WO2017180083A1 - Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации - Google Patents

Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации Download PDF

Info

Publication number
WO2017180083A1
WO2017180083A1 PCT/UA2017/000043 UA2017000043W WO2017180083A1 WO 2017180083 A1 WO2017180083 A1 WO 2017180083A1 UA 2017000043 W UA2017000043 W UA 2017000043W WO 2017180083 A1 WO2017180083 A1 WO 2017180083A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
sic
input
furnace
output
Prior art date
Application number
PCT/UA2017/000043
Other languages
English (en)
French (fr)
Inventor
Андрей ЦЫБА
Александр КАРПЛЮК
Павел КУЗЕМА
Original Assignee
Андрей ЦЫБА
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей ЦЫБА filed Critical Андрей ЦЫБА
Publication of WO2017180083A1 publication Critical patent/WO2017180083A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B

Definitions

  • the invention relates to the field of microelectronics, namely the production of powder materials for the manufacture of semiconductor elements, a variety of tools, composite materials, drilling equipment and the like.
  • the essential features of the method that is claimed are those according to which silicon monoxide and sugar are mixed and ground in a certain percentage in a mixer, the mixture is heated in an oven and the mixture is dried, carbonized and SiC synthesized in a non-oxidizing atmosphere of gases and / or vacuum.
  • the mixture is loaded into a crucible, heated in an oven, and the mixture is dried, carbonized, and SiC synthesized in a non-oxidizing atmosphere of gases and / or vacuum, the synthesis is controlled by adjusting the introduction of the process gas and / or gas, which is the product of the synthesis reaction, and / or the magnitude of the vacuum.
  • the essential features of the method that is claimed are those according to which silicon monoxide and sugar are mixed and ground in a certain percentage in a humid environment in a mixer, the mixture is heated in an oven and the mixture is dried, carbonized and SiC synthesized in a non-oxidizing atmosphere of gases and / or vacuum.
  • the invention is based on the task of improving the known method, in which by technological changes to improve the homogenization and structuring of a mixture of silicon monoxide and sugar, thereby facilitating the reaction between these reagents.
  • SiC powder (publ. US Co 2012201735 (A1), B01J 19/00, C01B 31/36), which contains loaders of silicon sources, including silicon monoxide, the outputs of which are connected to the first input of the mixer in the form ball mills, loaders of carbon sources, including sugar, the outputs of which are connected to another input of the mixer.
  • Mixer connected in series with the evaporator, carbonization furnace and crucible of the SiC synthesis furnace, which is configured to heat treat the reaction mixture in a non-oxidizing atmosphere of gases and / or vacuum in the range from 0.03 torr to 0.5 torr and in the temperature range from 1300 ° C to 1900 ° C.
  • the silica loader the output of which is connected to the first input of the mixer with the grinding function
  • the sugar loader the output of which is connected to the second input of the mixer, which is connected in series with the evaporator, carbonization furnace and SiC synthesis furnace which is configured to heat treat the reaction mixture in a non-oxidizing atmosphere of gases and / or vacuum.
  • a well-known industrial complex for the production of SiC powder (publ. KR Ho 20130000858 (A), C01B 31/36, C04B 35/565), selected as the closest analogue, which contains the sources of silicon sources, including silicon monoxide, the outputs of which are connected with the first input of the mixer in the form of a wet ball mill, loaders of carbon sources, including sugar, the outputs of which are connected to another input of the mixer.
  • the mixer is connected in series with the evaporator, carbonization furnace and crucible of the SiC synthesis furnace, which is configured to heat treat the reaction mixture in a non-oxidizing atmosphere of gases and / or vacuum through communication with the unit for controlling the composition and flow of the mixture of process gases, as well as the magnitude of the vacuum.
  • the silica loader the output of which is connected to the first input of the mixer with the wet grinding function
  • the sugar loader the output of which is connected to the second input of the mixer, which is connected in series with the evaporator, carbonization furnace and synthesis furnace SiC, which is configured to heat treat the reaction mixture in a non-oxidizing atmosphere of gases and / or vacuum.
  • a disadvantage of the known complex is that of the previous analogue.
  • the basis of the invention is the task of improving the known complex, in which by constructive changes to improve the conditions for the homogenization and structuring of a mixture of silicon monoxide and sugar, thereby facilitating the reaction between these reagents.
  • the proportion of sugar in the input components prevails from the calculation of obtaining after synthesis SiC nanopowder with a minimal admixture of carbon, which is annealed in a decarbonization furnace in an oxidizing atmosphere.
  • part of the nanopowder of the SiO-C nanocomposite which is obtained by carbonizing the mixture in the temperature range from 700 ° C to 900 ° C, is subjected to coagulation with the formation of agglomerates of the SiO-C nanocomposite.
  • the mixing of the input components is carried out in a period of time from 10 minutes up to 50 minutes
  • the degree of purity of silicon monoxide, sugar and water is not less than 99.2.
  • the industrial production complex of SiC nanopowder which contains a silica loader, the output of which is connected to the first input of the mixer with the wet grinding function, a sugar loader, the output of which is connected to the second input of the mixer, which is connected in series with the evaporator, carbonization furnace and synthesis furnace SiC, which is adapted to heat treat the reaction mixture in a non-oxidizing atmosphere of gases and / or vacuum
  • the third inlet of the mixer is connected to the outlet of the deionized and electro-activated water
  • the mixer contains a magnetostrictor and is connected by the fourth input to the output of the ultrasonic generator
  • the evaporator is made as a microwave oven
  • the output of the SiC synthesis furnace is connected to the input of the decarbonization furnace.
  • the carbonization furnace by its output is additionally connected to the input of the coagulator of the obtained nanopowder of the SiO-C nanocomposite.
  • the output of the decarbonization furnace is connected to the input of the first vacuum packaging unit, the output of the coagulator is connected to the input of another vacuum packaging unit.
  • all furnaces are configured to mix the reaction mixture
  • all elements of the production chain are connected by two-way communication with the control unit.
  • the electric polarization which is special for each component of the colloidal solution, helps to maintain the mutual orientation of the heterogeneous particles of the structured mixture when they are mixed and then fed to the drying operation.
  • This treatment together with constant mixing in all technological operations, which gives an additional positive effect, preserves nanosized particles of the reaction mixture, increases the contact area of the reactants, accelerates and facilitates the reaction between the synthesis reagents, reduces the maximum carbonization temperature.
  • FIG. 1 shows a block diagram of a complex for the industrial production of SiC nanopowders and SiO-C nanocomposite, in which the method is claimed.
  • FIG. Figure 2 shows a snapshot of the particles of the obtained SiO-C nanocomposite made using a transmission electron microscope.
  • FIG. Figure 3 shows: a - a photograph of the particles of the obtained SiC nanopowder, made using a scanning electron microscope, b - an X-ray diffraction pattern of this nanopowder.
  • FIG. Figure 4 shows: a - size distribution of agglomerates of nanoparticles of the obtained SiC nanopowder, b - size distribution of nanoparticles of the obtained SiC nanopowder by size obtained by laser diffraction.
  • the complex comprises a silica monoxide loader 1 and sugar loader 2, which are connected to a mixer 3, to which a block 4 of deionized and electro-activated water and an ultrasonic generator 5 are connected.
  • the mixer 3 contains a magnetostrictor and is connected in series with the evaporator 6, designed as a microwave oven, a carbonization furnace 7, a SiC synthesis furnace 8, a decarbonization furnace 9, and a vacuum packaging unit 10.
  • the carbonization furnace 7 by its output is additionally connected in series with the coagulator 1 1 SiO-C and the vacuum packaging unit 12.
  • the SiC synthesis furnace 8 is made tubular with the possibility of heat treatment of the reaction mixture in a non-oxidizing atmosphere of gases and / or vacuum. All furnaces are configured to mix the reaction mixture. All elements of the production chain are connected by two-way communication with the control unit, which also has control functions and which is not shown in the figure.
  • a product manufacturing program is selected, the silicon monoxide and sugar are delivered to loader 1, loader 2, and the process is started in automatic mode. Silicon monoxide from loader 1 and sugar from loader 2 are fed to mixer 3, which receives deionized and electroactivated water from block 4.
  • the degree of purity of silicon monoxide, sugar, and water is not less than 99.2.
  • SiO-C nanocomposite nanopowder enters SiC synthesis furnace 8, in which crystalline water is removed and SiC nanopowder is synthesized in a temperature range from 1300 ° C to 1500 ° C, in a non-oxidizing atmosphere of gases and / or vacuum. From synthesized SiC nanopowder in a decarbonization furnace 9 removes carbon residues in the temperature range from 700 ° C to 900 ° C and is packaged in a vacuum packaging unit 10. In accordance with the control unit program, part of the nanopowder of the SiO-C nanocomposite from the carbonization furnace 7 enters the SiO-C coagulator 1 1, where agglomerates are formed that are more convenient for use and which are packaged in the vacuum packaging unit 12.
  • the control unit monitors all technological processes, and also controls the set sample size of the output quality.
  • the purity of the obtained nanopowders is 99.9 and higher. This confirms their high quality, which is also confirmed by the research results shown in Figures 2-4.
  • the degree of useful conversion of the input components is close to the best value achieved in the prototype.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Способ промышленного производства нанопорошков SiC и нанокомпозита SiO-C высокого качества и комплекс для его реализации относятся к отрасли микроэлектроники, производства материалов и инструмента. Монооксид кремния и сахар смешивают и измельчают в деионизированной и электроактивированной воде под действием ультразвуковых волн. Проводят термообработку смеси с получением нанопорошка SiC. После карбонизации часть полученного нанопорошка нанокомпозита SiO-C подвергают коагуляции с получением соответсвующих агломератов. Комплекс содержит загрузчики (1, 2), смеситель (3), блок (4) деионизированной и электроактивированной воды, ультразвуковой генератор (5), испаритель (6), печь карбонизации (7), печь синтеза (8), печь декарбонизации (9), блок (10) упаковки, а также блок управления.

Description

Способ промышленного производства нанопорошков SiC
и нанокомпозита SiO-C высокого качества и
комплекс для его реализации
[0001] Изобретение относится к отрасли микроэлектроники, а именно производства порошковых материалов для изготовления полупроводниковых элементов, разнообразного инструмента, композитных материалов, бурильного оборудования и тому подобное.
[0002] Известный способ промышленного производства порошка SiC (публ. US JNb 2012201735 (Al), B01J 19/00, C01B 31/36), по которому источники кремния, среди которых монооксид кремния, и источники углерода, среди которых сахар, смешивают и измельчают в определенном процентном соотношении в смесителе. Смесь загружают в тигель, нагревают в печи и производят высушивание, карбонизацию смеси и синтез SiC в неокислительной атмосфере газов и/или вакууме в диапазоне температур от 1300 °С до 1700°С в диапазоне времени от 30 мин. до 7 час.
[0003] Совпадают с существенными признаками способа, который заявляется, признаки, по которым монооксид кремния и сахар смешивают и измельчают в определенном процентном соотношении в смесителе, нагревают смесь в печи и производят высушивание, карбонизацию смеси и синтез SiC в неокислительной атмосфере газов и/или вакууме.
[0004] Недостаток известного способа состоит в недостаточной гомогенизации и структурирования смеси монооксида кремния и сахара, в результате чего затрудняется реакция между этими реагентами. [0005] Известный способ промышленного производства порошка SiC (публ. KR tfs 20130000858 (А), С01В 31/36, С04В 35/565), выбранный как ближайший аналог, по которому источники кремния, среди которых монооксид кремния, и источники углерода, среди которых сахар, смешивают и измельчают в определенном процентном соотношении во влажной среде в смесителе. Смесь загружают в тигель, нагревают в печи и производят высушивание, карбонизацию смеси и синтез SiC в неокислительной атмосфере газов и/или вакууме, синтез регулируют путем регулирования введения технологического газа и/или газа, который есть продуктом реакции синтеза, и/или величиной вакуума.
[0006] Совпадают с существенными признаками способа, который заявляется, признаки, по которым монооксид кремния и сахар смешивают и измельчают в определенном процентном соотношении во влажной среде в смесителе, нагревают смесь в печи и производят высушивание, карбонизацию смеси и синтез SiC в неокислительной атмосфере газов и/или вакууме.
[0007] Недостаток известного способа такой, как у предыдущего аналога.
[0008] В основу изобретения поставлена задача усовершенствования известного способа, в котором путем технологических изменений улучшить гомогенизацию и структурирование смеси монооксида кремния и сахара, в результате чего облегчить реакцию между этими реагентами.
[0009] Известный комплекс промышленного производства порошка SiC (публ. US Ко 2012201735 (А1), B01J 19/00, С01В 31/36), который содержит загрузчики источников кремния, среди которых монооксид кремния, выходы которых связаны с первым входом смесителя в виде шаровой мельницы, загрузчики источников углерода, среди которых сахар, выходы которых связаны с другим входом смесителя. Смеситель связан последовательно с испарителем, печью карбонизации и тиглем печи синтеза SiC, которая выполнена с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме в диапазоне от 0,03 торр до 0,5 торр и в диапазоне температур от 1300 °С до 1900 °С.
[0010] Совпадают с существенными признаками комплекса, который заявляется, загрузчик монооксид кремния, выход которого связан с первым входом смесителя с функцией измельчения, загрузчик сахара, выход которого связан со вторым входом смесителя, который связан последовательно с испарителем, печью карбонизации и печью синтеза SiC, которая выполнена с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме.
[ООН] Недостаток известного комплекса состоит в недостаточном обеспечении условий для гомогенизации и структурирования смеси монооксида кремния и сахара, в результате чего затрудняется реакция между этими реагентами.
[0012] Известный комплекс промышленного производства порошка SiC (публ. KR Хо 20130000858 (А), С01В 31/36, С04В 35/565), выбранный как ближайший аналог, который содержит загрузчики источников кремния, среди которых монооксид кремния, выходы которых связаны с первым входом смесителя в виде шаровой мельницы мокрого помола, загрузчики источников углерода, среди которых сахар, выходы которых связаны с другим входом смесителя. Смеситель связан последовательно с испарителем, печью карбонизации и тиглем печи синтеза SiC, которая выполнена с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме через связь с блоком регулирования состава и потока смеси технологических газов, а также величины вакуума. [0013] Совпадают с существенными признаками комплекса, который заявляется, загрузчик монооксида кремния, выход которого связан с первым входом смесителя з функцией мокрого измельчения, загрузчик сахара, выход которого связан со вторым входом смесителя, который связан последовательно с испарителем, печью карбонизации и печью синтеза SiC, которая выполнена с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме.
[0014] Недостаток известного комплекса такой, как у предыдущего аналога.
[0015] В основу изобретения поставлена задача усовершенствования известного комплекса, в котором путем конструктивных изменений улучшить условия для гомогенизации и структурирования смеси монооксида кремния и сахара, в результате чего облегчить реакцию между этими реагентами.
[0016] В способе промышленного производства нанопорошка SiC, по которому монооксид кремния и сахар смешивают и измельчают в определенном процентном соотношении во влажной среде в смесителе, нагревают смесь в печи и производят высушивание, карбонизацию смеси и синтез SiC в неокислительной атмосфере газов и/или вакууме, согласно изобретению смешивание и измельчение монооксида кремния и сахара проводят в деионизованной и электроактивированной воде под действием ультразвуковых волн, смесь высушивают в микроволновой печи, осуществляют карбонизацию смеси, синтез SiC и декарбонизацию смеси, при этом смесь во всех печах перемешивают.
[0017] Кроме того, во входных компонентах доля сахара преобладает из расчета получения после синтеза нанопорошка SiC с минимальной примесью углерода, который отжигают в печи декарбонизации в окислительной атмосфере. [0018] Кроме того, часть нанопорошка нанокомпозита SiO-C, который получают на операции карбонизации смеси в диапазоне температур от 700 °С до 900 °С, подвергают коагуляции с образованием агломератов нанокомпозита SiO-C.
[0019] Кроме того, смешивание входных компонент проводят в промежутке времени от 10 мин. до 50 мин.
[0020] Кроме того, степень чистоты монооксида кремния, сахара и воды не меньше чем 99,2.
[0021] В комплексе промышленного производства нанопорошка SiC, который содержит загрузчик монооксида кремния, выход которого связан с первым входом смесителя з функцией мокрого измельчения, загрузчик сахара, выход которого связан со вторым входом смесителя, который связан последовательно с испарителем, печью карбонизации и печью синтеза SiC, которая выполнена с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме, согласно изобретению третий вход смесителя связан с выходом блока деионизованной и электроактивированной воды, смеситель содержит магнитостриктор и связан четвертым входом с выходом ультразвукового генератора, испаритель выполнен как микроволновая печь, выход печи синтеза SiC связан с входом печи декарбонизации.
[0022] Кроме того, печь карбонизации своим выходом дополнительно связана с входом коагулятора полученного нанопорошка нанокомпозита SiO-C.
[0023] Кроме того, выход печи декарбонизации связан с входом первого блока вакуумной упаковки, выход коагулятора связан с входом другого блока вакуумной упаковки. б
[0024] Кроме того, все печи выполнены с возможностью перемешивания реакционной смеси, все элементы производственной цепочки связаны двусторонней связью с блоком управления.
[0025] Совокупность основных признаков предлагаемого способа обеспечивает решение поставленной задачи. Как известно, ультразвуковые волны и стимулированные ими кавитационные явления являются наиболее эффективными диспергаторами твердых частиц коллоидного раствора, каким является смесь порошка монооксида кремния в концентрированном растворе сахара. Основа изобретательского решения состоит в усилении действия ультразвуковой обработки этой смеси, при помощи которой образуются электрические микрополя, оптимально подготовленной деионизованной и электроактивированной водой, что способствует большей поляризации только что измельченных частиц, быстрой гомогенизации и структурированию смеси. При этом электрическая поляризация, оторая является особенной для каждой составляющей коллоидного раствора, способствует сохранению взаимной ориентации разнородных частиц структурированной смеси при их перемешивании и при дальнейшей подаче на операцию высушивания. Такая обработка вместе с постоянным перемешиванием на всех технологических операциях, которое дает дополнительный положительный эффект, сохраняет наноразмеры частиц реакционной смеси, увеличивает площадь контактирования реагентов, ускоряет и облегчает реакцию между реагентами синтеза продукции, уменьшает максимальную температуру карбонизации.
[0026] Совокупность основных признаков предлагаемого комплекса обеспечивает решение поставленной задачи. Элементы производственной цепочки реализуют условия для гомогенизации и структурирования смеси монооксида кремния и сахара, в результате чего облегчается
ИСПРАВЛЕННЫЙ ЛИСТ (ПРАВИЛО 91) ISA/UA реакция между этими реагентами. Доказательства относительно этого аналогичные тем, которые приведены относительно способа.
[0027] На фиг. 1 изображено блок-схему комплекса промышленного производства нанопорошков SiC и нанокомпозита SiO-C, в котором реализован способ, который заявляется.
[0028] На фиг. 2 показан снимок частиц полученного нанокомпозита SiO-C, выполненный на просвечивающем электронном микроскопе.
[0029] На фиг. 3 показано: а - снимок частиц полученного нанопорошка SiC, выполненный на растровом электронном микроскопе, б - рентгеновскую дифрактограмму этого нанопорошка.
[0030] На фиг. 4 показано: а - распределение агломератов наночастиц полученного нанопорошка SiC по размерам, б - распределение наночастиц полученного нанопорошка SiC по размерам, которые получены методом лазерной дифракции.
[0031] Комплекс содержит загрузчик 1 монооксида кремния и загрузчик 2 сахара, которые связаны со смесителем 3, к которому подключен блок 4 деионизованной и электроактивированной воды и ультразвуковой генератор 5. Смеситель 3 содержит магнитостриктор и связан последовательно с испарителем 6, выполненным как микроволновая печь, печью 7 карбонизации, печью 8 синтеза SiC, печью 9 декарбонизации и блоком 10 вакуумной упаковки. Печь 7 карбонизации своим выходом дополнительно связана последовательно с коагулятором 1 1 SiO-C и блоком 12 вакуумной упаковки. Печь 8 синтеза SiC выполнена трубчатой с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме. Все печи выполнены с возможностью перемешивания реакционной смеси. Все элементы производственной цепочки связаны двухсторонней связью с блоком управления, который имеет также функции контроля и который на рисунке не показан.
ИСПРАВЛЕННЫЙ ЛИСТ (ПРАВИЛО 91) ISA/UA [0032] Комплекс промышленного производства нанопорошков SiC и нанокомпозита SiO-C, в котором реализован способ, который заявляется, работает таким образом.
[0033] С помощью блока управления выбирают программу изготовления продукции, обеспечивают поступление монооксида кремния и сахара к загрузчику 1, загрузчику 2 и запускают технологический процесс в автоматическом режиме. Монооксид кремния из загрузчика 1 и сахар из загрузчика 2 подают к смесителю 3, куда поступает деионизованная и электроактивированная вода из блока 4. Степень чистоты монооксида кремния, сахара и воды не меньше чем 99,2. Включают ультразвуковой генератор 5 и мешалку, которая прогоняет смесь через рабочую область магнитостриктора. Увеличвают интенсивность ультразвуковых волн, умеренно повышают температуру смеси, производят интенсивное измельчение ее частиц и создают электрические микрополя, которые усиливаются благодаря свойствам деионизованной и электроактивированной воды. В результате в смеси происходит быстрая гомогенизации и структурирования, что занимает время от 10 мин. до 50 мин. Из смесителя 3 смесь подают к испарителю 6, в котором из нее удаляют несвязанную воду при постоянном перемешивании и подают к печи 7 карбонизации, в которой происходят процессы кармелизации и карбонизации с образованием нанопорошка нанокомпозита SiO-C. Благодаря указанной обработки смеси в смесителе 3, в этом композитном материале образуются ассоциаты равномерно распределенных кремнийсодержаших и углеродных наночастиц, которые имеют высокую удельную поверхность.
[0034] Нанопорошок нанокомпозита SiO-C поступает в печь 8 синтеза SiC, в которой удаляют кристаллическую воду и проводят синтез нанопорошка SiC в диапазоне температур от 1300 °С до 1500 °С, в неокислительной атмосфере газов и/или вакууме. Из синтезированного нанопорошка SiC в печи 9 декарбонизации удаляют остатки углерода в диапазоне температур от 700 °С до 900 °С и упаковывают в блоке 10 вакуумной упаковки. В соответствии с программой блока управления, часть нанопорошка нанокомпозита SiO-C из печи 7 карбонизации поступает в коагулятор 1 1 SiO-C, где образуются агломераты, которые являются более удобными для использования и которые упаковывают в блоке 12 вакуумной упаковки. Блоком управления осуществляют контроль за всеми технологическими процессами, а также контролируют установленную величину выборки качество продукции на выходе. Чистота полученных нанопорошков составляет 99,9 и выше. Это подтверждает их высокое качество, что также подтверждено результатами исследований, показанными на рисунках 2-4. При этом степень полезного преобразования входных компонент близок к лучшей величине, достигнутой в прототипе.
[0035] Предлагаемый способ промышленного производства нанопорошков SiC и нанокомпозита SiO-C и комплекс для его реализации успешно прошли экспериментальные испытания на макетах, а основные производственные элементы - в условиях, близких к промышленному производству. Подтверждена их высокая надежность, экологичность, экономичность 1Л качество продукции.
ИСПРАВЛЕННЫЙ ЛИСТ (ПРАВИЛО 91) ISA/UA

Claims

1 Формула изобретения
1. Способ промышленного производства нанопорошка SiC, по которому монооксид кремния и сахар смешивают и измельчают в определенном процентном соотношении во влажной среде в смесителе, нагревают смесь в печи и производят высушивание, карбонизацию смеси и синтез SiC в неокислительной атмосфере газов и/или вакууме, который отличается тем, что смешивание и измельчение монооксида кремния и сахара проводят в деионизованной и электроактивированной воде под действием ультразвуковых волн, смесь высушивают в микроволновой печи, осуществляют карбонизацию смеси, синтез SiC и декарбонизацию смеси, при этом смесь во всех печах перемешивают.
2. Способ по п. 1, отличающийся тем, что во входных компонентах доля сахара преобладает из расчета получения после синтеза нанопорошка SiC с минимальной примесью углерода, который отжигают в печи декарбонизации в окислительной атмосфере.
3. Способ по п. 1 или 2, отличающийся тем, что часть нанопорошка нанокомпозита SiO-C, который получают на операции карбонизации смеси в диапазоне температур от 700 °С до 900 °С, подвергают коагуляции с образованием агломератов нанокомпозита SiO-C.
4. Способ по любому из пп. 1-3, отличающийся тем, что смешивание входных компонент проводят в промежутке времени от 10 мин. до 50 мин.
5. Способ по любому из пп. 1-4, отличающийся тем, что степень чистоты монооксида кремния, сахара и воды не меньше чем 99,2.
6. Комплекс промышленного производства нанопорошка SiC, который содержит загрузчик монооксида кремния, выход которого связан с первым входом смесителя з функцией мокрого измельчения, загрузчик сахара, выход которого связан со вторым входом смесителя, который связан последовательно с испарителем, печью карбонизации и печью синтеза SiC, которая выполнена с возможностью термообработки реакционной смеси в неокислительной атмосфере газов и/или вакууме, отличающийся тем, что третий вход смесителя связан с выходом блока деионизованной и электроактивированной воды, смеситель содержит магнитостриктор и связан четвертым входом с выходом ультразвукового генератора, испаритель выполнен как микроволновая печь, выход печи синтеза SiC связан с входом печи декарбонизации.
7. Комплекс по п. 6, отличающийся тем, что печь карбонизации своим выходом дополнительно связана с входом коагулятора полученного нанопорошка нанокомпозита SiO-C.
8. Комплекс по п. 7, отличающийся тем, что выход печи декарбонизации связан с входом первого блока вакуумной упаковки, выход коагулятора связан с входом другого блока вакуумной упаковки.
9. Комплекс по любому из пп. 6-8, отличающийся тем, что все печи выполнены с возможностью перемешивания реакционной смеси, все элементы производственной цепочки связаны двусторонней связью с блоком управления.
PCT/UA2017/000043 2016-04-15 2017-04-14 Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации WO2017180083A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201604182 2016-04-15
UA201604182 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017180083A1 true WO2017180083A1 (ru) 2017-10-19

Family

ID=60042642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2017/000043 WO2017180083A1 (ru) 2016-04-15 2017-04-14 Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации

Country Status (1)

Country Link
WO (1) WO2017180083A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394903A (zh) * 2018-04-23 2018-08-14 刘焕新 一种纳米级碳化硅微粉的制备方法
WO2020103279A1 (zh) * 2018-11-23 2020-05-28 山东天岳先进材料科技有限公司 一种提高碳化硅粉料产率的方法
CN113979439A (zh) * 2021-11-30 2022-01-28 陕西科技大学 一种Si5C3微纳米材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199953A (en) * 1967-05-19 1970-07-22 Laporte Chemical Silicon Carbide
KR960014907B1 (ko) * 1993-12-23 1996-10-21 한국원자력연구소 탄화규소 휘스커 제조방법
US20120201735A1 (en) * 2009-08-26 2012-08-09 Lg Innotek Co., Ltd. System and method for manufacturing silicon carbide pulverulent body
KR20130023976A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 탄화규소 분말 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199953A (en) * 1967-05-19 1970-07-22 Laporte Chemical Silicon Carbide
KR960014907B1 (ko) * 1993-12-23 1996-10-21 한국원자력연구소 탄화규소 휘스커 제조방법
US20120201735A1 (en) * 2009-08-26 2012-08-09 Lg Innotek Co., Ltd. System and method for manufacturing silicon carbide pulverulent body
KR20130023976A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 탄화규소 분말 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATAPATHY L.N.: "Microwave synthesis of phase-pure, fine silicon carbide powder", MATERIALS RESEARCH BULLETIN, vol. 40, 2005, pages 1871 - 1882, XP027715183 *
TOURADJ EBADZADEH.: "Microwave hybrid synthesis of silicon carbide nanopowders", MATERIALS CHARACTERIZATION., vol. 60, no. 1, 2009, pages 69 - 72, XP025873379 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394903A (zh) * 2018-04-23 2018-08-14 刘焕新 一种纳米级碳化硅微粉的制备方法
WO2020103279A1 (zh) * 2018-11-23 2020-05-28 山东天岳先进材料科技有限公司 一种提高碳化硅粉料产率的方法
CN113979439A (zh) * 2021-11-30 2022-01-28 陕西科技大学 一种Si5C3微纳米材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2017180083A1 (ru) Способ промышленного производства нанопорошков sic и нанокомпозита sio-c высокого качества и комплекс для его реализации
Zawrah et al. Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material
CN100453508C (zh) 化学激励燃烧合成氮化硅/碳化硅复合粉体的方法
Shiri et al. Synthesis of the CaAl2O4 nanoceramic compound using high-energy ball milling with subsequent annealing
CN102180675A (zh) 化学共沉淀碳热还原法制备γ-AlON粉末的方法
Obada et al. Effect of mechanical activation on mullite formation in an alumina-silica ceramics system at lower temperature
Kermani et al. The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering
Filipović et al. Effect of consolidation parameters on structural, microstructural and electrical properties of magnesium titanate ceramics
Abu Bakar et al. Mechanochemical synthesis of nanosized hydroxyapatite powder and its conversion to dense bodies
Li et al. Preparation of high-purity α-Si3N4 nano-powder by precursor-carbothermal reduction and nitridation
CN105776353B (zh) 硫铁化合物及其制备方法
Pa et al. Removal of iron in rice husk via oxalic acid leaching process
RU2410197C1 (ru) Способ получения композиционного материала на основе карбосилицида титана
Nayak et al. Synthesis and characterization of Si/SiO2/SiC composites through carbothermic reduction of rice husk-based silica
Wu et al. Combustion synthesis of ZrN and AlN using Si3N4 and BN as solid nitrogen sources
Nasrellah et al. New synthesis of hydroxyapatite from local phosphogypsum
Vlasova et al. Synthesis of composite AlN-AlON-Al2O3 powders and ceramics prepared by high-pressure sintering
Bezukhov et al. Features of obtaining SiAlON by the plasma-chemical method
CN1204043C (zh) 高熔点金属的细粉陶瓷复合物的合成方法
Anderson et al. Microwave initiated solid-state metathesis routes to Li 2 SiN 2
Bazhin et al. The effect of mechanical treatment on the phase formation of the synthesized material based on molybdenum disilicide
Li et al. Synthesis and thermal stability of SiC-Si3N4 composite ultrafine particles by laser-induced gas-phase reaction
Li et al. Fabrication and topchemical transformation mechanism of PbTiO3 microplatelets
KR101057177B1 (ko) 연소법을 이용한 질화알루미늄의 제조방법
Omidi et al. Effect of Mechanical Milling Treatment and Reaction Temperature on the Fabrication of Silicon Nitride

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782762

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782762

Country of ref document: EP

Kind code of ref document: A1