RU2553111C1 - Способ получения плотной керамики и керамических композитов на основе карбида титана - Google Patents
Способ получения плотной керамики и керамических композитов на основе карбида титана Download PDFInfo
- Publication number
- RU2553111C1 RU2553111C1 RU2014119070/03A RU2014119070A RU2553111C1 RU 2553111 C1 RU2553111 C1 RU 2553111C1 RU 2014119070/03 A RU2014119070/03 A RU 2014119070/03A RU 2014119070 A RU2014119070 A RU 2014119070A RU 2553111 C1 RU2553111 C1 RU 2553111C1
- Authority
- RU
- Russia
- Prior art keywords
- titanium carbide
- ceramic
- carbide powder
- pressure
- powder
- Prior art date
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Abstract
Изобретение относится к области создания высокотемпературных керамических материалов, а именно к способу получения плотноспеченного керамического материала из порошков карбида титана. Технический результат изобретения: возможность получить плотную керамику и керамические композиты при более низких температурах и давлении. Согласно способу получения плотной керамики и керамических композитов порошок карбида титана подвергается химическому модифицированию путем его обработки газообразным SiO при температуре выше 1300°C, после чего полученный порошок силицированного карбида титана подвергается уплотнению в пресс-форме при температурах 1500-1600°C и давлении 10-20 МПа. 3 ил., 4 пр.
Description
Изобретение относится к области создания высокотемпературных керамических материалов, а именно к способу получения плотноспеченного керамического материала из порошков карбида титана.
Среди технических материалов карбид титана занимает важное место благодаря высокой температуре плавления, высокой твердости и износостойкости. Керамика и композиты на основе карбида титана предназначены для эксплуатации в экстремальных условиях и применимы, например, для изготовления износостойких деталей. Однако получение плотных материалов из карбида титана требует больших энергетических затрат, связанных с обеспечением высоких температур и давлений [Кипарисов С.С. Карбид титана: получение, свойства, применение. М.: Металлургия, 1987, 216 с.].
Известен способ получения плотноспеченного карбида титана методом искрового плазменного спекания [Lixia Cheng, Zhipeng Xie, Guanwei Liu, Wei Liu, Weinjiang Xui "Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition." // J. Eur. Ceram. Soc. 2012, 32, 3399-3406]. B соответствии с данным способом порошок карбида титана помешают в графитовую пресс-форму и спекают методом искрового плазменного спекания при температурах 1500-1600°C и давлении 50 МПа. В результате получают керамический материал на основе карбида титана с относительной плотностью до 99.9%. Недостатки способа: высокое давление прессования.
Известен способ получения плотноспеченной керамики на основе карбида титана методом искрового плазменного спекания с добавлением к порошку карбида титана 3.5 масс. % карбида вольфрама в качестве спекающей добавки [Lixia Cheng, Zhipeng Xie, Guanwei Liu. "Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive" // Journal of the European Ceramic Society 2013, 33, 2971-2977]. В соответствии с данным способом готовится композиция TiC - WC путем смешивания соответствующих порошковых компонентов в планетарной шаровой мельнице в течение 6 ч в безводном спирте с последующей сушкой в роторном испарителе при 70°C. Приготовленную композицию спекают методом искрового плазменного спекания при температурах 1450-1600°C и давление 50 МПа с выдержкой 5 мин. Конечный продукт представляет собой плотноспеченный карбид титана однородной микроструктуры с содержанием около 3,5 масс. % карбида вольфрама. Недостатки метода: высокое давление прессования и техническая сложность дообжиговой подготовки.
Известен способ получения плотной керамики на основе карбида титана [патент US 5525555 A, 1996]. В соответствии с данным способом порошки карбида титана смешивают с раствором кремнийорганического полимера, после чего смесь формуют, отверждают при 250°C в течение 24 часов и затем спекают в атмосфере инертного газа при температуре выше 2000°C. В результате получают керамический материал на основе карбида титана плотностью более 4,2 г/см3. Недостатки способа: высокие температуры спекания и продолжительность стадии отверждения кремнийорганической полимерной связки.
Прототипом технического решения к заявляемому изобретению выбран способ получения монолитного карбида титана [Ono Т, Endo Н, Uedi М."Hot-pressing of TiC -graphite composite materials" // J. Mater. Eng. Perform. 1993, 2, 659 - 64]. В соответствии с данным способом проводят горячее прессование порошков карбида титана в графитовых пресс-формах при температуре 1800°C и давлении 40 МПа с выдержкой 120 мин. В результате получают плотноспеченный керамический материал на основе карбида титана. Недостатки метода: высокие температура и давление горячего прессования.
Технический результат заявляемого изобретения состоит в том, что использование предлагаемого способа позволяет получить плотную керамику и керамические композиты на основе карбида титана при более низких температурах и давлении.
Технический результат достигается тем, что согласно способу получения плотной керамики и керамических композитов порошок карбида титана подвергается химическому модифицированию путем его обработки газообразным SiO при температуре 1300-1400°C, после чего полученный порошок силицированного карбида титана подвергается уплотнению в пресс-форме при температурах 1500-1600°C и давлении 10-20 МПа.
В ходе данной процедуры протекает реакция силицирования, в результате чего поверхность частиц порошка карбида титана насыщается кремнием с формированием кремнийсодержащих фаз - Ti3SiC2, а также TiSi2, Ti5Si3 и SiC, количественное соотношение между которыми определяется продолжительностью термической обработки [Истомина Е.И., Истомин П.В., Надуткин А.В. Силицирование карбидов титана парами SiO // Журнал неорганической химии. 2012, Т. 57, №8, С. 1134-1139]. Фаза Ti3SiC2 имеет наноламинатное строение и проявляет микропластичность при температурах выше 1000°C. Это приводит к существенному улучшению термомеханических характеристик порошка, его более эффективному уплотнению и спеканию в ходе процедуры горячего прессования, что позволяет получить плотную керамику и керамические композиты на основе карбида титана при более низких температурах и давлении.
Способ осуществляется следующим образом.
Порошок карбида титана подвергается обработке газообразным SiO при температуре 1300-1400°C. Полученный порошок силицированного карбида титана загружается в пресс-форму и подвергается уплотнению при температурах 1500-1600°C и давлении 10-20 МПа.
Пример 1. Силицирование порошка карбида титана проводят в вакуумной печи с использованием эквимолярной порошковой смеси кремния и диоксида кремния (Si+SiO2) в качестве реакционного источника газообразного SiO. Схема загрузки представлена на фиг. 1. Порошок карбида титана в количестве 8 г и компактированную порошковую смесь (Si+SiO2) в количестве 15 г, отделенные друг от друга перфорированной перегородкой из графитовой фольги, помещают в реактор, расположенный в рабочей зоне вакуумной печи и представляющий собой алундовую трубу с глухим концом. Термическую обработку проводят при 1300-1400°C и остаточном давлении в вакуумной камере 10-3-10-1 Па в течение 15 мин с последующим охлаждением печи до комнатной температуры. По данным рентгенофлуоресцентного анализа атомное отношение кремния к титану в продукте силицирования составляет 0,053. Рентгенофазовый анализ продуктов силицирования обнаруживает присутствие TiC в количестве 93 об. % и Ti3SiC2 в количестве 7 об. %. Порошок силицированного карбида титана помещают в графитовую пресс-форму и проводят горячее прессование при температуре 1500°C и давлении 10 МПа в течение 2 часов. По данным рентгенофазового анализа синтезированный материал представляет собой композит содержащий 93 об. % TiC и 7 об. % Ti3SiC2. Плотность полученного материала составляет 4,25 г/см3, что соответствует 87% от теоретического значения
Пример 2. Силицирование порошка карбида титана проводят, как описано в Примере 1. Порошок силицированного карбида титана помещают в графитовую пресс-форму и проводят горячее прессование при температуре 1600°C и давлении 20 МПа в течение 1 часа. По данным рентгенофазового анализа синтезированный материал представляет собой композит, содержащий 93 об. % TiC и 7 об. % Ti3SiC2. Плотность полученного материала составляет 4,81 г/см3, что соответствует 98,5% от теоретического значения.
Пример 3. Силицирование порошка карбида титана проводят в двухсекционном реакторе, расположенном в рабочей зоне вакуумной печи и представляющем собой открытую систему из двух вложенных друг в друга стеклоуглеродных тиглей, связанных газопроводящим каналом диаметром 8,5 мм. В качестве реакционного источника газообразного SiO используют эквимолярную порошковую смесь кремния и диоксида кремния (Si+SiO2). Схема загрузки представлена на фиг. 2. Гранулированную порошковую смесь (Si+SiO2) в количестве 6 г помещают в нижнюю секцию реактора, порошок карбида титана в количестве 12 г помещают в верхнюю секцию. Термическую обработку проводят при 1300-1400°C и остаточном давлении в вакуумной камере 10-3-10-1 Па в течение 60 мин с последующим охлаждением печи до комнатной температуры. По данным рентгенофлуоресцентного анализа атомное отношение кремния к титану в продукте силицирования составляет 0,157. Рентгенофазовый анализ продуктов силицирования обнаруживает присутствие TiC в количестве 76 об. %, Ti3SiC2 в количестве 19об.% и SiC в количестве 5 об. %. Порошок силицированного карбида титана помещают в графитовую пресс-форму и проводят горячее прессование при температуре 1600°C и давлении 10 МПа в течение 2 часа. По данным рентгенофазового анализа синтезированный материал представляет собой композит содержащий 76 об. % TiC, 19 об. % Ti3SiC2 и 5 об. % SiC. Плотность полученного материала составляет 4,79 г/см3, что составляет 100% от теоретического значения.
Пример 4. Силицирование порошка карбида титана проводят в трехсекционном реакторе, расположенном в рабочей зоне вакуумной печи и представляющем собой открытую систему из трех вложенных друг в друга стеклоуглеродных тиглей, связанных газопроводящими каналами диаметром 5 мм. В качестве реакционного источника газообразного SiO используют эквимолярную порошковую смесь кремния и диоксида кремния (Si+SiO2). Схема загрузки представлена на фиг. 3. Гранулированную порошковую смесь (Si+SiO2) в количестве 6 г помещают в нижнюю секцию реактора, порошок карбида титана помещают в среднюю и верхнюю секции по 12 г. Термическую обработку проводят при 1300-1400°C и остаточном давлении в вакуумной камере 10-3-10-1 Па в течение 60 мин с последующим охлаждением печи до комнатной температуры. Порошок карбида титана усредняют путем смешивания частей, размещенных в средней и верхней секциях. Процедуру силицирования проводят трижды. По данным рентгенофлуоресцентного анализа атомное отношение кремния к титану в продукте силицирования составляет 0,110. Рентгенофазовый анализ продуктов силицирования обнаруживает присутствие TiC в количестве 97 об. % и SiC в количестве 3 об. %. Порошок силицированного карбида титана помещают в графитовую пресс-форму и проводят горячее прессование при температуре 1600°C и давлении 10 МПа в течение 1 часа. По данным рентгенофазового анализа синтезированный материал представляет собой композит содержащий 97 об. % TiC и 3 об. % SiC. Плотность полученного материала составляет 4,29 г/см3, что составляет 88% от теоретического значения.
Пример 5. Силицирование порошка карбида титана проводят, как описано в Примере 4. Порошок силицированного карбида титана помещают в графитовую пресс-форму и проводят горячее прессование при температуре 1600°C и давлении 20 МПа в течение 1 часа. По данным рентгенофазового анализа синтезированный материал представляет собой композит, содержащий 97 об. % TiC и 3 об. % SiC. Плотность полученного материала составляет 4,66 г/см3, что составляет 96% от теоретического значения.
Краткое описание графических изображений
Фиг. 1. Схема №1 загрузки реактора для силицирования порошка карбида титана. 1 - камера вакуумной печи; 2 - нагреватели; 3 - порошковая смесь кремния и диоксида кремния; 4 - порошок карбида титана; 5 - алундовая труба; 6 - перфорированная перегородка из графитовой фольги.
Фиг. 2. Схема №2 загрузки реактора для силицирования порошка карбида титана. 1 - камера вакуумной печи; 2 - нагреватели; 3 - порошковая смесь кремния и диоксида кре мния; 4 - порошок карбида титана; 5 - стеклоуглеродные тигли; 6 - газопроводящий канал.
Фиг. 3. Схема №3 загрузки реактора для силицирования порошка карбида титана. 1 - камера вакуумной печи; 2 - нагреватели; 3 - порошковая смесь кремния и диоксида кремния; 4 - порошок карбида титана; 5 - стеклоуглеродные тигли; 6 - газопроводящий канал.
Claims (1)
- Способ получения плотной керамики и керамических композитов на основе карбида титана, отличающийся тем, что порошок карбида титана подвергается химическому модифицированию путем его обработки газообразным SiO при температуре 1300-1400°C, после чего полученный порошок силицированного карбида титана подвергается уплотнению в пресс-форме при температурах 1500-1600°C и давлении 10-20 МПа.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014119070/03A RU2553111C1 (ru) | 2014-05-12 | 2014-05-12 | Способ получения плотной керамики и керамических композитов на основе карбида титана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014119070/03A RU2553111C1 (ru) | 2014-05-12 | 2014-05-12 | Способ получения плотной керамики и керамических композитов на основе карбида титана |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2553111C1 true RU2553111C1 (ru) | 2015-06-10 |
Family
ID=53295220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014119070/03A RU2553111C1 (ru) | 2014-05-12 | 2014-05-12 | Способ получения плотной керамики и керамических композитов на основе карбида титана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2553111C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2694340C1 (ru) * | 2018-04-27 | 2019-07-11 | Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук | Способ получения текстильных карбидокремниевых материалов |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6024909A (en) * | 1993-08-12 | 2000-02-15 | Agency Of Industrial Science & Technology | Coated ceramic particles, a ceramic-base sinter and a process for producing the same |
RU2486164C2 (ru) * | 2011-07-19 | 2013-06-27 | Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН | СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2 |
-
2014
- 2014-05-12 RU RU2014119070/03A patent/RU2553111C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6024909A (en) * | 1993-08-12 | 2000-02-15 | Agency Of Industrial Science & Technology | Coated ceramic particles, a ceramic-base sinter and a process for producing the same |
RU2486164C2 (ru) * | 2011-07-19 | 2013-06-27 | Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН | СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ Ti3SiC2 |
Non-Patent Citations (1)
Title |
---|
ONO T., ENDO H., UEDI M. "Hot-pressing of TiC-graphite composite materials" J.Mater.Eng.Preform, 1993, N2, p.659-664. Истомина Е.И. и др. "Влияние стехиометрии карбидов титана на формирование фазы Ti3SiC2 в системе TiC-SiO", Известия коми научного центра Уро РАН, Сыктывкар, 2011, вып.4(8), с.24-28. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2694340C1 (ru) * | 2018-04-27 | 2019-07-11 | Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук | Способ получения текстильных карбидокремниевых материалов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sahin et al. | Preparation of AlON ceramics via reactive spark plasma sintering | |
US8142845B2 (en) | Process for the manufacturing of dense silicon carbide | |
US20070138706A1 (en) | Method for preparing metal ceramic composite using microwave radiation | |
JPH09175865A (ja) | α型炭化ケイ素粉末組成物及びその焼結体の製造方法 | |
JPS5848505B2 (ja) | 主としてsicよりなるシリコンカ−バイド成形体の製造方法 | |
Bai et al. | Fabrication of directional SiC porous ceramics using Fe2O3 as pore-forming agent | |
KR101601401B1 (ko) | 흑연 재료의 제조 방법 | |
MX2010013467A (es) | Refractario de oxinitruro de silicio u oxinitruro de silicio y carburo de silicio enlazado a nitruro de silicio resistente al cambio volumetrico. | |
Lucas et al. | Elaboration of ZrC-SiC composites by spark plasma sintering using polymer-derived ceramics | |
CN108610055A (zh) | 一种低温液相烧结制备致密氮化硅陶瓷的方法 | |
RU2553111C1 (ru) | Способ получения плотной керамики и керамических композитов на основе карбида титана | |
AU689269B2 (en) | Preparation of high density titanium carbide ceramics with preceramic polymer binders | |
JPH0867564A (ja) | 二ホウ化ジルコニウム焼結体とその製法 | |
RU2670819C1 (ru) | Способ изготовления изделий из реакционно-спеченного композиционного материала | |
Lee et al. | Characterization of forsterite ceramics | |
CN109665847A (zh) | 一种全致密碳化硼陶瓷复合材料及制备方法 | |
RU2470857C1 (ru) | Способ изготовления изделий из углерод-карбидокремниевого материала | |
Suo et al. | Influence of an initial hot-press processing step on the mechanical properties of 3D-C/SiC composites fabricated via PIP | |
Yin et al. | Low temperature spark plasma densification of nano-SiC powder with novel Al2O3-Ho2O3 additives for SiC/SiC applications | |
JP2820735B2 (ja) | 炭化ケイ素焼結体の調製方法 | |
JPH08109066A (ja) | 炭化ジルコニウム焼結体とその製法 | |
RU2789828C1 (ru) | Способ получения шихты для изготовления композиционной керамики карбид бора - диборид хрома | |
Amirthan et al. | Properties of Si/SiC ceramic composite subjected to chemical vapour infiltration | |
KR20140116019A (ko) | 흑연 재료의 제조 방법 | |
RU2812539C1 (ru) | Способ изготовления композиционной керамики карбид бора - диборид циркония |