2020-06-09 2022-11-01 北京世纪金光半导体有限公司 用于高纯碳化硅粉料的一种预制料处理方法
CN111704139A (zh) * 2020-06-29 2020-09-25 哈尔滨科友半导体产业装备与技术研究院有限公司 一种高纯碳化硅粉制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596802A (zh) * 2009-08-26 2012-07-18 Lg伊诺特有限公司 用于制备碳化硅粉体的系统和方法
CN102701208A (zh) * 2012-06-21 2012-10-03 上海硅酸盐研究所中试基地 高纯碳化硅粉体的高温固相合成方法
CN103628141A (zh) * 2013-12-11 2014-03-12 中国电子科技集团公司第二研究所 一种SiC单晶晶体质量均匀化方法
WO2017180083A1 (ru) * 2016-04-15 2017-10-19 Андрей ЦЫБА Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации
CN108483447A (zh) * 2018-04-28 2018-09-04 北京科技大学 一种微纳米级球形碳化硅材料的制备方法
CN109502590A (zh) * 2018-11-23 2019-03-22 山东天岳先进材料科技有限公司 一种提高碳化硅粉料产率的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554897B2 (en) * 2000-09-06 2003-04-29 Silbid Ltd. Method of producing silicon carbide
CN101177269B (zh) * 2007-12-13 2011-05-04 复旦大学 一种介孔结构高比表面碳化硅材料及其制备方法
CN107963631A (zh) * 2017-12-12 2018-04-27 宁波爱克创威新材料科技有限公司 纳米碳化硅及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596802A (zh) * 2009-08-26 2012-07-18 Lg伊诺特有限公司 用于制备碳化硅粉体的系统和方法
CN102701208A (zh) * 2012-06-21 2012-10-03 上海硅酸盐研究所中试基地 高纯碳化硅粉体的高温固相合成方法
CN103628141A (zh) * 2013-12-11 2014-03-12 中国电子科技集团公司第二研究所 一种SiC单晶晶体质量均匀化方法
WO2017180083A1 (ru) * 2016-04-15 2017-10-19 Андрей ЦЫБА Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации
CN108483447A (zh) * 2018-04-28 2018-09-04 北京科技大学 一种微纳米级球形碳化硅材料的制备方法
CN109502590A (zh) * 2018-11-23 2019-03-22 山东天岳先进材料科技有限公司 一种提高碳化硅粉料产率的方法

Also Published As

Publication number Publication date
CN109502590B (zh) 2020-07-03
CN109502590A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2020103279A1 (zh) 一种提高碳化硅粉料产率的方法
CN110055587B (zh) 一种高纯石墨坩埚及高质量碳化硅单晶制备方法
CN109502589A (zh) 一种制备高纯碳化硅粉料的方法
CN107955970B (zh) 一种高质量氮化铝单晶的生长方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN108557788B (zh) 一种低能耗的黑磷单晶制备方法
CN109400123B (zh) 一种细晶氧化铝陶瓷及其制备方法和应用
CN108383530B (zh) 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
WO2020103280A1 (zh) 一种高纯碳化硅粉及其制备方法
CN111138207A (zh) 一种直拉单晶硅炉用石墨热场材料制备方法
CN109627050B (zh) 一种石英坩埚内表面涂层及其制备方法
CN107245759A (zh) 一种铈离子掺杂多组分石榴石结构闪烁晶体的生长方法
CN112456971A (zh) 一种氧化镍基陶瓷靶材材料的冷等静压成型制备方法
CN108675301B (zh) 一种利用气固法制备碳化硼的方法
CN109336150A (zh) 一种用于导热硅胶的大颗粒a-氧化铝微粉
CN104389021A (zh) 非化学计量比钛酸镧多晶镀膜材料及其生长技术
CN113788480B (zh) 一种高纯碳化硅制备方法及对应的高纯碳化硅
CN111575801B (zh) 一种制备方法和晶片生长原料
CN111847458B (zh) 一种高纯度、低成本二硅化钼的制备方法
CN103387231B (zh) 一种β-SiC微粉和晶须的合成方法
CN118183727B (zh) 一种孔径均匀分布的多孔碳材及其制备方法
CN118206392B (zh) 一种高断裂韧性的多孔碳纤维材料及其制备方法
CN111057892A (zh) 颗粒增强α-Al2O3/ZrB2增强铝基复合材料的原位合成方法
CN117305985B (zh) 石墨坩埚、其制备方法及碳化硅单晶长晶方法
CN115321584B (zh) 一种制备β-Ga2O3微米带的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940755

Country of ref document: EP

Kind code of ref document: A1