WO2020098328A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2020098328A1
WO2020098328A1 PCT/CN2019/102141 CN2019102141W WO2020098328A1 WO 2020098328 A1 WO2020098328 A1 WO 2020098328A1 CN 2019102141 W CN2019102141 W CN 2019102141W WO 2020098328 A1 WO2020098328 A1 WO 2020098328A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
optical axis
imaging lens
image side
Prior art date
Application number
PCT/CN2019/102141
Other languages
English (en)
French (fr)
Inventor
娄琪琪
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020098328A1 publication Critical patent/WO2020098328A1/zh
Priority to US17/022,600 priority Critical patent/US20200409123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an imaging lens, and more particularly, to an imaging lens including six lenses.
  • ultra-wide-angle lenses are increasingly used in automotive, surveillance, virtual reality, and other fields.
  • the ultra-wide-angle lens usually has a large size, making it unable to be applied to various types of portable electronic devices that are increasingly miniaturized.
  • most ultra-wide-angle lenses currently have the problems of low pixels and low relative illuminance, which makes the shots not uniform enough to provide better images.
  • the present application provides an ultra-wide-angle camera lens that can at least solve or partially solve at least one of the above disadvantages in the prior art and is applicable to portable electronic products.
  • the present application provides such an imaging lens, which includes, in order from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens and The sixth lens.
  • the first lens can have negative power and the image side can be concave; the second lens can have negative power, the object side can be convex and the image side can be concave; the third lens can have positive power , The image side may be convex; the fourth lens has power; the fifth lens has power; and the sixth lens has power.
  • the sixth lens may have positive power.
  • the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy -1 ⁇ f1 / f3 ⁇ -0.5; and the effective focal length f2 of the second lens and the effective focal length f3 of the third lens may Satisfy -8 ⁇ f2 / f3 ⁇ -3.
  • the radius of curvature R2 of the image side of the first lens and the total effective focal length f of the imaging lens can satisfy 0.5 ⁇ R2 / f ⁇ 1.
  • the central thickness of the second lens on the optical axis CT2, the central thickness of the third lens on the optical axis CT3, the central thickness of the fourth lens on the optical axis CT4, and the fifth lens on the optical axis can satisfy (CT2 + CT3 + CT4 + CT5) / TD ⁇ 0.5.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT6 of the sixth lens on the optical axis may satisfy 0.3 ⁇ CT4 / CT6 ⁇ 0.85.
  • the refractive index N5 of the fifth lens may satisfy N5 ⁇ 1.6.
  • the effective half-aperture DT11 on the object side of the first lens and half the diagonal length of the effective pixel area of the effective pixel area of the electronic photosensitive element on the imaging surface of the imaging lens can satisfy 1.2 ⁇ DT11 / ImgH ⁇ 1.8.
  • the effective half-aperture DT62 on the image side of the sixth lens and the half of the diagonal length of the effective pixel area of the effective pixel area of the electronic photosensitive element on the imaging surface of the imaging lens can satisfy 0.8 ⁇ DT62 / ImgH ⁇ 1.1.
  • the effective half aperture DT12 of the image side of the first lens and the effective half aperture DT21 of the object side of the second lens may satisfy 1.2 ⁇ DT12 / DT21 ⁇ 1.7.
  • the center thickness CT2 of the second lens on the optical axis and the edge thickness ET2 of the second lens may satisfy 1 ⁇ CT2 / ET2 ⁇ 1.3.
  • the on-axis distance SAG12 of the maximum effective half-diameter apex of the image side can satisfy 0.5 ⁇ SAG11 / SAG12 ⁇ 1.
  • the axial distance between the intersection point of the image side of the first lens and the optical axis to the vertex of the maximum effective half-aperture of the image side of the first lens SAG12 and the center thickness CT1 of the first lens on the optical axis can satisfy 1 ⁇ SAG12 / CT1 ⁇ 1.7.
  • the effective pixel area of the electronic photosensitive element on the imaging surface of the imaging lens has a diagonal length of ImgH and the total effective focal length f of the imaging lens can satisfy ImgH 2 /f>4.5 mm.
  • the camera lens may further include an aperture, the distance SL between the aperture and the imaging surface of the camera lens on the optical axis, and the distance TTL between the object side surface of the first lens and the imaging surface of the camera lens on the optical axis. Meet 0.6 ⁇ SL / TTL ⁇ 1.
  • the diaphragm is disposed between the second lens and the third lens.
  • the maximum incident angle CRAmax of the main light rays incident on the imaging surface of the imaging lens of the electronic lens can satisfy 10 ° ⁇ CRAmax ⁇ 20 °.
  • the operating band of the camera lens may range from about 800 nm to about 1000 nm.
  • the present application also provides an imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens And the sixth lens.
  • the first lens can have negative power and the image side can be concave; the second lens can have negative power, the object side can be convex and the image side can be concave; the third lens can have positive power , The image side may be convex; the fourth lens has power; the fifth lens has power; and the sixth lens has power.
  • the effective half-aperture DT11 on the object side of the first lens and the half of the diagonal length of the effective pixel area of the effective pixel area of the electronic photosensitive element on the imaging surface of the imaging lens can satisfy 1.2 ⁇ DT11 / ImgH ⁇ 1.8.
  • This application uses six lenses. By reasonably allocating the power, surface type, center thickness of each lens, and the axial distance between each lens, etc., the above camera lens has a small size, high brightness, and high imaging At least one beneficial effect such as quality and ultra-wide angle.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application
  • 2A and 2B respectively show the astigmatism curve and the relative illuminance curve of the imaging lens of Example 1;
  • FIG. 3 is a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • 4A and 4B respectively show the astigmatism curve and the relative illuminance curve of the imaging lens of Example 2;
  • FIG. 5 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • 6A and 6B respectively show the astigmatism curve and the relative illuminance curve of the imaging lens of Example 3;
  • FIG. 7 shows a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • 10A and 10B respectively show the astigmatism curve and the relative illuminance curve of the imaging lens of Example 5;
  • FIG. 11 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • FIG. 13 is a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • 14A and 14B show the astigmatism curve and the relative illuminance curve of the imaging lens of Example 7, respectively.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region Concave.
  • the surface closest to the subject in each lens is called the object side of the lens, and the surface closest to the imaging plane in each lens is called the image side of the lens.
  • the imaging lens according to the exemplary embodiment of the present application may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in order from the object side to the image side along the optical axis. There can be air gaps between adjacent lenses.
  • the first lens may have negative power and the image side may be concave; the second lens may have negative power and the object side may be convex and the image side may be concave; the third lens It may have positive power and its image side may be convex; the fourth lens has positive power or negative power; the fifth lens has positive power or negative power; and the sixth lens has positive power or negative power Power.
  • the imaging lens of the present application may satisfy the conditional expression -1 ⁇ f1 / f3 ⁇ -0.5, where f1 is the effective focal length of the first lens and f3 is the effective focal length of the third lens. More specifically, f1 and f3 may further satisfy -0.8 ⁇ f1 / f3 ⁇ -0.5, for example, -0.75 ⁇ f1 / f3 ⁇ -0.57.
  • the imaging lens of the present application may satisfy the conditional expression -8 ⁇ f2 / f3 ⁇ -3, where f2 is the effective focal length of the second lens and f3 is the effective focal length of the third lens. More specifically, f2 and f3 may further satisfy -8 ⁇ f2 / f3 ⁇ -3.3, for example, -7.96 ⁇ f2 / f3 ⁇ -3.45.
  • Reasonable distribution of the focal length values of the first lens, the second lens, and the third lens helps to better share the ultra-wide-angle field of view, and at the same time, helps to reduce the system's astigmatism and coma, thereby effectively improving imaging quality.
  • the first lens may have negative power and the image side may be concave; the second lens may have negative power and the object side may be convex and the image side may be concave; the third lens It can have positive power and its image side can be convex; the fourth lens has positive or negative power; the fifth lens has positive or negative power and its image side can be convex; and the sixth lens With positive power or negative power.
  • the imaging lens of the present application may satisfy the conditional formula ImgH 2 /f>4.5 mm, where ImgH is half the diagonal length of the effective pixel area of the electronic photosensitive element on the imaging surface of the imaging lens, and f The total effective focal length of the camera lens. More specifically, ImgH and f can further satisfy ImgH 2 / f> 5 mm, for example, 5.23 mm ⁇ ImgH 2 /f ⁇ 5.59 mm. Satisfying the conditional formula ImgH 2 /f>4.5mm is conducive to ensuring the large image surface and short focal length of the lens, and at the same time helping to achieve clear shooting image quality.
  • the fourth lens may have positive refractive power, and its object side may be convex.
  • the sixth lens may have positive power, its object side may be convex, and the image side may be concave.
  • the imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ R2 / f ⁇ 1, where R2 is the radius of curvature of the image side of the first lens, and f is the total effective focal length of the imaging lens. More specifically, R2 and f can further satisfy 0.76 ⁇ R2 / f ⁇ 0.94. Satisfying the conditional expression 0.5 ⁇ R2 / f ⁇ 1, can better share the ultra-wide-angle field of view, and can effectively reduce the field curvature and astigmatism of the system.
  • the imaging lens of the present application may satisfy the conditional expression (CT2 + CT3 + CT4 + CT5) / TD ⁇ 0.5, where CT2 is the center thickness of the second lens on the optical axis and CT3 is the third lens The center thickness on the optical axis, CT4 is the center thickness of the fourth lens on the optical axis, CT5 is the center thickness of the fifth lens on the optical axis, TD is the object side of the first lens to the image side of the sixth lens The distance on the optical axis.
  • CT2 is the center thickness of the second lens on the optical axis
  • CT3 is the third lens
  • CT4 is the center thickness of the fourth lens on the optical axis
  • CT5 is the center thickness of the fifth lens on the optical axis
  • TD is the object side of the first lens to the image side of the sixth lens The distance on the optical axis.
  • CT2, CT3, CT4, CT5, and TD can further satisfy 0.2 ⁇ (CT2 + CT3 + CT4 + CT5) / TD ⁇ 0.4, for example, 0.32 ⁇ (CT2 + CT3 + CT4 + CT5) /TD ⁇ 0.39. Satisfying the conditional expression (CT2 + CT3 + CT4 + CT5) / TD ⁇ 0.5 can effectively shorten the total length of the system and reduce the field curvature of the system.
  • the imaging lens of the present application may satisfy the conditional expression 0.3 ⁇ CT4 / CT6 ⁇ 0.85, where CT4 is the center thickness of the fourth lens on the optical axis and CT6 is the center of the sixth lens on the optical axis thickness. More specifically, CT4 and CT6 can further satisfy 0.43 ⁇ CT4 / CT6 ⁇ 0.80. It satisfies the conditional expression 0.3 ⁇ CT4 / CT6 ⁇ 0.85, which can well realize field curvature correction and achieve high pixel imaging quality.
  • the imaging lens according to the present application may also be provided with a diaphragm to improve the imaging quality of the lens.
  • the imaging lens of the present application may satisfy the conditional expression 0.6 ⁇ SL / TTL ⁇ 1, where SL is the distance from the diaphragm to the imaging surface of the imaging lens on the optical axis, and TTL is the object of the first lens The distance from the side to the imaging surface of the camera lens on the optical axis. More specifically, SL and TTL can further satisfy 0.68 ⁇ SL / TTL ⁇ 0.70.
  • the diaphragm may be disposed between the second lens and the third lens.
  • the imaging lens of the present application may satisfy the conditional expression 1.2 ⁇ DT11 / ImgH ⁇ 1.8, where DT11 is the effective half aperture of the object side of the first lens, and ImgH is the electronic photosensitive element on the imaging surface of the imaging lens The effective pixel area is half the diagonal length. More specifically, DT11 and ImgH can further satisfy 1.43 ⁇ DT11 / ImgH ⁇ 1.68. Reasonably constraining the aperture of the first lens and the size of the image plane help to reduce the size of the system.
  • the imaging lens of the present application may satisfy the conditional expression 0.8 ⁇ DT62 / ImgH ⁇ 1.1, where DT62 is the effective half aperture of the image side of the sixth lens, and ImgH is the electronic photosensitive element on the imaging surface of the imaging lens The effective pixel area is half the diagonal length. More specifically, DT62 and ImgH can further satisfy 0.96 ⁇ DT62 / ImgH ⁇ 0.99. Reasonably restricting the aperture of the sixth lens and the size of the image plane help to match the incident angle of the chief ray of the system with the incident angle of the chief ray of the chip, and achieve uniformity of the image plane.
  • the imaging lens of the present application may satisfy the conditional expression 1.2 ⁇ DT12 / DT21 ⁇ 1.7, where DT12 is the effective half aperture of the image side of the first lens and DT21 is the effective half aperture of the object side of the second lens caliber. More specifically, DT12 and DT21 can further satisfy 1.21 ⁇ DT12 / DT21 ⁇ 1.64. Reasonably restricting the apertures of the first lens and the second lens helps to distribute the angle of view and correct astigmatism.
  • the imaging lens of the present application may satisfy Conditional Formula 1 ⁇ CT2 / ET2 ⁇ 1.3, where CT2 is the center thickness of the second lens on the optical axis and ET2 is the edge thickness of the second lens. More specifically, CT2 and ET2 can further satisfy 1.01 ⁇ CT2 / ET2 ⁇ 1.20. Satisfying the conditional expression 1 ⁇ CT2 / ET2 ⁇ 1.3, it is helpful to correct the curvature of field and coma and achieve clear imaging quality.
  • the imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ SAG11 / SAG12 ⁇ 1, where SAG11 is the maximum effective half aperture of the intersection of the object side of the first lens and the optical axis to the object side of the first lens
  • SAG11 is the maximum effective half aperture of the intersection of the object side of the first lens and the optical axis to the object side of the first lens
  • the axial distance of the vertex, SAG12 is the axial distance from the intersection of the image side of the first lens and the optical axis to the vertex of the maximum effective half-aperture of the image side of the first lens.
  • SAG11 and SAG12 can further satisfy 0.65 ⁇ SAG11 / SAG12 ⁇ 0.90.
  • Reasonable distribution of the vector height of the object side and the image side of the first lens is beneficial to better share the ultra-wide-angle field of view under the condition of satisfying the processing capability.
  • the imaging lens of the present application may satisfy conditional expression 1 ⁇ SAG12 / CT1 ⁇ 1.7, where SAG12 is the maximum effective half aperture of the intersection of the image side of the first lens and the optical axis to the image side of the first lens
  • the on-axis distance of the vertex, CT1 is the center thickness of the first lens on the optical axis.
  • SAG12 and CT1 can further satisfy 1.03 ⁇ SAG12 / CT1 ⁇ 1.64. Satisfying the conditional expression 1 ⁇ SAG12 / CT1 ⁇ 1.7, the field of view angle distribution and field curvature correction can be well achieved under the premise of satisfying the processing conditions.
  • the imaging lens of the present application may satisfy the conditional expression 10 ° ⁇ CRAmax ⁇ 20 °, where CRAmax is the maximum incident angle at which the main rays enter the electronic photosensitive element. More specifically, CRAmax may further satisfy 10 ° ⁇ CRAmax ⁇ 15 °, for example, 12.93 ° ⁇ CRAmax ⁇ 14.80 °. Satisfying the conditional expression 10 ° ⁇ CRAmax ⁇ 20 ° helps to improve the imaging quality and achieve high pixel quality.
  • the operating band of the imaging lens of the present application ranges from about 800 nm to about 1000 nm.
  • the camera lens according to the present application is used in the infrared band, and can be used for eye tracking, motion capture, surveillance camera, etc.
  • the total optical length TTL of the imaging lens (that is, the distance from the object side of the first lens to the imaging surface of the imaging lens on the optical axis) can satisfy 9.5mm ⁇ TTL ⁇ 10.5mm;
  • Semi-FOV which is half of the maximum viewing angle, can satisfy 85 ° ⁇ Semi-FOV ⁇ 95 °. Therefore, the imaging lens according to the present application can simultaneously achieve a smaller total optical length and a larger angle of view, and can balance the characteristics of a small size and an ultra-wide angle.
  • the above camera lens may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the imaging lens according to the above embodiments of the present application may use multiple lenses, such as the six described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the camera lens is more conducive to production and processing and can be applied to portable electronic products.
  • the camera lens configured through the above can also have beneficial effects such as ultra-wide angle, high brightness, and high imaging quality, and can be applied to the near infrared band and can be applied to the fields of vehicle mounting, monitoring, and virtual reality.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens
  • At least one of the object side and the image side of the lens is an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are aspheric mirror surfaces.
  • the number of lenses constituting the imaging lens can be changed to obtain various results and advantages described in this specification.
  • the imaging lens is not limited to include six lenses. If necessary, the camera lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is convex, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; and the third lens E3 With positive power, the object side S5 is convex, and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex, and the image side S8 is convex; the fifth lens E5 has negative power, The object side surface S9 is a concave surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the aspherical apex to the height of the aspherical surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , and A 16 that can be used for each aspherical mirror surface S1-S12 in Example 1.
  • Table 3 shows the total effective focal length f of the imaging lens of Example 1, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S15, and the imaging surface S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum angle of view of the camera lens Semi-FOV.
  • 2A shows the astigmatism curve of the imaging lens of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • 2B shows the relative illuminance curve of the imaging lens of Example 1, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 2A and 2B that the imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • an imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is convex, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; the third lens E3 With positive power, the object side S5 is convex, and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex, and the image side S8 is concave; the fifth lens E5 has positive power, which The object side surface S9 is a concave surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 2 the object side and image side of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 5 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by formula (1) given in Example 1 above.
  • Table 6 shows the total effective focal length f of the imaging lens in Example 2, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S15, and the imaging surface S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum field angle of the camera lens Semi-FOV.
  • 4A shows the astigmatism curve of the imaging lens of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4B shows the relative illuminance curve of the imaging lens of Example 2, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 4A and 4B that the imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is concave, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; the third lens E3 With positive power, the object side S5 is convex, and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex, and the image side S8 is concave; the fifth lens E5 has positive power, which The object side surface S9 is a concave surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 3, in which the units of radius of curvature and thickness are both millimeters (mm).
  • Example 3 the object side and the image side of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 8 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the total effective focal length f of the imaging lens in Example 3, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum angle of view of the camera lens Semi-FOV.
  • 6A shows the astigmatism curve of the imaging lens of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • 6B shows the relative illuminance curve of the imaging lens of Example 3, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 6A and 6B that the imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIGS. 7 to 8B shows a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is convex, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; and the third lens E3 With positive power, the object side S5 is concave, and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex, and the image side S8 is concave; the fifth lens E5 has negative power, The object side surface S9 is a concave surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 4 the object side and the image side of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the total effective focal length f of the imaging lens of Example 4, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S15, and the imaging surface S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum angle of view of the camera lens Semi-FOV.
  • 8A shows the astigmatism curve of the imaging lens of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8B shows the relative illuminance curve of the imaging lens of Example 4, which represents the relative illuminance at different viewing angles.
  • the imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIGS. 9 to 10B shows a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is convex, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; and the third lens E3 With positive power, the object side S5 is concave, and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex, and the image side S8 is convex; the fifth lens E5 has negative power, The object side surface S9 is a concave surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 5 the object side and the image side of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 14 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the total effective focal length f of the imaging lens in Example 5, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum angle of view of the camera lens Semi-FOV.
  • 10A shows the astigmatism curve of the imaging lens of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • 10B shows a relative illuminance curve of the imaging lens of Example 5, which represents relative illuminance at different viewing angles.
  • the imaging lens provided in Example 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is convex, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; and the third lens E3 With positive power, the object side S5 is convex, and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex, and the image side S8 is concave; the fifth lens E5 has positive power, which The object side surface S9 is a convex surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 6 the object side and the image side of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 17 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the total effective focal length f of the imaging lens of Example 6, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S15, and the imaging surface S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum angle of view of the camera lens Semi-FOV.
  • 12A shows the astigmatism curve of the imaging lens of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12B shows the relative illuminance curve of the imaging lens of Example 6, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 12A and 12B that the imaging lens provided in Example 6 can achieve good imaging quality.
  • FIGS. 13 to 14B shows a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, an aperture STO, a third lens E3, The lens E4, the fifth lens E5, the sixth lens E6, the filter L7, and the imaging surface S15.
  • the first lens E1 has negative power, its object side S1 is convex, and the image side S2 is concave; the second lens E2 has negative power, its object side S3 is convex, and the image side S4 is concave; and the third lens E3 With positive power, the object side S5 is concave and the image side S6 is convex; the fourth lens E4 has positive power, its object side S7 is convex and the image side S8 is concave; the fifth lens E5 has positive power, which The object side surface S9 is a convex surface, and the image side surface S10 is a convex surface; the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the working band of the imaging lens in this embodiment ranges from about 800 nm to about 1000 nm.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 7, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 7 the object side and the image side of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 20 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 21 shows the total effective focal length f of the imaging lens in Example 7, the effective focal lengths f1 to f6 of each lens, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15
  • the effective pixel area of the electronic photosensitive element is half the diagonal length of ImgH and half the maximum angle of view of the camera lens Semi-FOV.
  • 14A shows the astigmatism curve of the imaging lens of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • 14B shows a relative illuminance curve of the imaging lens of Example 7, which represents relative illuminance at different viewing angles.
  • the imaging lens provided in Example 7 can achieve good imaging quality.
  • Examples 1 to 7 satisfy the relationships shown in Table 22 below.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone or a tablet computer.
  • the camera device is equipped with the camera lens described above.

Abstract

一种摄像镜头,沿光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜(E1)具有负光焦度,其像侧面(S2)为凹面;第二透镜(E2)具有负光焦度,其物侧面(S3)为凸面,像侧面(S4)为凹面;第三透镜(E3)具有正光焦度,其像侧面(S6)为凸面;第四透镜(E4)具有光焦度;第五透镜(E5)具有光焦度;第六透镜(E6)具有正光焦度。第一透镜(E1)的有效焦距f1与第三透镜(E3)的有效焦距f3满足-1<f1/f3<-0.5;以及第二透镜(E2)的有效焦距f2与第三透镜(E3)的有效焦距f3满足-8<f2/f3<-3。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2018年11月12日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811339846.2的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种包括六片透镜的摄像镜头。
背景技术
随着市场需求的不断变化,超广角镜头被越来越多地用于车载、监控、虚拟现实等领域中。然而,超广角镜头通常具有较大的尺寸,使其无法应用于日趋小型化的各类便携式电子设备。另外,目前大部分的超广角镜头还均存在像素低、相对照度较低的问题,因而使得拍摄画面不够均匀,无法提供较佳的图像。
发明内容
本申请提供了可至少解决或部分解决现有技术中的上述至少一个缺点的、可适用于便携式电子产品的超广角摄像镜头。
一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜具有光焦度;第五透镜具有光焦度;以及第六透镜具有光焦度。
在一个实施方式中,第六透镜可具有正光焦度。
在一个实施方式中,第一透镜的有效焦距f1与第三透镜的有效焦距f3可满足-1<f1/f3<-0.5;以及第二透镜的有效焦距f2与第三透镜的有效焦距f3可满足-8<f2/f3<-3。
在一个实施方式中,第一透镜的像侧面的曲率半径R2与摄像镜头的总有效焦距f可满足0.5<R2/f<1。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3、第四透镜在光轴上的中心厚度CT4、第五透镜在光轴上的中心厚度CT5以及第一透镜的物侧面至第六透镜的像侧面在光轴上的距离TD可满足(CT2+CT3+CT4+CT5)/TD<0.5。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第六透镜在光轴上的中心厚度CT6可满足0.3<CT4/CT6<0.85。
在一个实施方式中,第五透镜的折射率N5可满足N5<1.6。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11与摄像镜头的成像面上电子感光 元件的有效像素区域对角线长的一半ImgH可满足1.2<DT11/ImgH<1.8。
在一个实施方式中,第六透镜的像侧面的有效半口径DT62与摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH可满足0.8<DT62/ImgH<1.1。
在一个实施方式中,第一透镜的像侧面的有效半口径DT12与第二透镜的物侧面的有效半口径DT21可满足1.2<DT12/DT21<1.7。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第二透镜的边缘厚度ET2可满足1<CT2/ET2<1.3。
在一个实施方式中,第一透镜的物侧面和光轴的交点至第一透镜的物侧面的最大有效半口径顶点的轴上距离SAG11与第一透镜的像侧面和光轴的交点至第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12可满足0.5<SAG11/SAG12<1。
在一个实施方式中,第一透镜的像侧面和光轴的交点至第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12与第一透镜在光轴上的中心厚度CT1可满足1<SAG12/CT1<1.7。
在一个实施方式中,摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH与摄像镜头的总有效焦距f可满足ImgH 2/f>4.5mm。
在一个实施方式中,摄像镜头还可包括光阑,光阑至摄像镜头的成像面在光轴上的距离SL与第一透镜的物侧面至摄像镜头的成像面在光轴上的距离TTL可满足0.6<SL/TTL<1。可选地,光阑设置在第二透镜与第三透镜之间。
在一个实施方式中,主光线入射至摄像镜头的成像面上的电子感光元件的最大入射角度CRAmax可满足10°<CRAmax<20°。
在一个实施方式中,摄像镜头的工作波段范围可为约800nm至约1000nm。
另一方面,本申请还提供了这样一种摄像镜头,该摄像镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜具有光焦度;第五透镜具有光焦度;以及第六透镜具有光焦度。其中,第一透镜的物侧面的有效半口径DT11与摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH可满足1.2<DT11/ImgH<1.8。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有小尺寸、高亮度、高成像质量、超广角等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2A和图2B分别示出了实施例1的摄像镜头的象散曲线和相对照度曲线;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;
图4A和图4B分别示出了实施例2的摄像镜头的象散曲线和相对照度曲线;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;
图6A和图6B分别示出了实施例3的摄像镜头的象散曲线和相对照度曲线;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;
图8A和图8B分别示出了实施例4的摄像镜头的象散曲线和相对照度曲线;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;
图10A和图10B分别示出了实施例5的摄像镜头的象散曲线和相对照度曲线;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;
图12A和图12B分别示出了实施例6的摄像镜头的象散曲线和相对照度曲线;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;
图14A和图14B分别示出了实施例7的摄像镜头的象散曲线和相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近被摄物的表面称为该透镜的物侧面,每个透镜中最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释 为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需说明,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;以及第六透镜具有正光焦度或负光焦度。
在示例性实施方式中,本申请的摄像镜头可满足条件式-1<f1/f3<-0.5,其中,f1为第一透镜的有效焦距,f3为第三透镜的有效焦距。更具体地,f1和f3进一步可满足-0.8<f1/f3<-0.5,例如,-0.75≤f1/f3≤-0.57。
在示例性实施方式中,本申请的摄像镜头可满足条件式-8<f2/f3<-3,其中,f2为第二透镜的有效焦距,f3为第三透镜的有效焦距。更具体地,f2和f3进一步可满足-8<f2/f3<-3.3,例如,-7.96≤f2/f3≤-3.45。
合理分配第一透镜、第二透镜和第三透镜的焦距值,有助于更好的分担超广角视场,同时,有利于减小系统的象散和彗差,从而有效地提升成像品质。
在示例性实施方式中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其像侧面可为凸面;以及第六透镜具有正光焦度或负光焦度。
在示例性实施方式中,本申请的摄像镜头可满足条件式ImgH 2/f>4.5mm,其中,ImgH为摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半,f为摄像镜头的总有效焦距。更具体地,ImgH和f进一步可满足ImgH 2/f>5mm,例如,5.23mm≤ImgH 2/f≤5.59mm。满足条件式ImgH 2/f>4.5mm,有利于保证镜头的大像面、短焦距,同时有助于实现清晰的拍摄像质。
在示例性实施方式中,第四透镜可具有正光焦度,其物侧面可为凸面。
在示例性实施方式中,第六透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.5<R2/f<1,其中,R2为第一透镜的像侧面的曲率半径,f为摄像镜头的总有效焦距。更具体地,R2和f进一步可满足0.76≤R2/f≤0.94。满足条件式0.5<R2/f<1,能够更好的分担超广角视场,并可有效地减小系统的场曲和象散。
在示例性实施方式中,本申请的摄像镜头可满足条件式(CT2+CT3+CT4+CT5)/TD<0.5,其中,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度,CT4为第四透镜在 光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度,TD为第一透镜的物侧面至第六透镜的像侧面在光轴上的距离。更具体地,CT2、CT3、CT4、CT5和TD进一步可满足0.2<(CT2+CT3+CT4+CT5)/TD<0.4,例如,0.32≤(CT2+CT3+CT4+CT5)/TD≤0.39。满足条件式(CT2+CT3+CT4+CT5)/TD<0.5,能够有效地缩短系统的总长,并减小系统的场曲。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.3<CT4/CT6<0.85,其中,CT4为第四透镜在光轴上的中心厚度,CT6为第六透镜在光轴上的中心厚度。更具体地,CT4和CT6进一步可满足0.43≤CT4/CT6≤0.80。满足条件式0.3<CT4/CT6<0.85,能够很好的实现场曲矫正,实现高像素成像质量。
在示例性实施方式中,本申请的摄像镜头可满足条件式N5<1.6,其中,N5为第五透镜的折射率。更具体地,N5进一步可满足1.5<N5<1.6,例如,N5=1.53。合适设置第五透镜的折射率,有助于减小第四透镜和第五透镜的屈光度,减小系统的偏心敏感度。
根据本申请的摄像镜头还可设置有光阑,以提升镜头的成像质量。在示例性实施方式中,本申请的摄像镜头可满足条件式0.6<SL/TTL<1,其中,SL为光阑至摄像镜头的成像面在光轴上的距离,TTL为第一透镜的物侧面至摄像镜头的成像面在光轴上的距离。更具体地,SL和TTL进一步可满足0.68≤SL/TTL≤0.70。合理设置光阑位置,有助于缩短系统的总长以及系统前端的口径。可选地,光阑可设置在第二透镜与第三透镜之间。
在示例性实施方式中,本申请的摄像镜头可满足条件式1.2<DT11/ImgH<1.8,其中,DT11为第一透镜的物侧面的有效半口径,ImgH为摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半。更具体地,DT11和ImgH进一步可满足1.43≤DT11/ImgH≤1.68。合理约束第一透镜的口径和像面的尺寸,有助于缩小系统的尺寸。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.8<DT62/ImgH<1.1,其中,DT62为第六透镜的像侧面的有效半口径,ImgH为摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半。更具体地,DT62和ImgH进一步可满足0.96≤DT62/ImgH≤0.99。合理约束第六透镜口径和像面的尺寸,有助于系统主光线入射角和芯片主光线入射角的匹配,实现像面的均匀化。
在示例性实施方式中,本申请的摄像镜头可满足条件式1.2<DT12/DT21<1.7,其中,DT12为第一透镜的像侧面的有效半口径,DT21为第二透镜的物侧面的有效半口径。更具体地,DT12和DT21进一步可满足1.21≤DT12/DT21≤1.64。合理约束第一透镜和第二透镜的口径,有助于视场角的分配及象散的矫正。
在示例性实施方式中,本申请的摄像镜头可满足条件式1<CT2/ET2<1.3,其中,CT2为第二透镜在光轴上的中心厚度,ET2为第二透镜的边缘厚度。更具体地,CT2和ET2进一步可满足1.01≤CT2/ET2≤1.20。满足条件式1<CT2/ET2<1.3,有助于场曲和彗差的矫正,实现清晰的成像质量。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.5<SAG11/SAG12<1,其中,SAG11为第一透镜的物侧面和光轴的交点至第一透镜的物侧面的最大有效半口径顶点的轴上距离, SAG12为第一透镜的像侧面和光轴的交点至第一透镜的像侧面的最大有效半口径顶点的轴上距离。更具体地,SAG11和SAG12进一步可满足0.65≤SAG11/SAG12≤0.90。合理分配第一透镜物侧面和像侧面的矢高,有利于在满足加工能力的条件下较好地分担超广角视场。
在示例性实施方式中,本申请的摄像镜头可满足条件式1<SAG12/CT1<1.7,其中,SAG12为第一透镜的像侧面和光轴的交点至第一透镜的像侧面的最大有效半口径顶点的轴上距离,CT1为第一透镜在光轴上的中心厚度。更具体地,SAG12和CT1进一步可满足1.03≤SAG12/CT1≤1.64。满足条件式1<SAG12/CT1<1.7,可在满足加工条件的前提下,很好的实现视场角分配及场曲矫正。
在示例性实施方式中,本申请的摄像镜头可满足条件式10°<CRAmax<20°,其中,CRAmax为主光线入射电子感光元件的最大入射角度。更具体地,CRAmax进一步可满足10°<CRAmax<15°,例如,12.93°≤CRAmax≤14.80°。满足条件式10°<CRAmax<20°,有助于提高成像质量,实现高像素画质。
在示例性实施方式中,本申请的摄像镜头的工作波段范围为约800nm至约1000nm。根据本申请的摄像镜头用于红外波段,可用于眼球追踪、动作捕捉、监控摄像等。
另外,根据本申请摄像镜头的光学总长度TTL(即,从第一透镜的物侧面至摄像镜头的成像面在光轴上的距离)可满足9.5mm≤TTL≤10.5mm;同时,摄像镜头的最大视场角的一半Semi-FOV可满足85°≤Semi-FOV≤95°。因而,根据本申请的摄像镜头能够同时实现较小的光学总长度和较大的视场角,能够兼顾小尺寸和超广角的特性。
可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的摄像镜头还可具有超广角、高亮度、高成像质量等有益效果,可适用于近红外波段并且能够应用于车载、监控、虚拟现实等领域。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该摄像镜头不限于包括六个透镜。如果需要,该摄像镜头还可 包括其他数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2B描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000001
表1
由表1可知,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019102141-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.5504E-03 -1.4594E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.1446E-02 1.0266E-03 -6.0327E-03 4.8206E-03 -2.2428E-03 6.3193E-04 -7.3384E-05
S3 3.1137E-02 -2.6838E-02 3.8729E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.9924E-02 -1.2020E-01 4.5270E-01 -1.0312E+00 1.4372E+00 -1.0664E+00 3.3677E-01
S5 7.6535E-03 -3.6104E-01 1.8206E+00 -5.2697E+00 8.6252E+00 -7.4858E+00 2.6706E+00
S6 -1.1681E-01 6.2606E-02 -2.4730E-02 1.7049E-02 -2.8212E-02 2.2478E-02 -6.5513E-03
S7 -1.3699E-03 -6.8685E-02 7.2577E-02 -3.7851E-02 1.1934E-02 -2.2312E-03 2.0270E-04
S8 4.1897E-02 -8.1579E-02 4.4810E-02 -5.4009E-03 -3.5890E-03 1.3357E-03 -1.2342E-04
S9 1.5493E-02 -1.0635E-02 -7.5882E-03 1.3307E-02 -6.4257E-03 1.3147E-03 -9.7762E-05
S10 -1.3912E-02 2.0543E-02 -1.3465E-02 6.9247E-03 -2.0480E-03 3.0781E-04 -1.8206E-05
S11 -1.7878E-02 5.0975E-03 -1.1656E-03 1.2205E-04 2.5224E-07 -8.0101E-07 3.5763E-08
S12 -5.2101E-02 1.2466E-02 -2.5719E-03 3.0316E-04 -1.9419E-05 6.9331E-07 -1.5345E-08
表2
表3给出了实施例1中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.90 f5(mm) -291.18
f1(mm) -2.85 f6(mm) 8.67
f2(mm) -39.59 TTL(mm) 10.00
f3(mm) 4.97 ImgH(mm) 3.26
f4(mm) 5.40 Semi-FOV(°) 90.6
表3
图2A示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2B示出了实施例1的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图2A和图2B可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4B描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表4示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000003
表4
由表4可知,在实施例2中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.5669E-03 -7.1605E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.5461E-02 -6.7337E-03 3.7756E-04 -2.1638E-04 1.4003E-04 3.7021E-05 -1.2399E-05
S3 3.4946E-02 -2.3179E-02 2.6936E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 9.7370E-02 -6.6705E-02 2.6421E-01 -5.6865E-01 7.5517E-01 -5.3454E-01 1.6076E-01
S5 3.6796E-02 -3.6799E-01 1.8690E+00 -5.2531E+00 8.3818E+00 -7.0904E+00 2.4715E+00
S6 -5.9527E-02 5.2770E-02 -4.4458E-02 1.8599E-02 5.5036E-03 -8.4650E-03 2.3913E-03
S7 -3.3142E-02 2.6736E-02 -1.3044E-02 3.9835E-03 -5.2018E-04 -2.6957E-05 9.3045E-06
S8 1.0462E-02 -4.1849E-02 3.8705E-02 -1.9498E-02 5.6770E-03 -8.8558E-04 5.6921E-05
S9 4.8843E-02 -6.1866E-02 3.4395E-02 -9.1933E-03 8.4436E-04 7.0166E-05 -1.2828E-05
S10 -2.9056E-02 2.4966E-02 -1.8160E-02 1.0483E-02 -3.2538E-03 4.9375E-04 -2.8947E-05
S11 -6.7189E-03 -2.4285E-03 1.7466E-03 -4.5858E-04 6.0997E-05 -4.0675E-06 1.0964E-07
S12 -4.4153E-02 7.8862E-03 -1.2337E-03 1.0332E-04 -3.9068E-06 0.0000E+00 0.0000E+00
表5
表6给出了实施例2中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.87 f5(mm) 17.00
f1(mm) -3.06 f6(mm) 7.01
f2(mm) -20.19 TTL(mm) 9.99
f3(mm) 4.65 ImgH(mm) 3.12
f4(mm) 9.86 Semi-FOV(°) 87.2
表6
图4A示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4B示出了实施例2的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图4A和图4B可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6B描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表7示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000004
Figure PCTCN2019102141-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.9266E-03 -1.2032E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -3.8757E-04 -5.5188E-03 -1.9354E-03 3.3592E-03 -1.3545E-03 2.7579E-04 -2.2796E-05
S3 2.1661E-02 -1.9365E-02 2.9018E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.1592E-02 -1.3541E-01 6.8303E-01 -1.7186E+00 2.5184E+00 -2.0078E+00 6.9115E-01
S5 3.3871E-02 -3.8519E-01 2.0322E+00 -5.9396E+00 9.8211E+00 -8.5758E+00 3.0717E+00
S6 -9.7708E-02 9.7070E-02 -9.3418E-02 5.6717E-02 -1.3693E-02 -2.1874E-03 1.3395E-03
S7 -1.6312E-02 3.4585E-03 5.6847E-05 -1.1692E-03 9.6470E-04 -2.7375E-04 2.5609E-05
S8 2.2347E-02 -5.6048E-02 4.4133E-02 -2.1924E-02 6.9003E-03 -1.1826E-03 8.2298E-05
S9 5.5178E-02 -7.0779E-02 4.0918E-02 -1.4120E-02 3.1226E-03 -4.2228E-04 2.5887E-05
S10 -1.9066E-02 1.3607E-02 -1.0054E-02 6.5827E-03 -2.0971E-03 3.1160E-04 -1.7661E-05
S11 -9.5164E-03 -4.9435E-03 3.2227E-03 -8.1158E-04 1.0696E-04 -7.1475E-06 1.9116E-07
S12 -4.6205E-02 8.4830E-03 -1.3074E-03 1.0650E-04 -3.6526E-06 0.0000E+00 0.0000E+00
表8
表9给出了实施例3中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.87 f5(mm) 61.14
f1(mm) -3.24 f6(mm) 6.06
f2(mm) -15.92 TTL(mm) 9.99
f3(mm) 4.49 ImgH(mm) 3.13
f4(mm) 7.40 Semi-FOV(°) 87.5
表9
图6A示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6B示出了实施例3的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图6A和图6B可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8B描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表10示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000006
表10
由表10可知,在实施例4中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2949E-03 -8.3570E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 6.8868E-03 -3.6145E-03 -2.9314E-04 1.4622E-04 6.1427E-05 -2.1257E-05 1.6719E-06
S3 1.6856E-02 -2.9755E-02 7.0073E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 6.4502E-02 -1.7936E-01 8.6103E-01 -2.3820E+00 3.9007E+00 -3.3904E+00 1.2450E+00
S5 3.6364E-02 -7.3168E-01 4.8747E+00 -1.8215E+01 3.8446E+01 -4.2853E+01 1.9603E+01
S6 -8.8074E-02 7.2869E-02 -7.6347E-02 4.9216E-02 -1.4390E-02 -9.1794E-04 1.0099E-03
S7 -5.5379E-03 -1.7057E-03 2.9045E-04 -5.9467E-04 5.0862E-04 -1.2872E-04 1.0435E-05
S8 1.2814E-02 -3.5902E-02 2.4478E-02 -1.1705E-02 3.5186E-03 -5.5063E-04 3.4110E-05
S9 5.6579E-02 -6.1381E-02 3.4077E-02 -1.2954E-02 3.2879E-03 -4.8588E-04 3.0345E-05
S10 -1.8081E-02 1.5869E-02 -9.2783E-03 4.1333E-03 -9.9505E-04 1.1455E-04 -4.9661E-06
S11 -7.5024E-03 -3.3703E-03 1.7705E-03 -4.3553E-04 6.0995E-05 -4.3697E-06 1.2390E-07
S12 -4.9202E-02 8.9282E-03 -1.5092E-03 1.3816E-04 -5.1576E-06 0.0000E+00 0.0000E+00
表11
表12给出了实施例4中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.87 f5(mm) -158.21
f1(mm) -3.43 f6(mm) 5.45
f2(mm) -21.88 TTL(mm) 9.99
f3(mm) 5.13 ImgH(mm) 3.13
f4(mm) 6.84 Semi-FOV(°) 87.5
表12
图8A示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8B示出了实施例4的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图8A和图8B可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10B描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表13示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000007
表13
由表13可知,在实施例5中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.3244E-03 -8.4748E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 4.8378E-03 -4.0617E-03 6.7462E-04 -3.9563E-04 2.3919E-04 -5.1832E-05 3.7070E-06
S3 7.9748E-03 -2.8235E-02 7.1225E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 6.1067E-02 -1.7855E-01 9.0098E-01 -2.5846E+00 4.3361E+00 -3.8376E+00 1.4289E+00
S5 3.5130E-02 -7.6033E-01 5.1901E+00 -1.9844E+01 4.2853E+01 -4.8853E+01 2.2842E+01
S6 -1.0139E-01 7.2180E-02 -6.6468E-02 3.3191E-02 -2.7271E-03 -5.2800E-03 1.4972E-03
S7 -2.1937E-02 9.2403E-03 -7.1318E-03 3.5333E-03 -7.3663E-04 4.9424E-05 1.2331E-06
S8 2.1904E-02 -5.1896E-02 3.1666E-02 -1.2979E-02 3.6882E-03 -5.9368E-04 3.9621E-05
S9 5.0548E-02 -5.0213E-02 1.9444E-02 -4.2808E-03 6.9443E-04 -1.0762E-04 9.0469E-06
S10 -8.2343E-03 1.0764E-02 -7.8021E-03 3.8916E-03 -1.0467E-03 1.3573E-04 -6.7597E-06
S11 -5.3153E-03 -3.8325E-03 1.8880E-03 -5.0345E-04 7.3771E-05 -5.3260E-06 1.4915E-07
S12 -5.4109E-02 1.0305E-02 -1.9057E-03 1.8091E-04 -6.6794E-06 0.0000E+00 0.0000E+00
表14
表15给出了实施例5中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.87 f5(mm) -36.65
f1(mm) -3.40 f6(mm) 5.85
f2(mm) -20.43 TTL(mm) 9.99
f3(mm) 5.92 ImgH(mm) 3.13
f4(mm) 4.96 Semi-FOV(°) 87.5
表15
图10A示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10B示出了实施例5的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图10A和图10B可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12B描述了根据本申请实施例6的摄像镜头。图11示出了根据本申请实施例6的摄像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表16示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000008
表16
由表16可知,在实施例6中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2403E-03 -8.7272E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.5361E-02 -7.2896E-03 1.8740E-03 -1.8662E-03 1.0462E-03 -2.3724E-04 1.8997E-05
S3 3.0624E-02 -3.4178E-02 7.1144E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.1784E-02 -1.6804E-01 7.9320E-01 -2.2051E+00 3.6935E+00 -3.2906E+00 1.2423E+00
S5 3.3945E-02 -6.8086E-01 4.4276E+00 -1.6169E+01 3.3357E+01 -3.6330E+01 1.6229E+01
S6 -9.3465E-02 1.1142E-01 -1.3860E-01 1.1636E-01 -5.3110E-02 8.9465E-03 6.8670E-04
S7 -1.3441E-02 -7.3627E-04 -6.3023E-04 1.5496E-03 -4.5745E-04 3.5111E-05 7.6310E-07
S8 6.3100E-03 -2.8234E-02 2.2757E-02 -1.2361E-02 4.0744E-03 -6.9475E-04 4.6929E-05
S9 3.3704E-02 -4.0311E-02 3.0519E-02 -1.4777E-02 4.2258E-03 -6.6200E-04 4.3489E-05
S10 -4.1325E-02 3.3237E-02 -1.5755E-02 6.4782E-03 -1.6616E-03 2.1624E-04 -1.0902E-05
S11 -1.5810E-02 4.3852E-04 6.7938E-04 -1.9894E-04 2.9923E-05 -2.2609E-06 6.7124E-08
S12 -5.2796E-02 8.6321E-03 -1.2122E-03 9.7540E-05 -3.3834E-06 0.0000E+00 0.0000E+00
表17
表18给出了实施例6中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.87 f5(mm) 8.13
f1(mm) -3.13 f6(mm) 8.47
f2(mm) -23.52 TTL(mm) 9.99
f3(mm) 4.43 ImgH(mm) 3.13
f4(mm) 15.68 Semi-FOV(°) 87.5
表18
图12A示出了实施例6的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12B示出了实施例6的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图12A和图12B可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14B描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例7的摄像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片L7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面;第六透镜E6具有正光焦度,其 物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的摄像镜头的工作波段范围为约800nm至约1000nm。
表19示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102141-appb-000009
表19
由表19可知,在实施例7中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2169E-03 -7.5778E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.3264E-02 -3.1907E-03 -1.7399E-03 5.1376E-04 8.1654E-05 -3.9222E-05 3.4064E-06
S3 3.1206E-02 -3.4094E-02 6.8593E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.9257E-02 -2.3116E-01 1.1425E+00 -3.2946E+00 5.6192E+00 -5.0693E+00 1.9179E+00
S5 3.4758E-02 -6.8627E-01 4.4545E+00 -1.6236E+01 3.3443E+01 -3.6372E+01 1.6228E+01
S6 -9.7433E-02 1.0392E-01 -1.1837E-01 9.1187E-02 -3.8504E-02 5.7679E-03 6.2938E-04
S7 -1.9591E-02 8.4483E-03 -5.0070E-03 2.4026E-03 -5.2098E-04 3.6338E-05 7.9273E-07
S8 -2.4605E-04 -2.3907E-02 2.0174E-02 -1.0669E-02 3.3449E-03 -5.4244E-04 3.4955E-05
S9 4.3327E-02 -4.9661E-02 3.2583E-02 -1.3834E-02 3.5526E-03 -5.0514E-04 3.0185E-05
S10 -3.3140E-02 2.7989E-02 -1.3275E-02 5.1938E-03 -1.2587E-03 1.5673E-04 -7.6864E-06
S11 -2.5125E-02 4.8594E-03 -8.2862E-04 1.4158E-04 -1.3388E-05 5.5893E-07 -6.6044E-09
S12 -6.0891E-02 1.1325E-02 -1.6984E-03 1.4581E-04 -5.3341E-06 0.0000E+00 0.0000E+00
表20
表21给出了实施例7中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f6、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、成像面S15上电子感光元件的有效像素区域对 角线长的一半ImgH以及摄像镜头的最大视场角的一半Semi-FOV。
f(mm) 1.87 f5(mm) 8.61
f1(mm) -3.37 f6(mm) 9.26
f2(mm) -15.98 TTL(mm) 9.99
f3(mm) 4.47 ImgH(mm) 3.13
f4(mm) 12.86 Semi-FOV(°) 87.5
表21
图14A示出了实施例7的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14B示出了实施例7的摄像镜头的相对照度曲线,其表示不同视角情况下的相对照度。根据图14A和图14B可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例7分别满足以下表22所示的关系。
条件式\实施例 1 2 3 4 5 6 7
f1/f3 -0.57 -0.66 -0.72 -0.67 -0.57 -0.71 -0.75
f2/f3 -7.96 -4.34 -3.54 -4.26 -3.45 -5.31 -3.58
ImgH 2/f(mm) 5.59 5.23 5.26 5.26 5.26 5.26 5.26
R2/f 0.76 0.84 0.94 0.93 0.92 0.85 0.91
(CT2+CT3+CT4+CT5)/TD 0.32 0.36 0.35 0.38 0.38 0.37 0.39
CT4/CT6 0.43 0.54 0.44 0.53 0.80 0.46 0.61
N5 1.53 1.53 1.53 1.53 1.53 1.53 1.53
SL/TTL 0.68 0.70 0.68 0.68 0.68 0.68 0.68
DT11/ImgH 1.43 1.47 1.62 1.67 1.68 1.66 1.66
DT62/ImgH 0.99 0.96 0.96 0.96 0.96 0.97 0.96
DT12/DT21 1.31 1.21 1.35 1.64 1.62 1.44 1.57
CT2/ET2 1.10 1.01 1.18 1.20 1.16 1.19 1.17
SAG11/SAG12 0.65 0.80 0.81 0.82 0.86 0.90 0.86
SAG12/CT1 1.53 1.19 1.03 1.64 1.47 1.08 1.41
CRAmax(°) 13.73 14.27 13.76 13.42 12.93 13.68 14.80
表22
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机、平板电脑等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (47)

  1. 摄像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第三透镜具有正光焦度,其像侧面为凸面;所述第四透镜具有光焦度;所述第五透镜具有光焦度;所述第六透镜具有正光焦度;
    所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足-1<f1/f3<-0.5;以及
    所述第二透镜的有效焦距f2与所述第三透镜的有效焦距f3满足-8<f2/f3<-3。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述摄像镜头的总有效焦距f满足0.5<R2/f<1。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3、所述第四透镜在所述光轴上的中心厚度CT4、所述第五透镜在所述光轴上的中心厚度CT5以及所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的距离TD满足(CT2+CT3+CT4+CT5)/TD<0.5。
  4. 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第六透镜在所述光轴上的中心厚度CT6满足0.3<CT4/CT6<0.85。
  5. 根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜的折射率N5满足N5<1.6。
  6. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH满足1.2<DT11/ImgH<1.8。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH满足0.8<DT62/ImgH<1.1。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT12与所述第二透镜的物侧面的有效半口径DT21满足1.2<DT12/DT21<1.7。
  9. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足1<CT2/ET2<1.3。
  10. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的最大有效半口径顶点的轴上距离SAG11与所述第一透镜的像侧面和所述光轴的交点至所述第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12满足0.5<SAG11/SAG12<1。
  11. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的像侧面和所述光轴的交点至所述第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12与所述第一透镜在所述光轴上的中心厚度CT1满足1<SAG12/CT1<1.7。
  12. 根据权利要求1至11中任一项所述的摄像镜头,其特征在于,所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH与所述摄像镜头的总有效焦距f满足ImgH 2/f>4.5mm。
  13. 根据权利要求1至11中任一项所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL与所述第一透镜的物侧面至所述摄像镜头的成像面在所述光轴上的距离TTL满足0.6<SL/TTL<1。
  14. 根据权利要求1至11中任一项所述的摄像镜头,其特征在于,主光线入射至所述摄像镜头的成像面上的电子感光元件的最大入射角度CRAmax满足10°<CRAmax<20°。
  15. 根据权利要求1至11中任一项所述的摄像镜头,其特征在于,所述摄像镜头的工作波段范围为800nm至1000nm。
  16. 摄像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第三透镜具有正光焦度,其像侧面为凸面;所述第四透镜具有光焦度;所述第五透镜具有光焦度;所述第六透镜具有光焦度;
    所述第一透镜的物侧面的有效半口径DT11与所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH满足1.2<DT11/ImgH<1.8。
  17. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足-1<f1/f3<-0.5。
  18. 根据权利要求16所述的摄像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第三透镜的有效焦距f3满足-8<f2/f3<-3。
  19. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述摄像镜头的总有效焦距f满足0.5<R2/f<1。
  20. 根据权利要求16所述的摄像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第六透镜在所述光轴上的中心厚度CT6满足0.3<CT4/CT6<0.85。
  21. 根据权利要求20所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3、所述第四透镜在所述光轴上的中心厚度CT4、所述第五透镜在所述光轴上的中心厚度CT5以及所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的距离TD满足(CT2+CT3+CT4+CT5)/TD<0.5。
  22. 根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜的折射率N5满足N5<1.6。
  23. 根据权利要求16所述的摄像镜头,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH满足0.8<DT62/ImgH<1.1。
  24. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT12与所述第二透镜的物侧面的有效半口径DT21满足1.2<DT12/DT21<1.7。
  25. 根据权利要求16所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足1<CT2/ET2<1.3。
  26. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的像侧面和所述光轴的交点至所述第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12与所述第一透镜在所述光轴上的中心厚度CT1满足1<SAG12/CT1<1.7。
  27. 根据权利要求26所述的摄像镜头,其特征在于,所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的最大有效半口径顶点的轴上距离SAG11与所述第一透镜的像侧面和所述光轴的交点至所述第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12满足0.5<SAG11/SAG12<1。
  28. 根据权利要求16至27中任一项所述的摄像镜头,其特征在于,所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH与所述摄像镜头的总有效焦距f满足ImgH 2/f>4.5mm。
  29. 根据权利要求16至27中任一项所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL与所述第一透镜的物侧面至所述摄像镜头的成像面在所述光轴上的距离TTL满足0.6<SL/TTL<1。
  30. 根据权利要求16至27中任一项所述的摄像镜头,其特征在于,主光线入射至所述摄像镜头的成像面上的电子感光元件的最大入射角度CRAmax满足10°<CRAmax<20°。
  31. 根据权利要求16至27中任一项所述的摄像镜头,其特征在于,所述摄像镜头的工作波段范围为800nm至1000nm。
  32. 摄像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第三透镜具有正光焦度,其像侧面为凸面;所述第四透镜具有光焦度;所述第五透镜具有光焦度,其像侧面为凸面;所述第六透镜具有正光焦度;
    在所述第一透镜至所述第六透镜中的任意相邻两透镜之间均具有空气间隔;以及
    所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH与所述摄像镜头的总有效焦距f满足ImgH 2/f>4.5mm。
  33. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足-1<f1/f3<-0.5。
  34. 根据权利要求32所述的摄像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第三透镜的有效焦距f3满足-8<f2/f3<-3。
  35. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述摄像镜头的总有效焦距f满足0.5<R2/f<1。
  36. 根据权利要求32所述的摄像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第六透镜在所述光轴上的中心厚度CT6满足0.3<CT4/CT6<0.85。
  37. 根据权利要求32所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3、所述第四透镜在所述光轴上的中心厚度CT4、所述第五透镜在所述光轴上的中心厚度CT5以及所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的距离TD满足(CT2+CT3+CT4+CT5)/TD<0.5。
  38. 根据权利要求32所述的摄像镜头,其特征在于,所述第五透镜的折射率N5满足N5<1.6。
  39. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH满足1.2<DT11/ImgH<1.8。
  40. 根据权利要求32所述的摄像镜头,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述摄像镜头的成像面上电子感光元件的有效像素区域对角线长的一半ImgH满足0.8<DT62/ImgH<1.1。
  41. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT12与所述第二透镜的物侧面的有效半口径DT21满足1.2<DT12/DT21<1.7。
  42. 根据权利要求32所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足1<CT2/ET2<1.3。
  43. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的像侧面和所述光轴的交点至所述第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12与所述第一透镜在所述光轴上的中心厚度CT1满足1<SAG12/CT1<1.7。
  44. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的最大有效半口径顶点的轴上距离SAG11与所述第一透镜的像侧面和所述光轴的交点至所述第一透镜的像侧面的最大有效半口径顶点的轴上距离SAG12满足0.5<SAG11/SAG12<1。
  45. 根据权利要求32至44中任一项所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL与所述第一透镜的物侧面至所述摄像镜头的成像面在所述光轴上的距离TTL满足0.6<SL/TTL<1。
  46. 根据权利要求32至44中任一项所述的摄像镜头,其特征在于,主光线入射至所述摄像镜头的成像面上的电子感光元件的最大入射角度CRAmax满足10°<CRAmax<20°。
  47. 根据权利要求46所述的摄像镜头,其特征在于,所述摄像镜头的工作波段范围为800nm至1000nm。
PCT/CN2019/102141 2018-11-12 2019-08-23 摄像镜头 WO2020098328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/022,600 US20200409123A1 (en) 2018-11-12 2020-09-16 Camera lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811339846.2 2018-11-12
CN201811339846.2A CN109116522B (zh) 2018-11-12 2018-11-12 摄像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/022,600 Continuation US20200409123A1 (en) 2018-11-12 2020-09-16 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2020098328A1 true WO2020098328A1 (zh) 2020-05-22

Family

ID=64853951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102141 WO2020098328A1 (zh) 2018-11-12 2019-08-23 摄像镜头

Country Status (3)

Country Link
US (1) US20200409123A1 (zh)
CN (2) CN109116522B (zh)
WO (1) WO2020098328A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116522B (zh) * 2018-11-12 2024-04-23 浙江舜宇光学有限公司 摄像镜头
CN111766684A (zh) * 2020-07-31 2020-10-13 浙江舜宇光学有限公司 光学成像镜头
TWI804795B (zh) * 2021-01-07 2023-06-11 光芒光學股份有限公司 光學鏡頭及其製造方法
CN116300007B (zh) * 2023-05-22 2023-10-03 江西联创电子有限公司 光学镜头
CN116338912B (zh) * 2023-05-30 2023-10-03 江西联益光学有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112000A (ja) * 2006-10-31 2008-05-15 Nidec Copal Corp ズームレンズ
CN106501922A (zh) * 2016-12-27 2017-03-15 东莞市宇瞳光学科技股份有限公司 小型超广角低畸变定焦镜头
CN108983401A (zh) * 2018-10-10 2018-12-11 浙江舜宇光学有限公司 光学透镜组
CN109116522A (zh) * 2018-11-12 2019-01-01 浙江舜宇光学有限公司 摄像镜头
CN208833990U (zh) * 2018-10-10 2019-05-07 浙江舜宇光学有限公司 光学透镜组
CN209148945U (zh) * 2018-11-12 2019-07-23 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138884B2 (ja) * 2005-11-16 2013-02-06 リコー光学株式会社 超広角レンズ
JP2007279632A (ja) * 2006-04-12 2007-10-25 Matsushita Electric Ind Co Ltd 超広角レンズ
JP2009092798A (ja) * 2007-10-05 2009-04-30 Fujinon Corp 撮像レンズおよび撮像装置
KR100961124B1 (ko) * 2008-04-04 2010-06-07 삼성전기주식회사 초광각 광학계
JP5586369B2 (ja) * 2010-08-09 2014-09-10 オリンパス株式会社 内視鏡用撮像光学系及びそれを備えた内視鏡
WO2012127826A1 (ja) * 2011-03-18 2012-09-27 富士フイルム株式会社 撮像レンズおよび撮像装置
TWI438471B (zh) * 2011-08-24 2014-05-21 Largan Precision Co Ltd 光學影像擷取鏡頭
JP5633937B2 (ja) * 2011-09-29 2014-12-03 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5795379B2 (ja) * 2011-09-29 2015-10-14 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2013073165A (ja) * 2011-09-29 2013-04-22 Fujifilm Corp 撮像レンズおよび撮像装置
TWI533018B (zh) * 2013-08-28 2016-05-11 揚明光學股份有限公司 定焦鏡頭
JP2015190999A (ja) * 2014-03-27 2015-11-02 株式会社タムロン 結像光学系
CN104330868B (zh) * 2014-07-29 2017-05-10 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
CN104330869B (zh) * 2014-07-29 2016-08-24 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头之电子装置
CN104991331B (zh) * 2015-08-06 2017-12-22 浙江舜宇光学有限公司 超广角镜头
KR102508341B1 (ko) * 2015-09-04 2023-03-10 삼성전자주식회사 초광곽 광학계
TWI582483B (zh) * 2015-10-12 2017-05-11 今國光學工業股份有限公司 六片式廣角鏡頭
TWI594010B (zh) * 2016-07-05 2017-08-01 大立光電股份有限公司 光學成像系統鏡組、取像裝置及電子裝置
TWI644141B (zh) * 2016-10-14 2018-12-11 大立光電股份有限公司 光學取像系統組、取像裝置及電子裝置
JP2018116076A (ja) * 2017-01-16 2018-07-26 富士フイルム株式会社 撮像レンズおよび撮像装置
CN108663773B (zh) * 2017-03-31 2020-10-23 宁波舜宇车载光学技术有限公司 光学镜头和成像设备
TWI610110B (zh) * 2017-04-14 2018-01-01 大立光電股份有限公司 攝影系統鏡頭組、取像裝置及電子裝置
CN114578529A (zh) * 2017-06-22 2022-06-03 玉晶光电(厦门)有限公司 光学成像镜头
CN108020909B (zh) * 2017-12-12 2020-09-11 福建福光股份有限公司 一种2.8mm焦距高清超广角车载镜头
CN108398767B (zh) * 2018-05-03 2023-06-20 浙江舜宇光学有限公司 摄像镜头
CN108513049A (zh) * 2018-05-15 2018-09-07 南京中高知识产权股份有限公司 一种水下焊缝自动识别系统及其工作方法
CN108469669B (zh) * 2018-05-25 2023-06-30 浙江舜宇光学有限公司 摄像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112000A (ja) * 2006-10-31 2008-05-15 Nidec Copal Corp ズームレンズ
CN106501922A (zh) * 2016-12-27 2017-03-15 东莞市宇瞳光学科技股份有限公司 小型超广角低畸变定焦镜头
CN108983401A (zh) * 2018-10-10 2018-12-11 浙江舜宇光学有限公司 光学透镜组
CN208833990U (zh) * 2018-10-10 2019-05-07 浙江舜宇光学有限公司 光学透镜组
CN109116522A (zh) * 2018-11-12 2019-01-01 浙江舜宇光学有限公司 摄像镜头
CN209148945U (zh) * 2018-11-12 2019-07-23 浙江舜宇光学有限公司 摄像镜头

Also Published As

Publication number Publication date
CN109116522B (zh) 2024-04-23
CN111443460A (zh) 2020-07-24
CN111443460B (zh) 2022-03-22
CN109116522A (zh) 2019-01-01
US20200409123A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学系统
WO2020029620A1 (zh) 光学成像镜片组
WO2020019794A1 (zh) 光学成像镜头
WO2019223263A1 (zh) 摄像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2020119146A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020073703A1 (zh) 光学透镜组
WO2020024635A1 (zh) 光学成像镜头
WO2020119145A1 (zh) 摄像镜头
WO2020107936A1 (zh) 光学成像系统
WO2020134129A1 (zh) 光学成像系统
WO2020164236A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020098328A1 (zh) 摄像镜头
WO2020238495A1 (zh) 光学成像镜头
WO2021042992A1 (zh) 光学成像系统
WO2019233040A1 (zh) 摄像透镜组
WO2020019796A1 (zh) 光学成像系统
WO2020042799A1 (zh) 光学成像镜片组
WO2020042765A1 (zh) 影像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883668

Country of ref document: EP

Kind code of ref document: A1