RU2410197C1 - Способ получения композиционного материала на основе карбосилицида титана - Google Patents

Способ получения композиционного материала на основе карбосилицида титана Download PDF

Info

Publication number
RU2410197C1
RU2410197C1 RU2009139530/02A RU2009139530A RU2410197C1 RU 2410197 C1 RU2410197 C1 RU 2410197C1 RU 2009139530/02 A RU2009139530/02 A RU 2009139530/02A RU 2009139530 A RU2009139530 A RU 2009139530A RU 2410197 C1 RU2410197 C1 RU 2410197C1
Authority
RU
Russia
Prior art keywords
titanium
powder
composite material
mechanosynthesis
hot pressing
Prior art date
Application number
RU2009139530/02A
Other languages
English (en)
Inventor
Владимир Никитович Анциферов (RU)
Владимир Никитович Анциферов
Максим Николаевич Каченюк (RU)
Максим Николаевич Каченюк
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет"
Priority to RU2009139530/02A priority Critical patent/RU2410197C1/ru
Application granted granted Critical
Publication of RU2410197C1 publication Critical patent/RU2410197C1/ru

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к способам получения композиционных материалов на основе карбосилицида титана. Может применяться для деталей, работающих в условиях экстремальных температур, повышенных нагрузок и агрессивных, ядовитых и радиоактивных сред, в химической, энергетической, нефтедобывающей и газодобывающей промышленности, в машиностроении. Порошковую смесь, состоящую из титана, карбида кремния, углерода и 3-7 мас.% наноразмерного оксида алюминия, подвергают механосинтезу в вакуумированной мельнице, после чего проводят холодное прессование и горячее прессование при 5-15 МПа.

Description

Изобретение относится к производству композиционных материалов на основе карбосилицида титана с высокой износостойкостью, работающих в условиях экстремальных температур, повышенных нагрузок и агрессивных, ядовитых и радиоактивных сред, может найти применение в порошковой металлургии, в химической, энергетической, нефтедобывающей и газодобывающей промышленности, в машиностроении.
Известно получение карбосилицида титана (Ti3SiC2) твердофазным синтезом в условиях вакуума и при избытке кремниевой составляющей. На промежуточных стадиях синтеза из материала испарением удаляют избыток элементарного кремния (Получение Ti3SiC2 / П.В.Истомин, А.В.Надуткин, Ю.И.Рябков, Б.А.Голдин // Неорганические материалы. Изд. «Наука», 2006, том 42, №3, с.292-297). Материал характеризуется размером зерна 50-200 мкм, равновесной структурой, содержанием небольшого количества примесей карбида и силицидов титана. Недостатками являются сложность получения материала с заданным содержанием примесных фаз путем испарения избытка кремниевой составляющей при вакуумно-термической обработке, необходимость применения высоких температур и давлений при компактировании порошков с равновесной структурой, а также высокочистого и, соответственно, более дорогостоящего исходного сырья для получения минимального количества примесей карбида и силицидов титана.
Известно получение материалов на основе карбосилицида титана с применением метода реакционного горячего прессования (Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 / Barsoum M.W., El-Raghy T. // J. Am. Ceram. Soc. 1996. V.79. P.1953-1956). Недостатком являются высокие температура и давление, приводящие к использованию сложного технологического оборудования, высоким энергозатратам.
В качестве ближайшего аналога заявляемому техническому решению выбран синтез 312-фаз и композитов на их основе по патенту США на изобретение №5942455, С01В 33/00, опубл. 24.08.1999 г. Процесс получения продукта включает создание смеси порошков переходного металла или его соединения, в качестве которых используют титан или гидрид титана, соединения кремния и углерода. Вторым этапом процесса получения продукта на основе карбосилицида титана является реакционное горячее прессование указанной смеси порошков, максимальная температура которого 1800°С, максимальное давление - 200 МПа. Конечный продукт содержит примесей около 5 масс.%, имеет плотность, близкую к теоретической плотности. Недостатком являются высокие температуры и давления и, следовательно, высокие энергозатраты при получении материала и сложность технологического оборудования, обеспечивающего данные режимы.
Техническим результатом заявляемого технического решения является получение композиционного материала на основе карбосилицида титана с заданным содержанием примесных фаз, низкой пористостью, повышенной твердостью и износостойкостью, с использованием недорогого легкодоступного сырья, при снижении энергозатрат.
Технический результат достигается тем, что в способе получения композиционного материала на основе карбосилицида титана, включающем создание порошковой смеси, состоящей из титана, кремния, графита или соединений, их содержащих, механосинтез порошковой смеси, горячее прессование смеси, согласно изобретению в порошковую смесь вводят наноразмерный порошок оксида алюминия 3-7 масс.%, горячее прессование проводят при давлении 5-15 МПа.
Технический результат обеспечивается за счет введения в исходную порошковую смесь порошка оксида алюминия (Al2O3) с размером частиц 20-100 нм. Введение наноразмерного порошка оксида алюминия обусловлено его высокой активностью и равномерностью распределения по границам зерен исходных порошков в процессе механосинтеза. Добавление 3÷7 масс.% наноразмерного порошка Al2O3 снижает рост зерна при горячем прессовании, а также снижает содержание примесей, уменьшающих вязкость композиционного материала, повышает твердость и износостойкость композиционного материала на основе карбосилицида титана.
Способ получения композиционного материала на основе карбосилицида титана заключается в следующем.
Исходную порошковую смесь титана (средний размер частиц 100-250 мкм), карбида кремния (средний размер частиц 2-10 мкм), графита (средний размер частиц 2-10 мкм) в мольном соотношении 3:1,25:0,75 и 3-7 масс.% порошка Al2O3 (средний размер частиц 20-100 нм) помещают в кювету планетарной мельницы совместно с мелющими шарами в соотношении 1:15 или 1:30, вакуумируют до остаточного давления менее 2 Па и подвергают механосинтезу.
Механосинтез, обеспечивающий гомогенизацию, сухое измельчение, повышение химической активности компонентов, протекание твердофазных реакций и снижение энергозатрат за счет перевода частиц порошков в высоконеравновесное состояние, проводят при частоте вращения барабана мельницы 320 об/мин в циклическом режиме с промежуточным охлаждением. Указанные параметры обеспечивают подвод к частицам энергии, необходимой для активации процессов образования новых фаз. При частоте вращения барабана мельницы менее 260 об/мин образования карбосилицида не происходит, т.к. энергии мелющих тел недостаточно для активации энергии синтеза. При частоте вращения барабана более 330 об/мин происходит интенсивный разогрев смеси порошков и ее налипание на стенки кюветы мельницы, что препятствует процессу механосинтеза. Оптимальной частоте вращения барабана 320 об/мин соответствует следующий циклический режим работы мельницы: 20-30 мин - непосредственно механосинтез при вращающемся барабане, 40-60 мин - охлаждение при неподвижном барабане. Общая продолжительность механосинтеза составляет 3 часа.
Затем проводят холодное прессование порошковой смеси при 300 МПа с последующим горячим прессованием в графитовой пресс-форме при температуре 1350-1450°С, давлении 5-15 МПа и изотермической выдержке 0,5-2 часа, в вакууме или в атмосфере инертного газа. Нагрузку прикладывают непосредственно перед началом нагрева, нагрев ведут со скоростью 10 град./мин.
С помощью изменения параметров механосинтеза и горячего прессования регулируют размер зерна, фазовый состав и плотность композиционного материала.
Общая продолжительность механосинтеза менее 1 часа приводит к укрупнению размера зерна и снижению плотности композиционного материала, а более 3 часов - к загрязнению материала и снижению содержания карбосилицида титана.
Регулированием температуры и давления горячего прессования изменяют фазовый состав и плотность композиционного материала. Проведение горячего прессования при температуре ниже 1400°С приводит к снижению плотности материала и к увеличению содержания примеси карбида титана. При температуре горячего прессования более 1500°С плотность композиционного материала увеличивается, а содержание карбосилицида титана снижается. Давление горячего прессования менее 5 МПа не позволяет достичь достаточной плотности композиционного материала (более 90% от теоретической) и, следовательно, приемлемых механических свойств. При использовании давления более 15 МПа значительно возрастает сложность и стоимость технологического оборудования.
Содержание добавки наноразмерного оксида алюминия влияет на твердость, износостойкость и содержание карбосилицида титана в композиционном материале. Экспериментально установлено, что введение в композиционный материал менее 3 масс.% оксида алюминия не оказывает влияния на его механические свойства. При увеличении содержания Al2O3 от 3 до 7 масс.% твердость и износостойкость материала возрастает, а содержание примеси карбида титана падает. Полученный композиционный материал обладает износостойкостью в 1,5-5 раз выше по сравнению с износостойкостью карбида кремния. Введение более 7 масс.% оксида алюминия приводит к снижению содержания карбосилицида титана и трещиностойкости материала.
Данным способом получают композиционный материал плотностью от 4,4 до 4,6 г/см3 в зависимости от фазового состава. Экспериментально установлено влияние содержания порошка оксида алюминия на фазовый состав конечного продукта. Добавление наноразмерного порошка оксида алюминия снижает содержание примесей карбида и силицидов титана, что позволяет отказаться от использования высокочистого дорогостоящего сырья. Повышение содержания фазы Ti3SiC2 благоприятно сказывается на квазипластических свойствах материала и повышает его трещиностойкость.
Добавка наноразмерного порошка оксида алюминия замедляют рост зерна материала при горячем прессовании, что также повышает пластические свойства материала. Частицы оксида алюминия выступают в качестве дисперсно-упрочняющей фазы и повышают износостойкость композиционного материала.
Пример 1
Готовят смесь: 17,71 г порошка титана ТПП-7 фракции менее 125 мкм, 6,18 г порошка технического карбида кремния фракции менее 10 мкм, 1,11 г порошка углерода марки С-1, 0,75 г порошка Al2O3 фракции 20-100 нм. Порошковую смесь подвергают механосинтезу в планетарной мельнице «САНД» при соотношении масс мелющих шаров и порошковой смеси 30:1, в атмосфере вакуума, в циклическом режиме (20 мин - механосинтез, 40 мин охлаждение), с общей продолжительностью механосинтеза 3 ч. Полученную шихту подвергают холодному прессованию при 300 МПа, затем горячему прессованию при температуре 1400°С, давлении 15 МПа, выдержке 1 ч. В результате получают композиционный материал, содержащий 65 масс.% карбосилицида, 3 масс.% оксида алюминия и 32 масс.% карбида титана. По данным рентгенофазового анализа примеси силицидов титана отсутствуют. Плотность полученного материала составляет 4,60 г/см3 (пористость - менее 1%), твердость - 8 ГПа.
Пример 2
Готовят смесь: 17,71 г порошка титана ТПП-7 фракции менее 250 мкм, 6,18 г порошка технического карбида кремния фракции менее 10 мкм, 1,11 г порошка углерода марки С-1, 0,75 г порошка Al2O3 фракции 20-100 нм. Порошковую смесь подвергают механосинтезу в планетарной мельнице «САНД», при соотношении масс мелющих шаров и порошковой смеси 15:1, в атмосфере вакуума, в циклическом режиме (20 мин - механосинтез, 40 мин охлаждение), с общей продолжительностью механосинтеза 3 ч. Полученную шихту подвергают горячему прессованию при температуре 1450°С, давлении 5 МПа, выдержке 1 ч. В результате получают композиционный материал, содержащий 95 масс.% карбосилицида, 3 масс.% оксида алюминия и 2 масс.% карбида титана. По данным рентгенофазового анализа примеси силицидов титана отсутствуют. Плотность полученного материала составляет 4,41 г/см3 (пористость - 2,2%), твердость - 9 ГПа.
Таким образом, заявляемое изобретение позволяет получить композиционный материал на основе карбосилицида титана с заданным содержанием примеси карбида титана, низкой пористостью, повышенной твердостью и износостойкостью, с использованием недорогого сырья, при снижении энергозатарат.

Claims (1)

  1. Способ получения композиционного материала на основе карбосилицида титана, включающий создание порошковой смеси, состоящей из титана, кремния, графита или соединений, их содержащих, механосинтез порошковой смеси, холодное и горячее прессование, отличающийся тем, что в порошковую смесь вводят 3-7 мас.% наноразмерного порошка оксида алюминия, а горячее прессование проводят при давлении 5-15 МПа.
RU2009139530/02A 2009-10-26 2009-10-26 Способ получения композиционного материала на основе карбосилицида титана RU2410197C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009139530/02A RU2410197C1 (ru) 2009-10-26 2009-10-26 Способ получения композиционного материала на основе карбосилицида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009139530/02A RU2410197C1 (ru) 2009-10-26 2009-10-26 Способ получения композиционного материала на основе карбосилицида титана

Publications (1)

Publication Number Publication Date
RU2410197C1 true RU2410197C1 (ru) 2011-01-27

Family

ID=46308325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139530/02A RU2410197C1 (ru) 2009-10-26 2009-10-26 Способ получения композиционного материала на основе карбосилицида титана

Country Status (1)

Country Link
RU (1) RU2410197C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458167C1 (ru) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения порошковой композиции на основе карбосилицида титана для плазменных покрытий
RU2458168C1 (ru) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий
RU2486164C2 (ru) * 2011-07-19 2013-06-27 Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2
RU2610380C2 (ru) * 2015-07-13 2017-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения композиционного материала на основе карбосилицида титана
RU2638866C1 (ru) * 2016-06-15 2017-12-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения высокотемпературного порошкового композиционного материала на основе карбидов кремния и титана

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458167C1 (ru) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения порошковой композиции на основе карбосилицида титана для плазменных покрытий
RU2458168C1 (ru) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий
RU2486164C2 (ru) * 2011-07-19 2013-06-27 Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2
RU2610380C2 (ru) * 2015-07-13 2017-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения композиционного материала на основе карбосилицида титана
RU2638866C1 (ru) * 2016-06-15 2017-12-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения высокотемпературного порошкового композиционного материала на основе карбидов кремния и титана

Similar Documents

Publication Publication Date Title
Wan et al. Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts
KR101160140B1 (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
RU2410197C1 (ru) Способ получения композиционного материала на основе карбосилицида титана
RU2372167C2 (ru) Способ получения композиционного материала на основе карбосилицида титана
Sun et al. Ternary compound Ti3SiC2: part I. Pulse discharge sintering synthesis
CN111646799B (zh) 一种燃烧法制备Tin+1ACn材料的方法
CN111675541A (zh) 一种含碳max相材料的制备方法
Li et al. Microstructure and mechanical properties of aluminum nitride co-doped with cerium oxide via hot-pressing sintering
Yao et al. Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride
CN106517225B (zh) 一种超细M1-xTixB2粉体的制备方法
Yang et al. Effect of Si/C ratio and their content on the microstructure and properties of Si–B–C–N Ceramics prepared by spark plasma sintering techniques
Zhou et al. Fabrication of high-purity ternary carbide Ti3SiC2 by spark plasma sintering technique
WO2011011606A2 (en) Methods of forming sintered boron carbide
Turki et al. SPS parameters influence on Ti3SiC2 formation from Si/TiC: Mechanical properties of the bulk materials
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
Yang et al. Low-temperature synthesis of high-purity Ti3AlC2 by MA-SPS technique
Zou et al. Synthesis reactions for Ti3SiC2 through pulse discharge sintering TiH2/Si/TiC powder mixture
Yang et al. Synthesis of Ti3AlC2 by spark plasma sintering of mechanically milled 3Ti/xAl/2C powder mixtures
Barbakadze et al. Method of obtaining multicomponent fine-grained powders for boron carbide matrix ceramics production
Tang et al. Fine and high-performance B6. 5C-TiB2-SiC-BN composite fabricated by reactive hot pressing via TiCN–B–Si mixture
Molero et al. Ti/Ti3SiC2 (/TiC) bulk and foam composites by pyrolysis of polycarbosilane and TiH2 mixtures
CN107043260A (zh) 一种新型三元锇铼二硼化物(Os1‑xRexB2)硬质材料及其制备方法
Yaghobizadeh et al. Investigation of the effect of various parameters on the amount and morphology of nano-laminate MAX phase in Cf-C-SiC-Ti3SiC2 composite
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
RU2460706C2 (ru) Способ получения порошковой композиции на основе карбосилицида титана

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20120530