WO2020100856A1 - ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システム - Google Patents

ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システム Download PDF

Info

Publication number
WO2020100856A1
WO2020100856A1 PCT/JP2019/044252 JP2019044252W WO2020100856A1 WO 2020100856 A1 WO2020100856 A1 WO 2020100856A1 JP 2019044252 W JP2019044252 W JP 2019044252W WO 2020100856 A1 WO2020100856 A1 WO 2020100856A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas purification
filter
gas
catalyst
porosity
Prior art date
Application number
PCT/JP2019/044252
Other languages
English (en)
French (fr)
Inventor
将利 勝木
鈴木 匠
洋介 向井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP19884653.7A priority Critical patent/EP3808428B1/en
Priority to CN201980048953.6A priority patent/CN112469489B/zh
Priority to SG11202100367PA priority patent/SG11202100367PA/en
Publication of WO2020100856A1 publication Critical patent/WO2020100856A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/086Filter cloth, i.e. woven, knitted or interlaced material of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0492Surface coating material on fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/204Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/101Baghouse type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices

Definitions

  • the present disclosure relates to a gas purification filter, a method for manufacturing the gas purification filter, and a gas purification system.
  • an exhaust gas treatment device for treating exhaust gas in a combustion device such as a combustion furnace.
  • the exhaust gas treatment device includes, for example, a desulfurization device, a denitration device, a dust removal device, and the like, and specifically includes, for example, a bag filter in which a gas purification filter is formed in a bag shape.
  • the filter cloth with a catalyst that is capable of decomposing toxic components (nitrogen oxide, carbon monoxide, dioxin, etc.) in exhaust gas in addition to dust removal processing of exhaust gas.
  • the catalyst-attached filter cloth unlike a structure such as a honeycomb, the filter cloth is configured as a fiber-like or felt-like filter in which fibers are bundled. Further, the filter cloth carries catalyst particles (catalyst particles) such as a denitration catalyst, an oxidation catalyst, and a dioxin decomposition catalyst.
  • Patent Document 1 describes a bag filter (gas purification filter) using a catalyst having an average particle size of 0.1 ⁇ m (see, for example, paragraph 0023).
  • Patent Document 2 describes a bag filter (gas purification filter) using a catalyst having an average particle size of 1 ⁇ m (see, for example, Table 1).
  • At least one embodiment of the present invention aims to provide a gas purification filter, a method for manufacturing the gas purification filter, and a gas purification system having improved catalytic performance as compared with conventional ones.
  • a gas purification filter according to at least one embodiment of the present invention, A gas purification filter comprising a filter body made of fiber cloth and a gas purification catalyst carried on the filter body,
  • the porosity representing the volume of voids in the space per unit volume is 6% or more and 20% or less.
  • the porosity of the gas purification filter is set to 6% or more and 20% or less to secure the gas flow passage inside the gas purification filter. , It is possible to suppress an excessive rise in the differential pressure. As a result, the exhaust gas can easily flow inside the gas purification filter, and the gas processing amount can be increased. Furthermore, by setting the porosity of the gas purification filter to be 6% or more and 20% or less, the exhaust gas can be appropriately brought into contact with the particles of the gas purification catalyst appropriately when the exhaust gas flows through the gas passage, and the passage of the exhaust gas can be suppressed. it can. Therefore, the catalytic efficiency can be increased and the catalytic performance can be improved as compared with the conventional case.
  • the porosity is 7% or more and 17% or less.
  • the catalyst performance can be particularly improved.
  • the porosity of the filter body is 55% or more and 82% or less
  • the average particle diameter D 50 of the gas purification catalyst is 1 ⁇ m or more and 250 ⁇ m or less.
  • the porosity of the gas purification filter can be set to 6% or more and 20% or less.
  • the porosity of the filter body is 55% or more and 69% or less
  • the average particle diameter D 50 of the gas purification catalyst is 5 ⁇ m or more and 50 ⁇ m or less.
  • the porosity of the gas purification filter can be set to 7% or more and 17% or less, which can particularly improve the catalyst performance.
  • the basis weight of the filter body is 500 g / m 2 or more and 1300 g / m 2 or less.
  • the eyes of the filter body can be coarsened to some extent. This makes it easier to secure the size of the gas flow passage inside the filter body that constitutes the gas purification filter.
  • the fiber included in the filter body is any one of polyester fiber, polyamide fiber, polyphenylene sulfide fiber, polyacrylic fiber, polypropylene fiber, polyimide fiber, glass fiber, and polyfluoroethylene fiber. Including.
  • the diameter of the largest part in the fiber cross section is 15 ⁇ m or less.
  • a method for manufacturing a gas purification filter according to at least one embodiment of the present invention A method for manufacturing a gas purification filter comprising a filter body made of fiber cloth, and a gas purification catalyst carried on the filter body, A preparatory step of preparing the filter body, The gas purification such that the porosity of the gas purification filter is 6% or more and 20% or less based on the porosity of the prepared filter body, which is the porosity indicating the volume of the voids per unit volume of space.
  • the porosity of the gas purification filter is set to 6% or more and 20% or less to secure the gas flow passage inside the gas purification filter. , It is possible to suppress an excessive rise in the differential pressure. As a result, the exhaust gas can easily flow inside the gas purification filter, and the gas processing amount can be increased. Furthermore, by setting the porosity of the gas purification filter to be 6% or more and 20% or less, it is possible to make it easy for the gas to contact the particles of the gas purification catalyst appropriately when the exhaust gas flows through the gas passage, and to suppress the passage of the exhaust gas. it can. Therefore, the catalytic efficiency can be increased and the catalytic performance can be improved as compared with the conventional case.
  • the supporting step is performed by a spray method.
  • the gas purification catalyst can be loaded on the filter body in an amount such that the porosity of the gas purification filter is 6% or more and 20% or less, regardless of the particle size of the gas purification catalyst.
  • a gas purification system according to at least one embodiment of the present invention, A gas purification system for purifying exhaust gas from a combustion device, The gas purification device according to any one of the above (1) to (6) is provided with the gas purification device.
  • the exhaust gas can be purified by using the gas purification device including the gas purification filter having the catalytic performance improved as compared with the conventional one. Therefore, the purification flow rate of the exhaust gas can be increased, and the exhaust gas can be efficiently purified.
  • the gas purification catalyst includes a denitration catalyst
  • the gas purification system further includes a supply device for supplying a nitrogen oxide reducing agent to the gas flowing upstream of the gas purification filter.
  • a gas purification filter it is possible to provide a gas purification filter, a method for manufacturing the gas purification filter, and a gas purification system having improved catalytic performance as compared with conventional ones.
  • FIG. 1 is an overall configuration diagram of a bag filter including a gas purification filter according to an embodiment of the present invention. It is a figure which shows typically the cross section of the gas purification filter which concerns on one Embodiment of this invention. It is a figure which shows typically the cross section of the gas purification filter which concerns on one Embodiment of this invention, Comprising: It shows typically the cross section of the gas purification filter containing the gas purification catalyst whose particle size is smaller than the gas purification catalyst shown in FIG. It is a figure. It is a graph which shows the relationship between the porosity and differential pressure of a gas purification filter. It is a graph which shows the relationship between the porosity of a gas purification filter and the reaction rate ratio which shows catalyst performance.
  • 1 is a system diagram of a gas purification system according to an embodiment of the present invention.
  • expressions such as “identical”, “equal”, and “homogeneous” that indicate that they are in the same state are not limited to a state in which they are exactly equal to each other. It also represents the existing state.
  • the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained.
  • the shape including parts and the like is also shown.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
  • FIG. 1 is an overall configuration diagram of a bag filter 10 including a gas purification filter 20 according to an embodiment of the present invention.
  • the bag filter 10 is provided at one end of the tubular portion 1 and a tubular portion 1 formed by forming a gas purification filter 20 (not shown in FIG. 1 and described later) into a tubular shape. It has a bag shape including the formed lid portion 2.
  • An annular ring (not shown) is attached to one end of the bag filter 10, and the opening 3 is formed by the annular ring.
  • the annular ring is formed by elastically deformable spring steel.
  • the exhaust gas from the combustion device such as the combustion furnace enters the bag filter 10 by passing through the tubular portion 1 and the lid portion 2.
  • the exhaust gas comes into contact with the gas purification catalyst 12 (not shown in FIG. 1, which will be described later) carried by the gas purification filter 20 that constitutes the bag filter 10.
  • the gas purification catalyst 12 carried by the gas purification filter 20 that constitutes the bag filter 10.
  • the exhaust gas that has entered is discharged from the opening 3 to the outside of the bag filter 10 as a purified gas.
  • FIG. 2 is a diagram schematically showing a cross section of the gas purification filter 20 according to the embodiment of the present invention.
  • the structure shown in FIG. 2 is merely an example of the structure of the gas purification filter 20 that constitutes the bag filter 10, and does not impair the gist of the present invention, for example, the gas purification catalyst 12 enters the inside of the filter body 11. It can be arbitrarily modified within the range.
  • the gas purification filter 20 includes a filter body 11 made of a fiber cloth and a gas purification catalyst 12 carried by the filter body 11. Exhaust gas flows from one surface to the other surface through the gas flow path 13 formed inside the filter body 11. The gas flow path 13 is formed between the fibers included in the fiber cloth. When the exhaust gas flows through the gas flow path 13, the exhaust gas comes into contact with the gas purification catalyst 12 carried on the filter body 11 to purify the exhaust gas.
  • the filter body 11 is made of, for example, a flexible material having no rigidity. Specifically, the filter body 11 is manufactured by a needle punch method or the like in addition to a cloth (woven cloth) in which arbitrary fibers are woven by various weaves such as twill weave, satin weave, and plain weave. It is made of non-woven fabric.
  • the fibers contained in the filter body 11 include polyester fibers, polyamide fibers, polyphenylene sulfide fibers, polyacrylic fibers, polypropylene fibers, polyimide fibers, glass fibers, polyfluoroethylene fibers, and the like.
  • these fibers glass fibers and polyfluoroethylene fibers are preferable from the viewpoint of high heat resistance.
  • the diameter of the fiber is preferably 3 ⁇ m or more and 15 ⁇ m or less as the diameter of the longest (largest) portion in the fiber cross section.
  • the basis weight (implantation density) of the fiber cloth constituting the filter body 11 is, for example, 400 g / m 2 or more, preferably 500 g / m 2 or more, and the upper limit thereof is, for example, 1300 / m 2 or less, preferably 1200 g / m 2 It is below.
  • the basis weight is 400 g / m 2 or more, soot and dust can be sufficiently captured.
  • the basis weight is 500 g / m 2 or more, the mesh of the filter body 11 can be coarsened to some extent. This makes it easier to secure the size of the gas flow passage inside the filter body 11 that constitutes the gas purification filter 20.
  • the basis weight when the basis weight is 1300 g / m 2 or less, clogging can be suppressed. Further, when the basis weight is 1200 g / m 2 or less, the mesh of the filter body 11 can be coarsened to some extent. This makes it easier to secure the size of the gas flow passage inside the filter body 11 that constitutes the gas purification filter 20.
  • the void ratio of the filter body 11 is 55% or more and 82% or less, and the average particle diameter D 50 of the gas purification catalyst 12 is It is preferably 1 ⁇ m or more and 250 ⁇ m or less. By doing so, the porosity of the gas purification filter 20 can be set to 6% or more and 20% or less. Further, it is more preferable that the porosity of the filter body 11 is 55% or more and 69% or less, and the average particle diameter D 50 of the gas purification catalyst 12 is 5 ⁇ m or more and 50 ⁇ m or less. By doing so, the porosity of the gas purification filter 20 can be set to 7% or more and 17% or less, which can particularly improve the catalyst performance.
  • the porosity ⁇ of the filter body 11 can be calculated by the following equation (1).
  • 100-100 ⁇ ⁇ / ( ⁇ t ⁇ ⁇ fib ) (1)
  • is the basis weight (g / m 2 ) of the filter body 11
  • ⁇ t is the thickness (m) of the filter body 11
  • ⁇ fib is the density (g / m 3 ) of the fibers contained in the filter body 11. is there.
  • the average particle size D 50 of the gas purification catalyst 12 refers to the average particle size measured by a laser diffraction particle size distribution measuring device.
  • the thickness of the filter body 11 is, for example, 0.5 mm or more and 15 mm or less.
  • the thickness of the filter body 11 may be about 30% of its average value.
  • the gas purification catalyst 12 carried by the filter body 11 is for decomposing and removing toxic components in the exhaust gas by contacting the exhaust gas flowing through the gas flow passage inside the filter body 11.
  • the toxic components mentioned here are, for example, nitrogen oxides (nitric oxide and nitrogen dioxide), carbon monoxide, dioxins, volatile organic compounds and the like. Therefore, the specific component of the gas purification catalyst 12 may be determined according to the type of the removed toxic component.
  • the gas purification catalyst 12 can include a denitration catalyst having a denitration function.
  • the denitration catalyst include titanium-vanadium catalysts containing titanium oxide, vanadium pentoxide, molybdenum oxide, tungsten oxide and the like.
  • the gas purification catalyst 12 can be configured to include an oxidation catalyst having an oxidizing function.
  • a catalyst having a plurality of functions with one component for example, a catalyst including both denitration and oxidation may be used.
  • the oxidation catalyst examples include a catalyst in which an active metal such as platinum, palladium, rhodium, and gold is supported on at least one inorganic oxide selected from the group consisting of silica, titania, zeolite, and alumina.
  • the average particle diameter D 50 of the gas purification catalyst 12 is, for example, 1 ⁇ m or more and 250 ⁇ m or less as described above. However, as will be described later in detail, based on the porosity of the filter body 11 on which the gas purification catalyst 12 is carried, the average particle diameter D 50 of the gas purification catalyst 12 is determined by the porosity of the gas purification filter 20 including the gas purification catalyst 12. Is preferably set to 6% or more and 20% or less so that the average particle diameter D 50 is set. Specifically, for example, when the porosity of the filter body 11 is 55% or more and 82% or less, it is preferable to set the average particle diameter D 50 of the gas purification catalyst to 1 ⁇ m or more and 250 ⁇ or less. Further, for example, when the porosity of the filter body 11 is 55% or more and 69% or less, it is more preferable to set the average particle diameter D 50 of the gas purification catalyst to 5 ⁇ m or more and 50 ⁇ m or less.
  • the gas purification filter 20 has a porosity (representing the volume of voids in a space per unit volume) of 6% or more, preferably 7% or more, and its upper limit is 20% or less. , Preferably 17% or less.
  • a porosity representing the volume of voids in a space per unit volume
  • the gas purification filter 20 has a porosity (representing the volume of voids in a space per unit volume) of 6% or more, preferably 7% or more, and its upper limit is 20% or less. , Preferably 17% or less.
  • the gas can easily contact the particles of the gas purification catalyst 12 appropriately when the gas flows through the gas flow path 13, and It is possible to suppress passing through. Therefore, the catalytic efficiency can be increased and the catalytic performance can be improved as compared with the conventional case.
  • the porosity of the gas purification filter 20 by setting the porosity of the gas purification filter 20 to 7% or more and 17% or less, the gas passage 13 inside the gas purification filter 20 can be sufficiently secured, and an excessive increase in the differential pressure can be sufficiently suppressed. Thereby, the catalyst performance can be particularly improved.
  • the porosity of the gas purification filter 20 can be determined based on, for example, the differential pressure ⁇ P when the exhaust gas of the gas purification filter 20 is flowed, and the average gas flow velocity u m (equal to the average superficial velocity u m ). Specifically, the porosity can be determined as follows.
  • exhaust gas was flowed at an average superficial velocity u m to the first gas purification filter and the second gas purification filter (two kinds of gas purification filters 20) carrying the gas purification catalysts 12 having different average particle diameters.
  • the inlet side and the outlet side of the first gas purification filter and the second gas purification filter when the exhaust gas is flowed at the average superficial velocity u m respectively.
  • the differential pressures are ⁇ P 1 and ⁇ P 2 .
  • a porosity of the filter body 11 are the same, if the average particle diameter D 50 of the gas purification catalyst 12 is different, the porosity of the gas purification filter 20 that is an average particle diameter D 50 with different gas purifying catalyst 12, respectively Let ⁇ 1 and ⁇ 2 . Then, the following equation (3) is established between the actual flow velocities u o1 and u o2 in the filter cloth and the porosities ⁇ 1 and ⁇ 2 .
  • u o2 / u o1 ⁇ u m / ⁇ 2 ⁇ / ⁇ u m / ⁇ 1 ⁇ ... Equation (3)
  • the average particle size D 50 of the gas purification catalyst 12 carried by the filter body 11 is infinitely small, that is, the gas purification catalyst 12 is not carried by the filter body 11.
  • the porosity of the gas purification filter 20 including the gas purification catalyst 12 having an infinitely small average particle diameter D 50 matches the porosity of the filter body 11 that does not carry the gas purification catalyst 12. Therefore, assuming the porosity ⁇ 1 of the gas purification filter 20 at this time, the proportional constant A can be calculated from the differential pressure ⁇ P 1 , the known porosity ⁇ 1, and the average gas flow velocity u m (average superficial velocity u m ). ..
  • FIG. 3 is a diagram schematically showing a cross section of a gas purification filter 20 according to an embodiment of the present invention, and a gas containing a gas purification catalyst 12 having a smaller particle size than the gas purification catalyst 12 shown in FIG. It is a figure which shows the cross section of the purification filter 20 typically.
  • the structure shown in FIG. 3 is merely an example of the structure of the gas purification filter 20 that constitutes the bag filter, and is arbitrary within a range that does not impair the gist of the present invention, for example, the gas purification catalyst 12 enters the inside of the filter body 11. It can be transformed into
  • the gas purification catalyst 12 is less likely to enter the inside of the gas flow path 13. As a result, the gas purification catalyst 12 is carried near the surface of the filter body 11. Then, since the invasion of the gas purifying catalyst 12 into the gas flow passage 13 is suppressed, the blockage of the gas flow passage 13 is also suppressed, and the exhaust gas flows through the gas flow passage 13 as indicated by a dashed arrow in FIG. It will be easier. As a result, an increase in the differential pressure of the gas purification filter 20 is suppressed.
  • the gaps formed between the particles of the gas purification catalyst 12 are small, it becomes difficult for the exhaust gas to flow into the gas flow passage 13 formed inside the filter body 11. Furthermore, when the gas purifying catalyst 12 is loaded on the filter body 11, the gas purifying catalyst 12 easily enters the inside of the gas flow passage 13, and as shown by a portion A surrounded by a broken line in FIG. 13 is easily blocked. Therefore, the differential pressure easily rises.
  • the gas purification catalyst 12 is carried on the wall surface of the gas flow passage 13 (that is, the outer surface of the fiber), but since the gas flow passage 13 is sufficiently secured, it is formed between the particles of the gas purification catalyst 12. The gap is large. As a result, the geometrical contact area between the exhaust gas and the gas purification catalyst 12 is increased, and the exhaust gas purification treatment performance of the catalyst is improved. That is, the catalyst performance is improved.
  • the catalyst performance is improved by using the average particle diameter of the gas purification catalyst 12 as an index, the expected catalyst performance cannot be obtained depending on the size of the gas flow passage 13. Therefore, in one embodiment of the present invention, by ensuring the gas flow path 13 having a sufficient size, it is possible to suppress the increase in the differential pressure and achieve a large contact area between the exhaust gas and the gas purification catalyst 12. Specifically, by controlling the porosity of the gas purification filter 20 to be 6% or more and 20% or less, it is possible to suppress an increase in the differential pressure and achieve a large contact area between the exhaust gas and the gas purification catalyst 12. ..
  • the porosity of the gas purification filter 20 attention is paid to the porosity of the gas purification filter 20, and by setting the porosity of the gas purification filter 20 to 6% or more and 20% or less, the gas flow path 13 inside the gas purification filter 20. Therefore, it is possible to suppress the excessive rise of the differential pressure. As a result, the exhaust gas can easily flow inside the gas purification filter 20, and the gas processing amount can be increased. Furthermore, by setting the porosity of the gas purification filter 20 to 6% or more and 20% or less, the exhaust gas can easily contact the particles of the gas purification catalyst 12 appropriately when the exhaust gas flows through the gas flow path 13, It is possible to suppress passing through. Therefore, the catalytic efficiency can be increased and the catalytic performance can be improved as compared with the conventional case.
  • FIG. 4 is a graph showing the relationship between the porosity of the gas purification filter 20 and the differential pressure.
  • the graph indicated by the broken line shows, as an example, the relationship between the porosity and the differential pressure in the gas purification filter 20 in which the particles of the titanium-vanadium denitration catalyst are carried on the filter body 11 having the porosity of 62%. is there.
  • the smaller the porosity of the gas purification filter 20 the larger the differential pressure ⁇ P.
  • the differential pressure ⁇ P becomes infinite and exhaust gas does not flow.
  • the larger the porosity the smaller the differential pressure ⁇ P. Therefore, from the viewpoint of simply reducing the differential pressure ⁇ P, it is preferable that the gas purification filter 20 has a large porosity.
  • FIG. 5 is a graph showing the relationship between the porosity of the gas purification filter 20 and the reaction rate ratio indicating the catalyst performance.
  • the graph indicated by the broken line is for the same gas purification filter 20 as the graph shown in FIG.
  • the vertical axis represents, as an example, the reaction rate ratio (denitration reaction rate ratio) of the titanium-vanadium-based denitration catalyst, and the higher the reaction rate ratio, the higher the catalyst performance.
  • the reaction rate ratio a relative value is shown when the reaction rate constant of the conventional gas purification filter (the bag filter described in Patent Document 1) is set to 1.0.
  • the reaction rate ratio could be 1.5 or more by setting the porosity of the gas purification filter 20 to 6% or more and 20% or less, as shown in FIG. Therefore, if the porosity is 6% or more and 20% or less, it is possible to obtain the gas purification filter 20 having a reaction rate constant that is 1.5 times or more larger than the reaction rate constant in the conventional gas purification filter. Therefore, the gas purification filter 20 with improved catalyst performance can be obtained.
  • the reaction rate ratio can be doubled (about 1.8 to 2.2 times). If the reaction rate is doubled, the amount of catalyst can be halved, and the differential pressure can be reduced accordingly. Further, if the reaction rate is doubled, a series of exhaust gas treatments such as desulfurization, denitration, dust removal, and desalination can be simultaneously performed with the same device size as the conventional one (only by replacing the bag filter). Therefore, if the porosity is 7% or more and 17% or less, it is possible to obtain the gas purification filter 20 having a reaction rate constant that is about twice as large as the reaction rate constant in the conventional gas purification filter. Therefore, it is possible to obtain the gas purification filter 20 having particularly improved catalyst performance.
  • FIG. 6 is a graph showing the relationship between the porosity of the gas purification filter 20 and the average particle size of the gas purification catalyst 12.
  • FIG. 7 is a graph showing the relationship between the porosity of the gas purification filter and the average particle size of the gas purification catalyst, and the maximum value on the horizontal axis is different from that in FIG. Specifically, the maximum value on the horizontal axis is 30% in FIG. 6, but is 60% in FIG. 7.
  • the broken line graphs shown in FIGS. 6 and 7 show the porosity of the gas purification filter 20 and the average particle diameter of the catalyst particles in the gas purification filter 20 in which the gas purification catalyst 12 is carried on the filter body 11 having the porosity of 55%. It is a graph which shows the relationship of.
  • the graphs of the alternate long and short dash lines shown in FIGS. 6 and 7 show that in the gas purifying filter 20 in which the gas purifying catalyst 12 is carried on the filter body 11 having the porosity of 62%, the porosity of the gas purifying filter 20 and the average of the catalyst particles. It is a graph which shows the relationship with a particle size.
  • the solid line graphs shown in FIGS. 6 and 7 show that in the gas purifying filter 20 in which the gas purifying catalyst 12 is carried on the filter body 11 having the porosity of 69%, the porosity of the gas purifying filter 20 and the average particle size of the catalyst particles. It is a graph which shows the relationship with a diameter.
  • the two-dot chain line graphs shown in FIGS. 6 and 7 show that in the gas purification filter 20 in which the gas purification catalyst 12 is carried on the filter body 11 having a void ratio of 75%, the void ratio of the gas purification filter 20 and the catalyst particles It is a graph which shows the relationship with an average particle diameter. Then, the dotted line graphs shown in FIGS.
  • the porosity (horizontal axis) of the gas purification filter 20 is set to 6% or more and 20% or less (preferably 7% or more and 17% or less). Therefore, for example, when the gas purifying catalyst 12 is carried on the filter body 11 having a porosity of 55% (broken line graph), the gas purifying catalyst 20 has a porosity of 6% or more and 20% or less.
  • the average particle size of 12 may be 10 ⁇ m or more and 250 ⁇ m or less (see FIG. 7 for the upper limit).
  • the gas purification catalyst 12 when the gas purification catalyst 12 is carried on the filter body 11 having a porosity of 62% (dotted line graph), in order to make the porosity of the gas purification filter 20 6% or more and 20% or less, the gas purification is performed.
  • the average particle size of the catalyst 12 may be 2 ⁇ m or more and 150 ⁇ m or less (the lower limit value is not shown, and the upper limit value is shown in FIG. 6).
  • the gas purification catalyst 12 is carried on the filter body 11 having a porosity of 69% (solid line graph), in order to make the porosity of the gas purification filter 20 6% or more and 20% or less, the gas purification catalyst
  • the average particle size of No. 12 may be set to 1.5 ⁇ m or more and 50 ⁇ m or less (the lower limit value is not shown; the upper limit value is shown in FIGS. 6 and 7).
  • the average particle size of the purification catalyst 12 may be set to 1.3 ⁇ m or more and 25 ⁇ m or less (the lower limit value is not shown, and the upper limit value is shown in FIGS. 6 and 7).
  • the gas purification catalyst 12 when the gas purification catalyst 12 is carried on the filter body 11 having a porosity of 82% (dotted line graph), in order to make the porosity of the gas purification filter 20 6% or more and 20% or less, the gas purification catalyst 12
  • the average particle size of 12 may be 1.1 ⁇ m or more and 17 ⁇ m or less (the upper limit value and the lower limit value are not shown). From FIGS. 5 and 6, it can be seen that the average particle size of the gas purification catalyst 12 should be 1.1 ⁇ m or more and 30 ⁇ m or less in order to obtain a reaction rate ratio higher than that of the conventional gas purification filter.
  • the porosity of the filter body calculated based on the above formula (1) is 58%. (Assuming that glass fiber (density 2.5 ⁇ 10 6 (g / m 3 )) was used).
  • the average particle size of the gas purification catalyst carried on the filter body is 0.1 ⁇ m. Therefore, in the gas purification filter described in Patent Document 1, the porosity of the gas purification filter including the filter body and the gas purification catalyst is considered to be less than 6% according to FIGS. 6 and 7 described above.
  • the porosity of the filter body calculated based on the above formula (1) is 79%.
  • the average particle size of the gas purification catalyst carried on the filter body is 1 ⁇ m. Therefore, in the gas purification filter described in Patent Document 1, the porosity of the gas purification filter including the filter body and the gas purification catalyst is considered to be less than 6% according to FIGS. 6 and 7 described above.
  • FIG. 8 is a graph showing the change over time in the reaction rate ratio in Examples and Comparative Examples.
  • the solid line graph shows the example
  • the broken line graph shows the comparative example.
  • the vertical axis represents a relative value with 1 as the reaction rate constant at 0 minutes (initial reaction rate constant) in the comparative example.
  • the graph shown in FIG. 8 relates to the denitration reaction as an example.
  • FIG. 8 is a graph obtained by an experiment by the present inventors, but the plot (the reaction rate constant was calculated every 10 minutes) is omitted for simplification of the illustration, and plots not shown Curves (solid line and broken line) obtained by smoothly connecting are shown in FIG.
  • glass fiber was used as the fiber forming the filter body 11.
  • the basis weight of the filter body 11 was 880 g / m 2 . Therefore, according to the above (1), the porosity of the filter body 11 is 62%.
  • a titanium-vanadium-based denitration catalyst was used as the gas purification catalyst 12. The amount of the gas purification catalyst 12 carried on the filter body 11 was set to 250 g / m 2 .
  • the average particle diameter D 50 of the gas purification catalyst 12 to be carried was 10 ⁇ m in the example and 0.8 ⁇ m in the comparative example.
  • the average particle size of the comparative example is about the same as the average particle size of the gas purification catalyst described in Patent Document 2 above.
  • the temperature was 200 ° C. and the average superficial velocity u m (equal to the average gas flow velocity u m ) was 0.8 m / min in both the examples and the comparative examples.
  • the composition of the exhaust gas is 150 ppm vol. Carbon dioxide 10% vol. , Oxygen 10% vol. , Water 20% vol. , Ammonia 105 ppm vol. , Sulfur dioxide 2000 ppm vol. , Nitrogen 80% vol.
  • u m average superficial velocity
  • the reaction rate ratio of the example was twice the reaction rate ratio of the comparative example in the initial state (time 0 minutes). Then, the reaction rate ratio of the example decreased with the same tendency as the reaction rate ratio of the comparative example, even though time passed while flowing the exhaust gas. The reaction rate ratio of the example did not fall below the reaction rate ratio of the comparative example in the initial state (time 0 minutes) even after 800 minutes. Therefore, as shown by the solid line graph in FIG. 8, it was found that the example according to the embodiment of the present invention can enhance the catalyst performance particularly in the initial state. Then, it was found that high catalyst performance (a reaction rate constant larger than that of the comparative example) was maintained for a long time, and the durability of the gas purification filter 20 could be improved.
  • the amount of the gas purification catalyst 12 carried on the filter body 11 can be reduced as compared with the conventional one.
  • the differential pressure for example, the backwash frequency and blower power can be reduced, and the efficiency of the gas purification system 100 (described later) including the gas purification filter 20 can be improved.
  • FIG. 9 is a flowchart showing a method for manufacturing the gas purification filter 20 according to an embodiment of the present invention (hereinafter, simply referred to as “manufacturing method of the present embodiment”).
  • the manufacturing method of the present embodiment is a method for manufacturing the gas purification filter 20 described above, and includes a filter body 11 made of fiber cloth and a gas purification catalyst 12 carried by the filter body 11. 20 of the manufacturing method.
  • the manufacturing method of this embodiment includes a preparation step S1, an average particle size determination step S2, and a carrying step S3.
  • the preparation step S1 is to prepare the filter body 11.
  • the prepared filter main body 11 may have known physical properties, or the physical properties may be grasped by determining the physical properties of the prepared filter main body 11.
  • the physical property here is, for example, the porosity.
  • the porosity as described above, represents the volume of voids in a space per unit volume.
  • the porosity of the filter body 11 can be determined based on the above formula (1), for example.
  • the average particle size determination step S2 is a gas purification catalyst such that the porosity of the gas purification filter 20 becomes 6% or more and 20% or less (preferably 7% or more and 17% or less) based on the porosity of the prepared filter body 11.
  • the average particle diameter D 50 of 12 is determined. Specifically, as described with reference to FIG. 6 and FIG. 7 above, the gas purification catalyst 12 corresponding to the porosity of 6% or more and 20% or less of the gas purification filter 20 depends on the porosity of the filter body 11. The average particle diameter D 50 is different.
  • the average particle size determination step S2 a gas that can make the porosity of the gas purification filter 20 6% or more and 20% or less based on the porosity of the prepared filter body 11 and the relationship of, for example, FIG. 6 and FIG.
  • the average particle size D 50 of the purification catalyst 12 is determined.
  • the determined average particle size D 50 is the average particle size measured based on the laser diffraction type particle size distribution measuring device as described above.
  • the average particle size D 50 may be determined based on the predicted graph.
  • the gas purification catalyst 12 having the determined average particle diameter D 50 is loaded on the filter body 11. Specifically, the gas purification catalyst 12 having the determined average particle diameter D 50 is prepared, and the prepared gas purification catalyst 12 is carried on the filter body 11.
  • the supporting method is not particularly limited, but a spray method of spraying a catalyst slurry containing particles of the gas purification catalyst 12 onto the filter body 11 is preferable. That is, the carrying step S3 is preferably performed by a spray method.
  • the gas purification catalyst 12 can be supported on the filter body 11 in an amount such that the porosity of the gas purification filter 20 is 6% or more and 20% or less, regardless of the particle size of the gas purification catalyst 12.
  • the gas purification catalyst 12 When the gas purification catalyst 12 is sprayed onto the filter body 11 by the spray method, it is preferable that the gas purification catalyst 12 is sprayed in the same direction as the exhaust gas flows in the gas purification filter 20. Further, the gas purifying catalyst 12 may be blown onto the filter body 11 formed in advance into a bag shape, for example, or after being blown onto the sheet-like filter body 11, the gas purifying catalyst 12 is blown onto the filter.
  • the main body 11 may be shaped like a bag.
  • the gas flow path 13 inside the gas purification filter 20 is secured by focusing on the porosity of the gas purification filter 20 and setting the porosity of the gas purification filter 20 to 6% or more and 20% or less.
  • the exhaust gas can easily flow inside the gas purification filter 20, and the gas processing amount can be increased.
  • the porosity of the gas purification filter 20 can easily contact the particles of the gas purification catalyst 12 appropriately when the exhaust gas flows through the gas flow path 13, It is possible to suppress passing through. Therefore, the catalytic efficiency can be increased and the catalytic performance can be improved as compared with the conventional case.
  • FIG. 10 is a system diagram of a gas purification system 100 according to an embodiment of the present invention.
  • the gas purification system 100 is for purifying exhaust gas from a combustion device (for example, a boiler 101).
  • the gas purification system 100 includes a gas purification device 105 in which the above-mentioned gas purification filter 20 (not shown in FIG. 10) is arranged.
  • the gas purification filter 20 arranged in the gas purification device 105 includes a gas purification catalyst 12 having a denitration function. That is, the gas purification catalyst 12 includes a denitration catalyst.
  • the gas purification system 100 further includes a supply device 106 for supplying a nitrogen oxide reducing agent to the gas flowing on the upstream side of the gas purification filter 20.
  • the reducing agent includes, for example, ammonia water, ammonia gas, urea water, hydrocarbons, carbon monoxide, and the like.
  • the reducing agent is supplied at a position between the temperature reducing tower 104 and the gas purification system 100 in the illustrated example, it may be at any position as long as it can be supplied to the upstream side of the gas purification filter 20.
  • in-furnace denitration in the combustion furnace may be performed by supplying a reducing agent into the combustion furnace (not shown) provided in the boiler 101. This makes it possible to denitrate the exhaust gas using the supplied reducing agent.
  • the supply amount of the reducing agent can be changed according to the concentration of nitrogen oxides in the exhaust gas caused by the change in operating conditions.
  • the boiler 101 steam is generated by heat exchange between the heat of the combustion gas generated by the combustion in the combustion furnace and the water (liquid).
  • the heat exchange is performed in a heat exchange device (not shown) provided in the boiler 101.
  • the generated steam is used for rotating a steam turbine (not shown), for example.
  • the combustion gas generated in the combustion furnace is supplied to the air heater 102 and the heat exchanger 103 as exhaust gas.
  • the air heater 102 and the heat exchanger 103 the air is heated by the heat of the exhaust gas, and the heated air is used to heat the combustion air and the supply water to the boiler 101.
  • the exhaust gas is supplied to the temperature reducing tower 104. In the temperature reduction tower 104, when the temperature of the exhaust gas from the boiler 101 is, for example, about 220 ° C., the temperature of the exhaust gas is reduced to about 170 ° C. in the temperature reduction tower 104.
  • a reducing agent is supplied to the cooled exhaust gas by the supply device 106.
  • the gas containing the reducing agent passes through the gas purification filter 20 of the gas purification device 105.
  • the denitration catalyst (gas purification catalyst 12) carried by the gas purification filter 20 can denitrate the exhaust gas using the reducing agent.
  • the denitration here means converting nitric oxide and nitrogen dioxide into nitrogen using a reducing agent.
  • the deoxidizing agent consumes the reducing agent and suppresses the reducing agent from leaking to the downstream side of the gas purification filter 20.
  • the gas purification catalyst 12 may include an oxidation catalyst in addition to the above denitration catalyst.
  • the reducing agent can be oxidatively decomposed even if the exhaust gas does not contain nitrogen oxides. Oxidation here means converting hydrocarbon, carbon monoxide, and ammonia (when contained as a reducing agent) into water vapor, carbon dioxide, and nitrogen oxide, respectively, using oxygen. Oxidative decomposition of the reducing agent can prevent the reducing agent from leaking to the downstream side of the gas purification filter 20. If the gas purification catalyst 12 does not include a denitration catalyst, the reducing agent may not be used.
  • the reducing agent leakage suppression effect is more advantageous when in-furnace denitration is performed by supplying the reducing agent into the combustion furnace.
  • the reducing agent supply amount is changed due to the change in the operating conditions as described above, the reducing agent is likely to leak to the downstream side of the gas purification filter 20 when the reducing agent supply amount increases. Since the reducing agent can be oxidatively decomposed in the gas purification filter 20, it is possible to prevent the reducing agent from leaking to the downstream side of the gas purification filter 20 due to the oxidative decomposition of the reducing agent even if the supply amount of the reducing agent is increased.
  • the exhaust gas can be purified by using the gas purification device 105 including the gas purification filter 20 whose catalytic performance is improved as compared with the conventional one. Therefore, the purification flow rate of the exhaust gas can be increased, and the exhaust gas can be efficiently purified.
  • the temperature of the exhaust gas supplied to the gas purification system 100 is, for example, about 170 ° C. due to the temperature reduction in the temperature reduction tower 104.
  • denitration is performed at a high temperature (for example, 200 ° C. or higher), but since the catalytic efficiency of the gas purification filter 20 in the gas purification system 100 is high, it is possible to denitrate exhaust gas even at a relatively low temperature such as about 170 ° C. It can be done enough.
  • the gas purification catalyst 12 of the gas purification system 100 as a catalyst having both functions of denitration and oxidation, in the gas purification system 100, denitration, desulfurization, dioxin removal, dust removal, and desalination treatments can be performed. It can be carried out. Thereby, each process can be simultaneously performed in the gas purification system 100, and the gas purification system 100 can be downsized.
  • the exhaust gas from the boiler 101 is supplied to the gas purification system 100 without being reheated (heated) by, for example, a reheater or the like.
  • the gas purification system 100 is provided with a reaction dust collector (not shown), and the denitration reaction tower (not shown) is installed after the reaction dust collector.
  • the reaction dust collector desulfurization and desalination treatments are carried out in addition to dioxin removal. Therefore, conventionally, the exhaust gas has been cooled to a gas temperature of, for example, 200 ° C. or lower, specifically, to about 150 ° C. to 180 ° C. in a temperature reducing tower (not shown).
  • the denitration reaction is performed, for example, at 200 ° C. or higher. Therefore, conventionally, a reheater was installed between the reaction dust collector and the denitration reaction tower, and the gas once cooled was reheated to a temperature suitable for the denitration reaction.
  • a reheater was installed between the reaction dust collector and the denitration reaction tower, and the gas once cooled was reheated to a temperature suitable for the denitration reaction.
  • reheating of exhaust gas is unnecessary, electric power, steam, etc. for reheating are unnecessary. As a result, energy efficiency can be improved.
  • steam for reheat can be supplied to, for example, a steam turbine (not shown). As a result, power generation efficiency can be improved.

Abstract

繊維布により構成されるフィルタ本体11と、フィルタ本体11に担持されたガス浄化触媒12とを含むガス浄化フィルタ20であって、単位体積あたりの空間に占める空隙の体積を表す空隙率が6%以上20%以下であるガス浄化フィルタ20にする。ガス浄化フィルタ20は、準備ステップ、平均粒径決定ステップ及び担持ステップを経ることで製造することができる。

Description

ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システム
 本開示は、ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システムに関する。
 石炭焚ボイラ、油焚ボイラ、一般廃棄物焼却プラント、産業廃棄物焼却プラント等の燃焼システムでは、燃焼炉等の燃焼装置での排ガスを処理するための排ガス処理装置が備えられる。排ガス処理装置は、例えば、脱硫装置、脱硝装置、除塵装置等を備え、具体的には例えば、ガス浄化フィルタを袋状に形成したバグフィルタが備えられる。
 ガス浄化フィルタのうち、排ガスの除塵処理に加え、排ガス中の有毒成分(窒素酸化物、一酸化炭素、ダイオキシン等)の分解処理を可能な触媒付き濾布がある。触媒付き濾布では、ハニカム等の構造物とは異なり、濾布は繊維を束ねた繊維状もしくはフェルト状フィルタとして構成される。また、濾布には、例えば脱硝触媒、酸化触媒、ダイオキシン分解触媒等の触媒の粒子(触媒粒子)が担持される。
 燃焼排ガスと触媒粒子との接触面積を増加させることで触媒性能の向上を図るため、触媒粒子の微粒子化が試みられている。例えば特許文献1には、平均粒径が0.1μmの触媒を用いたバグフィルタ(ガス浄化フィルタ)が記載されている(例えば段落0023参照)。また、特許文献2には、平均粒径が1μmの触媒を用いたバグフィルタ(ガス浄化フィルタ)が記載されている(例えば表1参照)。
特開2014-8460号公報 特開2014-166614号公報
 ところで、本発明者らが検討したところ、単に触媒の微粒子化を行っても、触媒性能は十分に向上しないことがわかった。これは、濾布(後記するフィルタ本体に相当)への触媒粒子の担持の際、触媒の微粒子化によりガス浄化フィルタ内部に触媒粒子が入り込み、ガス浄化フィルタ内部のガス流路を閉塞してしまう結果、差圧が過度に上昇するためと考えられる。この結果、ガス浄化フィルタ内部をガスが流れにくくなり、ガス処理量が低下する結果、触媒性能が所望通りに向上しない。
 一方で、もし、単に触媒の大粒子化を行えば、触媒粒子間の隙間が大きくなるため、差圧は低下する。しかし、触媒の大粒子化により排ガスがガス浄化フィルタを素通りし、触媒への接触が十分に行われない可能性がある。これにより、触媒性能が所望通りに向上しない。従って、触媒の粒径によらず触媒性能を向上可能なガス浄化技術が求められている。
 本発明の少なくとも一実施形態は、触媒性能が従来よりも向上したガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システムを提供することを目的とする。
 (1)本発明の少なくとも一実施形態に係るガス浄化フィルタは、
 繊維布により構成されるフィルタ本体と、前記フィルタ本体に担持されたガス浄化触媒とを含むガス浄化フィルタであって、
 単位体積あたりの空間に占める空隙の体積を表す空隙率が6%以上20%以下である。
 上記(1)の構成によれば、ガス浄化フィルタの空隙率に着目し、ガス浄化フィルタの空隙率を6%以上20%以下にすることで、ガス浄化フィルタ内部におけるガス流路を確保して、差圧の過度の上昇を抑制できる。これにより、ガス浄化フィルタ内部を排ガスが流れ易くでき、ガス処理量を増大できる。さらには、ガス浄化フィルタの空隙率を6%以上20%以下にすることで、ガス流路を排ガスが流れるときに排ガスをガス浄化触媒の粒子に適度に接触し易くでき、排ガスの素通りを抑制できる。従って、触媒効率を高め、触媒性能を従来よりも向上できる。
 (2)幾つかの実施形態では、上記(1)の構成において、
 前記空隙率が7%以上17%以下である。
 上記(2)の構成によれば、触媒性能を特に向上できる。
 (3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記フィルタ本体の前記空隙率は55%以上82%以下であり、
 前記ガス浄化触媒の平均粒径D50が1μm以上250μm以下である。
 上記(3)の構成によれば、ガス浄化フィルタの空隙率を6%以上20%以下にできる。
 (3´)幾つかの実施形態では、上記(2)の構成において、
 前記フィルタ本体の前記空隙率は55%以上69%以下であり、
 前記ガス浄化触媒の平均粒径D50が5μm以上50μm以下である。
 上記(3´)の構成によれば、ガス浄化フィルタの空隙率を、触媒性能を特に向上可能な7%以上17%以下にできる。
 (4)幾つかの実施形態では、上記(1)~(3)の何れか1の構成において、
 前記フィルタ本体の目付が500g/m以上1300g/m以下である。
 上記(4)の構成によれば、フィルタ本体の目をある程度粗くできる。これにより、ガス浄化フィルタを構成するフィルタ本体内部のガス流路の大きさを確保し易くできる。
 (5)幾つかの実施形態では、上記(1)~(4)の何れか1の構成において、
 前記フィルタ本体に含まれる繊維は、ポリエステル系繊維、ポリアミド系繊維、ポリフェニレンサルファイド系繊維、ポリアクリル系繊維、ポリプロピレン系繊維、ポリイミド系繊維、ガラス繊維、及びポリフルオロエチレン系繊維の何れか1種を含む。
 上記(5)の構成によれば、触媒性能が従来よりも向上したガス浄化フィルタを好適に構成することができる。
 (6)幾つかの実施形態では、上記(5)の構成において、
 前記繊維の直径は、繊維断面における最も大きい部分の直径が15μm以下である。
 上記(6)の構成によれば、触媒性能が従来よりも向上したガス浄化フィルタを特に好適に構成することができる。
 (7)本発明の少なくとも一実施形態に係るガス浄化フィルタの製造方法は、
 繊維布により構成されるフィルタ本体と、前記フィルタ本体に担持されたガス浄化触媒とを備えるガス浄化フィルタの製造方法であって、
 前記フィルタ本体を準備する準備ステップと、
 単位体積あたりの空間に占める空隙の体積を表す空隙率であって準備した前記フィルタ本体の前記空隙率に基づき、前記ガス浄化フィルタの空隙率が6%以上20%以下になるような前記ガス浄化触媒の平均粒径D50を決定する平均粒径決定ステップと、
 決定した前記平均粒径D50を有する前記ガス浄化触媒を前記フィルタ本体に担持させる担持ステップと、を含む。
 上記(7)の方法によれば、ガス浄化フィルタの空隙率に着目し、ガス浄化フィルタの空隙率を6%以上20%以下にすることで、ガス浄化フィルタ内部におけるガス流路を確保して、差圧の過度の上昇を抑制できる。これにより、ガス浄化フィルタ内部を排ガスが流れ易くでき、ガス処理量を増大できる。さらには、ガス浄化フィルタの空隙率を6%以上20%以下にすることで、ガス流路を排ガスが流れるときにガスをガス浄化触媒の粒子に適度に接触し易くでき、排ガスの素通りを抑制できる。従って、触媒効率を高め、触媒性能を従来よりも向上できる。
 (8)幾つかの実施形態では、上記(7)の方法において、
 前記担持ステップは、スプレー法によって行われる。
 上記(8)の方法によれば、ガス浄化触媒の粒径によらず、ガス浄化触媒を、ガス浄化フィルタの空隙率が6%以上20%以下となるような量でフィルタ本体に担持できる。
 (9)本発明の少なくとも一実施形態に係るガス浄化システムは、
 燃焼装置からの排ガスを浄化するためのガス浄化システムであって、
 上記(1)~(6)の何れか1に記載のガス浄化フィルタが内部に配置されたガス浄化装置を備える。
 上記(9)の構成によれば、触媒性能が従来よりも向上したガス浄化フィルタを備えるガス浄化装置を用いて、排ガスを浄化できる。このため、排ガスの浄化流量を増大でき、排ガスの効率的な浄化を行うことができる。
 (10)幾つかの実施形態では、上記(9)の構成において、
 前記ガス浄化触媒は脱硝触媒を含み、
 前記ガス浄化システムは、前記ガス浄化フィルタの上流側を流れるガスに窒素酸化物の還元剤を供給するための供給装置をさらに備える。
 上記(10)の構成によれば、ガス浄化フィルタに担持された脱硝触媒において、還元剤を用いた排ガスの脱硝を行うことができる。
 本発明の少なくとも一実施形態によれば、触媒性能が従来よりも向上したガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システムを提供できる。
本発明の一実施形態に係るガス浄化フィルタを含んで構成されるバグフィルタの全体構成図である。 本発明の一実施形態に係るガス浄化フィルタの断面を模式的に示す図である。 本発明の一実施形態に係るガス浄化フィルタの断面を模式的に示す図であり、図2に示すガス浄化触媒よりも小さな粒径のガス浄化触媒を含むガス浄化フィルタの断面を模式的に示す図である。 ガス浄化フィルタの空隙率と差圧との関係を示すグラフである。 ガス浄化フィルタの空隙率と、触媒性能を示す反応速度比との関係を示すグラフである。 ガス浄化フィルタの空隙率と、ガス浄化触媒の平均粒径との関係を示すグラフである。 ガス浄化フィルタの空隙率と、ガス浄化触媒の平均粒径との関係を示すグラフであり、横軸の最大値が図6とは異なるグラフである。 実施例及び比較例において反応速度比の経時変化を示すグラフである。 本発明の一実施形態に係るガス浄化フィルタの製造方法を示すフローチャートである。 本発明の一実施形態に係るガス浄化システムの系統図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、以下に実施形態として記載されている内容又は図面に記載されている内容は、あくまでも例示に過ぎず、本発明の要旨を逸脱しない範囲内で、任意に変更して実施することができる。また、各実施形態は、2つ以上を任意に組み合わせて実施することができる。さらに、各実施形態において、共通する部材については同じ符号を付すものとし、説明の簡略化のために重複する説明は省略する。
 また、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、本発明の一実施形態に係るガス浄化フィルタ20を含んで構成されるバグフィルタ10の全体構成図である。バグフィルタ10は、ガス浄化フィルタ20(図1では図示しない。後記する)を筒状に形成することで構成される筒部1と、筒部1の一端部に設けられ、ガス浄化フィルタ20によりた形成された蓋部2とを備える袋状をなしている。バグフィルタ10の一端部には環状リング(図示しない)が装着され、環状リングにより、開口部3が形成される。環状リングは、弾性変形可能なバネ鋼によって形成される。
 バグフィルタ10では、燃焼炉等の燃焼装置からの排ガスは、筒部1及び蓋部2を透過することで、バグフィルタ10の内部に入り込む。この透過の際、排ガスは、バグフィルタ10を構成するガス浄化フィルタ20に担持されたガス浄化触媒12(図1では図示しない。後記する)に接触する。そして、ガス浄化触媒12との接触により排ガスが浄化された後、入り込んだ排ガスは、浄化ガスとして開口部3からバグフィルタ10の外部に排出される。
 図2は、本発明の一実施形態に係るガス浄化フィルタ20の断面を模式的に示す図である。なお、図2に示す構造は、バグフィルタ10を構成するガス浄化フィルタ20の構造のあくまで一例にすぎず、例えばガス浄化触媒12がフィルタ本体11の内部に入り込むなど、本発明の要旨を損なわない範囲で任意に変形可能である。
 ガス浄化フィルタ20は、繊維布により構成されるフィルタ本体11と、フィルタ本体11に担持されたガス浄化触媒12とを含む。フィルタ本体11の内部に形成されるガス流路13を通じ、一方面から他方面に排ガスが流れる。ガス流路13は、繊維布に含まれる繊維間に形成される。排ガスがガス流路13を流れる際、フィルタ本体11に担持されたガス浄化触媒12に排ガスが接触することで、排ガスの浄化が行われる。
 フィルタ本体11は、例えば、剛性を有さない柔軟な素材により形成される。具体的には、フィルタ本体11は、任意の繊維を、例えば、綾織り、朱子織り、平織り等の種々の織り方によって織られた布(織布)のほか、ニードルパンチ法等によって製造された不織布により形成される。
 フィルタ本体11に含まれる繊維としては、ポリエステル系繊維、ポリアミド系繊維、ポリフェニレンサルファイド系繊維、ポリアクリル系繊維、ポリプロピレン系繊維、ポリイミド系繊維、ガラス繊維、ポリフルオロエチレン系繊維等が挙げられる。これらの繊維の中でも、耐熱性が高いという観点から、ガラス繊維及びポリフルオロエチレン系繊維が望ましい。また、繊維の直径は、繊維断面において最も長い(大きい)部分の直径として、3μm以上15μm以下が好ましい。
 フィルタ本体11を構成する繊維布の目付(打ち込み密度)は、例えば400g/m以上、好ましくは500g/m以上、また、その上限は、例えば1300/m以下、好ましくは1200g/m以下である。目付が400g/m以上であることにより、煤塵を十分に捕捉することができる。また、目付が500g/m以上であることにより、フィルタ本体11の目をある程度粗くできる。これにより、ガス浄化フィルタ20を構成するフィルタ本体11内部のガス流路の大きさを確保し易くできる。
 一方で、目付が1300g/m以下であれば、目詰まりを抑制できる。また、目付が1200g/m以下であることにより、フィルタ本体11の目をある程度粗くできる。これにより、ガス浄化フィルタ20を構成するフィルタ本体11内部のガス流路の大きさを確保し易くできる。
 また、単位体積あたりの空間に占める空隙の体積を「空隙率」と定義した場合に、フィルタ本体11の空隙率は55%以上82%以下であり、ガス浄化触媒12の平均粒径D50が1μm以上250μm以下であることが好ましい。このようにすることで、ガス浄化フィルタ20の空隙率を6%以上20%以下にできる。さらに、フィルタ本体11の空隙率は55%以上69%以下であり、ガス浄化触媒12の平均粒径D50が5μm以上50μm以下であることがより好ましい。このようにすることで、ガス浄化フィルタ20の空隙率を、触媒性能を特に向上可能な7%以上17%以下にできる。
 本明細書において、フィルタ本体11の空隙率εは以下の式(1)により算出できる。
 ε=100-100×γ/(Δt×ρfib) ・・・式(1)
 式(1)において、γはフィルタ本体11の目付(g/m)、Δtはフィルタ本体11の厚み(m)、ρfibはフィルタ本体11に含まれる繊維の密度(g/m)である。
 また、本明細書において、ガス浄化触媒12の平均粒径D50は、レーザ回折式粒径分布測定装置に基づいて測定される平均粒径をいう。
 フィルタ本体11の厚さは、例えば0.5mm以上15mm以下である。なお、フィルタ本体11が織布又は不織布により構成される場合には、フィルタ本体11の厚さは、その平均値の30%程度前後する値となることもある。
 フィルタ本体11に担持されるガス浄化触媒12は、フィルタ本体11内部のガス流路を流れる排ガスと接触することにより、排ガス中の有毒成分を排ガス中から分解除去するためのものである。ここでいう有毒成分とは、例えば窒素酸化物(一酸化窒素及び二酸化窒素)、一酸化炭素、ダイオキシン、揮発性有機化合物等である。従って、除去した有毒成分の種類によって、ガス浄化触媒12の具体的に成分を決定すればよい。
 例えば、排ガスの脱硝を行う場合には、ガス浄化触媒12は脱硝機能を有する脱硝触媒を含んで構成されることができる。脱硝触媒としては、例えば、酸化チタン、五酸化バナジウム、酸化モリブデン、酸化タングステン等を含むチタン-バナジウム系触媒が挙げられる。また、排ガス中の一酸化炭素を分解除去する場合には、ガス浄化触媒12は酸化機能を有する酸化触媒を含んで構成されることができる。また、一成分で複数の機能を有する触媒(例えば脱硝及び酸化の双方を含む触媒)にしてもよい。酸化触媒としては、例えば、シリカ、チタニア、ゼオライト、アルミナからなる群より選ばれた少なくとも1種の無機酸化物に、白金、パラジウム、ロジウム及び金等の活性金属を担持した触媒が挙げられる。
 ガス浄化触媒12の平均粒径D50は、例えば、上記のように1μm以上250μm以下である。ただし、詳細は後記するが、ガス浄化触媒12が担持されるフィルタ本体11の空隙率に基づき、ガス浄化触媒12の平均粒径D50を、ガス浄化触媒12を含むガス浄化フィルタ20の空隙率が6%以上20%以下になるような平均粒径D50に設定することが好ましい。具体的には例えば、フィルタ本体11の空隙率が55%以上82%以下であれば、ガス浄化触媒の平均粒径D50を1μm以上250μ以下にすることが好ましい。また例えば、フィルタ本体11の空隙率が55%以上69%以下であれば、ガス浄化触媒の平均粒径D50を5μm以上50μ以下にすることがより好ましい。
 本発明の一実施形態に係るガス浄化フィルタ20の空隙率(単位体積当たりの空間に占める空隙の体積を表す)は、6%以上、好ましくは7%以上、また、その上限は、20%以下、好ましくは17%以下である。このように、ガス浄化フィルタ20の空隙率に着目し、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、ガス浄化フィルタ20内部におけるガス流路13を確保して、差圧の過度の上昇を抑制できる。これにより、ガス浄化フィルタ20内部をガスが流れ易くでき、ガス処理量を増大できる。
 さらには、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、ガス流路13をガスが流れるときにガスをガス浄化触媒12の粒子に適度に接触し易くでき、ガスの素通りを抑制できる。従って、触媒効率を高め、触媒性能を従来よりも向上できる。特に、ガス浄化フィルタ20の空隙率を7%以上17%以下にすることで、ガス浄化フィルタ20内部におけるガス流路13を十分に確保して、差圧の過度の上昇を十分に抑制できる。これにより、触媒性能を特に向上できる。
 ガス浄化フィルタ20の空隙率は、例えば、ガス浄化フィルタ20の排ガスを流した際の差圧ΔP、ガス平均流速u(平均空塔速度uと等しい)に基づいて決定できる。具体的には、空隙率は以下のようにして決定できる。
 まず、平均粒径が異なるガス浄化触媒12を担持した第1ガス浄化フィルタ及び第2ガス浄化フィルタ(2種類のガス浄化フィルタ20)に対し、それぞれ、平均空塔速度uで排ガスを流した際のろ布内の実流速をuo1、uo2とする。さらに、第1ガス浄化フィルタ及び第2ガス浄化フィルタに対し、それぞれ、平均空塔速度uで排ガスを流した際の第1ガス浄化フィルタ及び第2ガス浄化フィルタの入口側と出口側との差圧をΔP、ΔPとする。そして、ΔP/ΔPと、uo2/uo1との間には、比例関係が成立する。従って、以下の式(2)が成立する(なお、Aは比例定数である)。
 ΔP/ΔP=A×uo2/uo1 …式(2)
 また、フィルタ本体11の空隙率が同じであり、ガス浄化触媒12の平均粒径D50が異なる場合、平均粒径D50が異なるガス浄化触媒12を備えるガス浄化フィルタ20の空隙率を、それぞれε、εとする。そうすると、ろ布内の実流速uo1、uo2と空隙率ε、εとの間には、以下の式(3)が成立する。
 uo2/uo1={u/ε}/{u/ε} …式(3)
 従って、上記式(2)及び(3)により、以下の式(4)が成立する。
 ΔP/ΔP=A×uo2/uo1=A×{u/ε}/{u/ε} …式(4)
 ここで、フィルタ本体11に担持されるガス浄化触媒12の平均粒径D50が無限に小さい、即ちガス浄化触媒12がフィルタ本体11に担持されていないと仮定する。このとき、平均粒径D50が無限に小さなガス浄化触媒12を含むガス浄化フィルタ20の空隙率は、ガス浄化触媒12を担持しないフィルタ本体11の空隙率と一致する。そこで、このときのガス浄化フィルタ20の空隙率εとすると、差圧ΔP、既知の空隙率ε及びガス平均流速u(平均空塔速度u)により、比例定数Aを算出できる。そして、ガス平均流速u(平均空塔速度u)と、算出された比例定数Aと、実測されたΔP及びuo2とにより、平均粒径D50によらず、任意のガス浄化触媒12を含むガス浄化フィルタ20の空隙率εを算出できる。
 ここで、空隙率とガス流路13との関係について、上記の図2のほか、新たに図3を参照しながら説明する。
 図3は、本発明の一実施形態に係るガス浄化フィルタ20の断面を模式的に示す図であり、上記の図2に示すガス浄化触媒12よりも小さな粒径のガス浄化触媒12を含むガス浄化フィルタ20の断面を模式的に示す図である。図3に示す構造は、バグフィルタを構成するガス浄化フィルタ20の構造のあくまで一例にすぎず、例えばガス浄化触媒12がフィルタ本体11の内部に入り込むなど、本発明の要旨を損なわない範囲で任意に変形可能である。
 はじめに、上記の図2に示すように、ガス浄化触媒12の平均粒径がある程度大きい場合には、ガス浄化触媒12の粒子間に十分な隙間が生じる。このため、排ガスがフィルタ本体11の内部に形成されたガス流路13に流れ込み易くなる。特に、ガス浄化触媒12の粒子間をガスが流れる際、排ガスはガス浄化触媒12と接触しながら流れる。この結果、排ガスとガス浄化触媒12との幾何学的接触面積が大きくなり、触媒による排ガスの浄化処理性能が向上する。即ち、触媒性能が向上する。
 また、ガス浄化触媒12の平均粒径がある程度大きいため、フィルタ本体11にガス浄化触媒12を担持する際に、ガス浄化触媒12がガス流路13の内部に侵入しにくくなる。この結果、ガス浄化触媒12はフィルタ本体11の表面付近に担持される。そして、ガス浄化触媒12のガス流路13の内部への侵入が抑制されるため、ガス流路13の閉塞も抑制され、図2において破線矢印で示すように、ガス流路13を排ガスが流れ易くなる。この結果、ガス浄化フィルタ20の差圧上昇が抑制される。
 一方で、図3に示すように、ガス浄化触媒12の平均粒径がある程度小さくなると、ガス浄化触媒12の粒子間に形成される隙間が小さくなる。このため、この結果、排ガスとガス浄化触媒12との幾何学的接触面積が小さくなり、触媒による排ガスの浄化処理性能が低下する。即ち、触媒性能が向上しにくい。
 また、ガス浄化触媒12の粒子間に形成される隙間が小さいため、排ガスがフィルタ本体11の内部に形成されたガス流路13に流れ込みにくくなる。さらには、フィルタ本体11にガス浄化触媒12を担持する際に、ガス浄化触媒12がガス流路13の内部に侵入し易くなり、図3において破線で囲むA部に示すように、ガス流路13が閉塞し易い。このため、差圧が上昇し易い。
 ただし、ガス浄化触媒12の平均粒径が図3に示す程度に小さい場合であっても、フィルタ本体11の空隙率が大きく、ガス流路13の大きさが十分に大きなときには、ガス流路13の内部にガス浄化触媒12が侵入しても、ガス流路13は閉塞しにくい。従って、この場合には、差圧は上昇しにくくなる。また、ガス浄化触媒12は、ガス流路13の壁面(即ち、繊維の外表面)に担持されるが、ガス流路13が十分に確保されるため、ガス浄化触媒12の粒子間に形成される隙間は大きくなる。この結果、排ガスとガス浄化触媒12との幾何学的接触面積が大きくなり、触媒による排ガスの浄化処理性能が向上する。即ち、触媒性能が向上する。
 従って、ガス浄化触媒12の平均粒径を指標として触媒性能を向上させようとしても、ガス流路13の大きさによっては期待通りの触媒性能が得られない。そこで、本発明の一実施形態では、十分な大きさのガス流路13の確保により、差圧上昇の抑制と、排ガスとガス浄化触媒12との大きな接触面積との両立が図られている。具体的には、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、差圧上昇の抑制と、排ガスとガス浄化触媒12との大きな接触面積との両立が図られている。
 即ち、本発明の一実施形態では、ガス浄化フィルタ20の空隙率に着目し、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、ガス浄化フィルタ20内部におけるガス流路13を確保して、差圧の過度の上昇を抑制できる。これにより、ガス浄化フィルタ20内部を排ガスが流れ易くでき、ガス処理量を増大できる。さらには、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、ガス流路13を排ガスが流れるときに排ガスをガス浄化触媒12の粒子に適度に接触し易くでき、排ガスの素通りを抑制できる。従って、触媒効率を高め、触媒性能を従来よりも向上できる。
 図4は、ガス浄化フィルタ20の空隙率と差圧との関係を示すグラフである。破線で示すグラフは、一例として空隙率が62%のフィルタ本体11に対し、チタン-バナジウム系の脱硝触媒の粒子を担持させたガス浄化フィルタ20における空隙率と差圧との関係を示すものである。図4に示すように、ガス浄化フィルタ20の空隙率が小さくなるほど、差圧ΔPが大きくなる。そして、図示はしないが、空隙率がある一定の値以下になると差圧ΔPは無限大となり、排ガスが流れなくなる。一方で、空隙率が大きいほど差圧ΔPは小さくなる。従って、差圧ΔPを単に小さくする観点からは、ガス浄化フィルタ20の空隙率は大きいことが好ましい。
 図5は、ガス浄化フィルタ20の空隙率と、触媒性能を示す反応速度比との関係を示すグラフである。破線で示すグラフは、上記の図4に示すグラフと同じガス浄化フィルタ20について示すものである。また、縦軸は、一例として、チタン-バナジウム系の脱硝触媒による反応速度比(脱硝反応速度比)を示し、反応速度比が大きいほど、触媒性能が高いことを示している。反応速度比として、従来のガス浄化フィルタ(上記特許文献1に記載のバグフィルタ)の反応速度定数を1.0としたときの相対的な値を示している。
 図5に示すように、空隙率と反応速度比とは単純な相関を有しない。即ち、空隙率が小さいほど反応速度比も小さくなる(即ち触媒性能が低い)ものの、空隙率を単に大きくしても、反応速度比が必ずしも大きくなる(触媒性能が向上する)とはいえない。即ち、空隙率が0%から10%程度までは、空隙率の増大に伴って反応速度比も大きくなるが、空隙率が10%程度を境にして反応速度比は減少に転じ、空隙率が10%程度を超えると反応速度比は減少する。そのため、空隙率が10%程度を超えると、空隙率の増加に伴って差圧ΔPは小さくなるものの(図4参照)、反応速度比は減少する。
 そして、本発明の一実施形態では、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、図5に示すように、反応速度比を1.5以上にできることがわかった。従って、空隙率が6%以上20%以下であれば、従来のガス浄化フィルタにおける反応速度定数よりも1.5倍以上も大きな反応速度定数を有するガス浄化フィルタ20を得ることができる。このため、触媒性能が向上したガス浄化フィルタ20を得ることができる。
 特に、空隙率が7%以上17%以下にすることで、反応速度比を約2倍(1.8倍~2.2倍程度)にできる。反応速度が2倍になれば、触媒量を半減することが出来るため、その分だけ差圧を低減することが出来る。また、反応速度が2倍になれば、従来と同等の装置サイズ(バグフィルタを入れ替えるだけ)で、例えば脱硫、脱硝、除塵、脱塩などの一連の排ガス処理を同時に行うことが出来る。従って、空隙率が7%以上17%以下であれば、従来のガス浄化フィルタにおける反応速度定数よりも2倍程度も大きな反応速度定数を有するガス浄化フィルタ20を得ることができる。このため、触媒性能が特に向上したガス浄化フィルタ20を得ることができる。
 図6は、ガス浄化フィルタ20の空隙率と、ガス浄化触媒12の平均粒径との関係を示すグラフである。また、図7は、ガス浄化フィルタの空隙率と、ガス浄化触媒の平均粒径との関係を示すグラフであり、横軸の最大値が図6とは異なるグラフである。具体的は、横軸の最大値は、図6では30%であるが、図7では60%である。
 図6及び図7に示す破線のグラフは、空隙率55%のフィルタ本体11にガス浄化触媒12を担持させたガス浄化フィルタ20において、ガス浄化フィルタ20の空隙率と触媒粒子の平均粒径との関係を示すグラフである。また、図6及び図7に示す一点鎖線のグラフは、空隙率62%のフィルタ本体11にガス浄化触媒12を担持させたガス浄化フィルタ20において、ガス浄化フィルタ20の空隙率と触媒粒子の平均粒径との関係を示すグラフである。
 また、図6及び図7に示す実線のグラフは、空隙率69%のフィルタ本体11にガス浄化触媒12を担持させたガス浄化フィルタ20において、ガス浄化フィルタ20の空隙率と触媒粒子の平均粒径との関係を示すグラフである。さらに、図6及び図7に示す二点鎖線のグラフは、空隙率75%のフィルタ本体11にガス浄化触媒12を担持させたガス浄化フィルタ20において、ガス浄化フィルタ20の空隙率と触媒粒子の平均粒径との関係を示すグラフである。そして、図6及び図7に示す点線のグラフは、空隙率82%のフィルタ本体11にガス浄化触媒12を担持させたガス浄化フィルタ20において、ガス浄化フィルタ20の空隙率と触媒粒子の平均粒径との関係を示すグラフである。
 上記の図5を参照しながら説明したように、ガス浄化フィルタ20の空隙率(横軸)は6%以上20%以下(好ましくは7%以上17%以下)に設定される。そのため、例えば空隙率が55%(破線のグラフ)のフィルタ本体11にガス浄化触媒12を担持させる場合、ガス浄化フィルタ20の空隙率を6%以上20%以下にするためには、ガス浄化触媒12の平均粒径を10μm以上250μm以下(上限値は図7参照)にすればよい。
 また、例えば空隙率が62%(一点鎖線のグラフ)のフィルタ本体11にガス浄化触媒12を担持させる場合、ガス浄化フィルタ20の空隙率を6%以上20%以下にするためには、ガス浄化触媒12の平均粒径を2μm以上150μm以下(下限値は図示せず。上限値は図6参照)にすればよい。さらに、例えば空隙率が69%(実線のグラフ)のフィルタ本体11にガス浄化触媒12を担持させる場合、ガス浄化フィルタ20の空隙率を6%以上20%以下にするためには、ガス浄化触媒12の平均粒径を1.5μm以上50μm以下(下限値は図示せず。上限値は図6及び図7参照)にすればよい。
 また、例えば空隙率が75%(二点鎖線のグラフ)のフィルタ本体11にガス浄化触媒12を担持させる場合、ガス浄化フィルタ20の空隙率を6%以上20%以下にするためには、ガス浄化触媒12の平均粒径を1.3μm以上25μm以下(下限値は図示せず。上限値は図6及び図7参照)にすればよい。さらに、例えば空隙率が82%(点線のグラフ)のフィルタ本体11にガス浄化触媒12を担持させる場合、ガス浄化フィルタ20の空隙率を6%以上20%以下にするためには、ガス浄化触媒12の平均粒径を1.1μm以上17μm以下(上限値及び下限値は図示せず)にすればよい。なお図5、6より、反応速度比を従来のガス浄化フィルタ以上とするには、ガス浄化触媒12の平均粒径を1.1μm以上30μm以下にすればよいことが分かる。
 なお、上記の特許文献1に記載のガス浄化フィルタ(特許文献1の段落0023に記載のバグフィルタ)では、上記式(1)に基づいて算出したフィルタ本体の空隙率は58%であると考えられる(ガラス繊維(密度2.5×10(g/m))を使用したと仮定)。また、フィルタ本体に担持されるガス浄化触媒の平均粒径は0.1μmである。従って、特許文献1に記載のガス浄化フィルタでは、フィルタ本体及びガス浄化触媒を含むガス浄化フィルタの空隙率は、上記の図6及び図7によれば、6%未満と考えられる。
 また、上記の特許文献2に記載のガス浄化フィルタ(特許文献2の表1に記載のバグフィルタ)では、上記式(1)に基づいて算出したフィルタ本体の空隙率は79%であると考えられる(特許文献1と同じくガラス繊維を使用したと仮定)。また、フィルタ本体に担持されるガス浄化触媒の平均粒径は1μmである。従って、特許文献1に記載のガス浄化フィルタでは、フィルタ本体及びガス浄化触媒を含むガス浄化フィルタの空隙率は、上記の図6及び図7によれば、6%未満と考えられる。
 図8は、実施例及び比較例において反応速度比の経時変化を示すグラフである。図7において実線のグラフは実施例、破線のグラフは比較例を示す。縦軸は、比較例における0分における反応速度定数(初期の反応速度定数)を1とした相対的な値として示している。なお、図8に示すグラフは、一例として脱硝反応に関するものである。また、図8は本発明者らによる実験で得られたグラフであるが、図示の簡略化のためにプロット(10分毎に反応速度定数を算出した)の図示は省略し、図示しないプロット同士を滑らかに結ぶことで得られた曲線(実線及び破線)を図8に示している。
 実施例及び比較例のいずれにおいても、フィルタ本体11を構成する繊維としてガラス繊維を用いた。また、フィルタ本体11の目付は880g/mとした。従って、上記(1)によれば、フィルタ本体11の空隙率は62%である。また、実施例及び比較例のいずれにおいても、ガス浄化触媒12としてチタン-バナジウム系の脱硝触媒を用いた。ガス浄化触媒12のフィルタ本体11への担持量は250g/mとした。
 担持させるガス浄化触媒12の平均粒径D50は、実施例では10μm、比較例では0.8μmとした。比較例の平均粒径は、上記の特許文献2に記載のガス浄化触媒の平均粒径と同程度である。
 また、ガス浄化フィルタ20に供給する排ガスの条件として、実施例及び比較例のいずれにおいても、温度は200℃、平均空塔速度u(ガス平均流速uと等しい)は0.8m/分とした。排ガスの組成は、窒素酸化物150ppmvol.二酸化炭素10%vol.、酸素10%vol.、水20%vol.、アンモニア105ppmvol.、二酸化硫黄2000ppmvol.、窒素80%vol.とした。
 図8に示すように、実施例の反応速度比は、初期状態(時間0分)において、比較例の反応速度比の2倍であった。そして、排ガスを通流させながら時間が経過しても、実施例の反応速度比は、比較例の反応速度比と同様の傾向で減少した。そして、実施例の反応速度比は、800分経過後であっても、比較例の初期状態(時間0分)の反応速度比を下回ることがなかった。従って、図8の実線グラフに示すように、本発明の一実施形態に係る実施例によれば、特に、初期状態の触媒性能を高めることができることがわかった。そして、これにより、長時間にわたって高い触媒性能(比較例よりも大きな反応速度定数)が維持され、ガス浄化フィルタ20の耐久性を向上できることがわかった。
 また、例えば、要求される触媒性能が従来と同程度で足りる場合には、ガス浄化触媒12のフィルタ本体11への担持量を、従来よりも減らすことができる。これにより、製造コストの低減化、低圧損化を図るとともに、ガス浄化フィルタ20の差圧をさらに低減できる。そして、差圧の低下により、例えば逆洗頻度、ブロア動力を低減でき、ガス浄化フィルタ20を備えるガス浄化システム100(後記する)の効率化を図ることができる。
 図9は、本発明の一実施形態に係るガス浄化フィルタ20の製造方法(以下、単に「本実施形態の製造方法」ということがある)を示すフローチャートである。本実施形態の製造方法は、上記のガス浄化フィルタ20を製造する方法であって、繊維布により構成されるフィルタ本体11と、フィルタ本体11に担持されたガス浄化触媒12とを備えるガス浄化フィルタ20の製造方法に関する。本実施形態の製造方法は、準備ステップS1と、平均粒径決定ステップS2と、担持ステップS3とを含む。
 準備ステップS1は、フィルタ本体11を準備するものである。準備されるフィルタ本体11は、物性が既知のものであってもよく、準備したフィルタ本体11の物性を決定することで物性を把握してもよい。ここでいう物性とは例えば空隙率である。空隙率は、上記のように、単位体積あたりの空間に占める空隙の体積を表すものである。フィルタ本体11の空隙率は、例えば、上記式(1)に基づいて決定できる。
 平均粒径決定ステップS2は、準備したフィルタ本体11の空隙率に基づき、ガス浄化フィルタ20の空隙率が6%以上20%以下(好ましくは7%以上17%以下)になるようなガス浄化触媒12の平均粒径D50を決定するものである。具体的には、上記の図6及び図7を参照しながら説明したように、フィルタ本体11の空隙率により、ガス浄化フィルタ20の空隙率6%以上20%以下に対応するガス浄化触媒12の平均粒径D50が異なる。そこで、平均粒径決定ステップS2では、準備したフィルタ本体11の空隙率と、例えば上記図6及び図7の関係とに基づき、ガス浄化フィルタ20の空隙率を6%以上20%以下にできるガス浄化触媒12の平均粒径D50が決定される。決定される平均粒径D50は、上記のように、レーザ回折式粒径分布測定装置に基づいて測定される平均粒径である。
 なお、フィルタ本体11の空隙率に対応するグラフが図6及び図7に存在しない場合には、図6及び図7に示すグラフから空隙率が図6及び図7に存在しないグラフを予測し、予測されたグラフに基づいて平均粒径D50を決定すればよい。
 担持ステップS3は、決定した平均粒径D50を有するガス浄化触媒12をフィルタ本体11に担持させるものである。具体的には、決定した平均粒径D50を有するガス浄化触媒12を準備し、準備したガス浄化触媒12がフィルタ本体11に担持される。担持方法は特に制限されないが、フィルタ本体11に対してガス浄化触媒12の粒子を含む触媒スラリーを吹き付けるスプレー法が好ましい。即ち、担持ステップS3はスプレー法によって行われることが好ましい。スプレー法によることで、ガス浄化触媒12の粒径によらず、ガス浄化触媒12を、ガス浄化フィルタ20の空隙率が6%以上20%以下となるような量でフィルタ本体11に担持できる。
 なお、スプレー法によってガス浄化触媒12をフィルタ本体11に吹き付ける際、ガス浄化触媒12は、ガス浄化フィルタ20において排ガスが流れる方向と同じ方向に吹き付けられることが好ましい。また、ガス浄化触媒12は、例えば、予め袋状に成形したフィルタ本体11に吹き付けられるようにしてもよいし、シート状のフィルタ本体11に吹き付けられた後、ガス浄化触媒12が吹き付けられたフィルタ本体11が袋状に成形されるようにしてもよい。これらの工程を経ることで、ガス浄化触媒12をフィルタ本体11に担持させたガス浄化フィルタ20により構成されるバグフィルタが得られる。
 以上の製造方法によれば、ガス浄化フィルタ20の空隙率に着目し、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、ガス浄化フィルタ20内部におけるガス流路13を確保して、差圧の過度の上昇を抑制できる。これにより、ガス浄化フィルタ20内部を排ガスが流れ易くでき、ガス処理量を増大できる。さらには、ガス浄化フィルタ20の空隙率を6%以上20%以下にすることで、ガス流路13を排ガスが流れるときに排ガスをガス浄化触媒12の粒子に適度に接触し易くでき、排ガスの素通りを抑制できる。従って、触媒効率を高め、触媒性能を従来よりも向上できる。
 図10は、本発明の一実施形態に係るガス浄化システム100の系統図である。ガス浄化システム100は、燃焼装置(例えばボイラ101)からの排ガスを浄化するためのものである。ガス浄化システム100は、上記のガス浄化フィルタ20(図10では図示しない)が内部に配置されたガス浄化装置105を備える。ガス浄化装置105に配置されるガス浄化フィルタ20には、脱硝機能を有するガス浄化触媒12が含まれる。即ち、ガス浄化触媒12は脱硝触媒を含む。
 また、ガス浄化システム100は、ガス浄化フィルタ20の上流側を流れるガスに窒素酸化物の還元剤を供給するための供給装置106をさらに備える。還元剤は、例えば、アンモニア水、アンモニアガス、尿素水、炭化水素、一酸化炭素等を含む。
 なお、還元剤の供給位置は、図示の例では減温塔104とガス浄化システム100との間にしているが、ガス浄化フィルタ20の上流側に供給できればどの位置でもよい。例えば、ボイラ101に併設された燃焼炉(図示しない)の内部に還元剤を供給することで、燃焼炉での炉内脱硝を行うようにしてもよい。これにより、供給された還元剤を用いて、排ガスの脱硝を行うことができる。この場合における還元剤の供給量は、運転条件の変動に起因する排ガス中の窒素酸化物濃度に応じて変更することができる。
 ボイラ101では、上記燃焼炉での燃焼により生じた燃焼ガスの熱と水(液体)とが熱交換することにより、水蒸気が発生する。熱交換は、ボイラ101に備えられた熱交換装置(図示しない)において行われる。発生した水蒸気は例えば蒸気タービン(図示しない)の回転に使用される。また、燃焼炉において生じた燃焼ガスは、排ガスとして、エアヒータ102及び熱交換器103に供給される。エアヒータ102及び熱交換器103では、排ガスが有する熱により空気が加熱され、加熱された空気は燃焼空気やボイラ101への供給水の加温等に使用される。また、排ガスは減温塔104に供給される。減温塔104では、ボイラ101からの排ガス温度が例えば220℃程度の場合には、排ガスは減温塔104において例えば170℃程度にまで減温される。
 減温された排ガスには、供給装置106により還元剤が供給される。これにより、還元剤を含むガスがガス浄化装置105のガス浄化フィルタ20を透過する。この結果、ガス浄化フィルタ20に担持された脱硝触媒(ガス浄化触媒12)において、還元剤を用いた排ガスの脱硝を行うことができる。ここでいう脱硝とは、還元剤を用いて、一酸化窒素及び二酸化窒素を窒素に変換することをいう。脱硝により還元剤は消費され、ガス浄化フィルタ20の下流側への還元剤の漏洩が抑制される。
 また、ガス浄化触媒12は、上記の脱硝触媒に加えて、酸化触媒を含んでもよい。酸化触媒を含むことで、排ガスに窒素酸化物が含まれない場合であっても、還元剤を酸化分解できる。ここでいう酸化は、酸素を用いて、炭化水素、一酸化炭素及びアンモニア(還元剤として含まれる場合)を、それぞれ、水蒸気、二酸化炭素及び窒素酸化物に変換することをいう。還元剤の酸化分解により、還元剤がガス浄化フィルタ20の下流側に漏洩することを抑制できる。なお、ガス浄化触媒12が脱硝触媒を含まない場合には、還元剤は使用しなくてもよい。
 還元剤の漏洩抑制効果は、燃焼炉内部への還元剤供給によって炉内脱硝を行う場合に、より有利である。特に、上記のように運転条件の変動に起因して還元剤の供給量を変更すれば、還元剤供給量が増加したときに還元剤がガス浄化フィルタ20の下流側に漏洩し易くなる。ガス浄化フィルタ20において還元剤を酸化分解できることで、還元剤供給量が増加しても還元剤の酸化分解によって、還元剤がガス浄化フィルタ20の下流側に漏洩することを抑制できる。
 そして、脱硝後のガスは、煙突107を通じて大気に放出される。
 ガス浄化システム100によれば、触媒性能が従来よりも向上したガス浄化フィルタ20を備えるガス浄化装置105を用いて、排ガスを浄化できる。このため、排ガスの浄化流量を増大でき、排ガスの効率的な浄化を行うことができる。
 また、ガス浄化システム100に供給される排ガスの温度は、減温塔104での減温により、例えば170℃程度である。通常、脱硝は高温(例えば200℃以上)で行われるが、ガス浄化システム100でのガス浄化フィルタ20の触媒効率が高いため、例えば170℃程度といった比較的低温であっても、排ガスの脱硝を十分に行うことができる。これにより、ガス浄化システム100のガス浄化触媒12を、脱硝及び酸化の双方の機能を有する触媒にすることで、ガス浄化システム100において、脱硝、脱硫、ダイオキシン除去、除塵、脱塩の各処理を行うことができる。これにより、ガス浄化システム100において各処理を同時に行うことができ、ガス浄化システム100の小型化を図ることができる。
 さらに、図10に示すように、ボイラ101からの排ガスは、例えば再熱器等によって再熱(昇温)されることなく、ガス浄化システム100に供給される。この点、従来は、ガス浄化システム100は反応集塵装置(図示しない)を備え、脱硝反応塔(図示しない)は反応集塵装置の後段に設置されていた。反応集塵装置では、ダイオキシン除去に加え、脱硫、脱塩処理が実施される。そのため、従来は、減温塔(図示しない)において、ガス温度が例えば200℃以下、具体的には例えば150℃~180℃程度にまで、排ガスが冷却されていた。
 ここで、脱硝反応は例えば200℃以上において行われる。そのため、従来は、反応集塵装置と脱硝反応塔との間に再熱器が設置され、一旦冷却されたガスが脱硝反応に好適な温度まで再昇温されていた。しかし、本発明の一実施形態に係るガス浄化システム100では、排ガスの再熱が不要であるため、再熱のための電力、蒸気等が不要である。この結果、エネルギ効率を向上できる。また、再熱が不要なため、再熱のための蒸気を例えば蒸気タービン(図示しない)に供給できる。この結果、発電効率を向上できる。
1 筒部
2 蓋部
3 開口部
10 バグフィルタ
11 フィルタ本体
12 ガス浄化触媒
13 ガス流路
20 ガス浄化フィルタ
100 ガス浄化システム
101 ボイラ
102 エアヒータ
103 熱交換器
104 減温塔
105 ガス浄化装置
106 供給装置
107 煙突

Claims (10)

  1.  繊維布により構成されるフィルタ本体と、前記フィルタ本体に担持されたガス浄化触媒とを含むガス浄化フィルタであって、
     前記ガス浄化フィルタの単位体積あたりの空間に占める空隙の体積を表す空隙率が6%以上20%以下である
     ガス浄化フィルタ。
  2.  前記空隙率が7%以上17%以下である
     請求項1に記載のガス浄化フィルタ。
  3.  前記フィルタ本体の前記空隙率は55%以上82%以下であり、
     前記ガス浄化触媒の平均粒径D50が1μm以上250μm以下である
     請求項1又は2に記載のガス浄化フィルタ。
  4.  前記フィルタ本体の目付が500g/m以上1200g/m以下である
     請求項1~3の何れか1項に記載のガス浄化フィルタ。
  5.  前記フィルタ本体に含まれる繊維は、ポリエステル系繊維、ポリアミド系繊維、ポリフェニレンサルファイド系繊維、ポリアクリル系繊維、ポリプロピレン系繊維、ポリイミド系繊維、ガラス繊維、及びポリフルオロエチレン系繊維の何れか1種を含む
     請求項1~4の何れか1項に記載のガス浄化フィルタ。
  6.  前記繊維の直径は、繊維断面における最も大きい部分の直径が15μm以下である
     請求項5に記載のガス浄化フィルタ。
  7.  繊維布により構成されるフィルタ本体と、前記フィルタ本体に担持されたガス浄化触媒とを備えるガス浄化フィルタの製造方法であって、
     前記フィルタ本体を準備する準備ステップと、
     前記ガス浄化フィルタの単位体積あたりの空間に占める空隙の体積を表す空隙率であって、準備した前記フィルタ本体の前記空隙率に基づき、前記ガス浄化フィルタの空隙率が6%以上20%以下になるような前記ガス浄化触媒の平均粒径D50を決定する平均粒径決定ステップと、
     決定した前記平均粒径D50を有する前記ガス浄化触媒を前記フィルタ本体に担持させる担持ステップと、を含む
     ガス浄化フィルタの製造方法。
  8.  前記担持ステップは、スプレー法によって行われる
     請求項7に記載のガス浄化フィルタの製造方法。
  9.  燃焼装置からの排ガスを浄化するためのガス浄化システムであって、
     請求項1~6の何れかに記載のガス浄化フィルタが内部に配置されたガス浄化装置を備える
     ガス浄化システム。
  10.  前記ガス浄化触媒は脱硝触媒を含み、
     前記ガス浄化システムは、前記ガス浄化フィルタの上流側を流れるガスに窒素酸化物の還元剤を供給するための供給装置をさらに備える
     請求項9に記載のガス浄化システム。
PCT/JP2019/044252 2018-11-12 2019-11-12 ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システム WO2020100856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19884653.7A EP3808428B1 (en) 2018-11-12 2019-11-12 Gas purification filter, method for manufacturing gas purification filter, and gas purification system
CN201980048953.6A CN112469489B (zh) 2018-11-12 2019-11-12 气体净化过滤器的制造方法
SG11202100367PA SG11202100367PA (en) 2018-11-12 2019-11-12 Gas purification filter, method for producing gas purification filter, and gas purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212103 2018-11-12
JP2018212103A JP6694936B1 (ja) 2018-11-12 2018-11-12 ガス浄化フィルタの製造方法

Publications (1)

Publication Number Publication Date
WO2020100856A1 true WO2020100856A1 (ja) 2020-05-22

Family

ID=70682371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044252 WO2020100856A1 (ja) 2018-11-12 2019-11-12 ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システム

Country Status (5)

Country Link
EP (1) EP3808428B1 (ja)
JP (1) JP6694936B1 (ja)
CN (1) CN112469489B (ja)
SG (1) SG11202100367PA (ja)
WO (1) WO2020100856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395044B1 (ja) 2023-04-21 2023-12-08 三菱重工環境・化学エンジニアリング株式会社 ガス浄化フィルタ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023161201A (ja) * 2022-04-25 2023-11-07 三菱重工業株式会社 排ガス処理装置、燃焼設備及び排ガス処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941257A (ja) * 1995-05-23 1997-02-10 Toray Ind Inc フィルター用不織布
JPH09220466A (ja) * 1996-02-14 1997-08-26 Mitsubishi Heavy Ind Ltd 触媒フィルタの製造方法
JP2001054707A (ja) * 1999-08-19 2001-02-27 Nitto Denko Corp バグフィルタおよびその製造方法
JP2005137972A (ja) * 2003-11-04 2005-06-02 Chisso Corp ポリオレフィン樹脂製フィルター
JP2007000850A (ja) * 2005-06-27 2007-01-11 Toyota Boshoku Corp フィルタ用濾材
JP2014008460A (ja) 2012-06-29 2014-01-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd 触媒担持バグフィルタ
JP2014166614A (ja) 2013-02-28 2014-09-11 Izumi-Cosmo Co Ltd バグフィルター用濾過布およびそれを用いたバグフィルター装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192655A (ja) * 1997-01-08 1998-07-28 Babcock Hitachi Kk 排ガス処理用バグフィルタ
WO2007102561A1 (ja) * 2006-03-07 2007-09-13 Ngk Insulators, Ltd. セラミック構造体及びその製造方法
EP2206544B1 (en) * 2007-09-28 2016-07-20 Toray Industries, Inc. Filtering medium
JP5524178B2 (ja) * 2009-03-26 2014-06-18 日本碍子株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
JP5436060B2 (ja) * 2009-06-10 2014-03-05 本田技研工業株式会社 排ガス浄化用酸化触媒装置
JP6081421B2 (ja) * 2014-08-28 2017-02-15 三菱重工環境・化学エンジニアリング株式会社 バグフィルタの製造方法
JP6577895B2 (ja) * 2016-03-30 2019-09-18 日本碍子株式会社 ハニカム構造体
JP6665011B2 (ja) * 2016-03-31 2020-03-13 三菱重工業株式会社 排ガス処理方法およびシステム
JPWO2018174137A1 (ja) * 2017-03-24 2020-01-23 東レ株式会社 濾材およびバグフィルター

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941257A (ja) * 1995-05-23 1997-02-10 Toray Ind Inc フィルター用不織布
JPH09220466A (ja) * 1996-02-14 1997-08-26 Mitsubishi Heavy Ind Ltd 触媒フィルタの製造方法
JP2001054707A (ja) * 1999-08-19 2001-02-27 Nitto Denko Corp バグフィルタおよびその製造方法
JP2005137972A (ja) * 2003-11-04 2005-06-02 Chisso Corp ポリオレフィン樹脂製フィルター
JP2007000850A (ja) * 2005-06-27 2007-01-11 Toyota Boshoku Corp フィルタ用濾材
JP2014008460A (ja) 2012-06-29 2014-01-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd 触媒担持バグフィルタ
JP2014166614A (ja) 2013-02-28 2014-09-11 Izumi-Cosmo Co Ltd バグフィルター用濾過布およびそれを用いたバグフィルター装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808428A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395044B1 (ja) 2023-04-21 2023-12-08 三菱重工環境・化学エンジニアリング株式会社 ガス浄化フィルタ

Also Published As

Publication number Publication date
CN112469489A (zh) 2021-03-09
EP3808428B1 (en) 2022-06-22
SG11202100367PA (en) 2021-02-25
JP2020078766A (ja) 2020-05-28
CN112469489B (zh) 2022-05-17
JP6694936B1 (ja) 2020-05-20
EP3808428A4 (en) 2021-08-18
EP3808428A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6665011B2 (ja) 排ガス処理方法およびシステム
KR101298305B1 (ko) 배기가스 중 미량 유해물질의 제거장치 및 그 운전방법
WO2015186818A1 (ja) ボイラシステムおよびそれを備えた発電プラント
WO2020100856A1 (ja) ガス浄化フィルタ、ガス浄化フィルタの製造方法、及び、ガス浄化システム
JP2017517394A (ja) フィルターバッグアッセンブリ
Heidenreich et al. Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams
JP7041062B2 (ja) 触媒床、及び酸化窒素を減少させるための方法
WO1997012671A1 (fr) Charbon actif traite thermiquement servant a l'elimination de l'azote, procede de preparation dudit charbon actif, procede et systeme d'elimination d'azote au moyen dudit charbon actif
TW201118316A (en) System and method for protection of SCR catalyst
JP2019512385A (ja) より低い圧力損失を有する触媒化織布フィルターの製造
JP2017006813A (ja) 脱硝装置および窒素酸化物の処理方法
JP2004524960A (ja) ガスの窒素酸化物含量を減少させるための放射流気相反応器及び方法
JP2004530538A (ja) ガスの窒素酸化物含量を減少させるための反応器及び方法
JP6929288B2 (ja) 触媒床、及び酸化窒素を減少させるための方法
JP2019534771A (ja) 低温ガス浄化のための方法および該方法で使用するための触媒
Li et al. Recent advances in catalytic filters for integrated removal of dust and NOx from flue gas: fundamentals and applications
CN113453781B (zh) 用于处理来自固定排放源的含颗粒废气的催化过滤系统
JP2019525826A (ja) 触媒材料を含むフィルターバッグアセンブリ
JP2006212515A (ja) 脱硝触媒およびその製造方法、並びに排ガス処理方法
JP2008030017A (ja) 排ガス中微量有害物質の除去装置及びその運転方法
JP6520557B2 (ja) 排ガス浄化装置及び方法、並びに作物生産用施設への二酸化炭素含有ガスと熱の供給装置
JP2014008460A (ja) 触媒担持バグフィルタ
CN113663450A (zh) 一种工业硅冶炼烟气深度净化的工艺
JP2004524961A (ja) ガスの窒素酸化物含量を減少させるための気相反応器
JP2006205091A (ja) 脱硝触媒および排ガス処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019884653

Country of ref document: EP

Effective date: 20210118

NENP Non-entry into the national phase

Ref country code: DE