RU2486164C2 - СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2 - Google Patents

СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2 Download PDF

Info

Publication number
RU2486164C2
RU2486164C2 RU2011130145/03A RU2011130145A RU2486164C2 RU 2486164 C2 RU2486164 C2 RU 2486164C2 RU 2011130145/03 A RU2011130145/03 A RU 2011130145/03A RU 2011130145 A RU2011130145 A RU 2011130145A RU 2486164 C2 RU2486164 C2 RU 2486164C2
Authority
RU
Russia
Prior art keywords
sic
titanium
silicon carbide
carbon
layers
Prior art date
Application number
RU2011130145/03A
Other languages
English (en)
Other versions
RU2011130145A (ru
Inventor
Павел Валентинович Истомин
Владислав Эвальдович Грасс
Александр Вениаминович Надуткин
Original Assignee
Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН filed Critical Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН
Priority to RU2011130145/03A priority Critical patent/RU2486164C2/ru
Publication of RU2011130145A publication Critical patent/RU2011130145A/ru
Application granted granted Critical
Publication of RU2486164C2 publication Critical patent/RU2486164C2/ru

Links

Images

Abstract

Изобретение относится к области создания высокотемпературных конструкционных керамических материалов, а именно к способу получения керамического композита с матрицей на основе Ti3SiC2. Технический результат изобретения - упрощение формования изделий, не требующее использования специальных пресс-форм, а также исключение энергоемких процедур дообжиговой подготовки реагентов. Способ получения керамики и композиционных материалов на основе Ti3SiC2 из титана, кремния и углерода в составе карбида кремния включает укладку чередующимися слоями в виде многослойного пакета фольги титана и изометричных дисперсных частиц карбида кремния и углерода в составе высоконаполненных полимерных пленок. Многослойный пакет подвергается силовому СВС-компактированию в вакууме или в атмосфере инертного газа под механической нагрузкой 0,2 МПа или более, приложенной в направлении, перпендикулярном плоскости слоев. 6 пр., 2 ил.

Description

Изобретение относится к области создания высокотемпературных конструкционных керамических материалов, а именно к способу получения керамического композита с матрицей на основе Ti3SiC2. Керамические композиционные материалы на основе Ti3SiC2 обладают высокой электропроводностью и нечувствительностью к термоудару, что, в частности, позволяет применять их при изготовлении электротехнических изделий высокотемпературного назначения (патент US 2004/0218450 А1). Важной особенностью керамических материалов на основе Ti3SiC2 является хорошая механическая обрабатываемость, что позволяет при изготовлении изделий сложной формы использовать методы, применяемые для механической обработки металлов (фрезерование, обтачивание, сверление, пиление и т.п.). Развитие промышленного производства керамических материалов на основе Ti3SiC2 сдерживается высокой энергоемкостью и технической сложностью известных методов их получения.
Известные способы получения керамических материалов на основе Ti3SiC2 предполагают использование реакционного горячего прессования (М.W.Barsoum, Т.El-Raghy "Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2" // J. Am. Ceram. Soc. 1996, 79 [7], 1953-1956; N.F.Gao, Y.Miyamoto, D.Zhang "Dense Ti3SiC2 Prepared by Reactive HIP" // J.Mater. Sci. 1999, 34 [18], 4385-4392; Y.С.Zhou, Z.М.Sun, S.Q.Chen, Y.Zhang "In-Situ Hot Pressing / Solid-Liquid Reaction Synthesis of Dense Titanium Silicon Carbide Bulk Ceramics" // Mater. Res. Innov. 1998, 2, 142-146; А.В.Надуткин, П.В.Истомин, Ю.И.Рябков, Б.А.Голдин, А.А.Сметкин, Г.П.Швейкин "Керамические композиты на основе Ti3SiC2 для изделий сложной формы" // Конструкции из композиционных материалов 2007, 1, 50-56), в том числе силового СВС-компактирования (Y.L.Bai, X.D.Не, С.С.Zhu, X.К.Qian "Preparation of Ternary Layered Ti3SiC2 Ceramic by SHS/PHIP" // Key Eng. Mater. 2008, 368-372, 1851-1854), или других методов термобарической обработки порошковых смесей титана, кремния и углерода, или соединений, их содержащих. Использование порошков, как правило, предполагает проведение дообжиговой подготовки сырья, включающей энергоемкие процедуры дополнительного измельчения, смешивания и уплотнения. Дообжиговая прочность прессованных заготовок порошковых реакционных смесей обычно сравнительно невысока, что существенно ограничивает возможности их использования для производства крупногабаритных изделий.
Известен способ получения керамического материала на основе Ti3SiC2 (патент DE 19749050 С1, 1998). В соответствии с данным способом исходные порошки Ti и SiC смешиваются в мольном соотношении близком к 3:2, прессуются при давлении 500 МПа, после чего подвергаются термической обработке в вакууме или в атмосфере инертного газа. Термообработка проводится по трехступенчатому режиму, включающему предварительный обжиг при температуре 550-950°С в течение 15 мин, короткий (5 с) обжиг при температуре выше 950°С и финальный обжиг при температуре 600-1600°С в течение 30 мин. Недостатки способа: энергоемкость дообжиговой подготовки реакционной смеси, сложность производства крупногабаритных изделий.
Известен способ получения композиционного материала SiC/Ti3SiC2 (патент CN 101269966 А, 2008). В соответствии с данным способом исходные порошки Si и TiC с добавкой Al смешиваются в мольном соотношении 2:3:0,2-1 в течение 10 часов и подвергаются горячему прессованию в атмосфере аргона при температуре 1350-1500°С, давлении прессования 20-40 МПа, выдержке 1-4 часа. Горячее прессование проводится с использованием графитовой пресс-формы. Способ позволяет получить композиционный материал с матрицей на основе Ti3SiC2, в которой равномерно распределен тонкозернистый SiC. Недостатки способа: энергоемкость дообжиговой подготовки реакционной смеси, использование высоких давлений горячего прессования, вероятность неконтролируемого сохранения введенных добавок в составе конечного продукта, сложность производства крупногабаритных изделий.
Известен способ получения композиционного материала на основе Ti3SiC2 (патент RU 2372167 С2, 2009). В соответствии с данным способом порошковую смесь, содержащую титан, кремний, углерод, или соединения, их содержащие, подвергают механосинтезу в вакуумированной мельнице. В качестве вакуумированной мельницы используют планетарную мельницу, механосинтез проводят при массовом соотношении смеси и мелющих шаров мельницы 1:30, при частоте вращения барабана 260-330 об/мин, в прерывистом режиме. Последующее горячее прессование проводят в вакууме или в атмосфере инертного газа при температуре 1350-1450°С, давлении прессования 10-15 МПа, выдержке 0,5-3 часа. Способ позволяет получить плотный композиционный материал с высоким содержанием Ti3SiC2. Недостатки способа: техническая сложность и энергоемкость дообжиговой подготовки реакционной смеси, сложность производства крупногабаритных изделий.
Прототипом технического решения к заявляемому изобретению выбран способ синтеза 312-фаз и композитов на их основе (патент US 5942455 А, 1999). В соответствии с данным способом исходные порошки титана (или гидрида титана), карбида кремния и графита смешиваются в V-образном смесителе в течение 2 часов, прессуются при давлении 180 МПа, после чего подвергаются горячему прессованию в вакууме или в бескислородной атмосфере при температуре 1300-1600°С и давлении прессования 35-45 МПа. Горячее прессование или горячее изостатическое прессование проводится с использованием графитовой пресс-формы или трубки из стекла Pyrex, соответственно. Недостатки способа: техническая сложность и энергоемкость дообжиговой подготовки реакционной смеси, использование высоких давлений горячего прессования, сложность производства крупногабаритных изделий.
Технический результат заявляемого изобретения состоит в том, что 1) использование предлагаемого способа позволяет технически упростить процедуру формования; 2) технология предлагаемого способа не требует проведения энергоемких процедур дообжиговой подготовки реагентов; 3) техническое обеспечение предлагаемого способа не требует использования специальных пресс-форм для проведения СВС-компактирования, что существенно расширяет возможности производства крупногабаритных изделий.
Технический результат достигается тем, что для получения керамики и композиционных материалов на основе Ti3SiC2, титан в виде фольги, кремний и углерод в составе карбида кремния и углерода в виде изометричных дисперсных частиц в составе высоконаполненных полимерных пленок, укладываются чередующимися слоями в форме многослойного пакета и подвергаются силовому СВС-компактированию в вакууме или в атмосфере инертного газа под механической нагрузкой 0.2 МПа или более, приложенной в направлении перпендикулярном плоскости слоев, техническое обеспечение силового СВС-компактирования реакционной композиции не требует использования специальных пресс-форм.
Способ осуществляется следующим образом.
Титан в виде фольги, кремний и углерод в составе карбида кремния и угля в виде изометричных дисперсных частиц, наполняющих полимерные пленки, укладываются чередующимися слоями в форме многослойного пакета и подвергаются силовому СВС-компактированию в вакууме или в атмосфере инертного газа под механической нагрузкой, приложенной в направлении, перпендикулярном плоскости слоев (см., например, рис.1).
Механизм фазообразования в слоевых композициях элементов и бинарных соединений системы Ti-Si-C в целом не отличается от имеющего место в случае порошковых реакционных смесей. При соблюдении необходимых условий термообработки взаимодействие реагентов проходит в режиме самораспространяющегося высокотемпературного синтеза (СВС). При этом стадия горения сопровождается саморазогревом образца и образованием титан-кремний-углеродного расплава, при остывании которого происходит кристаллизация Ti3SiC2 и силицидов титана (TiSi2, Ti5Si3Cx), формирующих в конечном итоге матрицу керамического композиционного материала. Количественное соотношение фаз соответствует диаграмме фазовых равновесий системы Ti-Si-C (Materials Science International Team (MSIT), Y.Du, B.Huang, H.Liu, Y.Liu, Z.Pan, H.Xu "C-Si-Ti (Carbon - Silicon - Titanium)" / Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. Vol. IV/11A4: Light Metal Systems. Part 4. Eds. S. Ilyenko, G. Effenberg. SpringerMaterials - The Landolt-Bornstein Database. Berlin, New York: Springer-Verlag, 2006). Механическая нагрузка, приложенная на стадии горения, способствует уплотнению синтезируемого материала.
Пример 1. Фольга титана ВТ 1-0 (размер листа 24×24 мм, толщина 55 мкм) и полимерная пленка (размер листа 24×24 мм, толщина 135 мкм), изготовленная на основе поливинилового спирта с наполнением изометричными частицами карбида кремния (средний размер частиц SiC - 20 мкм; массовая доля SiC - 70%), укладываются в многослойный пакет как показано на рис.1. Пакет включает 28 слоев фольги титана и 29 слоев SiC-содержащей пленки. Пакет нагревают до 1340°С в условиях вакуума под механической нагрузкой 0.2 МПа. Режим термообработки включает два изотермических участка: 1) при 400°С в течение 30 минут для удаления поливинилового спирта; 2) при 1340°С в течение 15 минут для проведения синтеза. Рентгенофазовый анализ продуктов синтеза обнаруживает присутствие Ti3SiC2, TiSi2 и SiC в количествах 65 об.%, 14 об.% и 18 об.% соответственно, а также следы TiC и Ti5Si3Cx. Кажущаяся плотность полученного материала составляет 3.36 г/см3, что соответствует 80% от теоретического значения. Микроструктура характеризуется равномерным распределением частиц SiC и изолированных пор в матрице Ti3SiC2-TiSi2 (см. рис.2). Синтезированный материал представляет собой керамический композит с матрицей на основе Ti3SiC2, армированной частицами SiC.
Пример 2. Фольга титана ВТ 1-0 (размер листа 24×24 мм, толщина 55 мкм) и полимерная пленка (размер листа 24×24 мм, толщина 135 мкм), изготовленная на основе поливинилового спирта с наполнением изометричными частицами карбида кремния (средний размер частиц SiC - 20 мкм; массовая доля SiC - 70%), укладываются в многослойный пакет как показано на рис.1. Пакет включает 28 слоев фольги титана и 29 слоев SiC-содержащей пленки. Пакет подвергается термообработке в условиях вакуума под механической нагрузкой 2 МПа в режиме, описанном в Примере 1. Рентгенофазовый анализ продуктов синтеза обнаруживает присутствие Ti3SiC2, TiSi2 и SiC в количествах 43 об.%, 9 об.% и 46 об.% соответственно, а также следы TiC. Кажущаяся плотность полученного материала составляет 3.59 г/см3, что соответствует 92% от теоретического значения. Микроструктура характеризуется равномерным распределением частиц SiC и изолированных пор в матрице Ti3SiC2-TiSi2. Синтезированный материал представляет собой керамический композит с матрицей на основе Ti3SiC2, армированной частицами SiC.
Пример 3. Фольга титана ВТ 1-0 (размер листа 24×24 мм, толщина 100 мкм) и полимерная пленка (размер листа 24×24 мм, толщина 200 мкм), изготовленная на основе поливинилового спирта с наполнением изометричными частицами карбида кремния (средний размер частиц SiC - 20 мкм; массовая доля SiC - 70%), укладываются в многослойный пакет как показано на рис.1. Пакет включает 28 слоев фольги титана и 29 слоев SiC-содержащей пленки. Пакет подвергается термообработке в условиях вакуума под механической нагрузкой 3.5 МПа в режиме, описанном в Примере 1. Рентгенофазовый анализ продуктов синтеза обнаруживает присутствие Ti3SiC2, TiSi2 и SiC в количествах 83 об.%, 13 об.% и 4 об.% соответственно. Кажущаяся плотность полученного материала составляет 3.73 г/см3, что соответствует 85% от теоретического значения. Микроструктура характеризуется равномерным распределением частиц SiC и изолированных пор в матрице Ti3SiC2-TiSi2. Синтезированный материал представляет собой керамический композит с матрицей на основе Ti3SiC2, армированной частицами SiC.
Пример 4. Фольга титана ВТ 1-0 (размер листа 24×24 мм, толщина 100 мкм) и полимерная пленка (размер листа 24×24 мм, толщина 300 мкм), изготовленная на основе поливинилового спирта с наполнением изометричными частицами карбида кремния (средний размер частиц SiC - 20 мкм; массовая доля SiC - 70%), укладываются в многослойный пакет как показано на рис.1. Пакет включает 28 слоев фольги титана и 29 слоев SiC-содержащей пленки. Пакет подвергается термообработке в условиях вакуума под механической нагрузкой 3.5 МПа в режиме, описанном в Примере 1. Рентгенофазовый анализ продуктов синтеза обнаруживает присутствие Ti3SiC2, TiSi2 и SiC в количествах 72 об.%, 5 об.% и 23 об.% соответственно. Кажущаяся плотность полученного материала составляет 3.82 г/см3, что соответствует 90% от теоретического значения. Микроструктура характеризуется равномерным распределением частиц SiC и изолированных пор в матрице Ti3SiC2-TiSi2. Синтезированный материал представляет собой керамический композит с матрицей на основе Ti3SiC2, армированной частицами SiC.
Пример 5. Фольга титана ВТ 1-0 (размер листа 24×24 мм, толщина 100 мкм) и полимерная пленка (размер листа 24×24 мм, толщина 200 мкм), изготовленная на основе поливинилового спирта с наполнением изометричными частицами карбида кремния и активированного угля марки «БАУ-А» (средний размер частиц SiC - 20 мкм, размер частиц активированного угля - не более 90 мкм; массовые доли SiC и активированного угля - 66% и 4% соответственно), укладываются в многослойный пакет как показано на рис.1. Пакет включает 28 слоев фольги титана и 29 слоев SiC-C-содержащей пленки. Пакет подвергается термообработке в условиях вакуума под механической нагрузкой 3.5 МПа в режиме, описанном в Примере 1. Рентгенофазовый анализ продуктов синтеза обнаруживает присутствие Ti3SiC2, TiSi2 и SiC в количествах 69 об.%, 4 об.% и 27 об.% соответственно. Кажущаяся плотность полученного материала составляет 3.76 г/см3, что соответствует 91% от теоретического значения. Микроструктура характеризуется равномерным распределением частиц SiC и изолированных пор в матрице Ti3SiC2-TiSi2. Синтезированный материал представляет собой керамический композит с матрицей на основе Ti3SiC2, армированной частицами SiC.
Пример 6. Фольга титана ВТ 1-0 (размер листа 24×24 мм, толщина 100 мкм) и полимерная пленка (размер листа 24×24 мм, толщина 240 мкм), изготовленная на основе поливинилового спирта с наполнением изометричными частицами карбида кремния и активированного угля марки «БАУ-А» (средний размер частиц SiC - 20 мкм, размер частиц активированного угля - не более 90 мкм; массовые доли SiC и активированного угля - 63% и 7%, соответственно), укладываются в многослойный пакет как показано на рис.1. Пакет включает 28 слоев фольги титана и 29 слоев SiC-C-содержащей пленки. Пакет подвергается термообработке в атмосфере инертного газа (аргона) под механической нагрузкой 1 МПа в режиме, описанном в Примере 1. Рентгенофазовый анализ продуктов синтеза обнаруживает присутствие Ti3SiC2, TiSi2, SiC и TiC в количествах 58 об.%, 6 об.%, 32 об.% и 4 об.%, соответственно. Кажущаяся плотность полученного материала составляет 3,33 г/см3, что соответствует 82% от теоретического значения. Микроструктура характеризуется равномерным распределением частиц SiC и изолированных пор в матрице Ti3SiC2-TiSi2. Синтезированный материал представляет собой керамический композит с матрицей на основе Ti3SiC2, армированной частицами SiC.

Claims (1)

  1. Способ получения керамики и композиционных материалов на основе Ti3SiC2 из титана, кремния и углерода в составе карбида кремния, отличающийся тем, что компоненты реакционной композиции в виде фольги титана и изометричных дисперсных частиц карбида кремния и углерода в составе высоконаполненных полимерных пленок укладываются чередующимися слоями в виде многослойного пакета и подвергаются силовому СВС-компактированию в вакууме или в атмосфере инертного газа под механической нагрузкой 0,2 МПа или более, приложенной в направлении, перпендикулярном плоскости слоев, техническое обеспечение силового СВС-компактирования реакционной композиции не требует использования специальных пресс-форм.
RU2011130145/03A 2011-07-19 2011-07-19 СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2 RU2486164C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011130145/03A RU2486164C2 (ru) 2011-07-19 2011-07-19 СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011130145/03A RU2486164C2 (ru) 2011-07-19 2011-07-19 СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2

Publications (2)

Publication Number Publication Date
RU2011130145A RU2011130145A (ru) 2013-01-27
RU2486164C2 true RU2486164C2 (ru) 2013-06-27

Family

ID=48702503

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011130145/03A RU2486164C2 (ru) 2011-07-19 2011-07-19 СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2

Country Status (1)

Country Link
RU (1) RU2486164C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553111C1 (ru) * 2014-05-12 2015-06-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Способ получения плотной керамики и керамических композитов на основе карбида титана
RU2694340C1 (ru) * 2018-04-27 2019-07-11 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Способ получения текстильных карбидокремниевых материалов
RU2780235C1 (ru) * 2020-08-18 2022-09-21 Акционерное общество "Ульбинский металлургический завод" Способ получения крупногабаритных заготовок и изделий из бериллида титана

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961529A (en) * 1987-12-24 1990-10-09 Kernforschungsanlage Julich Gmbh Method and components for bonding a silicon carbide molded part to another such part or to a metallic part
US5942455A (en) * 1995-11-14 1999-08-24 Drexel University Synthesis of 312 phases and composites thereof
RU2341839C1 (ru) * 2007-10-31 2008-12-20 Томский научный центр Сибирского отделения Российской академии наук (ТНЦ СО РАН) Электропроводящий композиционный материал, шихта для его получения и электропроводящая композиция
RU2372167C2 (ru) * 2007-11-06 2009-11-10 Владимир Никитович Анциферов Способ получения композиционного материала на основе карбосилицида титана
RU2410197C1 (ru) * 2009-10-26 2011-01-27 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения композиционного материала на основе карбосилицида титана

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961529A (en) * 1987-12-24 1990-10-09 Kernforschungsanlage Julich Gmbh Method and components for bonding a silicon carbide molded part to another such part or to a metallic part
US5942455A (en) * 1995-11-14 1999-08-24 Drexel University Synthesis of 312 phases and composites thereof
RU2341839C1 (ru) * 2007-10-31 2008-12-20 Томский научный центр Сибирского отделения Российской академии наук (ТНЦ СО РАН) Электропроводящий композиционный материал, шихта для его получения и электропроводящая композиция
RU2372167C2 (ru) * 2007-11-06 2009-11-10 Владимир Никитович Анциферов Способ получения композиционного материала на основе карбосилицида титана
RU2410197C1 (ru) * 2009-10-26 2011-01-27 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения композиционного материала на основе карбосилицида титана

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553111C1 (ru) * 2014-05-12 2015-06-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Способ получения плотной керамики и керамических композитов на основе карбида титана
RU2694340C1 (ru) * 2018-04-27 2019-07-11 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Способ получения текстильных карбидокремниевых материалов
RU2780235C1 (ru) * 2020-08-18 2022-09-21 Акционерное общество "Ульбинский металлургический завод" Способ получения крупногабаритных заготовок и изделий из бериллида титана

Also Published As

Publication number Publication date
RU2011130145A (ru) 2013-01-27

Similar Documents

Publication Publication Date Title
Sahin et al. Preparation of AlON ceramics via reactive spark plasma sintering
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
Wang et al. The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC
Asl et al. Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites
Guo et al. Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride–boron powders
Mohanta et al. Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose
Yang et al. Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration
Gonzalez-Julian et al. Effect of sintering method on the microstructure of pure Cr2AlC MAX phase ceramics
Lu et al. Complex shaped boron carbides from negative additive manufacturing
Liu et al. Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis
Carrijo et al. Fabrication of Ti3SiC2-based composites via three-dimensional printing: Influence of processing on the final properties
Chen et al. A stereolithographic diamond-mixed resin slurry for complex SiC ceramic structures
Zhang et al. Fabrication and mechanical properties of porous Si3N4 ceramics prepared via SHS
RU2372167C2 (ru) Способ получения композиционного материала на основе карбосилицида титана
Kousaalya et al. Thermal conductivity of precursor derived Si–B–C–N ceramic foams using Metroxylon sagu as sacrificial template
CN105924176A (zh) 碳化硼基复相陶瓷及其放电等离子烧结制备方法
Nguyen et al. TEM characterization of hot-pressed ZrB2-SiC-AlN composites
JP2011528312A (ja) 焼結添加剤を必要としない炭化ケイ素部品を調製するためのプロセス
Xie et al. Reinforcement of thermally-conductive SiC/Al composite with 3D-interpenetrated network structure by various SiC foam ceramic skeletons
RU2486164C2 (ru) СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2
He et al. Research on maximizing the diamond content of diamond/SiC composite
Okuni et al. Joining of AlN and graphite disks using interlayer tapes by spark plasma sintering
CN102643095A (zh) 一种SiC蜂窝陶瓷材料及其制备方法
RU2587669C2 (ru) Способ изготовления теплопроводной керамики на основе нитрида алюминия
Kennedy et al. Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics