CN116217239A - 一种高热导率低电阻率氮化硅陶瓷的制备方法 - Google Patents

一种高热导率低电阻率氮化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN116217239A
CN116217239A CN202310284174.4A CN202310284174A CN116217239A CN 116217239 A CN116217239 A CN 116217239A CN 202310284174 A CN202310284174 A CN 202310284174A CN 116217239 A CN116217239 A CN 116217239A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramic
thermal
ceramic
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310284174.4A
Other languages
English (en)
Inventor
段于森
张景贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202310284174.4A priority Critical patent/CN116217239A/zh
Publication of CN116217239A publication Critical patent/CN116217239A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种高热导率低电阻率氮化硅陶瓷的制备方法,将40~71wt%的氮化硅粉体、25~50wt%的二氧化钛、4~10wt%的烧结助剂和氮化硅粉体重量0~2%的有机碳源均匀混合、干燥、过筛后压制成型,得到陶瓷素坯;将陶瓷素坯在400~900℃焙烧处理0.5~2小时;在1450~1650℃保温处理2~4h后升温至1850~1950℃气压烧结0.5~12小时,得到氮化硅陶瓷。本发明的技术方案工艺简单稳定,条件易于控制,可得到力学性能优异,具有低电阻率的高热导率氮化硅陶瓷。

Description

一种高热导率低电阻率氮化硅陶瓷的制备方法
技术领域
本发明涉及非氧化物陶瓷制备技术领域,具体地说,涉及一种以原位生成导电相TiN(1-x)Cx,气压烧结制备低电阻率的高热导率氮化硅陶瓷材料的方法。
背景技术
氮化硅陶瓷具有优异的力学性能,包括高抗弯强度和断裂韧性,优异的导热性能,良好的抗热震性,较小的高温蠕变性,同时较好耐磨损、耐腐蚀性等特点,广泛应用于结构陶瓷领域,诸如汽车,航空航天和电子等。尤其是近年来半导体领域对高导热且阻值可控氮化硅陶瓷有了迫切的需求。
氮化硅的晶体结构由强共价键组成,导致材料烧结难度大,因此通常采用液相烧结制备致密的氮化硅陶瓷材料。同时当烧结温度高于1850℃时,氮化硅的分解速率迅速增大,因此通常采取两种方法避免氮化硅的分解,一是通过施加气体压力,抑制反应的进行,即气压烧结,最终在较高烧结温度制备出高性能的氮化硅陶瓷材料;二是通过选用适当的烧结助剂,在烧结过程中生成液相降低烧结温度,制备出致密的氮化硅陶瓷材料,即液相烧结技术。
目前关于氮化硅研究的最高水平是由Zhou等通过添加5mol%MgO和2mol%Y2O3作为烧结助剂在0.1MPa氮气气氛、1400℃条件下反应烧结4小时,然后在1MPa氮气气氛,1900℃条件下保温60小时,最后以0.2℃/分钟速度降温,得到热导率为182W/(m·K)的氮化硅陶瓷。尽管该技术得到了良好的热导率,但是成本较高,限制了氮化硅陶瓷的进一步发展应用。
针对氮化硅电阻率的调节,目前主要通过氮化钛,碳化钛等导电相改善,上述相关导电相往往不利于氮化硅陶瓷的烧结致密化,因此通常施加机械加压,相关专利有CN201510067122.7,CN202010817985.2,CN202110140908.2,上述专利的烧结方式主要包括微波烧结,热压烧结,对于制备大尺寸及复杂结构氮化硅陶瓷以及提高热导率而言并非实用。同时添加大量的导电相会严重影响氮化硅陶瓷的热导率和力学等性能。
发明内容
针对现有技术中的问题,本发明的目的在于提供了一种以常规气压烧结的途径,通过添加二氧化钛,在高温阶段形成TiN(1-x)Cx导电相的方式,制备高导热且电阻率可调节的氮化硅陶瓷。
本发明提供了一种高热导率低电阻率氮化硅陶瓷的制备方法,包括以下步骤:
步骤1,以总配料质量100%计,将40~71%的氮化硅粉体、25~50%的二氧化钛、4~10%的烧结助剂和氮化硅粉体重量0~2%的有机碳源均匀混合、干燥、过筛得到陶瓷混合粉体;
步骤2,将陶瓷混合粉体压制成型,通过气压烧结后得到氮化硅陶瓷。
优选的:所述步骤2包括:
步骤2.1,将陶瓷混合粉体压制成型,得到陶瓷素坯;
步骤2.2,将陶瓷素坯在400~900℃焙烧处理0.5~2小时;
步骤2.3,在1450~1650℃保温处理2~4h后升温至1850~1950℃气压烧结0.5~12小时,得到氮化硅陶瓷。
优选的:所述氮化硅粉体的粒径范围在0.5~3μm。
优选的:所述二氧化钛和烧结助剂的平均粒径小于2μm。
优选的:所述烧结助剂包括镧系稀土氧化物中的至少一种和氧化镁。
优选的:所述有机碳源包括聚乙二醇、聚乙烯吡咯烷酮、葡萄糖、蔗糖、果糖、纤维素和淀粉中的至少一种。
优选的:所述步骤2.1中压制成型的方式为干压成型或/和冷等静压成型。
优选的:所述步骤2.2中焙烧处理的升温速率范围为1~30℃/min,降温速率范围为1~30℃/min或者随炉降温。
优选的:所述步骤2.3中保温处理和气压烧结的升温速率范围为1~30℃/min,降温速率范围为1~30℃/min或者随炉降温。
优选的:所述步骤2.3中气压烧结的气氛为氮气、氮氢混合气体中的至少一种,气体压力0.1-2MPa。
优选的:所述步骤2生成TiCxN(1-x)导电相,其中x=0~1。
本发明技术方案工艺简单稳定,条件易于控制,通过引入适量的二氧化钛和有机碳源,采用气压液相烧结技术,即可得到以β-Si3N4为主相,TiN(1-x)Cx为第二相(其中x=0~1),力学性能优异,具有低电阻率的高热导率氮化硅陶瓷。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为实施例1得到的样品的SEM谱;
图2为实施例1得到的样品的XRD图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
在本发明的实施例中,提供了一种气压烧结制备高热导率氮化硅陶瓷的方法,包括以下步骤:
步骤1,混料。
以总配料质量100%计,将40~71wt%的氮化硅粉体、25~50wt%的二氧化钛,4~10wt%的烧结助剂,占氮化硅粉体重量0-2wt%的有机碳源均匀混合并干燥过筛。
其中使用氮化硅粉体粒径范围在0.5~3μm,氧含量1.08wt%,α相含量大于95%。
二氧化钛和烧结助剂粒径小于2μm,纯度99%以上。
混合方式可采用湿法球磨1~24小时,得到陶瓷浆料,然后采用真空干燥或者旋转蒸发将所得的浆料干燥得到混合粉体。
干燥获得混合粉体经过过筛,得到混合陶瓷粉体,其中筛网目数范围为100~300目。
烧结助剂包括氧化镁以及镧系稀土氧化物中的至少一种。
有机碳源包括聚乙二醇,聚乙烯吡咯烷酮,葡萄糖,蔗糖,果糖,纤维素和淀粉中的至少一种。
步骤2.1,成型。
将所得的陶瓷混合粉体置于模具中施压成型,得到陶瓷素坯。
施压成型的方式可以是干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型。
干压成型或/和冷等静压成型压力范围在30~300MPa。
步骤2.2,焙烧。
将所得的陶瓷素坯置于马弗炉中升温至400~900℃保温0.5-2h,使得有机碳源充分分解,形成纳米碳颗粒均匀的分布在氮化硅颗粒周围。
步骤2.3,烧结。
将所得的陶瓷素坯置于烧结炉(例如,高温碳管炉)中气压烧结得到致密氮化硅陶瓷。
烧结的升温速率1~30℃/分钟,降温速率为1~30℃/分钟或随炉降温。
其中在1450-1650℃保温1~4h后,再升温至1850-1950℃进行保温,低温保温有助于TiO2充分反应,原位生成导电相TiN(1-x)Cx,(其中x=0~1),进一步高温保温能够促进氮化硅晶粒的生长,从而改善陶瓷的热导率。
气压烧结的气氛为氮气、氮氢混合气中的至少一种。
本发明实施例通过添加TiO2,通过高温反应原位生成TiN导电相,能够显著提高氮化硅陶瓷的导电和力学性能,并通过选择烧结助剂种类,调整烧结助剂含量以及烧结温度范围得到致密氮化硅陶瓷材料。
同时,本发明实施例提供的有机碳源首先在混料的阶段能够均匀分布在氮化硅颗粒周围,通过2.2焙烧排胶后得到原位存在的纳米颗粒,该方法能够减少碳掺杂量,在烧结阶段,TiO2能够与氮化硅以及氮化硅表面的SiO2反应生成TiN,并通过改变有机碳源添加量的方式调控TiN(1-x)Cx的组成,该相具有良好的力学性能,包括高硬度以及高温稳定性等,同时具有优异导电性能,其均匀大量的分布在氮化硅界面位置,能够有效的提高氮化硅陶瓷的力学性能和导电性能。
下面以具体的实施例描述本发明:
实施例1
将70g氮化硅粉体,25g二氧化钛以及5g复合烧结助剂(MgO和Y2O3的摩尔比值为5:2)粉体作为原料,200g无水乙醇为溶剂,置于球磨罐中球磨4h。
然后取20g干燥过筛后的混合料置于模具中。30MPa干压成型,将所得素坯进行冷等静压,压力为250MPa。
将获得的陶瓷素坯置于马弗炉中加热至800℃保温1h(为了减少变量,所有的样品同时进行了低温排胶处理)。
将处理的陶瓷坯体埋粉(BN粉体)置于碳管炉中,采用氮气为保护气体,压力0.9MPa,气压烧结过程为在10℃/min升温速率的条件下,升温至1500℃,保温2h,之后升温至1900℃,保温4h得到氮化硅陶瓷。导电相为TiN。
实施例2
将70g氮化硅粉体,25g二氧化钛,5g复合烧结助剂(MgO和Y2O3的摩尔比值为5:2)粉体以及0.4g果糖作为原料,200g无水乙醇为溶剂,置于球磨罐中球磨4h。
然后取20g干燥过筛后的混合料置于模具中,30MPa干压成型,将所得素坯进行冷等静压,压力为250MPa。
将获得的陶瓷素坯置于马弗炉中加热至800℃保温1h。
将处理的陶瓷坯体置于碳管炉中,采用氮气为保护气体,压力0.9MPa,气压烧结过程为在10℃/min升温速率的条件下,升温至1500℃,保温2h,之后升温至1900℃,保温4h得到氮化硅陶瓷。经测试,导电相为TiN0.7C0.3
实施例3
将70g氮化硅粉体,25g二氧化钛,5g复合烧结助剂(MgO和Y2O3的摩尔比值为5:2)粉体以及0.7g纤维素作为原料,200g无水乙醇为溶剂,置于球磨罐中球磨4h。
然后取20g干燥过筛后的混合料置于模具中,30MPa干压成型,将所得素坯进行冷等静压,压力为250MPa。
将获得的陶瓷素坯置于马弗炉中加热至800℃保温1h。
将处理的陶瓷坯体置于碳管炉中,采用氮气为保护气体,压力0.9MPa,气压烧结过程为在10℃/min升温速率的条件下,升温至1550℃,保温2h,之后升温至1900℃,保温4h得到氮化硅陶瓷。经测试,导电相为TiN0.5C0.5
实施例4
将60g氮化硅粉体,35g二氧化钛,5.0g复合烧结助剂(MgO和Y2O3的摩尔比值为5:2)粉体以及0.6g纤维素作为原料,200g无水乙醇为溶剂,置于球磨罐中球磨4h。
然后取20g干燥过筛后的混合料置于模具中,30MPa干压成型,将所得素坯进行冷等静压,压力为250MPa。
将获得的陶瓷素坯置于马弗炉中加热至800℃保温1h。
将处理的陶瓷坯体置于碳管炉中,采用氮气为保护气体,压力0.9MPa,气压烧结过程为在10℃/min升温速率的条件下,升温至1550℃,保温2h,之后升温至1900℃,保温4h得到氮化硅陶瓷。经测试,导电相为TiN0.5C0.5
实施例5
将45g氮化硅粉体,48g二氧化钛,7.0g复合烧结助剂(MgO和Yb2O3的摩尔比值为5:2)粉体以及0.9g纤维素作为原料,200g无水乙醇为溶剂,置于球磨罐中球磨4h。
然后取20g干燥过筛后的混合料置于模具中,30MPa干压成型,将所得素坯进行冷等静压,压力为250MPa。
将获得的陶瓷素坯置于马弗炉中加热至800℃保温1h。
将处理的陶瓷坯体置于碳管炉中,采用氮气为保护气体,压力0.9MPa,气压烧结过程为在10℃/min升温速率的条件下,升温至1550℃,保温2h,之后升温至1900℃,保温4h得到氮化硅陶瓷。经测试,导电相为TiN0.3C0.7
对比例1
将95g氮化硅粉体和5.0g复合烧结助剂(MgO和Y2O3的摩尔比值为5:2)粉体作为原料,200g无水乙醇为溶剂,置于球磨罐中球磨4h。
然后取20g干燥过筛后的混合料置于模具中,30MPa干压成型,将所得素坯进行冷等静压,压力为250MPa。
将获得的陶瓷素坯置于马弗炉中加热至800℃保温1h。
将处理的陶瓷坯体置于碳管炉中,采用氮气为保护气体,压力0.9MPa,气压烧结过程为在10℃/min升温速率的条件下,升温至1550℃,保温2h,之后升温至1900℃,保温4h得到氮化硅陶瓷。
对照测试
测试实施例1-5及对比例的热导率和电阻率,结果如下表1所示:
表1:测试结果表
编号 密度/g·cm-3 相对密度/% 热导率/W·m-1·K-1 电阻率/Ω·cm
实施例1 3.42 98.90 85 58
实施例2 3.38 97.74 84 44
实施例3 3.35 96.88 81 27
实施例4 3.48 97.99 82 6.8×10-2
实施例5 3.65 98.42 89 3.7×10-5
对比例1 3.22 99.24 92 1.5×1012
由上表可知,本发明采用以TiO2为原位生成导电相TiN(1-x)Cx,并通过气压烧结制备的方法,获得了高热导低电阻率的致密氮化硅陶瓷。
本发明的技术方案通过原位反应生成TiCxN(1-x)导电相,有效改善了氮化硅陶瓷的导电和导热性能。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1,以总配料质量100%计,将40~71%的氮化硅粉体、25~50%的二氧化钛、4~10%的烧结助剂和氮化硅粉体重量0~2%的有机碳源均匀混合、干燥、过筛得到陶瓷混合粉体;
步骤2,将陶瓷混合粉体压制成型,通过气压烧结后得到氮化硅陶瓷。
2.根据权利要求1所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述步骤2包括:
步骤2.1,将陶瓷混合粉体压制成型,得到陶瓷素坯;
步骤2.2,将陶瓷素坯在400~900℃焙烧处理0.5~2小时;
步骤2.3,在1450~1650℃保温处理2~4h后升温至1850~1950℃气压烧结0.5~12小时,得到氮化硅陶瓷。
3.根据权利要求1所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述氮化硅粉体的粒径范围在0.5~3μm。
4.根据权利要求1所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述二氧化钛和烧结助剂的平均粒径小于2μm。
5.根据权利要求1所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述烧结助剂包括镧系稀土氧化物中的至少一种和氧化镁。
6.根据权利要求1所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述有机碳源包括聚乙二醇、聚乙烯吡咯烷酮、葡萄糖、蔗糖、果糖、纤维素和淀粉中的至少一种。
7.根据权利要求2所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述步骤2.1中压制成型的方式为干压成型或/和冷等静压成型。
8.根据权利要求2所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述步骤2.2中焙烧处理的升温速率范围为1~30℃/min,降温速率范围为1~30℃/min或者随炉降温。
9.根据权利要求2所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述步骤2.3中气压烧结的气氛为氮气、氮氢混合气体中的至少一种,气体压力0.1-2MPa。
10.根据权利要求1所述的高热导率低电阻率氮化硅陶瓷的制备方法,其特征在于:所述步骤2生成TiCxN(1-x)导电相,其中x=0~1。
CN202310284174.4A 2023-03-22 2023-03-22 一种高热导率低电阻率氮化硅陶瓷的制备方法 Pending CN116217239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310284174.4A CN116217239A (zh) 2023-03-22 2023-03-22 一种高热导率低电阻率氮化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310284174.4A CN116217239A (zh) 2023-03-22 2023-03-22 一种高热导率低电阻率氮化硅陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN116217239A true CN116217239A (zh) 2023-06-06

Family

ID=86587352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310284174.4A Pending CN116217239A (zh) 2023-03-22 2023-03-22 一种高热导率低电阻率氮化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116217239A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229067A (zh) * 2023-11-14 2023-12-15 中南大学 一种低压氮化-包埋制备氮化硅陶瓷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219837A (ja) * 1993-01-27 1994-08-09 Toshiba Corp 窒化珪素セラミックス焼結体およびその製造方法
CN108610055A (zh) * 2016-12-12 2018-10-02 中国科学院上海硅酸盐研究所 一种低温液相烧结制备致密氮化硅陶瓷的方法
CN109305816A (zh) * 2017-07-27 2019-02-05 中国科学院上海硅酸盐研究所 一种常压烧结制备高热导率氮化硅陶瓷的方法
CN109694253A (zh) * 2017-10-24 2019-04-30 中国科学院上海硅酸盐研究所 一种通过碳掺杂提高常压烧结氮化硅陶瓷热导率的方法
CN111253162A (zh) * 2019-02-22 2020-06-09 中国科学院上海硅酸盐研究所苏州研究院 一种制备高强高韧高热导率氮化硅陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219837A (ja) * 1993-01-27 1994-08-09 Toshiba Corp 窒化珪素セラミックス焼結体およびその製造方法
CN108610055A (zh) * 2016-12-12 2018-10-02 中国科学院上海硅酸盐研究所 一种低温液相烧结制备致密氮化硅陶瓷的方法
CN109305816A (zh) * 2017-07-27 2019-02-05 中国科学院上海硅酸盐研究所 一种常压烧结制备高热导率氮化硅陶瓷的方法
CN109694253A (zh) * 2017-10-24 2019-04-30 中国科学院上海硅酸盐研究所 一种通过碳掺杂提高常压烧结氮化硅陶瓷热导率的方法
CN111253162A (zh) * 2019-02-22 2020-06-09 中国科学院上海硅酸盐研究所苏州研究院 一种制备高强高韧高热导率氮化硅陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
段于森等: "稀土氧化物对常压烧结氮化硅陶瓷性能的影响", 《无机材料学报》, vol. 32, no. 12, pages 1275 - 1279 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229067A (zh) * 2023-11-14 2023-12-15 中南大学 一种低压氮化-包埋制备氮化硅陶瓷的方法
CN117229067B (zh) * 2023-11-14 2024-02-23 中南大学 一种低压氮化-包埋制备氮化硅陶瓷的方法

Similar Documents

Publication Publication Date Title
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
JP2024500914A (ja) 高熱伝導性窒化ケイ素セラミックス絶縁板及びその製造方法
CN112851365B (zh) 一种氮化硅基复相导电陶瓷的制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN116217239A (zh) 一种高热导率低电阻率氮化硅陶瓷的制备方法
CN108610055B (zh) 一种低温液相烧结制备致密氮化硅陶瓷的方法
CN113105252A (zh) 一种制备氮化硅陶瓷的烧结助剂及其应用、氮化硅陶瓷的制备方法
CN114804912A (zh) 一种高韧性耐高温的定向排列氮化硅独石多孔陶瓷制备的方法
CN113526960A (zh) 一种碳化硅陶瓷及其热等静压烧结工艺
CN113860875B (zh) 一种原位自生碳化硅纳米线网络改性碳/碳复合材料的制备方法
CN111116206A (zh) 致密MoAlB陶瓷材料的制备方法、其产物及高纯MoAlB陶瓷粉的制备方法
CN112723891A (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN115745620B (zh) 一种高致密度氮化钛陶瓷材料及其制备方法
CN111747748A (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN108892528B (zh) 一种多孔氮化硅陶瓷材料及其制备方法
EP1036779B1 (en) Aluminium nitride sintered product and process for its production
CN113173790A (zh) B4C-TiB2/BN层状陶瓷材料及其制备方法
JP4065589B2 (ja) 窒化アルミニウム焼結体及びその製造方法
CN111606712A (zh) 一种低温脉冲加压制备碳化硼陶瓷的方法
CN112142469A (zh) 石墨基耐氧化型材、制备方法及应用
JP2000327430A (ja) 窒化アルミニウム焼結体とその製造方法
CN112441838B (zh) 一种表面晶粒定向生长的氮化硅陶瓷及其制备方法
JPH11236266A (ja) 炭化珪素質シートの製造方法
JP2960591B2 (ja) 炭化ケイ素−窒化ケイ素−混合酸化物系焼結体およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination