WO2020102948A1 - 一种紫外光源封装元件 - Google Patents
一种紫外光源封装元件Info
- Publication number
- WO2020102948A1 WO2020102948A1 PCT/CN2018/116256 CN2018116256W WO2020102948A1 WO 2020102948 A1 WO2020102948 A1 WO 2020102948A1 CN 2018116256 W CN2018116256 W CN 2018116256W WO 2020102948 A1 WO2020102948 A1 WO 2020102948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical element
- fluorine
- edge
- light source
- element according
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 103
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 66
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000011737 fluorine Substances 0.000 claims abstract description 63
- 229920005989 resin Polymers 0.000 claims abstract description 51
- 239000011347 resin Substances 0.000 claims abstract description 51
- 238000004806 packaging method and process Methods 0.000 claims description 42
- 239000012790 adhesive layer Substances 0.000 claims description 21
- 229920001577 copolymer Polymers 0.000 claims description 11
- -1 perfluoro Chemical group 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 10
- 239000007788 liquid Substances 0.000 abstract description 5
- 230000008023 solidification Effects 0.000 abstract 1
- 238000007711 solidification Methods 0.000 abstract 1
- 239000000178 monomer Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 11
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 150000001993 dienes Chemical class 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004224 protection Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- KHXKESCWFMPTFT-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)propane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)C(F)(F)F KHXKESCWFMPTFT-UHFFFAOYSA-N 0.000 description 1
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H01L33/48—
-
- H01L33/56—
-
- H01L33/58—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/14—Measures for saving energy, e.g. in green houses
Definitions
- the present invention relates to an ultraviolet light source packaging element, specifically an ultraviolet LED light source packaging element.
- a light-emitting diode (LED for short) is a solid-state semiconductor light-emitting device. With the development of LED technology, LED
- UV LED as a new generation of green light source, has many advantages such as high light efficiency, long life, energy saving, environmental protection, etc., and its application fields are more and more widely, such as indoor and outdoor disinfection, backlight, UV printing, medical treatment, catering , Plant growth, etc.
- the current ultraviolet (UV) LED packaging structure, especially the deep ultraviolet (DUV) LED packaging structure generally adopts all-inorganic packaging.
- the light of this packaging structure exits from the chip and enters the air, and then passes through the optical materials such as quartz glass
- the element is transmitted to the outside world.
- the entire optical path has many repeated dense optical media to light sparse media, and the interface is a planar structure, so there is a very large total reflection phenomenon, which has a great impact on the light output efficiency.
- the refractive index of which is generally 1.3 to 1.6, high ultraviolet light transmittance, good reliability, and a very promising deep ultraviolet LED packaging material.
- the material filled in the packaging structure is liquid, which may cause a problem that bubbles cannot be eliminated.
- the bubbles exist in a closed packaging structure. It will affect the light extraction efficiency, and the above structure also has the problem that the optical element is deformed during the reflow process.
- the present invention provides the following ultraviolet light source packaging components, including: a base frame, optical elements and LED chips; the base frame has a groove in the center, the bottom of the groove fixes the L ED chip; encapsulating colloid fills the groove part under the optical element, and fills to cover the optical element through the through hole structure on the optical element or the gap formed between the edge of the optical element and the inner wall of the groove Partial upper surface.
- the encapsulating colloid is a fluororesin; the fluororesin is excellent in heat resistance and ultraviolet resistance; more preferably, the non-fluororesin is an amorphous fluororesin to improve the UV transmittance; [0007] Preferably, the peak wavelength of the ultraviolet light source LED chip is less than 290nm;
- a plurality of steps separated from each other and of equal height or a continuous ring-shaped step are formed along the inner side wall of the groove, and the edge of the optical element is placed on the step;
- the optical element is placed on a step, and one or more adhesive layers are formed between the step and the optical element; the adhesive force of the adhesive layer is higher than that of the fluorine-containing resin;
- part of the edge of the optical element is placed on the step and part of the edge is not placed on the step, the fluorine-containing fluorine is formed through the gap formed between the part of the edge not on the step and the inner wall of the groove
- the resin is filled to cover the upper surface of the optical element
- the step is higher than the light exit surface of the chip and lower than the top of the inner sidewall of the groove;
- the mutually separated steps are four;
- the hole is located on the groove, and the hole is close to the edge of the optical element;
- the size of the hole structure is 20 [ xm or more, preferably 100 [ xm to 1mm
- the size is the maximum diameter of the hole;
- the size of the gap is 20 [xm or more, preferably 100 [xmSJ lmm, the size is the surface of the groove side wall to the optical element
- the maximum horizontal distance between the edges, the inner wall of the hole has roughness, preferably having a roughness of at least 20.2pm;
- the edge of the optical element is placed on the edge of the top of the base frame, and an adhesive layer is formed between the edge of the optical element and the top of the base frame;
- the outer surface of the optical element is a curved lens
- the bottom surface of the lens is a plane, and the connection between the spherical center and the center of the LED chip light emitting surface is perpendicular to the LED chip light emitting surface;
- the lens edge has a platform, preferably the platform is at least part of the upper surface or lower surface or edge side is roughened, having a roughness of at least 20.2pm roughness;
- the fluorine-containing resin is an amorphous fluorine-containing resin, the crystallinity is less than or equal to 10%; preferably, the imaginary part of the complex refractive index of the fluorine resin is less than 0.001 @ 300nm;
- the fluorine-containing resin is a copolymer of a perfluoro-based oxygen-containing heterocycle and a perfluoro-based olefin;
- the structural unit of the fluororesin contains a five-membered ring, and the ring contains 1 or 2 oxygen; the fluororesin has a structure of the following formula:
- the LED radiation wavelength is 275nm-285nm; the base frame body is made of aluminum nitride insulating material.
- the ultraviolet chip packaging structure of the present invention compared with the prior art, the following beneficial effects can be obtained: [0024] 1. Liquid or fluorine-containing resin filled in the package body during the curing process of the air or gas generated It can be effectively excluded through the pore structure or void; the pore structure or void is one or more, wherein the size of one pore structure or void is greater than 2 (Vm; and through this structure, the fluorine-containing resin can be achieved seamlessly, It is completely filled between the optical elements of the chip, no air remains, and the light output is improved.
- the height of the fluorine resin filled is higher than the bottom edge of the optical element, and covers part of the outer surface, rigid
- the fluorine-containing resin forms a buckling effect between the edge of the optical element and the fluororesin, which can effectively improve the fixing effect of the optical element on the surface of the base frame; thereby solving the problem of adhesion between the optical element and the base frame and increasing the reliability of the device, Reduce total reflection and increase light extraction; this structural design can be effectively used in the packaging structure of ultraviolet, especially deep ultraviolet UVC light emitting area, to alleviate the aging adhesive weakening caused by long-term use or ultraviolet light irradiation The problem of causing the optical components to fall off easily; 3.
- the step is higher than the height of the chip and lower than the height of the base frame.
- the edge of the optical element can be placed on the step and compared
- an adhesive layer is provided between the step and the optical element to form a support for the optical element.
- FIGS. 1 (a) and 1 (b) are schematic diagrams of a class of existing ultraviolet packaging structures mentioned in the background art
- FIG. 2 is a schematic diagram of the ultraviolet packaging structure of Example 1;
- FIGS. 3-4 are plan views of chips and optical elements mounted on the base frame in Example 1;
- FIG. 5 is a schematic structural view of a chip installed in a base frame in Example 1;
- FIG. 6 is a schematic structural view of a chip and optical elements installed in a base frame in Example 1;
- FIG. 7 is a schematic structural diagram of an improved ultraviolet packaging structure of Example 2.
- FIG. 8 is a schematic view of the ultraviolet packaging structure of Example 3.
- FIG. 9 is a schematic diagram of the ultraviolet packaging structure of Example 4.
- FIG. 10 is a graph of the transmittance of the fluorine-containing resin used in the ultraviolet packaging structure of Example 1 with the wavelength distribution
- this embodiment provides an ultraviolet LED packaging structure, which includes: a base frame 1, an optical element 6 and an LED chip 4; the base frame 1 has a groove in the center, the groove The bottom of the LED chip 4 is fixed; wherein the base frame groove is filled with fluorine resin 5, the optical element 6 falls into the groove and is located above the LED chip 4, the edge of the optical element 6 and There are gaps between the inner side walls of the groove, the gaps are filled with fluorine-containing resin 5, the gaps between the edges of the optical element 6 and the inner side walls of the groove are used to eliminate air bubbles, and the fluorine-containing resin 5 is covered to the optical elements through the gaps Part of the upper surface to form a buckle effect.
- the base frame 1 is preferably a ceramic material integrally formed or a combined structure with a ceramic bottom and a metal side.
- an insulating material such as ceramic material may be selected. Ceramic materials include low-temperature co-fired ceramics (LTCC) or high-temperature co-fired ceramics (HTCC) that are co-fired at the same time.
- the body material of the bracket 10 may be AIN, and may be formed of a metal nitride having a thermal conductivity of 140 W / (m.K) or higher.
- the base frame 1 includes a central groove part, a UV LED chip structure is installed at the bottom of the groove, one or more ultraviolet LED chips 4 are provided, positive and negative electrodes are provided at the bottom of the groove, and the LED chip is positive and negative
- the electrode is connected to the positive and negative electrodes at the bottom of the groove by wire bonding or soldering, and the positive and negative electrodes extend to the external positive and negative electrodes for electrical connection.
- the LED chip 4 may be a front-mounted or flip-chip or vertical chip; the LED chip 4 is an ultraviolet chip, and the LED chip is placed on a support, and its wavelength is between 200 ⁇ 380nm, specifically, it may be a long wave (codenamed UVA, Wavelength 315 ⁇ 380nm), medium wave (UVB, 280-315nm), short wave (UVC, 200 ⁇ 280nm), the emission wavelength can be selected according to the needs of actual use, such as surface sterilization, surface curing, etc .; UV LED chip 4 The number can be selected according to factors such as power requirements, or different wavelengths of ultraviolet LED chips 4 can be selected in the same ultraviolet LED package structure according to different uses, or at least one ultraviolet LED chip 4 and other wavelength chips can be combined.
- the optical element 6 has an arc-shaped outer surface and a planar lens structure on the bottom surface, such as quartz glass.
- the lens falls into the groove and forms a gap with the inner wall of the groove.
- the fluorine-containing resin 5 is filled to cover the LED chip 4, the bottom surface of the groove and at least part of the side surface And cover at least part of the edge of the lens and at least the outer surface arc.
- the top surface of the arc lens is an arc formed by a part of a sphere, and the connection between the center position of the arc sphere and the center point on the light emitting surface of the chip is preferably perpendicular to the light emitting surface of the chip to ensure The light can be scattered from the optical element uniformly at all angles.
- the light exit interface can be emitted at the smallest possible angle to reduce the chance of reflection.
- the fluorine-containing resin is higher than the refractive index of air, is between 1.3 ⁇ 1.6, because the refractive index of the fluorine-containing resin is between the refractive index of the LED chip epitaxial structure and the refractive index of glass, Effectively reduce the total reflection generated at the interface of different materials and increase the direct light extraction rate.
- the fluorine-containing resin is a stable UV radiation resistant and high transmittance resin, wherein the stable UV radiation-resistant and high transmittance fluorine-containing resin is more preferably an amorphous Fluorine resin. More preferably, the fluorine-containing resin may be a single polymer or a copolymer, specifically, such as a perfluorinated alkyl vinyl ether copolymer, a perfluorinated alkyl vinyl ether copolymer, polyperfluorinated ethylene propylene, ethylene Copolymer with tetrafluoroethylene.
- the structural unit of the formed monopolymer or copolymer has a fluorine-containing aliphatic ring structural unit, and the fluorine-containing aliphatic ring structural unit is more favorable to amorphization and has high transparency.
- the fluorinated resin monomer or copolymer has a fluorinated aliphatic ring structural unit, preferably, a unit based on a cyclic fluorinated monomer or by cyclic polymerization of a diene-based fluorinated monomer The unit formed.
- the unit of the cyclic fluorinated monomer may be a monomer having a polymerizable double bond between carbon atoms constituting the fluorinated aliphatic ring or outside the carbon atoms constituting the fluorinated aliphatic ring and the fluorinated aliphatic ring A monomer with a polymerizable double bond between carbon atoms.
- the fluorine-containing aliphatic ring may have an etheric oxygen atom (-0-) in its ring skeleton.
- the number of etheric oxygen atoms in the fluorine-containing aliphatic ring is preferably 1 or 2. It may be a copolymer of the above-mentioned cyclic fluorine-containing monomer and other monomers.
- the ratio of the cyclic fluorine-containing monomer to the total of all the repeating units constituting the copolymer is preferably
- diene-based fluorine-containing monomers may specifically include diene-based fluorine-containing monomers described below, tetrafluoroethylene, chlorotrifluoroethylene, perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and perfluoro ( Propyl vinyl ether), etc.
- the diene-based fluorine-containing monomer is a monomer having two polymerizable double bonds and a fluorine atom.
- the polymerizable double bond is preferably vinyl, allyl, or acryl Group, methacryloyl, etc.
- the diene-based fluorine-containing monomer the following compounds are preferred.
- Q is a perfluoroalkylene group having 1 to 3 carbon atoms, which may have an etheric oxygen atom and a part of the fluorine atom may be replaced by a halogen atom other than the fluorine atom.
- the amorphous fluororesin may be a polymer composed of only a diene-based fluoromonomer, or may be a copolymer having the above-mentioned diene-based fluoromonomer and other monomers.
- the proportion of the diene-based fluoromonomer is preferably 50 mol% or more, more preferably 80 mol% or more, and most preferably 100 mol% with respect to the total of all repeating units constituting the copolymer.
- the average molecular weight of the first type of amorphous fluororesin is preferably 3,000 to 100,000 0, more preferably 10,000 to 300,000, and still more preferably 100,000 to 250,000. It should be noted that as the above-mentioned monomer cyclization polymerization method, homopolymerization method and copolymerization method.
- This embodiment uses the following amorphous fluorine-containing resin:
- Fig. 9 shows the transmittance test of the fluororesin between 200nm-800nm, it can be seen that it has a significantly high UV penetration, especially the light transmittance of more than 90% in the wavelength range above 200nm, in The typical 280nm ultraviolet transmittance is above 95%.
- the bottom of the groove is provided with a plurality of steps 3 separated from each other and of equal height, the steps 3 being the same or different from the material of the base frame.
- the edge of the optical element 6 is placed on the step 3, the height of the step 3 is greater than the height of the chip and less than the height of the side wall, the height adjustment of the step 3 can control the distance between the chip and the optical element, thereby controlling the light Try to be able to radiate at a nearly vertical angle.
- the number of steps separated from each other is preferably four, and the height is the same, that is, the side walls of the groove in all directions have steps to fix the optical element.
- the optical element cover Covering the step does not form a fully enclosed space inside the groove, but has a gap, that is, a gap is formed between the edge of the optical element and the inner side wall of the groove.
- the side wall of the step may be consistent with the material of the base frame, such as aluminum nitride, or may be made of a material having a higher reflectivity than aluminum nitride, such as metal.
- an adhesive layer may be formed between the optical element 6 and the step 3, and the adhesiveness of the adhesive layer is preferably higher than that of the fluorine-containing resin.
- the adhesive layer here may be made of one or more layers of material, preferably made of a layer of material, the adhesion is preferably greater than or equal to 2 MPa, the thickness is preferably not more than 5pm, and the adhesion is preferably higher than the fluorine-containing resin.
- the edge of the lens has a platform, and part of the lens platform is placed on the step 3 to increase the attachment area; part of the lens platform is not placed on the step 3, a suspended state is formed between the steps 3, and this part of the platform and the groove side wall A void is formed, and the void is filled with fluorine-containing resin, which is filled to cover this part of the lens platform and at least part of the outer surface, so that the bubbles of the fluorine-containing resin under the lens can be discharged into the air through the void and form a buckle structure.
- the part in the dotted area of FIG. 3 is the gap formed between the platform of the lens and the side wall of the groove.
- the maximum horizontal distance between the edge of the platform of the lens and the surface of the side wall of the groove is at least greater than 20
- the roughening treatment is located at least between the platform and the step to Increase the adhesion area or the position where the platform is combined with the fluororesin to improve the buckle effect.
- the entire platform edge of the lens is consistent with the curved shape of the lens, or as shown in FIG. 4, the platform edge of the lens corresponds to the shape of the groove Adapted, as shown in Figure 4 is square.
- the cut ultraviolet LED chip 4 is installed on the metal positive and negative electrodes 2 of the base in the groove of the base frame 1, wherein the ultraviolet LED is preferred
- the chip is a flip chip.
- a lens with a curved top surface and a flat bottom surface is mounted on the step 3 of the side wall of the groove, and the step 3 and the lens are adhered by an adhesive layer.
- the adhesive layer is made of conventional adhesive resin, and the adhesive layer The adhesion will be higher than that of fluororesin.
- Part of the edge of the lens is not placed on the step to form a gap 7 between the lens and the side wall of the groove (the gap 7 is shown in the dashed circle part of FIG. 5), so that the groove part below is not completely sealed.
- a fluorine-containing solvent preferably an aprotic fluorine-containing solvent, after dissolving the above-mentioned amorphous fluororesin in the coating solution is injected into the base frame groove to cover
- the solvent is volatilized while gradually heating the coating liquid.
- the molecular weight of the fluorine-containing solvent used is too large, not only does the viscosity of the coating liquid increase, but also the solubility of the first type of amorphous fluororesin decreases, so it is preferably 1,000 or less.
- the fluorine content of the solvent is preferably 60 to 80% by weight.
- aprotic fluorine-containing solvent examples include polyfluoroaromatic compounds, polyfluorotrialkylamines, polyfluoroalkanes, polyfluorocyclic ethers, and hydrofluoroethers (HFE). These aprotic fluorinated solvents may be used alone or in combination.
- the obtained fluororesin is filled in the space below the optical element in a rigid state, and is filled through the gap to cover the upper surface of the optical element part, the rigid fluororesin and the optical
- the edge of the element forms a buckle effect, which is helpful for fixing the optical element, preventing sliding, alleviating the problem of shedding of the optical element due to the aging of the adhesive, and improving reliability.
- the platform provided by the edge of the optical element is more conducive to the firmness of the buckling effect .
- the bottom of the groove is provided with a continuous ring-shaped step 3 against the side wall, the ring-shaped step 3 has the same height, and a part of the edge of the optical element 6 is placed Above the step 3, the height of the step 3 is greater than the height of the chip and lower than the height of the side wall of the groove.
- the material of the adhesive layer is the same as or different from that of the fluorine-containing resin, or the adhesion of the adhesive layer is higher than that of the fluorine-containing resin.
- the adhesive layer here can be made of one or more layers of materials. Part of the edge of the optical element is not placed on the step Therefore, a fully enclosed space is not formed inside the groove below the optical element, that is, a gap 7 is formed between the edge of the optical element that is not placed on the step and the inner side wall of the groove.
- the fluorine-containing resin is filled in the groove below the optical element, and covers the top arc-shaped side wall of the optical element or the edge has a platform, that is, at least covers the edge platform.
- This embodiment provides an ultraviolet light source packaging element different from the previous embodiment, as shown in FIG. 8, including: a base frame 1, an optical element 6, and an LED chip 4; the base frame 1 has a groove at the center, The bottom of the groove is fixed to the LED chip 4; the edge of the optical element 6 is placed on a step in the groove of the base frame, the edge of the optical element preferably has a platform, the platform is placed on the step, the platform and An adhesive layer is provided between the steps, and the adhesive force of the adhesive layer is preferably higher than that of the fluororesin.
- the fluororesin 5 fills the groove of the base frame, and the optical element has a hole 8. The fluororesin Fill the hole and cover the outer surface around the hole.
- the buckling effect between the optical element and the fluororesin can be effectively formed to facilitate the fixation of the optical element;
- the height of the step is higher than the light exit surface of the chip and lower than The height of the top of the base frame;
- the hole 8 is located above the groove, and the fluorine-containing resin is filled between the optical element and the chip;
- the holes 8 are at least two holes 8 distributed uniformly or non-uniformly on the optical element, the holes may also be relatively distributed on both sides above the chip, and the positions of the holes deviate from the optical element
- the center is closer to the edge of the optical element;
- the hole 8 is circular or elliptical or polygonal;
- the structure size of the hole 8 is greater than 20 [ xm, preferably 100 [ xm to 1mm, the
- the optical element 6 is a curved lens.
- the contact position between the platform and the step of the optical element can be roughened to increase the bonding area.
- the inside of the hole can be roughened, and has a roughness of at least 20.2 pm, so as to improve the buckling effect between the optical element and the fluororesin.
- the inner sidewall of the groove has no step for placing the edge of the optical element, and the optical element 6 is placed on the edge of the base frame.
- An adhesive layer is formed between the element and the edge of the base frame, and the adhesive layer may be one or more layers.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Led Device Packages (AREA)
Abstract
一种紫外光源封装元件,包括:基架、光学元件和LED芯片;所述基架中央具有凹槽,所述凹槽内的底部固定所述LED芯片;含氟树脂填充所述的光学元件下方的凹槽部分,并通过所述的光学元件上的贯通孔结构或光学元件边缘与凹槽内侧壁之间形成的空隙填充至覆盖光学元件的部分上表面。通过所述的光学元件上的贯通孔结构或光学元件边缘与凹槽内侧壁之间形成的空隙填充至覆盖光学元件的部分上表面,一方面含氟树脂以液态形式填充至封装体中,固化过程中所产生的气体能够通过贯通孔和空隙排放出去,尽量避免气泡的残留,另外一方面,含氟树脂覆盖光学元件部分外表面形成卡扣作用,提高可靠性。
Description
发明名称:一种紫外光源封装元件
技术领域
[0001] 本发明涉及一种紫外光源封装元件, 具体地为一种紫外 LED光源封装元件。
背景技术
[0002] 发光二极管 (英文简称 LED) , 是一种固体半导体发光器件。 随着 LED技术的 发展, LED
的模组波段逐渐往近紫外甚至深紫外方向发展。 众所周之, 紫外 LED作为新一代 绿色光源, 具有光效高、 寿命长、 节能、 环保等众多优点, 其应用领域越来越 广泛, 如室内外消毒、 背光源、 UV打印、 医疗、 餐饮、 植物生长等。 但是当前 的紫外 (UV) LED封装结构, 特别是深紫外 (DUV) LED封装结构一般采用全 无机封装, 此种封装结构的光从芯片出射后进入到空气, 然后再经过石英玻璃 等材质的光学元件透射到外界。 整个光路有多次反复的光密介质到光疏介质, 而且界面是平面结构, 因此存在非常大的全反射现象, 对出光效率造成了很大 的影响。
[0003] 为了克服上述技术的不足, 如专利文献 CN108134007A所提及, 5见有技术包括 从芯片辐射的光经过一折射率比空气高的填充介质, 然后经过光学元件透射到 外界, 通过该设计可以改善全反射造成的影响, 提高出光率。
[0004] 另外目前有一种无定形的氟树脂封装材料, 其折射率一般为 1.3~1.6 , 紫外光透 射率高, 可靠性好, 非常有前景的深紫外 LED封装材料。 然而如 CN108134007A 提及的封装结构, 如图 1(a)和 1(b)所示, 在封装结构中填充的材料为液态, 会产 生气泡无法排除的问题, 该气泡存在密闭的封装结构中, 会影响出光效率, 且 上述结构还存在光学元件在回流焊过程中发生变形的问题。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 为了解决上述技术问题, 本发明提供如下一种紫外光源封装元件, 包括: 基架 、 光学元件和 LED芯片; 所述基架中央具有凹槽, 所述凹槽内的底部固定所述 L ED芯片; 封装胶体填充所述的光学元件下方的凹槽部分, 并通过所述的光学元 件上的贯通孔结构或光学元件边缘与凹槽内侧壁之间形成的空隙填充至覆盖光 学元件的部分上表面。
[0006] 优选的, 所述的封装胶体为含氟树脂; 含氟树脂的耐热性以及耐紫外性能优异 ; 更优选的, 所述的非氟树脂为非晶型含氟树脂, 以提高对紫外的透光性; [0007] 优选地, 所述的紫外光源 LED芯片发光峰值波长为 290nm以下;
[0008] 优选的, 所述凹槽内沿着内侧壁形成多个彼此相互分离且等高的台阶或连续的 环状的台阶, 所述的光学元件的边缘置于所述的台阶上;
[0009] 优选的, 所述的光学元件置于台阶上, 台阶与光学元件之间形成一层或多层粘 接层; 所述的粘接层的粘附力高于含氟树脂;
[0010] 优选的, 所述的光学元件的部分边缘置于台阶上以及部分边缘未置于台阶上, 通过未置于台阶上的部分边缘与凹槽内侧壁之间形成的空隙所述含氟树脂填充 至覆盖光学元件的部分上表面;
[0011] 优选的, 所述的台阶高于芯片出光面, 低于凹槽内侧壁的顶部;
[0012] 优选的, 所述的相互分离的台阶为四个;
[0013] 优选的, 所述的孔为多个;
[0014] 优选的, 所述的孔位于凹槽上, 并且所述孔靠近所述的光学元件的边缘; 所述 的孔结构尺寸为 20[xm以上, 优选的为 100[xm到 1mm之间; 所述的尺寸为孔的最 大直径; 优选的, 所述空隙的尺寸为 20[xm以上, 优选的为 100[xmSJ lmm之间, 所述的尺寸为凹槽侧壁的面到光学元件的边缘之间最大的水平距离, 所述的孔 的内侧壁具有粗糙度, 优选具有粗糙度至少为 20.2pm;
[0015] 优选的, 所述的光学元件的边缘置于基架顶部的边缘, 所述的光学元件与基架 顶部的边缘之间形成粘合层;
[0016] 优选的, 所述的光学元件的外表面为弧形的透镜;
[0017] 优选的, 所述的透镜底面为平面, 球面球心与 LED芯片出光面中心的连线垂直 于 LED芯片出光面;
[0018] 优选的, 所述的透镜边缘具有平台, 优选地所述的平台至少部分上表面或下表 面或边缘侧边被粗化处理, 具有粗糙度至少为粗糙度 20.2pm;
[0019] 优选的, 所述的含氟树脂为非晶型含氟树脂, 结晶度小于等于 10%; 优选的, 所述的氟树脂的复折射率的虚部小于 0.001 @ 300nm;
[0020] 优选的, 所述含氟树脂为全氟基含氧杂环与全氟基烯烃的共聚物;
[0021] 优选的, 所述的含氟树脂的结构单元为含有五元环, 且环中含有 1或者 2个氧; 所述的含氟树脂为如下式的结构:
, 其中 n/(n+m)%的比值介于 40-60%之间;
[0022] 优选的, 所述的 LED辐射波长为 275nm-285nm; 所述的基架本体由氮化铝绝缘 材料制成。
发明的有益效果
有益效果
[0023] 根据本发明的紫外芯片封装结构, 相对于现有技术可以获得以下有益效果: [0024] 1、 液态的含氟树脂填充到封装体后在固化过程中所包含的空气或产生的气体 能够通过孔结构或空隙被有效排除; 所述的孔结构或空隙为一个或多个, 其中 一个孔结构或空隙的尺寸大于 2(Vm; 并且通过该结构, 能够实现含氟树脂无缝 隙地、 完全充满芯片光学元件之间, 无空气残留, 提高出光效果。
[0025] 2、 同时通过光学元件的孔结构或光学元件与凹槽内侧壁之间形成的空隙, 实 现含氟树脂填充的高度高于光学元件的底面边缘, 并覆盖到部分外表面, 刚性 的含氟树脂在光学元件的边缘与氟树脂之间形成卡扣作用, 可以有效提高光学 元件在基架表面的固定作用; 从而解决光学元件与基架间粘结的问题, 增加器 件的可靠性, 减少全反射, 并增加光取出; 该结构设计可有效利用在紫外尤其 是深紫外 UVC发光区域的封装结构上, 缓解粘接剂在长期使用中或紫外光照射 下发生的老化粘附性变弱导致光学元件容易脱落的问题;
[0026] 3、 基架凹槽内沿着侧壁设置有独立或延续的台阶, 台阶的高度高于芯片的高 度低于基架的高度, 光学元件的边缘可以放在台阶之上, 并较佳地设置粘接层 在台阶与光学元件之间, 以形成对光学元件的支撑。
[0027] 在本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书 中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通 过在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0028] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0029] 附图 1(a)和 1 (b) 为背景技术中提到的一类现有的紫外封装结构示意图;
[0030] 附图 2为实施例 1的紫外封装结构示意图;
[0031] 附图 3-4为实施例 1中基架上安装有芯片和光学元件的俯视图;
[0032] 附图 5为实施例 1中基架内安装有芯片的结构示意图;
[0033] 附图 6为实施例 1中基架内安装有芯片和光学元件的结构示意图;
[0034] 附图 7为实施例 2的改进的紫外封装结构的结构示意图;
[0035] 附图 8为实施例 3的紫外封装结构示意图;
[0036] 附图 9为实施例 4的紫外封装结构示意图;
[0037] 附图 10为实施例 1的紫外封装结构中使用的含氟树脂透光率随波长分布曲线图
[0038] 附图标记说明:
[0039] 1.基架; 2.正负电极; 3.台阶; 4.LED芯片; 5.含氟树脂; 6.光学元件; 7.空隙; 8. 孔。
发明实施例
本发明的实施方式
[0040] 下面结合示意图对本发明的紫外 LED封装结构进行详细的描述, 在进一步介绍 本发明之前, 应当理解, 由于可以对特定的实施例进行改造, 因此, 本发明并
不限于下述的特定实施例。 还应当理解, 由于本发明的范围只由所附权利要求 限定, 因此所采用的实施例只是介绍性的, 而不是限制性的。 除非另有说明, 否则这里所用的所有技术和科学用语与本领域的普通技术人员所普遍理解的意 义相同。
[0041] 实施例 1
[0042] 请参考附图 2, 本实施例提供一种紫外 LED封装结构, 其包括: 基架 1、 光学元 件 6和 LED芯片 4; 所述基架 1中央具有凹槽, 所述凹槽内的底部固定所述 LED芯 片 4; 其中所述基架凹槽内填充有含氟树脂 5, 所述的光学元件 6落入凹槽内并位 于 LED芯片 4上方, 所述光学元件 6的边缘与凹槽的内侧壁之间具有空隙, 空隙内 填充有含氟树脂 5 , 光学元件 6的边缘与凹槽的内侧壁之间具有的空隙实现气泡 的排除, 含氟树脂 5通过空隙覆盖至光学元件的部分上表面以形成卡扣作用。
[0043] 具体地, 所述基架 1优选为陶瓷材料一体形成或为底面陶瓷、 侧面为金属的组 合型结构。 为了保证高散热性, 可以选择包括诸如陶瓷材料的绝缘材料。 陶瓷 材料包括被同时共烧的低温共烧陶瓷 (LTCC)或者高温共烧陶瓷 (HTCC)。 支架 10 的主体材料可以是 AIN, 并且可以是由具有 140 W/(m.K)或者更高的导热性的金 属氮化物形成。 其中所述的基架 1包括中央的凹槽部分, 凹槽底部安装有紫外 LE D芯片结构, 紫外 LED芯片 4为一颗或多颗, 凹槽的底部设置有正负电极, LED 芯片正负电极通过打线或焊晶的方式连接至凹槽底部的正负电极, 正负电极延 伸至外部实现电性连接的正负电极。 LED芯片 4可以是正装或倒装或垂直芯片; LED芯片 4为紫外芯片, 所述 LED芯片置于支架之上, 其波长介于 200~380nm之 间, 具体来说可以是长波 (代号 UVA, 波长 315~380nm)、 中波 (UVB, 280-315nm )、 短波 (UVC, 200~280nm) , 发光波长可以根据实际用途的需要选择, 比如用于 表面杀菌、 表面固化等; 紫外 LED芯片 4的数目可以根据功率需求等因素选择, 也可以根据不同的用途在同一个紫外 LED封装结构中选择不同波长的紫外 LED芯 片 4, 或者搭配至少一个紫外 LED芯片 4以及其他波长芯片。
[0044] 所述的光学元件 6为外表面弧形, 底面平面的透镜结构, 如石英玻璃材质, 透 镜落入凹槽内, 并且与凹槽内侧壁之间形成空隙。
[0045] 所述的含氟树脂 5填充至覆盖 LED芯片 4、 凹槽内的底部表面以及至少部分侧表
面, 且覆盖在所述透镜的边缘以及至少外表面弧形至少部分。 优选的所述的弧 形透镜的顶面为球形的一部分形成的弧形, 弧形的球心位置最好与芯片发光面 上的中心点之间的连线垂直于芯片的发光面, 以保证光线能够各个角度均匀的 从光学元件散射出去。 弧形透镜的尺寸相对于芯片的尺寸越大越好, 以保证芯 片的位置能够更加地接近与球心的位置, 芯片辐射出的光线依次到达含氟树脂 与弧形透镜、 弧形透镜与空气之间的出光界面能够尽量小的角度发射出去, 降 低反射几率。
[0046] 所述的含氟树脂为高于空气的折射率, 为介于 1.3~1.6之间, 由于含氟树脂的折 射率介于 LED芯片外延结构的折射率以及玻璃折射率之间, 可以有效降低不同材 料界面产生的全反射, 提高直接出光率。
[0047] 所述的含氟树脂为稳定的耐 UV辐射且高透光率的树脂, 其中所述的稳定的耐 U V辐射且高透光率的含氟树脂, 更优选为非晶型的含氟树脂。 更优选的, 所述的 含氟树脂可以为单聚物或共聚物, 具体地如全氟化烷乙烯基醚共聚物、 全氟化 烷乙烯基醚共聚物、 聚全氟化乙丙烯、 乙烯与四氟乙烯共聚物。 所构成单聚物 或共聚物的结构单元具有含氟脂肪族环结构单元, 含氟脂肪族环结构单元更有 利于非晶化, 透明度高。
[0048] 所述的含氟树脂的单聚物或共聚物具有含氟脂肪族环结构单元, 优选, 基于环 状含氟单体的单元或通过二烯系含氟单体的环化聚合而形成的单元。 具体地, 环状含氟单体的单元可以为构成含氟脂肪族环的碳原子间具有聚合性双键的单 体或者在构成含氟脂肪族环的碳原子与含氟脂肪族环外的碳原子之间具有聚合 性双键的单体。 该含氟脂肪族环在其环骨架中也可以具有醚性氧原子(-0-)。 此 时, 含氟脂肪族环中的醚性氧原子的数量优选为 1或 2。 也可以是上述环状含氟 单体与此外的其它单体的共聚物。 环状含氟单体的比例相对于构成该共聚物的 全部重复单元的合计优选为
20摩尔%以上、 更优选为 40摩尔%以上, 也可以是 100摩尔%。 其它单体可以具 体举出后述的二烯系含氟单体、 四氟乙烯、 三氟氯乙烯、 全氟(甲基乙烯基醚)、 全氟(乙基乙烯基醚)、 全氟(丙基乙烯基醚)等。 所述二烯系含氟单体是具有 2个聚 合性双键和氟原子的单体。 作为该聚合性双键优选为乙烯基、 烯丙基、 丙烯酰
基、 甲基丙烯酰基等。 作为二烯系含氟单体, 优选为下述的化合物。
[0049] CF2 = CF-Q-CF = CF2
[0050] 式中, Q是可以具有醚性氧原子且氟原子的一部分可以被氟原子以外的卤素原 子替换的碳原子数为 1〜 3的全氟亚烷基。
[0051] 非晶氟树脂既可以是仅二烯系含氟单体由构成的聚合物, 也可以是具有上述二 烯系含氟单体和此外的其它单体的共聚物。 二烯系含氟单体比例相对于构成该 共聚物的全部重复单元的合计优选为 50摩尔%以上、 更优选为 80摩尔%以上、 最优选为 100摩尔%。 第一类型的非晶氟树脂的平均分子量优选为 3000〜 100000 0、 更优选为 10000〜 300000、 进一步优选为 100000〜 250000。 需要说明的是, 作为上述单体的环化聚合方法、 均聚方法和共聚方法。
[0052] 本实施例采用如下一种非晶型含氟树脂:
, 其结晶度 10%以下,含氟树脂的复折射率的虚部小于 0.001 @300nm, 以保证在 紫外甚至深紫外的光源照射下具有更高的透光率, 具体地能够保证 200nm以上具 有 90%的透光率, 甚至是 275-285nm的光源照射下透光率高于 95%, 且优选 n/n+m 的比值为 40~60%。 该类聚合物表现出高温稳定性, 疏水性好以及耐化学性, 能 够在氟化溶剂中具有高溶解度、 低溶液粘度的特点。 以 n/n+m的比值 60%为例, 其折射率为 1.327, 玻璃化温度为 125°C。 图 9为该含氟树脂在 200nm-800nm之间 的透光率测试, 可以看出其具有明显高的紫外穿透性, 尤其在 200nm以上的波长 范围内达到 90%以上的透光率, 在典型的 280nm紫外的透光率达到 95%以上。
[0053] 所述的凹槽底部靠着侧壁设置有多个彼此分离且等高的台阶 3 , 所述的台阶 3为 相同或不同于所述的基架的材料。 光学元件 6的边缘置于台阶 3之上, 所述的台 阶 3高度为大于芯片高度, 小于侧壁的高度, 所述的台阶 3高度调整可以控制芯 片与光学元件之间的距离, 从而控制光线尽量能够以接近垂直的角度辐射出去 。 当所述的凹槽为方形时, 所述相互分离的台阶数量优选为 4个, 并且高度等同 , 即各个方向的凹槽侧壁都有台阶以固定所述的光学元件。 所述的光学元件覆
盖在台阶上对凹槽内部并没有形成全密闭的空间, 而是具有空隙的设置, 即光 学元件边缘与凹槽的内侧壁之间形成空隙。 所述的台阶侧壁可以与基架的材料 一致, 如氮化铝, 也可以是制作为具有比氮化铝更高的反射率的材料制成, 如 金属。
[0054] 为了提高牢固性, 也可以在所述的光学元件 6与台阶 3之间形成粘接层, 粘接层 的粘附性优选高于含氟树脂。 此处的粘接层可以为一层或多层材料制成, 优选 的为一层材料制成, 附着力优选大于或等于 2MPa, 厚度优选分别不超过 5pm, 优选附着力高于含氟树脂。
[0055] 更优选的, 为了增加光学元件 6与氟树脂之间的附着力, 防止透镜因震动而脱 落的情况, 如图 3从光学元件外表面侧俯视的封装结构示意图, 所述的弧形透镜 的边缘具有平台, 透镜的部分平台置于台阶 3上, 增加附着面积; 透镜的部分平 台未置于台阶 3上, 在台阶 3之间形成悬空的状态, 并且此部分平台与凹槽侧壁 形成空隙, 空隙内填充有含氟树脂, 含氟树脂填充至包覆此部分透镜平台与至 少部分外表面, 以利于透镜下方的含氟树脂的气泡能够通过空隙排至空气中, 以及形成卡扣结构。 其中图 3的虚线区域中的部分即为透镜的平台与凹槽的侧壁 之间形成的空隙部分。 透镜的平台边缘与凹槽侧壁所在面之间的水平距离最大 值至少大于 20[xm;
[0056] 更优选的, 所述的平台至少部分上表面或下表面或边缘侧边被粗化处理, 具有 粗糙度至少为粗糙度 20.2pm, 所述粗化处理至少位于平台与台阶之间以提高粘 附面积或位于平台与含氟树脂结合的位置, 以提高卡扣作用。
[0057] 更优选的, 如图 3所示, 所述的透镜的平台边缘整体为与透镜弧形形状一致, 或如图 4所示, 所述的透镜的平台边缘为与凹槽的形状相适应, 如图 4所示意的 为方形。
[0058] 为了获得本实施例的一种封装结构, 如图 5所示, 首先将切割完成的紫外 LED 芯片 4安装在基架 1凹槽内底座的金属正负电极 2上, 其中优选紫外 LED芯片为倒 装芯片。
[0059] 接着如图 6所示, 将顶面为弧形, 底面为平面的透镜安装在凹槽侧壁的台阶 3上 , 台阶 3与透镜之间通过粘接层粘接。 粘接层为常规的粘接树脂做成, 且粘接层
的粘附性会比含氟树脂的粘附性高。 透镜的部分边缘未置于台阶上, 以形成透 镜与凹槽侧壁之间的空隙 7 (空隙 7如图 5虚线圆圈部分所示) , 以实现未完全密 封下方的凹槽部分。
[0060] 然后, 通过透镜与凹槽之间的空隙, 将含氟溶剂、 优选为非质子性含氟溶剂中 溶解上述的非晶氟树脂后的涂布液注入基架凹槽内, 以覆盖透镜下方的 LED芯片 4、 底座的金属正负电极 2、 凹槽空间以及透镜边缘, 并且可以覆盖到透镜的弧 形部分外表面。 一边逐渐对涂布液进行加热一边使溶剂挥发。 溶剂的挥发时, 为了使树脂内尽量不残留气泡, 重要的是从溶剂沸点以下的低温区域(:例如室温 附近)缓缓加热至溶剂沸点以上的高温区域(例如 200°C附近), 使溶剂挥发。
[0061] 所使用的含氟溶剂的分子量过大时, 不仅使涂布液的粘度上升, 而且第一类型 的非晶氟树脂的溶解性也下降, 因此优选为 1000以下。 另外, 为了提高第一类 型的非晶氟树脂的溶解性, 溶剂的氟含量优选为 60〜 80重量%。
[0062] 作为非质子性含氟溶剂, 可以举出聚氟芳香族化合物、 聚氟三烷基胺、 聚氟链 烷烃、 聚氟环状醚、 氢氟醚(HFE)等。 这些非质子性含氟溶剂可以单独使用也可 以混合使用。
[0063] 高温固化使溶剂挥发后, 冷却至室温, 获得的含氟树脂为刚性的状态填充在光 学元件下方的空间内, 并且通过空隙填充至覆盖光学元件部分上表面, 刚性的 氟树脂与光学元件的边缘形成卡扣作用, 有利于固定光学元件, 防止滑动, 缓 解光学元件因粘接剂老化导致的脱落问题, 提高可靠性, 光学元件的边缘具有 的平台更有利于卡扣作用的牢固性。
[0064] 实施例 2
[0065] 作为实施例 1的变形, 如图 7所示所述的凹槽底部靠着侧壁设置有连续的环形的 台阶 3 , 所述的环形台阶 3高度一致, 光学元件 6的部分边缘置于台阶 3之上, 所 述的台阶 3高度为大于芯片高度, 低于凹槽侧壁的高度, 通过所述的台阶高度的 设置, 可以有效控制芯片与光学元件之间的距离, 从而有效控制出光角尽量能 够以接近垂直的角度辐射出去。 所述的光学元件与台阶之间形成粘接层, 粘接 层的材料与含氟树脂材料相同或不同, 或粘接层的粘覆性高于含氟树脂。 此处 的粘接层可以为一层或多层材料制成。 所述的光学元件部分边缘未置于台阶上
, 以对光学元件下方的凹槽内部并没有形成全密闭的空间, 即光学元件部分未 置于台阶上的边缘与凹槽的内侧壁之间形成空隙 7。 含氟树脂填充在光学元件下 方的凹槽内, 并覆盖至光学元件的顶面弧形侧壁上或边缘具有平台的情况, 即 至少覆盖边缘平台。
[0066] 实施例 3
[0067] 本实施例提供不同于前面实施例的一种紫外光源封装元件, 如图 8所示, 包括 : 基架 1、 光学元件 6和 LED芯片 4; 所述基架 1中央具有凹槽, 所述凹槽内的底部 固定所述 LED芯片 4; 所述的光学元件 6边缘放置在基架凹槽内的台阶上, 所述的 光学元件优选边缘具有平台, 平台置于台阶上, 平台与台阶之间设置有粘接层 , 粘接层的粘附力优选高于含氟树脂, 所述含氟树脂 5填充基架凹槽内,所述的光 学元件具有孔 8 , 所述含氟树脂填充孔并覆盖孔周围的外表面。 通过所述的含氟 树脂溢出孔, 可以有效地形成光学元件与含氟树脂之间的卡扣作用, 以利于光 学元件的固定作用; 所述的台阶的高度高于芯片的出光面, 低于基架顶部的高 度;
[0068] 所述的孔 8位于凹槽上方, 所述的含氟树脂充满光学元件与芯片之间;
[0069] 所述的孔 8为至少 2个, 均匀地或非均匀地分布在光学元件上, 所述的孔也可以 相对地分布于芯片上方的两侧, 所述的孔的位置偏离光学元件中心,更靠近光学 元件的边缘位置; 所述的孔 8为圆形或椭圆形或多边形; 所述的孔 8结构尺寸为 大于 20[xm, 优选的为 100[xm到 1mm之间, 所述的光学元件 6为弧形透镜。 所述光 学元件的平台与台阶之间接触的位置可以进行粗化以提高结合面积。 所述的孔 的内侧可以进行粗化处理, 具有粗糙度至少为粗糙度 20.2pm, 以提高光学元件 与含氟树脂之间的卡扣作用。
[0070] 实施例 4
[0071] 作为实施例 3的一种替代方案, 如图 9所示, 所述的凹槽内侧壁无用于放置光学 元件边缘的台阶, 所述的光学元件 6放置在基架的边缘上, 光学元件与基架边缘 之间形成粘接层, 所述的粘接层可为一层或多层。
[0072] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术 人员, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进
和润饰也应视为本发明的保护范围。
Claims
[权利要求 1] 一种紫外光源封装元件, 包括: 基架、 光学元件和 LED芯片; 所述基 架中央具有凹槽, 所述凹槽内的底部固定所述 LED芯片; 其特征在于 : 含氟树脂填充所述的光学元件下方的凹槽部分, 并通过所述的光学 元件上的贯通孔结构或光学元件边缘与凹槽内侧壁之间形成的空隙填 充至覆盖光学元件的部分上表面。
[权利要求 2] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述的 紫外光源 LED芯片发光峰值波长为 290nm以下。
[权利要求 3] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述凹 槽内沿着内侧壁形成多个彼此相互分离且等高或环形的台阶, 所述光 学元件的边缘置于所述的台阶上。
[权利要求 4] 根据权利要求 3所述的一种紫外光源封装元件, 其特征在于, 所述的 光学元件置于台阶上, 台阶与光学元件之间形成一层或多层粘接层。
[权利要求 5] 根据权利要求 4所述的一种紫外光源封装元件, 其特征在于, 所述的 粘接层的粘附力高于含氟树脂。
[权利要求 6] 根据权利要求 3或 4所述的一种紫外光源封装元件, 其特征在于, 所述 的光学元件的部分边缘置于台阶上以及部分边缘未置于台阶上, 通过 未置于台阶上的部分边缘与凹槽内侧壁之间形成的空隙所述含氟树脂 填充至覆盖光学元件的部分上表面。
[权利要求 7] 根据权利要求 3所述的一种紫外封装元件, 其特征在于, 所述的台阶 高于芯片出光面, 低于凹槽内侧壁的顶部。
[权利要求 8] 根据权利要求 3所述的一种紫外封装元件, 其特征在于, 所述的相互 分离的台阶为四个。
[权利要求 9] 根据权利要求 1所述的一种紫外封装元件, 其特征在于, 所述的孔为 多个。
[权利要求 10] 根据权利要求 1所述的一种紫外封装元件, 其特征在于, 所述的孔位 于凹槽上方, 并且所述孔靠近所述的光学元件的边缘。
[权利要求 11] 根据权利要求 1所述的一种紫外封装元件, 其特征在于, 所述的孔结
构尺寸至少为 2(Vm, 孔的内侧壁具有粗化面, 优选具有粗糙度至少 为 S0.2[xm。
[权利要求 12] 根据权利要求 1所述的一种紫外封装元件, 其特征在于, 所述的光学 元件的边缘置于基架顶部的边缘, 所述的光学元件与基架顶部的边缘 之间形成粘合层。
[权利要求 13] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述的 光学元件是外表面为弧形的透镜。
[权利要求 14] 根据权利要求 13所述的一种紫外光源封装元件, 其特征在于, 所述的 透镜底面为平面, 球面球心与 LED芯片出光面中心的连线垂直于 LED 芯片出光面。
[权利要求 16] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述的 含氟树脂为非晶型含氟树脂, 结晶度小于等于 10%。
[权利要求 17] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述的 含氟树脂为全氟基含氧杂环与全氟基烯烃的共聚物。
[权利要求 18] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述的 含氟树脂的复折射率的虚部小于 0.001 @300nm
[权利要求 19] 根据权利要求 1所述的一种紫外光源封装元件, 其特征在于, 所述的 含氟树脂为如下式结构的聚合物:
, 其中 n/(n+m)%的比值介于 40-60%之间
[权利要求 20] 根据权利要求 1所述的一种紫外封装元件, 其特征在于, 所述的 LED 福射波长为 275nm-285nm。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/116256 WO2020102948A1 (zh) | 2018-11-19 | 2018-11-19 | 一种紫外光源封装元件 |
JP2020553647A JP7165203B2 (ja) | 2018-11-19 | 2018-11-19 | 紫外パッケージ素子 |
CN201880035575.3A CN110915006A (zh) | 2018-11-19 | 2018-11-19 | 一种紫外光源封装元件 |
US17/319,757 US12002908B2 (en) | 2018-11-19 | 2021-05-13 | Light-emitting packaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/116256 WO2020102948A1 (zh) | 2018-11-19 | 2018-11-19 | 一种紫外光源封装元件 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/319,757 Continuation-In-Part US12002908B2 (en) | 2018-11-19 | 2021-05-13 | Light-emitting packaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020102948A1 true WO2020102948A1 (zh) | 2020-05-28 |
Family
ID=69814480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/116256 WO2020102948A1 (zh) | 2018-11-19 | 2018-11-19 | 一种紫外光源封装元件 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7165203B2 (zh) |
CN (1) | CN110915006A (zh) |
WO (1) | WO2020102948A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022108692A (ja) * | 2021-01-13 | 2022-07-26 | 豊田合成株式会社 | 紫外発光装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7305236B2 (ja) * | 2020-10-05 | 2023-07-10 | 株式会社朝日ラバー | 紫外線led用光学部材 |
CN112652695B (zh) * | 2021-01-14 | 2023-01-10 | 泉州三安半导体科技有限公司 | 一种led发光装置及其制造方法 |
WO2023272686A1 (zh) * | 2021-07-01 | 2023-01-05 | 泉州三安半导体科技有限公司 | 一种发光装置 |
CN113659059A (zh) * | 2021-07-09 | 2021-11-16 | 深圳市佑明光电有限公司 | Led灯珠、照明灯及led灯珠的制造方法 |
WO2023042862A1 (ja) * | 2021-09-16 | 2023-03-23 | 旭化成株式会社 | 紫外線照射装置 |
CN114335302B (zh) * | 2021-12-29 | 2024-04-23 | 马鞍山杰生半导体有限公司 | 紫外发光装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101079464A (zh) * | 2006-05-22 | 2007-11-28 | 优志旺电机株式会社 | 紫外线发光元件封装 |
CN102044597A (zh) * | 2009-10-21 | 2011-05-04 | 陆亮 | 一种发光二极管 |
US8338923B1 (en) * | 2011-09-02 | 2012-12-25 | GEM Weltronics TWN Corporation | Package structure of multi-layer array type LED device |
CN203733832U (zh) * | 2013-12-25 | 2014-07-23 | 深圳市瑞丰光电子股份有限公司 | Led封装结构 |
CN204668355U (zh) * | 2015-06-03 | 2015-09-23 | 东莞市驰明电子科技有限公司 | Led灯珠 |
CN207458983U (zh) * | 2017-10-19 | 2018-06-05 | 深圳市傲牛科技有限公司 | Led紫外光源 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002240144A (ja) * | 2001-02-19 | 2002-08-28 | Asahi Glass Co Ltd | 低複屈折のフッ素樹脂フィルム |
JP4269709B2 (ja) * | 2002-02-19 | 2009-05-27 | 日亜化学工業株式会社 | 発光装置およびその製造方法 |
JP2004346233A (ja) * | 2003-05-23 | 2004-12-09 | Yunimatekku Kk | 蛍光体含有含フッ素共重合体組成物およびその製造方法並びに蛍光体含有含フッ素共重合体成形物の製造方法 |
JP4681343B2 (ja) * | 2005-04-28 | 2011-05-11 | シチズン電子株式会社 | 発光ダイオードの製造方法 |
JP3130478U (ja) * | 2007-01-12 | 2007-03-29 | 一品光学工業股▲ふん▼有限公司 | 成形レンズを備える発光ダイオードアセンブリ |
JP5311674B2 (ja) * | 2010-01-14 | 2013-10-09 | パナソニック株式会社 | 発光装置 |
TWI463272B (zh) * | 2010-11-30 | 2014-12-01 | Ushio Electric Inc | Light irradiation device |
KR101958418B1 (ko) * | 2013-02-22 | 2019-03-14 | 삼성전자 주식회사 | 발광 소자 패키지 |
KR101539206B1 (ko) * | 2013-04-30 | 2015-07-23 | 소코 가가쿠 가부시키가이샤 | 자외선 발광 장치 |
CN206639811U (zh) * | 2016-12-27 | 2017-11-14 | 广东晶科电子股份有限公司 | 一种深紫外led封装器件 |
CN108134007B (zh) * | 2017-11-08 | 2019-05-10 | 厦门市三安光电科技有限公司 | 一种紫外led封装结构 |
-
2018
- 2018-11-19 CN CN201880035575.3A patent/CN110915006A/zh active Pending
- 2018-11-19 JP JP2020553647A patent/JP7165203B2/ja active Active
- 2018-11-19 WO PCT/CN2018/116256 patent/WO2020102948A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101079464A (zh) * | 2006-05-22 | 2007-11-28 | 优志旺电机株式会社 | 紫外线发光元件封装 |
CN102044597A (zh) * | 2009-10-21 | 2011-05-04 | 陆亮 | 一种发光二极管 |
US8338923B1 (en) * | 2011-09-02 | 2012-12-25 | GEM Weltronics TWN Corporation | Package structure of multi-layer array type LED device |
CN203733832U (zh) * | 2013-12-25 | 2014-07-23 | 深圳市瑞丰光电子股份有限公司 | Led封装结构 |
CN204668355U (zh) * | 2015-06-03 | 2015-09-23 | 东莞市驰明电子科技有限公司 | Led灯珠 |
CN207458983U (zh) * | 2017-10-19 | 2018-06-05 | 深圳市傲牛科技有限公司 | Led紫外光源 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022108692A (ja) * | 2021-01-13 | 2022-07-26 | 豊田合成株式会社 | 紫外発光装置 |
JP7452446B2 (ja) | 2021-01-13 | 2024-03-19 | 豊田合成株式会社 | 紫外発光装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2021520632A (ja) | 2021-08-19 |
JP7165203B2 (ja) | 2022-11-02 |
CN110915006A (zh) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020102948A1 (zh) | 一种紫外光源封装元件 | |
US12002908B2 (en) | Light-emitting packaging device | |
CN101079464A (zh) | 紫外线发光元件封装 | |
Liang et al. | High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays | |
CN113506846B (zh) | 一种紫外led封装结构 | |
CN211605189U (zh) | 一种紫外led封装结构 | |
TW201919260A (zh) | 紫外led封裝結構 | |
CN108767041A (zh) | 一种提高太阳能光伏光电转化率的方法及装置 | |
US20210217936A1 (en) | Uv led device | |
TW202104294A (zh) | 電子零件的製造方法及電子零件 | |
WO2020230715A1 (ja) | 電子部品及びその製造方法 | |
JP6998362B2 (ja) | 電子部品及びその製造方法 | |
CN114335302B (zh) | 紫外发光装置 | |
Wan et al. | Efficiency Improvement of UVC LEDs by Epoxy Molding Compound with Metallized Reflector | |
WO2022077368A1 (zh) | 发光装置 | |
KR102598500B1 (ko) | 발광소자 패키지 | |
JP6830168B1 (ja) | 電子部品の製造方法 | |
CN201910442U (zh) | 紫外大功率led器件 | |
CN217522032U (zh) | 一种发光装置 | |
Yan et al. | Comparative study on optical performances of ultraviolet light-emitting diodes using all-inorganic and organic silicone packaging structure | |
JP6816317B1 (ja) | フッ素樹脂シート及びその製造方法 | |
TW201935713A (zh) | 紫外線發光裝置、紫外線發光裝置之製造方法及紫外線發光模組之製造方法 | |
US11626547B2 (en) | UV LED device | |
Shen et al. | Development of Deep Ultraviolet LED Packaging | |
JP5346351B2 (ja) | フッ素化ポリマーの表面塗膜を備えた発光ダイオードの筐体及びその発光ダイオード構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940528 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553647 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940528 Country of ref document: EP Kind code of ref document: A1 |