CN108610055A - 一种低温液相烧结制备致密氮化硅陶瓷的方法 - Google Patents

一种低温液相烧结制备致密氮化硅陶瓷的方法 Download PDF

Info

Publication number
CN108610055A
CN108610055A CN201611139396.3A CN201611139396A CN108610055A CN 108610055 A CN108610055 A CN 108610055A CN 201611139396 A CN201611139396 A CN 201611139396A CN 108610055 A CN108610055 A CN 108610055A
Authority
CN
China
Prior art keywords
silicon nitride
sintering
ceramics
low
temp liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611139396.3A
Other languages
English (en)
Other versions
CN108610055B (zh
Inventor
张景贤
段于森
李晓光
何永钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201611139396.3A priority Critical patent/CN108610055B/zh
Publication of CN108610055A publication Critical patent/CN108610055A/zh
Application granted granted Critical
Publication of CN108610055B publication Critical patent/CN108610055B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种低温液相烧结制备致密氮化硅陶瓷的方法,包括:以总配料质量100%计,将氮化硅粉体98~85 wt%、烧结助剂2~15 wt%均匀混合,再经过干燥、过筛得到陶瓷混合粉体,所述烧结助剂包括Ti(CxN1‑x)以及选自CaO、Al2O3、和MgO中的至少一种,x为0.2~0.7,所述烧结助剂中Ti(CxN1‑x)的含量为20~60 wt%;将所得陶瓷混合粉压制成型,得到陶瓷素坯;将所得陶瓷素坯在1600~1800℃下低温液相烧结1~8小时,得到所述致密氮化硅陶瓷。本发明引入的复合烧结助剂具有较低的低共熔点温度,能够实现低温烧结,并以Ti(CxN1‑x)为第二相提高材料的力学性能。

Description

一种低温液相烧结制备致密氮化硅陶瓷的方法
技术领域
本发明涉及一种采用低温液相烧结制备致密氮化硅陶瓷材料的方法,属于陶瓷材料工程领域。
背景技术
氮化硅陶瓷是一种重要的工程陶瓷材料,具有热导率高,抗热震性好、机械性能好、高温蠕变性小、耐磨损、耐腐蚀、抗氧化等优点,在汽车,航空航天,电子等领域得到了广泛的应用。
Si3N4具有强共价键,烧结难度大,主要以液相烧结为主,同时其分解温度在1850℃左右,高温烧结过程中易分解,因此通常采用热压烧结技术降低烧结温度,或采用气压烧结技术抑制其分解反应,从而得到致密的氮化硅陶瓷材料。此外,通过调整烧结助剂种类和含量,使烧结温度低于氮化硅的分解温度,即低温烧结技术,也可以制备氮化硅陶瓷材料,此技术采用流动气氛且无需外界施加压力,但是所需烧结助剂含量往往较高,同时材料致密度相对于气压和热压烧结技术不高,力学与热学性能较差,并且相关文献报道不多。
发明内容
针对上述问题,本发明的目的是提供一种烧结助剂体系,通过低温液相烧结制备致密高强的得氮化硅陶瓷材料。
一方面,本发明提供了一种低温液相烧结制备致密氮化硅陶瓷的方法,包括:
以总配料质量100%计,将氮化硅粉体98~85wt%、烧结助剂2~15wt%均匀混合,再经过干燥、过筛得到陶瓷混合粉体,所述烧结助剂为为Ti(CxN1-x)和CaO、Al2O3、MgO中的一种的混合,所述x为0.2-0.7,所述烧结助剂中Ti(CxN1-x)的含量为20~60wt%;
将所得陶瓷混合粉压制成型,得到陶瓷素坯;
将所得陶瓷素坯在1600~1800℃下低温液相烧结1~8小时,得到所述致密氮化硅陶瓷。
Ti(CxN1-x)材料具有良好的力学性能,包括高硬度以及高温稳定性等,常作为增强相使用。本发明提出采用引入Ti(CxN1-x)和CaO、Al2O3、MgO中的一种的作为复合烧结助剂,所述复合烧结助剂具有较低的低共熔点温度,能够实现低温烧结,并以Ti(CxN1-x)为第二相提高材料的力学性能。
较佳地,所述氮化硅粉体的粒径范围为0.5~1μm。
较佳地,所述烧结助剂的纯度99%以上,平均粒径为0.5~1μm。
较佳地,所述干燥的方式为真空干燥或者旋转蒸发干燥。
较佳地,所述过筛的目数范围为100~300目。
较佳地,所述压制成型的方式为干压成型或/和冷等静压成型,所述干压成型或/和冷等静压成型的压力范围在30~300MPa。
较佳地,所述低温液相烧结的升温速率1~30℃/分钟。所述降温速率为1-30℃/分钟或随炉降温。
较佳地,所述低温液相烧结的气氛为氩气、氮气、氦气中的至少一种。
另一方面,本发明还提供了一种根据上述的方法制备的致密氮化硅陶瓷。
本发明工艺简单稳定,条件易于控制;通过引入低含量的低温烧结助剂并结合高强的Ti(CxN1-x)相,采用低温液相烧结技术即可得到致密的氮化硅陶瓷材料,并具有良好的力学性能。
附图说明
图1为本发明所得样品的XRD图谱;
图2为实施例1所得样品的SEM图;
图3为实施例4所得样品的SEM图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明通过引入Ti(CxN1-x)显著提高了氮化硅陶瓷的力学性能,并通过调整烧结助剂种类和烧结温度得到致密氮化硅陶瓷材料。具体来说,以98-85wt%氮化硅粉体、2-15wt%烧结助剂(CaO/Al2O3/MgO等其中一种结合Ti(CxN1-x),优选为8~12wt%作为陶瓷粉体,均匀混合并干燥过筛,将所得的陶瓷混合粉体置于模具中施压成型,将所得的陶瓷素坯置于高温碳管炉中低温液相烧结得到致密氮化硅陶瓷。所述陶瓷粉体为氮化硅和烧结助剂(CaO/Al2O3/MgO等其中一种结合Ti(CxN1-x)),其中98~85wt%为氮化硅粉体,2~15wt%为烧结助剂。陶瓷粉体(原料粉体)的平均粒径可为0.5~1μm,粉体具有良好的烧结活性。
以下示例性地说明本发明提供的低温液相烧结制备致密氮化硅陶瓷的方法。
混料。以总配料质量计,98-85wt%氮化硅粉体,2-15wt%烧结助剂作为原料,均匀混合并干燥过筛。其中所述使用氮化硅粉体粒径范围在0.5-1μm,氧含量1.08wt%。烧结助剂的纯度99%以上。所述混合方式可采用湿法球磨1-24h,得到的浆料。然后采用真空干燥或者旋转蒸发将所的浆料干燥得到混合粉体。干燥获得混合粉体经过过筛,得到混合陶瓷粉体,其中目数范围可为100-300目。烧结助剂可为CaO/Al2O3/MgO等其中一种结合Ti(CxN1-x)。所述烧结助剂的含量为2-15wt%,且所述烧结助剂中Ti(CxN1-x)的含量可为20-60wt%。烧结助剂中Ti(CxN1-x)含量最多为9wt%(体积分数为6vol%)。
成型。将所得的陶瓷混合粉体置于模具中施压成型,得到陶瓷素坯。施压成型的方式可为干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型。所述干压成型或/和冷等静压成型压力范围在30-300MPa。
烧结。将所得的陶瓷素坯置于烧结炉(例如,高温碳管炉等)中低温液相烧结得到致密氮化硅陶瓷。所述低温液相烧结为常压烧结,温度范围为1600-1800℃,保温时间为1-8h。其升温速率范围可为1-30℃/min。其降温降速率范围可为1-30℃/min或者随炉降温。所述低温液相烧结气氛可为氩气/氮气/氦气等其中一种作为烧结气氛。
作为一个示例,本发明提供的低温液相烧结制备致密氮化硅陶瓷材料的方法,包括以下步骤:
(1)混料:将氮化硅粉体与烧结助剂(CaO/Al2O3/MgO等其中一种结合Ti(CxN1-x))按照质量比(98-85)wt%:(2-15)wt%在溶剂中分散均匀,球磨1-24h后得到陶瓷浆料并烘干;
(2)成型:将步骤(1)中所得的混合料置于模具中干压成型;
(3)烧结:将步骤(2)中得到的陶瓷素坯置于碳管炉中,采用氩气、氮气、氦气等其中一种气体作为保护气进行烧结,升温速率1-30℃/min,烧结温度范围在1600-1800℃,保温时间在1-8h即可获得致密的氮化硅陶瓷材料。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:
将19.0g氮化硅粉体以及1.0g烧结助剂Ti(CxN1-x)和CaO(Ti(CxN1-x)的质量含量50wt%)作为原料,无水乙醇为溶剂,置于球磨罐中球磨4h,然后将干燥过筛后的混合料置于模具中,30MPa初步成型,将所得素坯进行冷等静压成型,压力为200MPa,将最终获得的陶瓷素坯置于碳管炉中,采用氮气为保护气氛,在10℃/min升温速率条件下,升温至1650℃,保温2h,之后随炉降温。可以获得密度为3.18g·cm-3,抗弯强度为442MPa,断裂韧性为4.25MPa·cm1/2的氮化硅陶瓷。图1中(a)曲线为陶瓷表面XRD图谱。图2为获得样品的断面SEM图,从图2中可知材料仍然具有一定的气孔,并没有达到完全致密。
实施例2:
将18.4g氮化硅粉体以及1.6g烧结助剂Ti(CxN1-x)和Al2O3(Ti(CxN1-x)的质量含量50wt%)作为原料,无水乙醇为溶剂,置于球磨罐中球磨4h,然后将干燥过筛后的混合料置于模具中,30MPa初步成型,将所得素坯进行冷等静压成型,压力为200MPa,将最终获得的陶瓷素坯置于碳管炉中,采用氮气为保护气氛,在10℃/min升温速率条件下,升温至1700℃,保温2h,之后随炉降温。可以获得密度为3.20g·cm-3,抗弯强度为476MPa,断裂韧性为3.99MPa·cm1/2的氮化硅陶瓷材料。图1中(b)曲线为陶瓷表面XRD图谱。
实施例3:
将17.6g氮化硅粉体以及2.4g烧结助剂Ti(CxN1-x)和CaO(Ti(CxN1-x)的质量含量50wt%)作为原料,无水乙醇为溶剂,置于球磨罐中球磨4h,然后将干燥过筛后的混合料置于模具中,30MPa初步成型,将所得素坯进行冷等静压成型,压力为200MPa,将最终获得的陶瓷素坯置于碳管炉中,采用氮气为保护气氛,在10℃/min升温速率条件下,升温至1750℃,保温2h,之后随炉降温。可以获得密度为3.19g·cm-3,抗弯强度为504MPa,断裂韧性为5.09MPa·cm1/2的氮化硅陶瓷材料。图1中(c)曲线为陶瓷表面XRD图谱。
实施例4:
将18.0g氮化硅粉体以及2.0g烧结助剂Ti(CxN1-x)和MgO(Ti(CxN1-x)的质量含量50wt%)作为原料,无水乙醇为溶剂,置于球磨罐中球磨4h,然后将干燥过筛后的混合料置于模具中,30MPa初步成型,将所得素坯进行冷等静压,压力为200MPa,将最终获得的陶瓷素坯置于碳管炉中,采用氮气为保护气氛,在10℃/min升温速率条件下,升温至1780℃,保温2h,之后随炉降温。可以获得密度为3.20g·cm-3,抗弯强度为667MPa,断裂韧性为5.13MPa·cm1/2的氮化硅陶瓷材料。图3为获得样品的断面SEM图,从图3中可知材料内部几乎没有气孔的存在,材料已经达到完全致密。
实施例5:
将17.0g氮化硅粉体以及3.0g烧结助剂Ti(CxN1-x)和MgO(Ti(CxN1-x)的质量含量67wt%)作为原料,无水乙醇为溶剂,置于球磨罐中球磨4h,然后将干燥过筛后的混合料置于模具中,30MPa初步成型,将所得素坯进行冷等静压,压力为200MPa,将最终获得的陶瓷素坯置于碳管炉中,采用氮气为保护气氛,在10℃/min升温速率条件下,升温至1780℃,保温2h,之后随炉降温。可以获得密度为2.92g·cm-3的氮化硅陶瓷,由于材料致密度不高,因此不再测试力学性能。

Claims (9)

1.一种低温液相烧结制备致密氮化硅陶瓷的方法,其特征在于,包括:
以总配料质量100%计,将氮化硅粉体98~85 wt%、烧结助剂2~15 wt%均匀混合,再经过干燥、过筛得到陶瓷混合粉体,所述烧结助剂包括Ti(CxN1-x)以及选自CaO、Al2O3、和MgO中的至少一种,x为0.2~0.7,所述烧结助剂中Ti(CxN1-x)的含量为20~60 wt%;
将所得陶瓷混合粉压制成型,得到陶瓷素坯;
将所得陶瓷素坯在1600~1800℃下低温液相烧结1~8小时,得到所述致密氮化硅陶瓷。
2.根据权利要求1所述的方法,其特征在于,所述氮化硅粉体的粒径范围为0.5~1μm。
3.根据权利要求1或2所述的方法,其特征在于,所述烧结助剂的纯度99%以上,平均粒径为0.5~1μm。
4.根据权利要求1-3中任一项所述的方法,其特征在于,所述干燥的方式为真空干燥或者旋转蒸发干燥。
5.根据权利要求1-4中任一项所述的方法,其特征在于,所述过筛的目数范围为100~300目。
6.根据权利要求1-5中任一项所述的方法,其特征在于,所述压制成型的方式为干压成型或/和冷等静压成型,所述干压成型或/和冷等静压成型的压力范围在30~300 MPa。
7.根据权利要求1-6中任一项所述的方法,其特征在于,所述低温液相烧结的升温速率1~30℃/分钟,所述降温速率为1-30℃/分钟或随炉降温。
8.根据权利要求1-7中任一项所述的方法,其特征在于,所述低温液相烧结的气氛为氩气、氮气、氦气中的至少一种。
9.一种根据权利要求1-8中任一项所述的方法制备的致密氮化硅陶瓷。
CN201611139396.3A 2016-12-12 2016-12-12 一种低温液相烧结制备致密氮化硅陶瓷的方法 Active CN108610055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611139396.3A CN108610055B (zh) 2016-12-12 2016-12-12 一种低温液相烧结制备致密氮化硅陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611139396.3A CN108610055B (zh) 2016-12-12 2016-12-12 一种低温液相烧结制备致密氮化硅陶瓷的方法

Publications (2)

Publication Number Publication Date
CN108610055A true CN108610055A (zh) 2018-10-02
CN108610055B CN108610055B (zh) 2021-09-03

Family

ID=63657030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611139396.3A Active CN108610055B (zh) 2016-12-12 2016-12-12 一种低温液相烧结制备致密氮化硅陶瓷的方法

Country Status (1)

Country Link
CN (1) CN108610055B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110937903A (zh) * 2019-11-07 2020-03-31 中国科学院上海硅酸盐研究所 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
CN111517806A (zh) * 2020-04-26 2020-08-11 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN111606717A (zh) * 2020-06-08 2020-09-01 浙江锐克特种陶瓷有限公司 一种高强高硬氮化硅耐磨片的制备方法
CN112661518A (zh) * 2020-12-25 2021-04-16 中材高新氮化物陶瓷有限公司 一种高导热氮化硅陶瓷绝缘板及其制备方法
CN116217239A (zh) * 2023-03-22 2023-06-06 中国科学院上海硅酸盐研究所 一种高热导率低电阻率氮化硅陶瓷的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045350A (zh) * 2013-03-11 2014-09-17 中国科学院上海硅酸盐研究所 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045350A (zh) * 2013-03-11 2014-09-17 中国科学院上海硅酸盐研究所 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. HERRMANN ET AL.: "Densification, Microstructure and Properties of Si3N4-Ti(C,N) Composites", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
古尚贤 等: "Si3N4-TiC0.5N0.5复相陶瓷的制备及切削性能研究", 《人工晶体学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110937903A (zh) * 2019-11-07 2020-03-31 中国科学院上海硅酸盐研究所 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
CN110937903B (zh) * 2019-11-07 2021-06-15 中国科学院上海硅酸盐研究所 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
CN111517806A (zh) * 2020-04-26 2020-08-11 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN111517806B (zh) * 2020-04-26 2021-12-07 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN111606717A (zh) * 2020-06-08 2020-09-01 浙江锐克特种陶瓷有限公司 一种高强高硬氮化硅耐磨片的制备方法
CN112661518A (zh) * 2020-12-25 2021-04-16 中材高新氮化物陶瓷有限公司 一种高导热氮化硅陶瓷绝缘板及其制备方法
CN116217239A (zh) * 2023-03-22 2023-06-06 中国科学院上海硅酸盐研究所 一种高热导率低电阻率氮化硅陶瓷的制备方法

Also Published As

Publication number Publication date
CN108610055B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN108610055A (zh) 一种低温液相烧结制备致密氮化硅陶瓷的方法
US4803183A (en) Dense molded bodies of polycrystalline aluminum nitride and process for preparation without use of sintering aids
JP4955936B2 (ja) 高熱伝導率・高強度窒化ケイ素セラミックス及びその製造方法
CN109305816A (zh) 一种常压烧结制备高热导率氮化硅陶瓷的方法
Gupta et al. Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties
JP6344844B2 (ja) 炭化ホウ素/ホウ化チタンコンポジットセラミックス及びその作製法
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
Yang et al. Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics
JP2002097005A5 (zh)
JPH1149572A (ja) セラミックス複合粒子及びその製造方法
CN105924176A (zh) 碳化硼基复相陶瓷及其放电等离子烧结制备方法
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
JP2002003276A (ja) 炭化ケイ素−窒化ホウ素複合材料の反応合成
JP2967094B2 (ja) 窒化アルミニウム焼結体、及び窒化アルミニウム粉末の製造方法
CN113024258A (zh) SiC烧结体、加热器以及SiC烧结体的制造方法
CN108892528B (zh) 一种多孔氮化硅陶瓷材料及其制备方法
JPS6242878B2 (zh)
CN109694254A (zh) 一种采用单一烧结助剂常压烧结制备致密氮化硅陶瓷的方法
WO2020202878A1 (ja) ホウ化ジルコニウム/炭化ホウ素コンポジット及びその製造方法
KR20050122748A (ko) 질화상압 동시소결 공정에 의한 질화규소 세라믹스의제조방법
RU2540674C2 (ru) Способ изготовления изделий из нитрида кремния
KR101972234B1 (ko) 규소 스크랩을 이용한 반응소결 질화규소 소결체 제조방법 및 이로부터 제조된 반응소결 질화규소 소결체
RU2641358C2 (ru) Способ получения технологических заготовок керамических изделий из нитрида кремния
JP2000327430A (ja) 窒化アルミニウム焼結体とその製造方法
JP4958353B2 (ja) 窒化アルミニウム粉末及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201217

Address after: Building 1, No.2 chuangqiang Road, shangqiang industrial functional zone, Daixi Town, Wuxing District, Huzhou City, Zhejiang Province

Applicant after: Zhejiang polyhedron New Material Co.,Ltd.

Address before: 200050 No. 1295 Dingxi Road, Shanghai, Changning District

Applicant before: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Method for Preparing Dense Silicon Nitride Ceramics by Low Temperature Liquid Phase Sintering

Effective date of registration: 20231109

Granted publication date: 20210903

Pledgee: Chengnan Sub Branch of Huzhou Bank Co.,Ltd.

Pledgor: Zhejiang polyhedron New Material Co.,Ltd.

Registration number: Y2023980064624

PE01 Entry into force of the registration of the contract for pledge of patent right