CN111606712A - 一种低温脉冲加压制备碳化硼陶瓷的方法 - Google Patents

一种低温脉冲加压制备碳化硼陶瓷的方法 Download PDF

Info

Publication number
CN111606712A
CN111606712A CN202010535910.5A CN202010535910A CN111606712A CN 111606712 A CN111606712 A CN 111606712A CN 202010535910 A CN202010535910 A CN 202010535910A CN 111606712 A CN111606712 A CN 111606712A
Authority
CN
China
Prior art keywords
boron carbide
powder
temperature
pulse pressurization
carbide ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010535910.5A
Other languages
English (en)
Inventor
李瑞迪
袁铁锤
陈雨
周志辉
张梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010535910.5A priority Critical patent/CN111606712A/zh
Publication of CN111606712A publication Critical patent/CN111606712A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种低温脉冲加压制备碳化硼陶瓷的方法,包括以下步骤:1)将原料B4C粉末,经过干燥处理后,放入球磨机中,进行球磨,球磨完毕后,干燥过筛,得到微细粒的B4C粉末;2)将步骤1)中的B4C粉末装入加压烧结炉的加压装置的模具中,接着抽真空或通入惰性气体,然后开始加热升温,升温至100℃后,进行脉冲加压,直到温度到达1300~1500℃后,停止脉冲加压,再然后升温至烧结温度,在恒定的压力下进行烧结,烧结完毕并冷却后,得到致密度高的细晶碳化硼陶瓷材料。采用本发明的脉冲加压的方式,在不加入助剂的情况下可以减少了烧结时间,降低了烧结温度,实现碳化硼粉末的完全致密化(致密度达到98%以上),同时保持了细晶材料的特性。

Description

一种低温脉冲加压制备碳化硼陶瓷的方法
技术领域
本发明属于碳化硼陶瓷材料加工制备技术领域,具体涉及一种低温脉冲加压制备碳化硼陶瓷的方法。
背景技术
碳化硼由碳、硼两种元素组成,其化学计量式为B4C,晶胞呈六棱形多面结构,同时碳化硼具有许多的同素异构体,如具有斜方六面体结构的B13C2、B12C3以及与之相接近的B13C3相,正是由于碳化硼复杂的晶体结构以及多种多样的同素异构体使得碳化硼具备优良的物理性能。碳化硼陶瓷作为一种硬度大、熔点高,耐磨损、耐腐蚀性能好,自润滑及制自抛光性能优良的稳定性材料,被广泛的应用于工业材料、航空航天以及汽车、机械零部件等领域。
传统的热压烧结制备碳化硼陶瓷,存在烧结周期较长、烧结温度高以及产品致密化程度低等一系列问题,同时由于烧结致密化过程多在高温阶段完成,因此无法避免的导致了部分的碳化硼陶瓷晶粒异常长大,显著降低了碳化硼材料的性能,同时所制备碳化硼材料其致密度也难以超过95%。目前为降低碳化硼陶瓷烧结温度、提高材料致密化程度的主要手段有:添加烧结助剂以及利用第二相弥散强化等。但是,烧结助剂的添加以及第二相的引入,虽然在一定程度上降低了烧结温度、提高了致密度,但同时也破坏了碳化硼陶瓷的轻质性,从而对所制备产品的性能产生了不利的影响。因此,如何在较低的温度下制备致密化程度高、物理性能优良的细晶碳化硼陶瓷材料成为了当下的研究热点。
发明内容
本发明的目的是提供一种致密化程度高、物理性能优良低温脉冲加压制备碳化硼陶瓷的方法。
本发明这种低温脉冲加压制备碳化硼陶瓷的方法,包括以下步骤:
1)将原料B4C粉末,经过干燥处理后,放入球磨机中,进行球磨,球磨完毕后,干燥过筛,得到微细粒的B4C粉末;
2)将步骤1)中的B4C粉末装入加压烧结炉的加压装置的模具中,接着抽真空或通入惰性气体,然后开始加热升温,升温至100℃后,进行脉冲加压,直到温度到达1300~1500℃后,停止脉冲加压,再然后升温至烧结温度,在恒定的压力下进行烧结,烧结完毕并冷却后,得到致密度高的细晶碳化硼陶瓷材料;
所述的脉冲加压,是先设定一个压力值,然后升压制该压力值后,保压5~10min,然后卸压,完成一个脉冲加压周期。
所述步骤1)中,原料B4C粉末的粒度应该小于30μm,球磨的球料比为(15~20):1,球磨的转速为300~500r/min,球磨时间为40~80h,过筛为依次通过650、800、900目筛网,控制B4C粉末的平均粒度在2~4um,所述的干燥均为真空干燥。
所述步骤2)中,升温速率为5~15℃/min,脉冲加压的压力值为30~50MPa,升压和降压的速率为5~15MPa/min,每个周期间隔的时间为2~5min,加热阶段需要有5~12个周期的脉冲加压。
优选的,所述的升温速率为10℃/min,脉冲加压的压力值为40MPa,升压速率为10MPa/min,加热阶段需要有7~8个周期的脉冲加压。
所述步骤2)中,烧结温度为1800~2000℃,恒定的压力为30~50Mpa,烧结时间为5~60min。
所述步骤2)中,B4C粉末与加压装置的模具之间有隔离层,隔离层为石墨纸。
所述步骤2)中,脉冲加压为轴向脉冲加压。
根据所述的制备方法制备得到致密度高的细晶碳化硼陶瓷材料。
所述致密度高的细晶碳化硼陶瓷材料的平均尺寸小于1μm,致密度98%以上,维氏硬度40GPa以上,断裂韧性为5.1MPa.m1/2以上。
本发明的原理:本发明通过在加热阶段施加脉冲状的压力,促进烧结过程中粉末颗粒的滑移重排,增强了粉末体的塑性流动,减少了碳化硼制品内部气孔、团聚等缺陷的形成,有助于烧结体的致密化,从而提高了烧结样品的密度。进行脉冲加压后,可以缩短样品恒定加压烧结的时间,也就减少了样品在低温低压烧结条件下缺陷的产生以及晶粒的异常长大;大量研究表明,随着烧结压力的增加,样品的密度不断增大,但压力继续增大,致密度反而变化不大。将烧结压力控制在一个最佳的范围内,减少了不必要的能源损耗,能够在短时间内实现碳化硼样品的致密化过程。同时将传统的加压过程改为脉冲加压,有利于烧结样品内部应力的释放,从而制备出性能更加优良的碳化硼制品。
本发明的有益效果:1、采用本发明的脉冲加压的方式,在不加入助剂的情况下可以减少了烧结时间,降低了烧结温度,实现碳化硼粉末的完全致密化(致密度达到98%以上),同时保持了细晶材料的特性。2、本发明也严格控制了原料粉末的粒径,对制备细晶粒的碳化硼陶瓷有一定的促进作用。3、本发明制备工艺简单,效率高,并且在极大程度上减少了生产制备过程的能源损耗,有利于实现工业化批量生产;所制备的碳化硼同时兼顾细晶、高致密等优良特性。
附图说明
图1脉冲加压的示意图。
图2球磨处理后的碳化硼粉末的SEM图。
图3实施例1-5制备的碳化硼陶瓷的金相图,1~5分别对应a~e。
图4对比例1制备的碳化硼陶瓷的金相图。
具体实施方式
实施例中的脉冲加压方式具体见图1。
实施例1
首先选取粒度为25μm的B4C粉末作为原料粉末,经过真空干燥处理后,倒入滚筒中并置于行星式球磨机上,球料比为20:1,设置参数:球磨转速300r/min,球磨时间40h,球磨结束后,真空干燥,然后粉末依次过650、800、900目筛网,得到球磨后的碳化硼粉末。本实施制备的碳化硼粉末如图2所示,碳化硼的粒度在2um左右。
将碳化硼粉末加入到加压装置的模具中,碳化硼粉末与模具通过石墨纸隔开,接着将加压装置放入到加压烧结炉中,在真空气氛下(炉内真空度控制为900Pa),进行加热,升温速率为10℃/min,升温至100℃时开始进行脉冲加压,通过加压装置,控制上下压头对模具施加30MPa脉冲压力,并通过压头底部的压力传感器对压力大小进行实时的监控,升压速率为10MPa/min,升压至30MPa后,保持5min,然后以10MPa/min进行卸压,卸压完毕后,经过5min后,按照第一次脉冲加压的工艺,进行第二次脉冲加压,一共有8次脉冲加压,脉冲加压完毕后,烧结炉的温度为1350℃,停止脉冲加压,继续升温至烧结温度1800℃,并施加恒定的压力40MPa,保温40min,烧结完成,完全冷却后取出,即得细晶、高致密的碳化硼陶瓷材料,其微观形貌图如图3(a)所示。具体性能参数见表1。
实施例2
首先选取粒度为25μm的B4C粉末作为原料粉末,经过真空干燥处理后,倒入滚筒中并置于行星式球磨机上,球料比为20:1,设置参数:球磨转速300r/min,球磨时间40h,球磨结束后,真空干燥,然后粉末依次过650、800、900目筛网,得到球磨后的碳化硼粉末。
将碳化硼粉末加入到加压装置的模具中,碳化硼粉末与模具通过石墨纸隔开,接着将加压装置放入到加压烧结炉中,在真空气氛下(炉内真空度控制为900Pa),进行加热,升温速率为8℃/min,升温至100℃时开始进行脉冲加压,通过加压装置,控制上下压头对模具施加35MPa脉冲压力,并通过压头底部的压力传感器对压力大小进行实时的监控,升压速率为5MPa/min,升压至35MPa后,保持8min,然后以5MPa/min进行卸压,卸压完毕后,经过3min后,按照第一次脉冲加压的工艺,进行第二次脉冲加压,一共有7次脉冲加压,脉冲加压完毕后,烧结炉的温度为1500℃,停止脉冲加压,继续升温至烧结温度1850℃,并施加恒定的压力40MPa,保温40min,烧结完成,完全冷却后取出,即得细晶、高致密的碳化硼陶瓷材料,其微观形貌图如图3(b)所示。具体性能参数见表1
实施例3
首先选取粒度为30μm的B4C粉末作为原料粉末,经过真空干燥处理后,倒入滚筒中并置于行星式球磨机上,球料比为15:1,设置参数:球磨转速400r/min,球磨时间60h,球磨结束后,真空干燥,然后粉末依次过650、800、900目筛网,得到球磨后的碳化硼粉末。
将碳化硼粉末加入到加压装置的模具中,碳化硼粉末与模具通过石墨纸隔开,接着将加压装置放入到加压烧结炉中,在真空气氛下(炉内真空度控制为900Pa),进行加热,升温速率为15℃/min,升温至100℃时开始进行脉冲加压,通过加压装置,控制上下压头对模具施加40MPa脉冲压力,并通过压头底部的压力传感器对压力大小进行实时的监控,升压速率为10MPa/min,升压至40MPa后,保持5min,然后以10MPa/min进行卸压,卸压完毕后,经过2min后,按照第一次脉冲加压的工艺,进行第二次脉冲加压,一共有6次脉冲加压,脉冲加压完毕后,烧结炉的温度为1450℃,停止脉冲加压,继续升温至烧结温度1900℃,并施加恒定的压力40MPa,保温30min,烧结完成,完全冷却后取出,即得细晶、高致密的碳化硼陶瓷材料,其微观形貌图如图3(c)所示。具体性能参数见表1。
实施例4
首先选取粒度为30μm的B4C粉末作为原料粉末,经过真空干燥处理后,倒入滚筒中并置于行星式球磨机上,球料比为15:1,设置参数:球磨转速500r/min,球磨时间70h,球磨结束后,真空干燥,然后粉末依次过650、800、900目筛网,得到球磨后的碳化硼粉末。
将碳化硼粉末加入到加压装置的模具中,碳化硼粉末与模具通过石墨纸隔开,接着将加压装置放入到加压烧结炉中,在真空气氛下(炉内真空度控制为900Pa),进行加热,升温速率为10℃/min,升温至100℃时开始进行脉冲加压,通过加压装置,控制上下压头对模具施加45MPa脉冲压力,并通过压头底部的压力传感器对压力大小进行实时的监控,升压速率为10MPa/min,升压至45MPa后,保持8min,然后以10MPa/min进行卸压,卸压完毕后,经过2min后,按照第一次脉冲加压的工艺,进行第二次脉冲加压,一共有7次脉冲加压,脉冲加压完毕后,烧结炉的温度为1430℃,停止脉冲加压,继续升温至烧结温度1950℃,并施加恒定的压力40MPa,保温20min,烧结完成,完全冷却后取出,即得细晶、高致密的碳化硼陶瓷材料,其微观形貌图如图3(d)所示。具体性能参数见表1。
对比例1
将实施例4中的碳化硼粉末加入到加压装置的模具中,碳化硼粉末与模具通过石墨纸隔开,接着将加压装置放入到加压烧结炉中,在真空气氛下(炉内真空度控制为900Pa),以升温速率为10℃/min,升温至烧结温度1950℃,并施加恒定的压力40MPa,保温20min,烧结完成,完全冷却后取出,即得碳化硼陶瓷材料。
实施例5
首先选取粒度为25μm的B4C粉末作为原料粉末,经过真空干燥处理后,倒入滚筒中并置于行星式球磨机上,球料比为20:1,设置参数:球磨转速300r/min,球磨时间80h,球磨结束后,真空干燥,然后粉末依次过650、800、900目筛网,得到球磨后的碳化硼粉末。
将碳化硼粉末加入到加压装置的模具中,碳化硼粉末与模具通过石墨纸隔开,接着将加压装置放入到加压烧结炉中,在真空气氛下(炉内真空度控制为900Pa),进行加热,升温速率为15℃/min,升温至100℃时开始进行脉冲加压,通过加压装置,控制上下压头对模具施加50MPa脉冲压力,并通过压头底部的压力传感器对压力大小进行实时的监控,升压速率为15MPa/min,升压至50MPa后,保持9min,然后以15MPa/min进行卸压,卸压完毕后,经过2min后,按照第一次脉冲加压的工艺,进行第二次脉冲加压,一共有5次脉冲加压,脉冲加压完毕后,烧结炉的温度为1460℃,停止脉冲加压,继续升温至烧结温度2000℃,并施加恒定的压力40MPa,保温10min,烧结完成,完全冷却后取出,即得细晶、高致密的碳化硼陶瓷材料,其微观形貌图如图3(e)所示。具体性能参数见表1。
表1
样品 晶粒度 致密度 维氏硬度 断裂韧性
实施例1 0.98μm 2.487g/cm 39.8GPa 5.0MPa.m<sup>1/2</sup>
实施例2 0.95μm 2.498g/cm 41.2GPa 5.1MPa.m<sup>1/2</sup>
实施例3 0.91μm 2.505g/cm 43.9GPa 5.3MPa.m<sup>1/2</sup>
实施例4 0.86μm 2.511g/cm 44.4GPa 5.5MPa.m<sup>1/2</sup>
实施例5 0.92μm 2.501g/cm 42.7GPa 5.2MPa.m<sup>1/2</sup>
对比例1 1.8μm 2.32g/cm 32.1GPa 3.7MPa.m<sup>1/2</sup>
通过对实施例1-5的实验结果(表1)以及烧结样品的金相图(图3)分析可知,本发明所制备的细晶碳化硼材料致密度可达98%以上(碳化硼理论密度是2.52),同时具有较为优良的力学性能。随着烧结温度的增加(1800-1950℃),碳化硼制品的晶粒度不断降低,但当烧结温度达到2000℃时,样品的晶粒度反而上升,这可能与晶粒的异常长大有关,因此在金相图上表现出更为粗大的颗粒。
实施例4与对比例1相比,从表1和图4可知,实施例4中的晶粒度和致密度以及其他性能都明显优于对比例1,说明本发明在升温阶段的脉冲加压可以有效的提高碳化硼陶瓷的性能。

Claims (9)

1.一种低温脉冲加压制备碳化硼陶瓷的方法,包括以下步骤:
1)将原料B4C粉末,经过干燥处理后,放入球磨机中,进行球磨,球磨完毕后,干燥过筛,得到微细粒的B4C粉末;
2)将步骤1)中的B4C粉末装入加压烧结炉的加压装置的模具中,接着抽真空或通入惰性气体,然后开始加热升温,升温至100℃后,进行脉冲加压,直到温度到达1300~1500℃后,停止脉冲加压,再然后升温至烧结温度,在恒定的压力下进行烧结,烧结完毕并冷却后,得到致密度高的细晶碳化硼陶瓷材料;
所述的脉冲加压,是先设定一个压力值,然后升压制该压力值后,保压5~10min,然后卸压,完成一个脉冲加压周期。
2.根据权利要求1所述的低温脉冲加压制备碳化硼陶瓷的方法,其特征在于,所述步骤1)中,原料B4C粉末的粒度应该小于30μm,球磨的球料比为(15~20):1,球磨的转速为300~500r/min,球磨时间为40~80h,过筛为依次通过650、800、900目筛网,控制B4C粉末的平均粒度在2~4um,所述的干燥均为真空干燥。
3.根据权利要求1所述的低温脉冲加压制备碳化硼陶瓷的方法,其特征在于,所述步骤2)中,升温速率为5~15℃/min,脉冲加压的压力值为30~50MPa,升压和降压的速率为5~15MPa/min,每个周期间隔的时间为2~5min,加热阶段需要有5~12个周期的脉冲加压。
4.一种根据权利要求3所述的低温脉冲加压制备碳化硼陶瓷的方法,其特征在于,所述的升温速率为10℃/min,脉冲加压的压力值为40MPa,升压速率为10MPa/min,加热阶段需要有7~8个周期的脉冲加压。
5.根据权利要求1所述的低温脉冲加压制备碳化硼陶瓷的方法,其特征在于,所述步骤2)中,烧结温度为1800~2000℃,恒定的压力为30~50Mpa,烧结时间为5~60min。
6.根据权利要求1所述的低温脉冲加压制备碳化硼陶瓷的方法,其特征在于,所述步骤2)中,B4C粉末与加压装置的模具之间有隔离层,隔离层为石墨纸。
7.根据权利要求1所述的低温脉冲加压制备碳化硼陶瓷的方法,其特征在于,所述步骤2)中,脉冲加压为轴向脉冲加压。
8.一种根据权利要求1~8任意一项所述的制备方法制备得到致密度高的细晶碳化硼陶瓷材料。
9.根据权利要求8所述致密度高的细晶碳化硼陶瓷材料,其特征在于,碳化硼陶瓷材料晶粒平均尺寸小于1μm,致密度98%以上,维氏硬度40GPa以上,断裂韧性为5.1MPa.m1/2以上。
CN202010535910.5A 2020-06-12 2020-06-12 一种低温脉冲加压制备碳化硼陶瓷的方法 Pending CN111606712A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010535910.5A CN111606712A (zh) 2020-06-12 2020-06-12 一种低温脉冲加压制备碳化硼陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010535910.5A CN111606712A (zh) 2020-06-12 2020-06-12 一种低温脉冲加压制备碳化硼陶瓷的方法

Publications (1)

Publication Number Publication Date
CN111606712A true CN111606712A (zh) 2020-09-01

Family

ID=72196402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010535910.5A Pending CN111606712A (zh) 2020-06-12 2020-06-12 一种低温脉冲加压制备碳化硼陶瓷的方法

Country Status (1)

Country Link
CN (1) CN111606712A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387705A (zh) * 2021-07-23 2021-09-14 郑州航空工业管理学院 一种碳化硼陶瓷的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1243569A (en) * 1969-12-10 1971-08-18 Vnii Abrazivov Manufacturing articles from a mixture of powdered silicon carbide and boron carbide
CN102731093A (zh) * 2011-04-06 2012-10-17 鲁东大学 一种低温致密化烧结碳化硼基陶瓷材料的方法
CN105924176A (zh) * 2016-04-25 2016-09-07 北京理工大学 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN106316401A (zh) * 2016-08-30 2017-01-11 宁波东联密封件有限公司 一种高致密度的碳化硅复合材料的制备方法
CN106854080A (zh) * 2016-11-15 2017-06-16 中南大学 一种致密超细晶碳化硼陶瓷材料降低烧结温度的制备方法
CN108675793A (zh) * 2018-03-21 2018-10-19 北京清核材料科技有限公司 一种碳化硼陶瓷的二次烧结方法
CN108692564A (zh) * 2018-07-17 2018-10-23 浙江晨华科技有限公司 一种脉冲加压烧结炉
CN109957671A (zh) * 2019-03-19 2019-07-02 自贡硬质合金有限责任公司 一种硬质合金烧结工艺
CN110608611A (zh) * 2019-10-31 2019-12-24 中南大学 一种具有梯度晶粒的碳化硼轴承的制备方法
CN110698205A (zh) * 2019-11-19 2020-01-17 中国核动力研究设计院 一种石墨烯增韧碳化硅陶瓷的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1243569A (en) * 1969-12-10 1971-08-18 Vnii Abrazivov Manufacturing articles from a mixture of powdered silicon carbide and boron carbide
CN102731093A (zh) * 2011-04-06 2012-10-17 鲁东大学 一种低温致密化烧结碳化硼基陶瓷材料的方法
CN105924176A (zh) * 2016-04-25 2016-09-07 北京理工大学 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN106316401A (zh) * 2016-08-30 2017-01-11 宁波东联密封件有限公司 一种高致密度的碳化硅复合材料的制备方法
CN106854080A (zh) * 2016-11-15 2017-06-16 中南大学 一种致密超细晶碳化硼陶瓷材料降低烧结温度的制备方法
CN108675793A (zh) * 2018-03-21 2018-10-19 北京清核材料科技有限公司 一种碳化硼陶瓷的二次烧结方法
CN108692564A (zh) * 2018-07-17 2018-10-23 浙江晨华科技有限公司 一种脉冲加压烧结炉
CN109957671A (zh) * 2019-03-19 2019-07-02 自贡硬质合金有限责任公司 一种硬质合金烧结工艺
CN110608611A (zh) * 2019-10-31 2019-12-24 中南大学 一种具有梯度晶粒的碳化硼轴承的制备方法
CN110698205A (zh) * 2019-11-19 2020-01-17 中国核动力研究设计院 一种石墨烯增韧碳化硅陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEI ZHANG等: "Densification mechanisms and microstructural evolution during spark plasma sintering of boron carbide powders", 《CERAMICS INTERNATIONAL》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387705A (zh) * 2021-07-23 2021-09-14 郑州航空工业管理学院 一种碳化硼陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN106977179B (zh) 一种两步分段烧结法制备高致密ito靶材的方法
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN109553419B (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
CN104313380B (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN110698205B (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN106915961B (zh) 一种石墨烯-氧化锆复合材料及其制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN111777415B (zh) 一种碳化硼防弹材料及其制备方法
CN112250442B (zh) 一种高强韧无粘结相纳米晶硬质合金的制备方法
CN114031376A (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN115536403A (zh) 一种高韧氮化硅陶瓷材料及其制备方法
CN106834778B (zh) 硬质合金以及制备方法
CN101486578A (zh) 氮化硅基纳米复合梯度功能陶瓷刀具材料及其制备方法
CN111606712A (zh) 一种低温脉冲加压制备碳化硼陶瓷的方法
CN113968734B (zh) 一种高致密度氧化锆陶瓷材料的制备方法
CN113149676A (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
CN115010496B (zh) 一种性能可控的b4c-金刚石复合材料的制备方法
CN112853283A (zh) 一种铬镍合金溅射靶材及其制备方法与应用
CN112062574A (zh) 一种高性能纳米碳化硅陶瓷及其制备方法和应用
CN116217239A (zh) 一种高热导率低电阻率氮化硅陶瓷的制备方法
CN111204721A (zh) MnAlCxNn-1-x相粉末的制备方法
CN113387705B (zh) 一种碳化硼陶瓷的制备方法
CN114591086B (zh) 一种纳米粉体改性碳化硅-碳化硼复相陶瓷及其制备方法
CN110877980A (zh) 一种高强度碳化硅/氮化硅复相陶瓷及其制备方法
CN113121238B (zh) 一种高性能碳化硼基复合陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200901