WO2020095999A1 - 水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット - Google Patents

水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット Download PDF

Info

Publication number
WO2020095999A1
WO2020095999A1 PCT/JP2019/043697 JP2019043697W WO2020095999A1 WO 2020095999 A1 WO2020095999 A1 WO 2020095999A1 JP 2019043697 W JP2019043697 W JP 2019043697W WO 2020095999 A1 WO2020095999 A1 WO 2020095999A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treatment agent
treating agent
water treatment
enzyme
Prior art date
Application number
PCT/JP2019/043697
Other languages
English (en)
French (fr)
Inventor
岳人 杉浦
美智代 杉浦
Original Assignee
株式会社セイネン
日本エコシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セイネン, 日本エコシステム株式会社 filed Critical 株式会社セイネン
Priority to EP19881716.5A priority Critical patent/EP3878818A4/en
Priority to US17/285,981 priority patent/US11186508B2/en
Priority to JP2020511416A priority patent/JP6815617B2/ja
Priority to CN201980072012.6A priority patent/CN112955407A/zh
Publication of WO2020095999A1 publication Critical patent/WO2020095999A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/148Combined use of inorganic and organic substances, being added in the same treatment step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a water treatment agent, a method for producing a water treatment agent, a method for treating water to be treated using the water treatment agent, and a kit for producing the water treatment agent.
  • Patent Document 1 70 to 40 parts by mass of graphite and 20 to 50 parts by mass of at least one selected from the group consisting of iron and ferritic iron are added to water in which an acid has a pH of 2 to 4
  • the redox potential when the pH is adjusted to a range of 10.5 ⁇ 0.5 by adding 15 to 300 parts by mass of ferrous iron and / or a ferrous compound by stirring the mixture to cause a redox reaction.
  • the green last (magnetic carrier) described in Patent Document 1 is the chemical oxygen demand (COD), suspended solids (MLSS), total phosphorus (T-) in the water to be treated containing nitrogen-containing compounds such as wastewater from food factories. Although effective in reducing P), etc., total nitrogen (TN) could not be reduced sufficiently.
  • COD chemical oxygen demand
  • MMS suspended solids
  • T- total phosphorus
  • the present invention is a water treatment agent useful for reducing MLSS and the like of food factory wastewater and the like, and reducing total nitrogen of water to be treated containing a nitrogen-containing compound, the method for producing the water treatment agent, and the water.
  • An object of the present invention is to provide a method for treating water to be treated using a treatment agent, and a kit for producing the water treatment agent.
  • Greenlast a mammalian (excluding human) liver extract, a yeast lytic enzyme, a lactate dehydrogenase, and a glucose dehydrogenase. It is known that a water treatment agent containing an enzyme and an enzyme treatment agent containing water is useful for reducing total nitrogen in water to be treated containing a nitrogen-containing compound such as wastewater from a food factory. Obtained and completed the present invention.
  • the enzyme treating agent contains a mammalian (excluding human) liver extract, a yeast lytic enzyme, a lactate dehydrogenase, a glucose dehydrogenase, and water.
  • At least one additive metal selected from the group consisting of aluminum, yttrium, zinc, copper, tin, chromium and silicon is further added to the above reduction catalyst as a metal and / or a metal ferrite in an amount of 2 parts by mass to 10 parts by mass.
  • the reduction catalyst body contains 40 to 70 parts by mass of graphite, 20 to 50 parts by mass of at least one selected from the group consisting of iron and ferrite iron, and 2 to 10 parts by mass of silicon ferrite.
  • a step of producing a water treatment agent by mixing the green last and the enzyme treatment agent and incubating at 5 ° C. to 35 ° C. for 3 days to 10 days to obtain a water treatment agent produced in the mixed solution;
  • the enzyme treating agent contains a mammalian (excluding human) liver extract, a yeast lytic enzyme, a lactate dehydrogenase, a glucose dehydrogenase, and water.
  • [8] The method for producing a water treatment agent according to any one of [2] to [7] above, wherein the reduction catalyst is a powder and / or a lump.
  • step 5 A method for treating water to be treated, which comprises using the starch in a circulating manner.
  • Green Last An enzyme treatment agent containing a liver extract of mammals (excluding humans), a yeast lytic enzyme, a lactate dehydrogenase, a glucose dehydrogenase, and water, A water treatment agent containing.
  • a first container containing the green last suspension A second container containing an enzyme treatment agent containing a liver extract of mammals (excluding humans), a yeast lytic enzyme, a lactate dehydrogenase, a glucose dehydrogenase, and water, A kit for producing a water treatment agent suspension, comprising an instruction manual that describes a method for producing a water treatment agent suspension from the green last suspension and the enzyme treatment agent.
  • the range represented by “to” includes both ends of “to”.
  • the range represented by “AB” includes “A” and “B”.
  • ORP is an oxidation-reduction potential value (Oxidation-Reduction Potential; unit: mV).
  • the Ag / AgCl electrode standard the liquid measured in this specification, is adjusted to pH 10.5 with caustic soda and measured.
  • COD is a chemical oxygen demand (Chemical Oxide Demand; unit mg / L).
  • the amount of the oxidizable substance in the sample water is oxidized by an oxidizing agent under a certain condition, and the amount of oxygen required for the oxidation is obtained and converted from the amount of the oxidizing agent used at that time.
  • the substances to be oxidized include various organic substances and inorganic substances such as nitrite and sulfide, and the main oxidants are organic substances. It is measured by the acidic high temperature permanganate method (COD Mn ).
  • TOC is the total amount of organic carbon (Total Organic Carbon; unit: mg / L).
  • the organic carbon contained in the sample water is oxidized to carbon dioxide. Then, the TOC is obtained by measuring the amount of carbon dioxide. It is measured by the combustion oxidation method.
  • DO is the amount of dissolved oxygen (Dissolved Oxygen; unit: mg / L). It is the concentration of oxygen dissolved in water, and is measured by the Winker method, which represents the amount of oxygen contained in 1 L of water.
  • SV is the activated sludge sedimentation rate (Sludge Volume; unit%). Unless otherwise noted, SV30 is expressed as the volume ratio that precipitates from suspension in 30 minutes. The precipitation rate of the precipitate is expressed by the volume ratio of the solid content precipitated from the suspension.
  • MLSS is the amount of suspended solids (Mixed Liquid Suspended Solids; unit: mg / L) of the sludge mixture in the aeration tank in the activated sludge treatment.
  • the water treatment agent of the present invention is a water treatment agent containing green last and an enzyme treatment agent.
  • the green last is not particularly limited, but is preferably the green last produced in the above-mentioned green last producing step.
  • Greenlast is a light blue transparent or light green transparent substance in which ferrous hydroxide and ferric hydroxide are layered. Specific examples of green last are described in Japanese Patent No. 6347886, Japanese Patent No. 5170461, and the like.
  • the content of green last in the water treatment agent is not particularly limited, but is preferably 0.3 to 3.0% by mass, and 0.5 to 2.5% by mass for the reason that the effect of the present invention is more excellent. Is more preferable.
  • the content of the enzyme treating agent in the water treating agent is not particularly limited, but is preferably 0.0002 to 0.003 mass%, and 0.0005 to 0. 0% for the reason that the effect of the present invention is more excellent. More preferably, it is 002 mass%.
  • the ratio of the content of the enzyme treatment agent to the content of green last in the water treatment agent is 0.001 because the effect of the present invention is more excellent.
  • the amount is preferably -10 to 10% by mass, more preferably 0.01 to 1% by mass, and further preferably 0.05 to 0.5% by mass.
  • the suitable range of the content of green last changes depending on the type of nitrogen in the water to be treated (for example, organic nitrogen, nitrate nitrogen, ammonia nitrogen).
  • nitrogen in the water to be treated for example, organic nitrogen, nitrate nitrogen, ammonia nitrogen.
  • ammonia nitrogen when the Greenlast suspension is added to an ammonia-containing aqueous solution, hydrogen atoms are attracted to nitrogen atoms in ammonia (NH 3 ).
  • the electronegativity of nitrogen (N) is 3.0
  • the electronegativity of water (H 2 O) is 3.5 because hydrogen atoms are attracted to oxygen atoms.
  • nitrate nitrogen is added to the Greenlast suspension to cause a proton releasing reaction OH + OH ⁇ ⁇ ⁇ O ⁇ + H 2 O to decompose the oxyanion ion.
  • organic nitrogen is presumed to have the same function as that of ammonia, and it is considered that the contained content is higher than that of ammonia.
  • the content range it is considered that the minimum value is for ammonia and the maximum value is for nitrate nitrogen.
  • the method for producing a water treatment agent of the present invention is a method for producing a water treatment agent, wherein the above-mentioned water treatment agent of the present invention is obtained by mixing green last and an enzyme treatment agent. The details of the green last and the enzyme treatment agent will be described later.
  • the method for producing a water treatment agent of the present invention includes a green last generation step and a water treatment agent generation step (Fig. 1).
  • a preferred embodiment of the green last generation step is a reduction catalyst body containing 40 parts by mass to 70 parts by mass of graphite and 20 parts by mass to 50 parts by mass of at least one selected from the group consisting of iron and ferritic iron.
  • the existing water is stirred with acid in the range of pH 2 to pH 5 to cause a redox reaction, and 15 parts by mass to 300 parts by mass of ferrous ion and / or ferrous compound is added to adjust the pH to 10.5 ⁇ .
  • a green last generation step of confirming that the oxidation-reduction potential value when adjusted to the range of 0.5 is in the range of -400 mV to -950 mV, finishing stirring and pH adjustment, and obtaining green last generated in the water Is mentioned.
  • a specific example of such a green last generation step is described in, for example, Japanese Patent No. 6347886. In the green last generation step, it is preferable to obtain green last as a green last suspension.
  • the reduction catalyst body contains 40 parts by mass to 70 parts by mass of graphite and 20 parts by mass to 50 parts by mass of at least one selected from the group consisting of iron and ferritic iron.
  • the reduction catalyst body may further contain 2 to 10 parts by mass as a metal and / or a metal ferrite, at least one additive metal selected from the group consisting of aluminum, yttrium, zinc, copper, tin, chromium and silicon. Good.
  • the reduction catalyst body contains 40 parts by mass to 70 parts by mass of graphite, 20 parts by mass to 50 parts by mass of at least one selected from the group consisting of iron and ferrite iron, and 2 parts by mass to 10 parts by mass of silicon ferrite. Is preferred, and it is more preferred to include 40 parts by mass to 70 parts by mass of graphite, 20 parts by mass to 50 parts by mass of ferrite iron, and 2 parts by mass to 10 parts by mass of silicon ferrite.
  • the reduction catalyst may be a powder and / or a lump, but is preferably a powder.
  • the graphite is not particularly limited and may be either natural graphite or artificial graphite, but natural graphite is preferred.
  • natural graphite since the larger the surface area of the graphite is, the higher the reactivity is, the graphite is preferable.
  • the ferritic iron is not particularly limited, but, for example, as described in paragraph [0026] of Japanese Patent No. 6347886, from a precipitate formed in a settling tank during wastewater treatment using Greenlast (suspension).
  • the ferritic iron taken out can be used.
  • the ferritic iron has a larger surface area, the reactivity is improved, and therefore, powdered iron is preferable.
  • the silicon ferrite is not particularly limited, but, for example, as described in paragraph [0026] of Japanese Patent No. 6347886, from a precipitate formed in a settling tank during wastewater treatment using Greenlast (suspension).
  • the silicon ferrite taken out can be used.
  • the powdery one is preferable.
  • the oxidation-reduction reaction is carried out by stirring the water in which the above-mentioned reduction catalyst is present with acid in the range of pH 2 to pH 5 to carry out the oxidation-reduction reaction, but the pH is pH 3.5 to pH 4.5. It is preferably within the range.
  • the redox potential value is -400 mV to -950 mV when the pH is adjusted to the range of 10.5 ⁇ 0.5, but the redox potential value is -600 mV to -950 mV. It is preferably in the range.
  • the green last (may be a suspension) produced in the green last production step is mixed with the enzyme treatment agent, and the mixture is incubated at 5 ° C to 35 ° C for 3 days to 10 days and mixed.
  • This is a step of obtaining a water treatment agent formed in the liquid.
  • the water treatment agent may be obtained as a suspension.
  • the water treatment agent obtained as a suspension is also simply referred to as "water treatment agent”.
  • the enzyme treating agent is the "enzyme treating agent" described in Japanese Patent No. 5963241.
  • the enzyme treating agent is an aqueous composition containing a liver extract of mammals (excluding humans), a yeast lytic enzyme, a lactate dehydrogenase, a glucose dehydrogenase, and water.
  • the enzyme-treating agent is a mixture of mammal liver (excluding human) liver extract, yeast lysing enzyme, lactate dehydrogenase, and glucose dehydrogenase to prepare a mixed solution (A), and the mixture is mixed.
  • Raw materials (a) to (d) are prepared.
  • (1) The pig liver extract is filtered with a filter (polymer separation membrane, pore size 1.2 to 20 ⁇ m).
  • the method for treating treated water of the present invention is characterized by bringing treated water containing a nitrogen-containing compound into contact with the water treatment agent of the present invention (FIG. 2). Since the water treatment agent of the present invention is mixed with the water to be treated, it is preferably mixed with the water to be treated in the initial stage of water treatment, for example, it is preferable to be mixed with the water to be treated in an aeration tank. If the water circulates, it can be mixed anywhere.
  • the pH of the water treatment agent of the present invention when the water treatment agent of the present invention is brought into contact with water to be treated is not particularly limited, but is preferably in the range of pH 7.2 ⁇ 0.5 to pH 9.2 ⁇ 0.5, The range of pH 7.2 ⁇ 0.2 to pH 9.2 ⁇ 0.2 is more preferable.
  • the above nitrogen compound preferably contains nitrate nitrogen.
  • the water treatment agent of the present invention is useful for reducing the total nitrogen content (TN) including nitrate nitrogen.
  • the water to be treated is preferably wastewater from a food factory (food factory wastewater).
  • the water treatment agent of the present invention is useful for reducing the total nitrogen content (TN) of water to be treated, which has a large total nitrogen content (TN), such as wastewater from a food factory.
  • Step 1 in which the water treatment agent of the present invention is added to the treated water, pH is adjusted and stirred, and the treated water is treated with the starch in the step 1.
  • Step 2 of separating from water
  • Step 3 of removing sludge from the separated starch, Part of or whole of the sludge-removed starch is added to the water to be treated, and the water treatment agent of the present invention is added.
  • Step 4 of adjusting pH and stirring, Step 5 of separating a starch and treated water from the treated water obtained in Step 4, and Step 5 and then Steps 3 and 4 were repeated once or plural times. After that, there is a step 6 for obtaining the total amount of treated water and the starch.
  • the kit of the present invention comprises a first container containing a green last suspension, a second container containing an enzyme treating agent, a green last suspension and an enzyme treating agent of the present invention. It is a kit for manufacturing the above-mentioned water treatment agent of the present invention provided with an instruction manual in which a method for producing the water treatment agent is described.
  • the green last is not particularly limited, but is preferably the green last produced in the above-mentioned green last producing step.
  • the enzyme treatment agent is as described above.
  • the pH, redox potential (ORP), dissolved oxygen content (DO) and hue of the greenlast suspension were monitored while stirring every 2 hours until 14 hours after the addition of the silicon dioxide powder. The monitored results are shown in the table below.
  • the silicon content (Si) was determined by quantitative analysis by the ICP (Inductively Coupled Plasma) method when silicon dioxide was added.
  • the stirring was stopped 14 hours after the silicon dioxide powder was added to the greenlast suspension.
  • the pH, redox potential (ORP), dissolved oxygen content (DO), hue and sedimentation rate of the supernatant of the Greenlast suspension were monitored every 2 hours and 6 hours after the stirring was stopped. The monitored results are shown in the table below.
  • the silicon content (Si) in the supernatant separated liquid was determined by quantitative analysis by ICP (Inductively Coupled Plasma) method 6 hours after the end of stirring.
  • the oxygen of silicon dioxide was released by the green last suspension and the dissolved oxygen amount (DO) increased, but sedimentation started after 12 hours, and the dissolved oxygen amount (DO) of the supernatant due to the precipitation of the green last starch containing silicon. And the amount of silicon in the supernatant separated water was reduced to 0.01 mg / L or less. It was found that the release of the oxyanion of silicon dioxide promoted the oxidation of greenlast and promoted the formation of ferrite.
  • the silicon ferrite suspension obtained by the above method is vacuum-filtered, the substance is heated in a drying oven at 90 ° C. for 4 hours, then taken out of the oven and allowed to cool naturally to give silicon ferrite (powder).
  • Example 1 Production of Water Treatment Agent
  • Graphite powder, ferritic iron powder and silicon ferrite powder produced in Production Example 2 were mixed and stirred at the ratios shown in the following table (reduction catalyst bodies) (A). , B, C, and D), the reduction catalyst was placed inside a cylindrical punching stainless steel in a filter cloth to be fixed and submerged in water, and the pH was adjusted to pH 3 with dilute sulfuric acid while stirring the water. The pH was adjusted to the range of 0.5 to 4.5.
  • the total content of graphite powder, ferritic iron powder and silicon ferrite powder in 1 L of water is 100 g.
  • the reaction time was 3 hours, and the best result was a compounding ratio of carbon 55 mass%, ferrite iron 40 mass% silicate ferrite 5% and ferrite iron 40%.
  • the green last suspension produced by the above C and the enzyme treatment agent produced according to the production method described in Example 1 of Japanese Patent No. 5963241 and having a pH adjusted to pH 7.2 ⁇ 0.2 were 90:
  • the mixture was mixed at a volume ratio of 10 and stirred. After stirring, the mixture was transferred to another container and incubated at 22 ° C. for 5 days in a constant temperature oven to produce a water treatment agent in a suspension state.
  • the content of green last in the water treatment agent was approximately 1.0% by mass, and the content of the enzyme treatment agent in the water treatment agent was approximately 0.001% by mass.
  • the pH was adjusted to 10.5 by adding an aqueous sodium hydroxide solution (48% (w / v)), and the oxidation-reduction potential value (ORP) was measured to be -703 mV.
  • the enzyme treatment agent was produced by the materials and methods described below.
  • ⁇ Material> (1) Pig liver extract (CT-3000, manufactured by Intec Co., Ltd.) (2) Yeast lytic enzyme (Kanto Chemical Co., Ltd .; 5000 U / g) (3) Lactate dehydrogenase (porcine heart) (EC 1.1.1.27; 2000 U / mL) (4) Glucose dehydrogenase (EC 1.1.1.47; 250 U / mg)
  • the pig liver extract was filtered with a filter (polymer separation membrane, pore size 1.2 to 20 ⁇ m).
  • the following table shows the component names and blending amounts of the manufactured enzyme treatment agent (enzyme treatment agent Z).
  • a mixed liquid of aeration tank sludge at a wastewater treatment plant of a food processing plant was collected and used as an activated sludge sample.
  • the properties of the sampled activated sludge and the properties of the supernatant separation water were as follows. However, MLSS is based on the sewage test method, Chapter 3, Section 6, and MLVSS is based on the sewage test method, Chapter 3, section 7.
  • x means that the activated sludge (MLSS) was not reduced
  • means that the amount was slightly reduced
  • means that the improvement was remarkable.
  • the pH of the Greenlast suspension had no effect on MLSS.
  • the amount of MLSS was reduced 48 hours after the addition of the green last suspension, and the reduced state continued thereafter.
  • Judgment “x” means that the water quality regulation value was exceeded, “ ⁇ ” means that the phosphorus content increased slightly, “ ⁇ ” means that the phosphorus content decreased, and “ ⁇ ” means This shows that the phosphorus content in Reference Examples 1 and 2 was significantly reduced.
  • X in the judgment means that the TN value exceeded the value at 0 hours, and “ ⁇ ” means that it increased slightly.
  • the total nitrogen (TN) increased.
  • the increase in total nitrogen (TN) tended to increase over time, and was therefore considered to be due to the nitrification reaction.
  • Example 2 Comparative Example 5 / Comparative Example 2
  • the aeration tank sludge mixed liquid of the same wastewater treatment plant of a food processing factory as the activated sludge used in Reference Examples 2 to 4 was sampled and used as an activated sludge sample.
  • a beaker with a capacity of 2000 mL was equipped with a stirrer and an aerator, and two sets of test water tanks were prepared for aerating and stirring.
  • Example 2 An aqueous sodium hydroxide solution (48% (w / v)) was added to the water treatment agent prepared in Example 1 to adjust the pH to 7.2 ⁇ 0.2.
  • the particle size distribution (volume basis) of the activated sludge sample obtained by the measurement is shown in the following table and graph (Fig. 3).
  • the particle size at which the relative particle amount became the maximum was 95 ⁇ m, but in the particle size distribution of the activated sludge sample of Comparative Example 5, the particle at which the relative particle amount became the maximum The diameter was 10 ⁇ m.
  • Example 2 From the comparison between Example 2 and Comparative Example 5 and Comparative Example 2, the water treatment agent of Example 2 in which green last and a specific enzyme treatment agent are used in combination is Comparative Example 5 using only Green Last and It was confirmed that both of the effect of reducing MSLL and the effect of reducing the total nitrogen content were superior to those of Comparative Example 2 in which only the enzyme treating agent was used.
  • the electrons of the shared electron pair of the water molecule held by the green last (magnetic carrier) in the water treatment agent is the atom with the higher electronegativity (OH ⁇ ).
  • the colloidal particles (activated sludge micro-organisms) are electrochemically supplied with electrons due to the bias of electric charge in the molecule, promote the activity in the growth process, perform adsorption and assimilation, and are contained in the magnetic carrier.
  • Iron (Fe (+2) ⁇ Fe (+3)) completes the valence interconversion, and iron becomes ferric iron that retains magnetism due to the interatomic fluctuation action in time and space, and becomes turbid in the activated sludge turbid liquid
  • iron By activating the extracellular electron transfer (magnetite) and mixing it in the sludge, electricity flows through the ferrite particles, symbiotic metabolism is enhanced, the growth of electron-producing microorganisms is promoted, and the microbial community ability is greatly enhanced.
  • Magnetic carrier improved sludge settling rate and sedimentation rate of the activated sludge the water quality value, such as dyes, phosphorus, nitrogen can also be reduced.
  • the water treatment agent of the present invention is an iron-reducing bacterium, which is an iron-reducing bacterium that transfers electrons to ferrite iron as an electron acceptor as an organic waste, without using any external power source.
  • the electrons made by can be transmitted to the outside through the cell membrane, and by this function, energy saving is achieved by using waste organic matter as energy (electron donor) without using high energy of conventional wastewater treatment. It is possible to increase the capacity of conventional activated sludge treatment.
  • Example 3 The wastewater from the food factory was treated as treated water.
  • the following table shows the water quality of treated water (inflow raw water) from food factory effluent and the water quality target of treated water.
  • the following table shows the amount of raw water that flows into the food wastewater treatment equipment and the equipment volume.
  • Example 3 300 mg / L of the water treatment agent produced in Example 1 was added to the anaerobic tank of the food factory wastewater treatment facility using a metering pump. Due to the fluctuation of manufactured products in food factory wastewater, the quality of treated water sometimes exceeded the standard value when the load was large. After the treatment was started, the chemical oxygen requirement (COD), total nitrogen (TN) and total phosphorus (TP) of the treated water were measured. The following table shows the measured values of COD, TN and TP recorded every 5 days from the treatment start day (0 day) to 90 days later. A graph is shown in FIG.
  • Example 3 in which the water treatment agent was used, and the TN reduction target was also achieved.
  • Comparative Example 6 in which the water treatment agent was not used, the TN was not reduced and the TN reduction target was not achieved.
  • Example 3 ⁇ Amount of suspended solids>
  • the amount of suspended solids (MLSS) of the treated water was measured and recorded every 10 days from the treatment start date (0th day) to 90 days later. The measured values are shown in the table below. A graph is shown in FIG.
  • Example 6 The amount of suspended solids (MLSS) was moderately decreased in Example 3, but was increased in Comparative Example 6. In Example 6, it is considered that sludge was adsorbed and assimilated onto the surface of the fine particles of the magnetic carrier in the water treatment agent.
  • the activated sludge sample was used by collecting the aeration tank sludge mixture at the wastewater treatment plant of the food processing plant.
  • the properties of the activated sludge sample were as follows.
  • x indicates that the sedimentation rate is not improved
  • indicates that the sedimentation rate is slightly improved
  • indicates that the sedimentation rate is improved.
  • x means that the MLSS value is not improved
  • means that the MLSS value is slightly improved
  • means that the MLSS value is improved.
  • is a sample in which the phosphorus content decreased slightly compared to the blank sample
  • is a sample in which the phosphorus content was reduced.
  • the phosphorus content is very small depending on the reaction time, but it is reduced in all samples.
  • J is a sample that exceeds the start flank value
  • is a sample that slightly increases
  • is a sample that the total nitrogen amount is decreased.
  • is slightly smaller than the blank, but improved. ⁇ is smaller than the Frank value.
  • the TOC and COD of the 100 mg / l and 200 mg / l samples to which the enzyme treatment agent was added were improved at each time, but the improvement effect of 200 mg / l was high.
  • the effect of the addition of the enzyme treatment agent, against the blank value of 24.8 mg / l after 72 hours as a measure against the deterioration of the water quality due to the nitrification reaction of total nitrogen (TN) due to the load fluctuation of the raw water
  • the water treatment standard values of 100 mg / l added sample 14.7 mg / l and 200 mg / l added sample 11.3 mg / l could be achieved.
  • the TOC value of water quality was improved by 20%
  • the COD value was improved by 26%
  • the MLSS value was improved by 4% as a synergistic effect.
  • a mixed water treatment agent of a green last suspension of food production wastewater and an enzyme treatment agent was added.
  • the experiment was conducted using a sample without addition (blank) and two continuous water flow devices (capacity 5000 ml).
  • the mixed water treating agent used was a mixture of greenlast suspension and enzyme treating agent at a mixing ratio of 90%: 10% adjusted to pH value 7.0 with sodium hydroxide.
  • Raw water is taken from the raw water adjusting tank of food manufacturing wastewater, put in a supply tank (volume 20 L) and sent to the aeration tank (volume 5000 ml) with a metering pump, after reaction, it passes through a settling baffle (obstacle wall) and precipitates.
  • the supernatant water was measured as treated water, and the settled sludge was transferred as return sludge to the inlet of the aeration tank with a metering pump.
  • An aeration pump (0.8 L / min) was used for stirring in the aeration tank.
  • As the activated sludge sample a mixed solution of aeration tank sludge at a wastewater treatment plant of a food processing plant was collected and used. The properties collected were as follows.
  • the sampled aeration liquid was subjected to conditioning aeration for 24 hours to carry out a continuous water flow experiment.
  • the mixed water treatment agent is added by a metering pump with ON / OFF control when the ORP value installed in the aeration tank is +30 mv.
  • Blank sample The average MLSS and SV30 of the mixed water treatment agent sample were as follows.
  • the sludge settling rate (SV30) of the blank suspension sample was confirmed to improve after 4 to 5 days in the mixed suspension. It was added by ON / OFF control at 10.5 ml in 14 days.
  • the floating sludge amount (MLSS) increased and decreased after the third day in both the blank and the mixed suspension sample. After that, it was judged that the stirring capacity of the blank sample was insufficient, and on the 4th day, 1 aeration pump (0.8 L / min) was added and the operation was performed with 2 units. The blank sample showed slow growth after the 5th day. It was
  • the blank sample was in the nitrification state after the increase of nitrate nitrogen including the factor that one aeration pump was added due to the poor quality of treated water on the 4th day.
  • ammonia nitrogen in the organic nitrogen content was reduced from the value before the start up to 14 days, and nitrate nitrogen was higher than the value before the start, but the amount was very small.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

本発明は、食品工場排水等のMLSS等を低減するとともに、含窒素化合物を含む被処理水の全窒素を低減するために有用な水処理剤、上記水処理剤の製造方法、上記水処理剤を用いた被処理水の処理方法、及び、上記水処理剤を製造するためのキットを提供することを目的とする。本発明の水処理剤は、グリーンラストと、哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤と、を含有する、水処理剤である。

Description

水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット
 本発明は、水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキットに関する。
 特許文献1には、黒鉛70~40質量部と、鉄およびフェライト鉄からなる群から選択される少なくとも一つを20~50質量部含む還元触媒体が存在する水を、酸でpH2~4の範囲として攪拌して酸化還元反応をさせ、第一鉄イオンおよび・または第一鉄化合物を15~300質量部加えて、pHを10.5±0.5の範囲に調整した時の酸化還元電位値が-400mv~-950mvの範囲になることを確認して攪拌およびpH調整を終了して前記水中に生成するグリーンラストを得るグリーンラストの製造方法(請求項1)、ならびに、アルミニウム、イットリウム、亜鉛、銅、錫、クロム、ケイ素、鉄、ニッケル、これらのイオンおよびこれらの化合物からなる群から選択される少なくとも一つの汚染物を含む被処理水を、グリーンラスト懸濁液と接触させる、被処理水の処理方法(請求項6)が記載されている。
特許第6347886号公報
 特許文献1に記載されたグリーンラスト(磁性担体)は、食品工場排水等の含窒素化合物を含む被処理水中の化学的酸素要求量(COD)、浮遊物質量(MLSS)、全リン(T-P)等の低減には有効性が認められたものの、全窒素(T-N)を十分に低減することができなかった。
 そこで、本発明は、食品工場排水等のMLSS等を低減するとともに、含窒素化合物を含む被処理水の全窒素を低減するために有用な水処理剤、上記水処理剤の製造方法、上記水処理剤を用いた被処理水の処理方法、及び、上記水処理剤を製造するためのキットを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、グリーンラストと、哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤と、を含有する、水処理剤が、食品工場排水等の含窒素化合物を含む被処理水の全窒素を低減するために有用であることを知得し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
〔1〕 グリーンラストと、
 哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤と、
 を混合することで、水処理剤を得る、水処理剤の製造方法。
〔2〕 黒鉛40質量部~70質量部と、鉄およびフェライト鉄からなる群から選択される少なくとも一つを20質量部~50質量部とを含む還元触媒体が存在する水を、酸でpH2~pH5の範囲として撹拌して酸化還元反応をさせ、第一鉄イオンおよび/または第一鉄化合物を15質量部~300質量部加えて、pHを10.5±0.5の範囲に調整した時の酸化還元電位値が-400mV~-950mVの範囲になることを確認して撹拌およびpH調整を終了して上記水中に生成するグリーンラストを得るグリーンラスト生成工程と、
 上記グリーンラストと酵素処理剤とを混合し、5℃~35℃で3日間~10日間インキュベートして混合液中に生成する水処理剤を得る水処理剤生成工程と
を備え、
 上記酵素処理剤が、哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する、
上記〔1〕に記載の水処理剤の製造方法。
〔3〕 上記還元触媒体に、さらに、アルミニウム、イットリウム、亜鉛、銅、錫、クロムおよびケイ素からなる群から選択される少なくとも一つの添加金属を、金属および/または金属フェライトとして2質量部~10質量部含む、上記〔2〕に記載の水処理剤の製造方法。
〔4〕 上記還元触媒体が、黒鉛40質量部~70質量部、鉄およびフェライト鉄からなる群から選択される少なくとも一つを20質量部~50質量部、ならびにケイ素フェライトを2質量部~10質量部含む、上記〔2〕または〔3〕に記載の水処理剤の製造方法。
〔5〕 上記グリーンラスト生成工程において、上記還元触媒体が存在する水を、酸でpH3.5~pH4.5の範囲として撹拌して酸化還元反応をさせる、上記〔2〕~〔4〕のいずれかに記載の水処理剤の製造方法。
〔6〕 上記グリーンラスト生成工程において、pHを10.5±0.5の範囲に調整した時の酸化還元電位値が-600mV~-950mVの範囲になることを確認して撹拌およびpH調整を終了する、上記〔2〕~〔5〕のいずれかに記載の水処理剤の製造方法。
〔7〕 黒鉛40質量部~70質量部と、フェライト鉄20質量部~50質量部と、ケイ素フェライト2質量部~10質量部とを含む還元触媒体が存在する水を、酸でpH3.5~pH4.5の範囲として撹拌して酸化還元反応をさせ、第一鉄イオンおよび/または第一鉄化合物を15質量部~300質量部加えて、pHを10.5±0.5の範囲に調整した時の酸化還元電位値が-600mV~-950mVの範囲になることを確認して撹拌およびpH調整を終了して上記水中に生成するグリーンラストを得るグリーンラスト生成工程と、
 上記グリーンラストと酵素処理剤とを混合し、5℃~35℃で3日間~10日間インキュベートして混合液中に生成する水処理剤を得る水処理剤生成工程と
を備え、
 上記酵素処理剤が、哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する、
上記〔1〕に記載の水処理剤の製造方法。
〔8〕 上記還元触媒体が粉体および/または塊状物である、上記〔2〕~〔7〕のいずれかに記載の水処理剤の製造方法。
〔9〕 上記グリーンラスト生成工程において、上記グリーンラストをグリーンラスト懸濁液として得る、上記〔2〕~〔8〕のいずれかに記載の水処理剤の製造方法。
〔10〕 上記水処理剤生成工程において、上記水処理剤を水処理剤懸濁液として得る、上記〔2〕~〔9〕のいずれかに記載の水処理剤の製造方法。
〔11〕 含窒素化合物を含む被処理水を、上記〔10〕に記載の製造方法で得られた水処理剤懸濁液と接触させる、被処理水の処理方法。
〔12〕 上記窒素化合物が硝酸態窒素を含む、上記〔11〕に記載の被処理水の処理方法。
〔13〕 上記被処理水が食品工場からの排水である、上記〔10〕または〔11〕に記載の被処理水の処理方法。
〔14〕 処理槽中の原水である上記〔11〕~〔13〕のいずれかに記載の被処理水に上記〔10〕に記載の製造方法によって得られた水処理剤懸濁液を添加し、pHを調製して撹拌する工程1、
 工程1で得られる処理水から澱物と処理水とを分離する工程2、
 分離した澱物から汚泥を除去する工程3、
 汚泥を除去された澱物を、原水である上記〔5〕~〔7〕のいずれかに記載の被処理水中に一部または全部を添加し、上記〔4〕に記載の製造方法によって得られた水処理剤懸濁液を添加し、pHを調製して撹拌する工程4、
 工程4で得られる処理水から澱物と処理水とを分離する工程5、および
 工程5の次に工程3および工程4を1回または複数回繰り返した後に、処理水の総量と澱物とを得る工程6
を有する、澱物を循環使用する被処理水の処理方法。
〔15〕 グリーンラストと、
 哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤と、
 を含有する、水処理剤。
〔16〕 グリーンラスト懸濁液が収容された第一の容器と、
 哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤が収容された第二の容器と、
 上記グリーンラスト懸濁液と上記酵素処理剤とから水処理剤懸濁液を製造する方法が記載された取扱説明書と
を備える、水処理剤懸濁液を製造するためのキット。
 本発明によれば、食品工場排水等のMLSS等を低減するとともに、含窒素化合物を含む被処理水の全窒素を低減するために有用な水処理剤、上記水処理剤の製造方法、上記水処理剤を用いた被処理水の処理方法、及び、上記水処理剤を製造するためのキットを提供することができる。
本発明の水処理剤の製造方法を示すフロー図である。 本発明の水処理剤を用いた被処理水の処理方法を示すフロー図である。 実施例2、比較例5の活性汚泥試料の粒度分布(体積基準)を表すグラフである。 実施例3、比較例6の化学的酸素要求量(COD)、全窒素(T-N)および全リン(T-P)の経時的変動を表すグラフである。 実施例3、比較例6の浮遊物質量(MLSS)を表すグラフである。 ORP制御混合水処理剤添加状況図表 ブランク曝気槽水質推移図表 混合水処理剤添加曝気槽水質推移図表 MLSS・SV30比較実験推移図表 TOC-COD比較実験推移図表 T-N・T-P比較実験推移図表
 本発明において、「~」を用いて表される範囲には、「~」の両端を含むものとする。例えば、「A~B」と表される範囲には、「A」および「B」を含む。
 以下、本明細書で使用する略号は、以下の略称であり、測定条件は以下である。
 グリーンラスト懸濁液中の全鉄換算濃度は、ICP定量分析で測定した。
 ORPは、酸化還元電位値(Oxidation-Reduction Potential;単位 mV)である。Ag/AgCl電極基準、本明細書では測定される液を苛性ソーダでpH10.5に調整して測定する。
 CODは、化学的酸素要求量(Chemical Oxide Demand;単位 mg/L)である。試料水中の被酸化性物質量を一定の条件下で酸化剤により酸化し、その際使用した酸化剤の量から酸化に必要な酸素量を求めて換算したものである。被酸化物質には、各種の有機物と亜硝酸塩、硫化物などの無機物があるが、おもな被酸化物は有機物である。酸性高温過マンガン酸法(CODMn)で測定されている。
 TOCは、全有機炭素量(Total Organic Carbon;単位 mg/L)である。試料水中に含まれる有機物態炭素を二酸化炭素に酸化させる。そして、その二酸化炭素量を測定することによってTOCを求める。燃焼酸化方式で測定される。
 DOは、溶存酸素量(Dissolved Oxygen;単位 mg/L)である。水に溶解している酸素濃度を意味し、1Lの水に何mgの酸素が含まれているかで表す、ウインクラー法で測定する。
 SVは、活性汚泥沈澱率(Sludge Volume;単位 %)である。特に断らない限りSV30は、30分間で懸濁液から沈澱する容積比で表す。澱物の沈澱率は懸濁液から固形分が沈澱した容積比で表す。
 MLSSは、活性汚泥処理におけるばっ気槽(エアレーションタンク)内の汚泥混合液の浮遊物質量(Mixed Liquor Suspended Solids;単位 mg/L)である。
[水処理剤]
 本発明の水処理剤は、グリーンラストと、酵素処理剤と、を含有する、水処理剤である。上記グリーンラストは特に制限されないが、上述したグリーンラスト生成工程で製造されるグリーンラストであることが好ましい。
<グリーンラスト>
 グリーンラストは、水酸化第1鉄と水酸化第2鉄とが層状をなす淡青透明色または淡緑透明色の物質である。グリーンラストの具体例は、特許第6347886号公報、特許第5170461号公報等に記載されている。
<酵素処理剤>
 上記酵素処理剤については後述のとおりである。
 水処理剤中のグリーンラストの含有量は特に制限されないが、本発明の効果がより優れる理由から、0.3~3.0質量%であることが好ましく、0.5~2.5質量%であることがより好ましい。
 また、水処理剤中の酵素処理剤の含有量は特に制限されないが、本発明の効果がより優れる理由から、0.0002~0.003質量%であることが好ましく、0.0005~0.002質量%であることがより好ましい。
 また、水処理剤中のグリーンラストの含有量に対する酵素処理剤の含有量の割合(酵素処理剤の含有量/グリーンラストの含有量)は、本発明の効果がより優れる理由から、0.001~10質量%であることが好ましく、0.01~1質量%であることがより好ましく、0.05~0.5質量%であることがさらに好ましい。
 なお、被処理水中の窒素の種類(例えば、有機態窒素、硝酸態窒素、アンモニア窒素)によりグリーンラストの含有量の好適な範囲は変わると推測される。
 例えば、アンモニア窒素の場合は、グリーンラスト懸濁液をアンモニア含有水溶液に添加するとアンモニア(NH)は、窒素原子に水素原子が引き寄せられる。その電気陰性度は窒素(N)が3.0、水(HO)は酸素原子に水素原子が引き寄せられているため電気陰性度は3.5である。窒素(N)3.0<酸素(O)3.5でそこに水分子の共有電子対が電気陰性度(OH)のより大きい原子の方に偏って存在し、分子内の電荷の偏りによってアンモニアの窒素原子と水素原子は電気陰性度の強い酸素原子(OH希ガスのため定義外)に引き寄せられ水(HO)になり窒素(N)として大気に放出して無害化を達成するものと考えられる。
 また、硝酸態窒素はグリーンラスト懸濁液添加して、プロトンの放出反応
 OH + OH → -O + HO を行い、オキシアニオンイオンを分解すると推測される。
 また、有機態窒素は、アンモニアとの同じ働きと推測され、含有配合値はアンモニアより多いと考えられる。
 含有量の範囲は、最小値はアンモニアの場合であり、最大値は硝酸態窒素の場合と考えられる。
[水処理剤の製造方法]
 本発明の水処理剤の製造方法は、グリーンラストと、酵素処理剤と、を混合することで、上述した本発明の水処理剤を得る、水処理剤の製造方法である。
 なお、グリーンラストおよび酵素処理剤の詳細については後述する。
 本発明の効果がより優れる理由から、本発明の水処理剤の製造方法は、グリーンラスト生成工程と、水処理剤生成工程とを備えるのが好ましい(図1)。
<グリーンラスト生成工程>
 グリーンラスト生成工程の好適な態様としては、黒鉛40質量部~70質量部と、鉄およびフェライト鉄からなる群から選択される少なくとも一つを20質量部~50質量部とを含む還元触媒体が存在する水を、酸でpH2~pH5の範囲として撹拌して酸化還元反応をさせ、第一鉄イオンおよび/または第一鉄化合物を15質量部~300質量部加えて、pHを10.5±0.5の範囲に調整した時の酸化還元電位値が-400mV~-950mVの範囲になることを確認して撹拌およびpH調整を終了して前記水中に生成するグリーンラストを得るグリーンラスト生成工程が挙げられる。このようなグリーンラスト生成工程の具体例は、例えば、特許第6347886号公報に記載されている。
 グリーンラスト生成工程においては、グリーンラストをグリーンラスト懸濁液として得ることが好ましい。
(還元触媒体)
 還元触媒体は、黒鉛40質量部~70質量部と、鉄およびフェライト鉄からなる群から選択される少なくとも一つを20質量部~50質量部とを含む。
 還元触媒体は、さらに、アルミニウム、イットリウム、亜鉛、銅、錫、クロムおよびケイ素からなる群から選択される少なくとも一つの添加金属を、金属および/または金属フェライトとして2質量部~10質量部含んでもよい。
 還元触媒体は、黒鉛40質量部~70質量部、鉄およびフェライト鉄からなる群から選択される少なくとも一つを20質量部~50質量部、ならびにケイ素フェライトを2質量部~10質量部含むことが好ましく、黒鉛40質量部~70質量部と、フェライト鉄20質量部~50質量部と、ケイ素フェライト2質量部~10質量部とを含むことがより好ましい。
 還元触媒体は、粉体および/または塊状物であり得るが、粉体であることが好ましい。
 黒鉛は特に限定されず、天然黒鉛および人造黒鉛のいずれでもよいが、天然黒鉛が好ましい。また、黒鉛は、表面積が大きい方が反応性が向上するため、粉末状のものが好ましい。
 フェライト鉄は特に限定されないが、例えば、特許第6347886号公報の段落[0026]に記載されるように、グリーンラスト(懸濁液)を用いた排水処理の際に沈殿槽で生成した澱物から取り出したフェライト鉄を利用することができる。また、フェライト鉄の市販品を購入してもよい。また、フェライト鉄は、表面積が大きい方が反応性が向上するため、粉末状のものが好ましい。
 ケイ素フェライトは特に限定されないが、例えば、特許第6347886号公報の段落[0026]に記載されるように、グリーンラスト(懸濁液)を用いた排水処理の際に沈殿槽で生成した澱物から取り出したケイ素フェライトを利用することができる。また、ケイ素フェライトの市販品を購入してもよい。また、ケイ素フェライトは、表面積が大きい方が反応性が向上するため、粉末状のものが好ましい。
(酸化還元反応)
 グリーンラスト生成工程において、酸化還元反応は、上記還元触媒体が存在する水を、酸でpH2~pH5の範囲として撹拌して酸化還元反応をさせるが、pHは、pH3.5~pH4.5の範囲とすることが好ましい。
(酸化還元電位値)
 グリーンラスト生成工程において、pHを10.5±0.5の範囲に調整した時の酸化還元電位値は-400mV~-950mVの範囲であるが、酸化還元電位値は、-600mV~-950mVの範囲であることが好ましい。
<水処理剤生成工程>
 水処理剤生成工程は、グリーンラスト生成工程において生成したグリーンラスト(懸濁液であってもよい)と酵素処理剤とを混合し、5℃~35℃で3日間~10日間インキュベートして混合液中に生成する水処理剤を得る工程である。
 水処理剤は懸濁液として得られてもよい。なお、懸濁液として得た水処理剤を単に「水処理剤」とも言う。
(酵素処理剤)
 上記酵素処理剤は、特許第5963241号公報に記載された「酵素処理剤」である。
 酵素処理剤は、哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する水系組成物である。
 酵素処理剤は、哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素とを混合して、混合液(A)を調製し、前記混合液(A)をそのままで、または固形物を取り除いて、混合液(B)を調製し、前記混合液(B)をそのまま、または水と混合して、混合液(C)を調製することによって、製造することができる。
 酵素処理剤のより具体的な製造方法としては、特許第5963241号公報の実施例1に記載された製造方法が挙げられる。
 原材料(a)~(d)を準備する。
(a)豚肝臓抽出液(CT-3000,インテック株式会社製)
(b)酵母溶解酵素(関東化学社製;5000U/g)
(c)乳酸脱水素酵素(豚心臓)(EC 1.1.1.27;2000U/mL)
(d)グルコース脱水素酵素(EC 1.1.1.47;250U/mg)
 手順(1)~(8)に従って製造する。
(1)豚肝臓抽出液をフィルター(高分子分離膜、孔径1.2~20μm)でろ過する。
(2)豚肝臓抽出液のろ過液2000gに、酵母溶解酵素200gと、乳酸脱水素酵素15mgと、グルコース脱水素酵素10mgを添加し、撹拌・混合する。
(3)この混合液を、0~5℃で冷蔵しながら、10日間静置する。
(4)その後、さらに、38~40℃で保温しながら、3日間静置する。
(5)この混合液をフィルター(高分子分離膜、孔径0.45~1.2μm)でろ過する。
(6)精製水2000gに、ろ過した混合液500gを添加し、さらに精製水で全量を20000gとして、撹拌・混合する。
(7)この混合液を、常温(5~35℃)に保ちながら、3日間静置する。
(8)静置後、直射日光を避け、常温で保存する。
[被処理水の処理方法]
 本発明の被処理水の処理方法は、含窒素化合物を含む被処理水を、本発明の水処理剤と接触させることを特徴とする(図2)。
 本発明の水処理剤は、被処理水と混合されるため、水処理の初期段階で被処理水と混合されることが好ましく、例えば、曝気槽で被処理水と混合されることが好ましいが、水が循環する場合はどこで混合してもかまわない。
 本発明の水処理剤を被処理水と接触させる時の本発明の水処理剤のpHは、特に限定されないが、pH7.2±0.5~pH9.2±0.5の範囲が好ましく、pH7.2±0.2~pH9.2±0.2の範囲がより好ましい。
 上記記窒素化合物は硝酸態窒素を含むことが好ましい。本発明の水処理剤は、硝酸態窒素も含む全窒素量(T-N)の低減に有用である。
 また、上記被処理水は食品工場からの排水(食品工場排水)であることが好ましい。本発明の水処理剤は、食品工場排水のように、全窒素量(T-N)が多い被処理水の全窒素量(T-N)の低減に有用である。
 本発明の被処理水の処理方法においては、澱物を循環使用することが好ましい。
 澱物を循環使用する被処理水の処理方法は、被処理水に本発明の水処理剤を添加し、pHを調製して撹拌する工程1、工程1で得られる処理水から澱物と処理水とを分離する工程2、分離した澱物から汚泥を除去する工程3、汚泥を除去された澱物を、被処理水中に一部または全部を添加し、本発明の水処理剤を添加し、pHを調製して撹拌する工程4、工程4で得られる処理水から澱物と処理水とを分離する工程5、および工程5の次に工程3および工程4を1回または複数回繰り返した後に、処理水の総量と澱物とを得る工程6を有する。
[キット]
 本発明のキットは、グリーンラスト懸濁液が収容された第一の容器と、酵素処理剤が収容された第二の容器と、グリーンラスト懸濁液と酵素処理剤とから上述した本発明の水処理剤を製造する方法が記載された取扱説明書とを備える、上述した本発明の水処理剤を製造するためのキットである。
 上記グリーンラストは特に制限されないが、上述したグリーンラスト生成工程で製造されるグリーンラストであることが好ましい。
 上記酵素処理剤については上述のとおりである。
 グリーンラスト懸濁液と酵素処理剤をそれぞれ別容器に収容したキットとすることで、グリーンラスト懸濁液と酵素処理剤との混合比をユーザーが自由に設定することができ、使用の現場に合わせたカスタマイズが可能となる。
 以下では実施例によって本発明をより具体的に説明するが、本発明の範囲は以下に記載する実施例に限定されるものではない。
[製造例1]グリーンラスト(懸濁液)の製造
 水槽に10Lの水を入れて、黒鉛600gとフェライト鉄(Fe)400gを混合撹拌した材料(還元触媒体)を筒長状のパンチングステンレスの内側にろ過布に入れて水中に固定没水させ、水を撹拌しながら、希硫酸を用いてpHをpH3.5~pH4.5の範囲に調整した。
 40時間撹拌した後、水を撹拌しながら、硫酸第一鉄(FeSO・7HO)1200gを加えた。添加時の酸化還元電位値(ORP)は400mV以下に下がっていた。
 この間のpHおよびORPの変化を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
 さらに40時間撹拌した後、水を撹拌しながら、水酸化ナトリウム水溶液(48%(w/v))を添加してpHを10.5に調整して、還元試験を行い、酸化還元電位値(ORP)が-700mV~-800mVの範囲であることを確認して、撹拌およびpH調整を終了した。グリーンラストの生成を、色相が淡青透明色または淡緑透明色であることにより確認した。槽内のグリーンラスト懸濁液を移送ポンプを使用してろ過フィルターでろ過を行なって保管容器に保管した。
[製造例2]ケイ素フェライトの製造
<材料および方法>
 500mLビーカーにグリーンラスト懸濁液(製造例1で製造したもの;全鉄濃度32000mg/L,pH10.5,ORP -720mV)を500mL入れ、撹拌を行いながら、水酸化ナトリウム水溶液(48%(w/v))2.8mLを添加してグリーンラスト懸濁液のpHをpH10.5に調整した。pHを調製したグリーンラスト懸濁液に、撹拌を行いながら、二酸化ケイ素(SiO)粉末5gを穏やかに添加した。
 二酸化ケイ素粉末を添加した時から2時間毎に14時間後まで、撹拌を行いながら、グリーンラスト懸濁液のpH、酸化還元電位(ORP)、溶存酸素量(DO)および色相をモニタした。モニタした結果を以下の表に示す。なお、ケイ素含有量(Si)は二酸化ケイ素添加時にICP(Inductively Coupled Plasma;融合結合プラズマ)法により定量分析を行って求めた。
Figure JPOXMLDOC01-appb-T000002
 グリーンラスト懸濁液に二酸化ケイ素粉末を添加した時から14時間後に撹拌を停止した。
 撹拌を停止した時から2時間毎に6時間後まで、グリーンラスト懸濁液の上澄のpH、酸化還元電位(ORP)、溶存酸素量(DO)、色相および沈降率をモニタした。モニタした結果を以下の表に示す。なお、上澄分離液中のケイ素含有量(Si)は撹拌終了時から6時間後にICP(Inductively Coupled Plasma;融合結合プラズマ)法により定量分析を行って求めた。
Figure JPOXMLDOC01-appb-T000003
 グリーンラスト懸濁液により二酸化ケイ素の酸素が離れ溶存酸素量(DO)が上昇したが、12時間経過で沈降が始まり、ケイ素を含むグリーンラスト澱物の沈殿により上澄の溶存酸素量(DO)が低下し、上澄分離水中のケイ素量は0.01mg/L以下に減少したことが示された。
 二酸化ケイ素のオキシアニオンが放出されることによりグリーンラストの酸化が進行してフェライト生成が進行していることが分かった。
 沈降澱物にネオジム磁石(表面磁束密度(T)0.42 吸着力(N)25.48 径10mm)を入れたところ沈降澱物は全て吸着した。
 上記方法により得られたケイ素フェライト懸濁液を、真空ろ過し、殿物を乾燥炉を用いて90℃で4時間加熱した後、炉内より取り出して自然放冷させて、ケイ素フェライト(粉末)を得た。
[実施例1]水処理剤の製造
 黒鉛粉末、フェライト鉄粉末およびケイ素フェライト粉末(製造例2で製造したもの)を以下の表に示す割合で混合撹拌した材料(還元触媒体)のそれぞれ(A、B、C、及び、D)について、還元触媒体を筒長状のパンチングステンレスの内側にろ過布に入れて水中に固定没水させ、水を撹拌しながら、希硫酸を用いてpHをpH3.5~pH4.5の範囲に調整した。なお、水1L中の黒鉛粉末、フェライト鉄粉末およびケイ素フェライト粉末の合計の含有量は100gである。
 1時間撹拌した後、さらに水を撹拌しながら、水1Lにつき、硫酸第一鉄(FeSO・7HO)120gを添加した。水溶液を撹拌しながら、添加の1時間後、2時間後、および3時間後に水溶液をサンプリングして、水酸化ナトリウム水溶液(48%(w/v))を用いて水溶液のpHをpH10.5±0.5に調整して、酸化還元電位値(ORP)を測定した。以下の表に、各還元触媒体の組成とそれぞれの例のORP測定値を示す。このようにしてグリーンラスト懸濁液を製造した。
Figure JPOXMLDOC01-appb-T000004
 酸化還元電位値(ORP)は、反応時間3時間で、炭素55質量%、フェライト鉄40質量%ケイ酸フェライトが5%とフェライト鉄40%の配合比が最良の結果であった。
 黒鉛粉末55質量%、フェライト鉄粉末40質量%、およびケイ素フェライト粉末(製造例2で製造したもの)5質量%を混合撹拌した材料(還元触媒体)について、還元触媒体を筒長状のパンチングステンレスの内側にろ過布に入れて水中に固定没水させ、水を撹拌しながら、希硫酸を用いてpHをpH3.5~pH4.5の範囲に調整した。
 1時間撹拌した後、さらに水を撹拌しながら、水1Lにつき、硫酸第一鉄(FeSO・7HO)を60g(E)、90g(F)、120g(G)、150g(H)、または180g(I)添加した。水溶液を撹拌しながら、添加の1時間後、2時間後、および3時間後に水溶液をサンプリングして、水酸化ナトリウム水溶液(48%(w/v))を用いて水溶液のpHをpH10.5±0.1に調整して、酸化還元電位値(ORP)を測定した。以下の表に、硫酸第一鉄の添加量とそれぞれ例のORP測定値を示す。
Figure JPOXMLDOC01-appb-T000005
 硫酸第一鉄の添加量が多いほどORPの低下が遅く、少ないほどORPの低下が早い傾向が見られた。
 上記Cにより製造したグリーンラスト懸濁液と、特許第5963241号公報の実施例1に記載した製造方法に従って製造し、pHをpH7.2±0.2に調整した酵素処理剤とを、90:10の体積比で混合し、撹拌した。撹拌後、別の容器に移し替えて、恒温庫内にて、22℃で5日間インキュベートし、水処理剤を懸濁液の状態で製造した。水処理剤中のグリーンラストの含有量はおよそ1.0質量%、水処理剤中の酵素処理剤の含有量はおよそ0.001質量%であった。
 水酸化ナトリウム水溶液(48%(w/v))を添加してpHを10.5に調整して酸化還元電位値(ORP)を測定したところ、-703mVであった。
 なお、上記酵素処理剤(酵素処理剤Z)は、以下に記載する材料および方法で製造した。
<材料>
(1)豚肝臓抽出液(CT-3000,インテック株式会社製)
(2)酵母溶解酵素(関東化学社製;5000U/g)
(3)乳酸脱水素酵素(豚心臓)(EC 1.1.1.27;2000U/mL)
(4)グルコース脱水素酵素(EC 1.1.1.47;250U/mg)
<方法>
(1)豚肝臓抽出液をフィルター(高分子分離膜、孔径1.2~20μm)でろ過した。
(2)豚肝臓抽出液のろ過液2000gに、酵母溶解酵素200gと、乳酸脱水素酵素1
5mgと、グルコース脱水素酵素10mgを添加し、撹拌・混合した。
(3)この混合液を、0~5℃で冷蔵しながら、10日間静置した。
(4)その後、さらに、38~40℃で保温しながら、3日間静置した。
(5)この混合液をフィルター(高分子分離膜、孔径0.45~1.2μm)でろ過した

(6)精製水2000gに、ろ過した混合液500gを添加し、さらに精製水で全量を20000gとして、撹拌・混合した。
(7)この混合液を、常温(5~35℃)に保ちながら、3日間静置した。
(8)静置後、直射日光を避け、常温で保存した。
 製造した酵素処理剤(酵素処理剤Z)の成分名および配合量を以下の表に示す。
Figure JPOXMLDOC01-appb-T000006
[比較例1]グリーンラスト(懸濁液)の製造
 黒鉛粉末55質量%、フェライト鉄粉末40質量%、およびケイ素フェライト粉末(製造例2で製造したもの)5質量%を混合撹拌した材料(還元触媒体)について、還元触媒体を筒長状のパンチングステンレスの内側にろ過布に入れて水中に固定没水させ、水を撹拌しながら、希硫酸を用いてpHをpH3.5~pH4.5の範囲に調整した。
 1時間撹拌した後、さらに水を撹拌しながら、水1Lにつき、硫酸第一鉄(FeSO・7HO)を120g添加した。
 さらに40時間撹拌した後、水を撹拌しながら、水酸化ナトリウム水溶液(48%(w/v))を添加してpHを10.5に調整して、還元試験を行い、酸化還元電位値(ORP)が-700mV~-800mVの範囲であることを確認して、撹拌およびpH調整を終了した。グリーンラストの生成を、色相が淡青透明色または淡緑透明色であることにより確認した。槽内のグリーンラスト懸濁液を移送ポンプを使用してろ過フィルターでろ過を行なって保管容器に保管した。
[参考例2~4]活性汚泥に対するグリーンラスト懸濁液の反応
 製造例1で製造し、保管してあったグリーンラスト懸濁液のpHを、水酸化ナトリウム水溶液(48%(w/v))を用いて、pH4.2からpH7.2(参考例2)またはpH9.2(参考例3)に調整した。
 食品加工工場の廃水処理場の曝気槽汚泥混合液を採取して活性汚泥試料として使用した。採水した活性汚泥試料の性状および上澄分離水の性状は以下の通りであった。ただし、MLSSは、下水試験方法 第3章6節に、MLVSSは下水試験方法 第3章7節に準拠した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 2000mL容量のビーカーに撹拌装置と通気装置を装着して、通気撹拌を行える試験水槽を3セット準備した。
<参考例2>
 活性汚泥試料(上記したもの)2000mLを上記試験水槽に入れ、通気量0.5L/分で通気しながら、1時間撹拌した。
 活性汚泥試料を通気撹拌しながら、pH7.2に調整したグリーンラスト懸濁液(上記したもの)を、活性汚泥試料1Lあたり500mg添加し、さらに、通気撹拌を継続した。試験水槽内の試料溶液のpH、MLSS、SV30、SV90、鉄、リン、T-N、TOC、およびCODをモニタして、グリーンラスト懸濁液を添加してから24時間後、48時間後、および72時間後の測定値を記録した。以下の表にモニタ結果を示す。
<参考例3>
 活性汚泥試料(上記したもの)2000mLを上記試験水槽に入れ、通気量0.5L/分で通気しながら、1時間撹拌した。
 活性汚泥試料を通気撹拌しながら、pH9.2に調整したグリーンラスト懸濁液(上記したもの)を、活性汚泥試料1Lあたり500mg添加し、さらに、通気撹拌を継続した。試験水槽内の試料溶液のpH、MLSS、SV30、SV90、鉄、リン、T-N、TOC、およびCODをモニタして、グリーンラスト懸濁液を添加してから24時間後、48時間後、および72時間後の測定値を記録した。以下の表にモニタ結果を示す。
<参考例4>
 活性汚泥試料(上記したもの)2000mLを上記試験水槽に入れ、通気量0.5L/分で通気しながら、1時間撹拌した。
 活性汚泥試料を通気撹拌しながら、水を、活性汚泥試料1Lあたり500mg添加し、さらに、通気撹拌を継続した。試験水槽内の試料溶液のpH、MLSS、SV30、SV90、鉄、リン、T-N、TOC、およびCODをモニタして、グリーンラスト懸濁液を添加してから24時間後、48時間後、および72時間後の測定値を記録した。以下の表にモニタ結果を示す。
Figure JPOXMLDOC01-appb-T000009
 参考例2~4のSV30およびSV90の経時的変動を以下の表に示す。
Figure JPOXMLDOC01-appb-T000010
 判定の「△」は少しながら沈降率が改善したことを表し、「○」は沈降率改善が著明であったことを表す。
 グリーンラスト懸濁液のpHはSV30およびSV90に影響を与えなかった。
 グリーンラスト懸濁液添加時から48時間経過時以降に沈降性が改善された。
 参考例2~4の活性汚泥量の経時的増減を以下の表に示す。
Figure JPOXMLDOC01-appb-T000011
 判定の「×」は活性汚泥(MLSS)の減量が無いことを表し、「△」は少しながら減量したことを表し、「○」は改善が著明であったことを表す。
 グリーンラスト懸濁液のpHはMLSSに影響を与えなかった。
 グリーンラスト懸濁液添加時から48時間経過後にMLSSが減量され、その後も減量状態は継続した。
 参考例2~4の溶解性鉄含有量(Fe)の変動を以下の表に示す。
Figure JPOXMLDOC01-appb-T000012
 判定の「△」は少しながら溶解量が増加したことを表し、「○」は溶解量が減少したことを表す。
 グリーンラスト懸濁液を添加した直後には鉄の溶解量が一時的に増加したが、時間が経過するにつれ、グリーンラスト懸濁液がマグネタイト(磁性担体)化され、溶解性鉄含有量が減少した。
 参考例2~4のリン含有量(P)の変動を以下の表に示す。
Figure JPOXMLDOC01-appb-T000013
 判定の「×」は水質規制値を超えたことを表し、「△」は少しながらリン含有量が増加したことを表し、「○」はリン含有量が減少したことを表し、「◎」は参考例1,2においてリン含有量が大幅に減少したことを表す。
 参考例2~4の全窒素(T-N)の変動を以下の表に示す。
Figure JPOXMLDOC01-appb-T000014
 判定の「×」はT-N値が0時間の値を超えたことを表し、「△」は少しながら増加したことを表す。
 参考例2~4のすべてで、全窒素(T-N)が増加した。
 全窒素(T-N)の増加は、経時的に増加する傾向があることから、硝化反応によるものと考えられた。
 参考例2~4のTOCおよびCODの変動を以下の表に示す。
Figure JPOXMLDOC01-appb-T000015
 判定の「〇」はTOCおよびCODが0時間の値よりも減少したことを表す。
[実施例2/比較例5/比較例2]
 上述した参考例2~4で用いた活性汚泥と同じ食品加工工場の廃水処理場の曝気槽汚泥混合液を採取して活性汚泥試料として使用した。
 2000mL容量のビーカーに撹拌装置と通気装置を装着して、通気撹拌を行える試験水槽を2セット準備した。
<実施例2>
 実施例1で製造した水処理剤に水酸化ナトリウム水溶液(48%(w/v))を添加して、pHを7.2±0.2に調整した。
 活性汚泥試料(上記したもの)2000mLを上記試験水槽に入れ、通気量0.5L/分で通気しながら、1時間撹拌した。
 活性汚泥試料を通気撹拌しながら、pHを調製した水処理剤を、活性汚泥試料1Lあたり500mg添加し、さらに、通気撹拌を継続した。試験水槽内の試料溶液の全窒素量(T-N)をモニタして、水処理剤の添加直後(0日)から7日後まで、1日毎に測定値を記録した。以下の表にモニタ結果を示す。
<比較例5>
 比較例1で製造したグリーンラスト懸濁液に水酸化ナトリウム水溶液(48%(w/v))を添加して、pHを7.2±0.2に調整した。
 活性汚泥試料(上記したもの)2000mLを上記試験水槽に入れ、通気量0.5L/分で通気しながら、1時間撹拌した。
 活性汚泥試料を通気撹拌しながら、pHを調製したグリーンラスト懸濁液を、活性汚泥試料1Lあたり500mg添加し、さらに、通気撹拌を継続した。試験水槽内の試料溶液の全窒素量(T-N)をモニタして、グリーンラスト懸濁液の添加直後(0日)から7日後まで、1日毎に測定値を記録した。以下の表にモニタ結果を示す。
Figure JPOXMLDOC01-appb-T000016
 判定の「×」は全窒素(T-N)が0日の値よりも低減されなかったことを表し、「〇」は全窒素(T-N)が0日の値よりも低減されたことを表す。
 実施例2では、全窒素(T-N)を減少させることに成功した。被処理水中での硝化反応を回避できたことによると思われる。
 また、後述する[実施例3/比較例6]に準じてMLSSを評価したところ、比較例5よりも実施例2の方がよりMLSSが低減していた。
<比較例2>
 活性汚泥試料(上記したもの)2000mLを上記試験水槽に入れ、通気量0.5L/分で通気しながら、1時間撹拌した。
 活性汚泥試料を通気撹拌しながら、上述した実施例1で使用された酵素処理剤を、実施例2で使用された水処理剤中の酵素処理剤の含有量に相当する量添加し、さらに、通気撹拌を継続した。試験水槽内の試料溶液の全窒素量(T-N)をモニタして、酵素処理剤の添加直後(0日)から7日後まで、1日毎に測定値を記録した。
 その結果、全窒素は減少するものの、その減少量は実施例2ほど大きくなかった。
 また、後述する[実施例3/比較例6]に準じてMLSSを評価したところ、比較例2のMLSSは大きく変化しなかった。
<粒度分布の測定>
 実施例2の実験3日目の活性汚泥試料および比較例5の実験3日目の活性汚泥試料の粒度分布(体積基準)を測定した。
(測定方法・測定条件)
 計測機器: 光学台 MT3300(Low-WET)
 計量試料: 実施例2の実験3日目の活性汚泥試料
       比較例5の実験3日目の活性汚泥試料
 測定上限(μm): 2000
 測定下限(μm): 0.021
 溶媒名: 水
 溶媒屈折率: 1.333
 分布表示: 体積
 残分比(%): 0.00
 粒子屈折率: 1.60
 DV値: 0.2484
 透過率(TR): 0.915
 測定により得られた活性汚泥試料の粒度分布(体積基準)を以下の表およびグラフ(図3)に示す。
Figure JPOXMLDOC01-appb-T000017
 実施例2の活性汚泥試料の粒径分布において相対粒子量が最大となった粒子径は95μmであったが、比較例5の活性汚泥試料の粒径分布において相対粒子量が最大となった粒子径は10μmであった。
 実施例2と比較例5と比較例2との対比から、グリーンラストと特定の酵素処理剤とを併用する実施例2の水処理剤は、グリーンラストのみを使用した比較例5、及び、特定の酵素処理剤のみを使用した比較例2と比較して、MSLLを低減する効果、及び、全窒素量を低減する効果の両方が、より優れることが確認された。
 本発明の水処理剤を活性汚泥試料に添加すると、水処理剤中のグリーンラスト(磁性担体)が保有する水分子の共有電子対の電子が電気陰性度(OH)のより大きい原子の方に偏って存在し、分子内に電荷の偏りによってコロイド粒子(活性汚泥微生物)は電気化学的に電子が供給され生育過程においての活動を促進させ吸着・同化作用を行い、磁性担体に含有された鉄(Fe(+2)⇔Fe(+3))が価数相互変換を終え、鉄が時間・空間的に原子間揺動作用により磁性を保有するフェライト鉄化して活性汚泥混濁液に混濁して微生物細胞外電子伝達を活発に(マグネタイト)して汚泥に混在することにより、フェライト粒子内を電気が流れ共生的代謝が高まり電子生産微生物の成長が促進され、微生物の群集能力が大幅に増強され、磁性担体に活性汚泥の汚泥沈降率及び沈降速度が改善し、色素・リン・窒素等の水質値も低減することができる。
 本発明の水処理剤は、一切外部電源を使用しないで、有機廃棄物をエネルギーとして、電子受容体として、フェライト鉄に電子を伝達する生物種は鉄還元菌で、鉄還元菌は細胞の内側で作られた電子を細胞膜に通じて外側に伝えることができ、この働きにより、従来の排水処理の高エネルギーを使用せず廃棄有機物をエネルギー(電子供与体)とすることにより省エネルギー化を達成し従来の活性汚泥処理の能力を増大することが可能になる。
[実施例3/比較例6]
 食品工場排水を被処理水として処理を行った。
 食品工場排水の被処理水(流入原水)の水質と処理水の水質目標を以下の表に示す。
Figure JPOXMLDOC01-appb-T000018
 食品排水処理設備に流入する原水量および設備容積を以下の表に示す。
Figure JPOXMLDOC01-appb-T000019
<実施例3>
 食品工場排水処理設備の嫌気槽に、定量ポンプを用いて、実施例1で製造した水処理剤を300mg/L添加した。
 食品工場排水は製造品の変動があることから、負荷が大きい場合には、処理水の水質が基準値を超えてしまうことがあった。
 処理開始後、処理水の化学的酸素必要量(COD)、全窒素(T-N)および全リン(T-P)を測定した。処理開始日(0日)から90日後まで、5日毎に記録したCOD,T-NおよびT-Pの測定値を以下の表に示す。また、グラフを図4に示す。
<比較例6>
 食品工場排水処理設備を用いて食品工場排水を処理した。水処理剤は添加していない。
 処理開始後、処理水の化学的酸素必要量(COD)、全窒素(T-N)および全リン(T-P)を測定した。処理開始日(0日)から90日後まで、5日毎に記録したCOD、T-NおよびT-Pの測定値を以下の表に示す。また、グラフを図4に示す。
Figure JPOXMLDOC01-appb-T000020
 水処理剤を使用した実施例3ではT-Nが低減され、T-N低減目標も達成された。一方、水処理剤を使用しなかった比較例6ではT-Nが低減されず、T-N低減目標も達成されなかった。
<浮遊物質量>
 実施例3および比較例6において、処理開始後、処理水の浮遊物質量(MLSS)を測定し、処理開始日(0日)から90日後まで、10日毎に記録した。測定値を以下の表に示す。また、グラフを図5に示す。
Figure JPOXMLDOC01-appb-T000021
 浮遊物質量(MLSS)は、実施例3では穏やかに減少していたが、比較例6では増加傾向が認められた。実施例6では、水処理剤中の磁性担体の微細粒子の表面に汚泥が吸着・同化したものと考えられる。
[追加実験]
 酵素処理剤の効果を確認するためにさらに詳細な追加実験を行ったので以下に示す。
 活性汚泥試料は、食品加工工場の廃水処理場の曝気槽汚泥混合液を採取して使用した。活性汚泥試料の性状は以下の通りであった。
(活性汚泥の性状)
Figure JPOXMLDOC01-appb-T000022
MLSS:下水試験方法 第3章6節
MLVSS:下水試験方法 第3章7節
(上澄分離水)
Figure JPOXMLDOC01-appb-T000023
 本試料を使用して以下の比較実験を行った。
(酵素処理剤の最適添加量比較実験方法)
 上記活性汚泥試料2000mlを2000mlの容器に入れ、通気装置を装着して試料の攪拌し、通気量を0.5L/min通気攪拌を行う容器を3つ用意して、それぞれの容器を1時間攪拌後、酵素処理剤を10倍の精製水で希釈して任意量(0mg/l・100mg/l・200mg/l)を添加して24~72時間活性汚泥の水質・性状を追跡計量を行い最適添加量を求めた。
(酵素処理剤添加実験)
Figure JPOXMLDOC01-appb-T000024
(実験結果)(汚泥沈降率)
Figure JPOXMLDOC01-appb-T000025
 判定の×は沈降率が改善されてない、△は少しながら沈降率改善、○は沈降率改善が著明である。
 酵素処理剤の添加量よる汚泥沈降性に変動は無く、反応時間についても変動は無い結果であった。
(実験結果)
浮遊汚泥濃度(MLSS) 単位 mg/l
Figure JPOXMLDOC01-appb-T000026
 判定の×はMLSS値が改善されてない、△はブランク試料に対して少しながらMLSS値が改善、○はMLSS値改善が著明である。
 酵素処理剤の添加量200mg/l試料が浮遊汚泥MLSS値はブランク試料に対して約4%削減されていた。
(実験結果)
リン含有量(P)の変動 単位 mg/l
Figure JPOXMLDOC01-appb-T000027
 判定の×は水質規制値を超えた、△はブランク試料に対して少しながらリン含有量が低下した試料 ○はリン含有量が削減された試料。
 リン含有量が反応時間により微量であるが全試料が減っている。
(実験結果)
T-N(窒素)含有量の変動 単位 mg/l
Figure JPOXMLDOC01-appb-T000028
 判定の×はスタートフランク値を超えた試料、△は少しながら増加した試料 ○は全窒素量が減少された試料。
 ブランク試料のスタートT-N値を72時間後に維持できた試料は100mg/l、200mg/l添加試料共に減少されたが200mg/l試料の低減効果は高い。
(実験結果)
TOC/CODの反応(TOC/COD)  単位 mg/l
Figure JPOXMLDOC01-appb-T000029
 △はブランクより微少であるが改善されている。〇はフランク値よりも低減している。
 ブランク試料に対して、酵素処理剤を添加した100mg/l、200mg/l試料は、各時間においてTOC・CODともに改善されているが200mg/lの改善効果が高い結果であった。
 実験結果より、酵素処理剤の添加効果として、原水の負荷変動を起因とする全窒素(T-N)の、硝化反応による水質の悪化対策として72時間後ブランク値24.8mg/lに対して酵素処理剤100mg/l添加試料14.7mg/l、200mg/l添加試料11.3mg/lと水質基準値を達成できた。また、硝化抑制が達成することにより、相乗効果として水質TOC値20%・COD値26%改善され、MLSS値が4%改善されていた。
グリーンラストと酵素処理剤を混合液を使用した混合水処理剤の実験
 食品製造排水のグリーンラスト懸濁液と酵素処理剤の混合水処理剤を添加した。試料は添加を行わない試料(ブランク)と2基の連続通水装置(容量5000ml)を使用して実験を行った。
 使用した混合水処理剤はグリーンラスト懸濁液と酵素処理剤の混合比率90%:10%混合液をpH値7.0に水酸化ナトリウムにて調整して使用した。
 原水は食品製造排水の原水調整槽より採水し、供給タンク(容量20L)に入れて曝気槽(容量5000ml)へ定量ポンプで送水し反応後、沈降バッフル(邪魔壁)を通過して沈殿して上澄水を処理水として計量して、沈殿汚泥を返送汚泥として曝気槽入口に定量ポンプで移送した。
 曝気槽の攪拌は通気ボンプ(0.8L/min)を使用した。
 活性汚泥試料は、食品加工工場の廃水処理場の曝気槽汚泥混合液を採取して使用した。採水した性状は以下の通りであった。
(活性汚泥の性状)
Figure JPOXMLDOC01-appb-T000030
MLSS:下水試験方法 第3章6節
MLVSS: 下水試験方法 第3章7節
(上澄分離水)
Figure JPOXMLDOC01-appb-T000031
 本試料を使用して以下の比較実験を行った。
(原水調整槽採水試料)
Figure JPOXMLDOC01-appb-T000032
原水平均水質
Figure JPOXMLDOC01-appb-T000033
スタート前に採水曝気液を24時間調質曝気を行って連続通水実験を実施した。
(通水負荷量)
 原水通水量=5000ml/24時間
Figure JPOXMLDOC01-appb-T000034
(実験結果)
 混合水処理剤の添加は曝気槽に設置したORP値が+30mvにてON/OFF制御で定量ポンプにて添加を行う。
Figure JPOXMLDOC01-appb-T000035
 4日目にブランク曝気槽の通気ポンプ(0.8L/min)1基を1基追加して合計2基とした。
ブランク通気量 1.6L/min
(混合水処理剤の添加量)
 添加期間 スタート2.5ml含めて14日間で10.5mlであった。
 結果を図6~8に示す。
(実験結果)
汚泥濃度(MLSS)・汚泥沈降率(SV30)の比較
Figure JPOXMLDOC01-appb-T000036
〇はブランクに対して改善されている。
ブランク試料:混合水処理剤試料の平均MLSSとSV30は以下の通りであった。
Figure JPOXMLDOC01-appb-T000037
 結果を図9に示す。
 MLSS・SV30比較実験結果より、汚泥沈降率(SV30)はブランク試料に対して混合懸濁液を添加した試料は4~5日目以降に改善傾向が確認された混合懸濁液をORP値+30mvでのON/OFF制御で添加され14日間で10.5ml添加されていた。浮遊汚泥量(MLSS)は、ブランク、混合懸濁液試料共に3日目以降に増減を示した。その後、ブランク試料の攪拌能力不足と判断して4日目に通気ポンプ(0.8L/min)1基を追加して2基運転で実施し、ブランク試料は5日目以降緩やかに増殖を示した。
(実験結果)
 MLSS-MLVSS値の各試料を追跡調査行った。
Figure JPOXMLDOC01-appb-T000038
(実験結果)
有機体炭素(TOC)・化学的酸素要求量(COD)の比較
 採水場所 沈降分離上澄水
 原水濃度(平均値)  TOC1238mg/l  COD1177mg/l
Figure JPOXMLDOC01-appb-T000039
〇はブランクに対して改善されている。
14日間の平均処理水質を表す。
Figure JPOXMLDOC01-appb-T000040
 結果を図10に示す。
(実験結果)
全窒素(T-N)・全リン(T-P)の比較
 採水場所 沈降分離上澄水
 原水濃度(平均値)  T-N64.5mg/l  T-P6.2mg/l
Figure JPOXMLDOC01-appb-T000041
〇はブランクに対して改善されている。
14日間の平均処理水質を表す。
Figure JPOXMLDOC01-appb-T000042
 結果を図11に示す。
(実験結果)
アンモ二ア態窒素(NH4-N)硝酸態窒素(NO3-N)の変動
 採水場所 沈降分離上澄水
  計量方法 イオン分析装置
Figure JPOXMLDOC01-appb-T000043
 イオン分析結果より、ブランク試料は4日目に処理水質の不良で通気ポンプを1基増設した要因も含めてそれ以降は硝酸態窒素が増加し硝化状態であった。混合水処理剤添加試料は、有機体窒素分のアンモニア態窒素はスタート前の値より14日目まで低減されており、硝酸態窒素はスタート前値より上昇しているが微量であった。
 曝気液の硝化反応の回避対策として混合水処理剤添加で達成できた。

Claims (6)

  1.  グリーンラストと、
     哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤と、
     を含有する、水処理剤。
  2.  グリーンラストと、
     哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤と、
     を混合することで、請求項1に記載の水処理剤を得る、水処理剤の製造方法。
  3.  含窒素化合物を含む被処理水を、請求項1に記載の水処理剤と接触させる、被処理水の処理方法。
  4.  前記窒素化合物が硝酸態窒素を含む、請求項3に記載の被処理水の処理方法。
  5.  前記被処理水が食品工場からの排水である、請求項3または4に記載の被処理水の処理方法。
  6.  グリーンラスト懸濁液が収容された第一の容器と、
     哺乳動物(ヒトを除く)の肝臓抽出液と、酵母溶解酵素と、乳酸脱水素酵素と、グルコース脱水素酵素と、水と、を含有する酵素処理剤が収容された第二の容器と、
     前記グリーンラスト懸濁液と前記酵素処理剤とから請求項1に記載の水処理剤を製造する方法が記載された取扱説明書と
    を備える、請求項1に記載の水処理剤を製造するためのキット。
PCT/JP2019/043697 2018-11-09 2019-11-07 水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット WO2020095999A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19881716.5A EP3878818A4 (en) 2018-11-09 2019-11-07 WATER TREATMENT AGENT, A METHOD FOR PRODUCING A WATER TREATMENT AGENT, A WATER TREATMENT PROCESS OF INTEREST USING A WATER TREATMENT AGENT, AND A WATER TREATMENT AGENT PRODUCTION KIT WATER TREATMENT
US17/285,981 US11186508B2 (en) 2018-11-09 2019-11-07 Water treating agent and kit and methods for producing and using
JP2020511416A JP6815617B2 (ja) 2018-11-09 2019-11-07 水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット
CN201980072012.6A CN112955407A (zh) 2018-11-09 2019-11-07 水处理剂、水处理剂的制造方法、使用了水处理剂的被处理水的处理方法、以及用于制造水处理剂的套件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018211200 2018-11-09
JP2018-211200 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020095999A1 true WO2020095999A1 (ja) 2020-05-14

Family

ID=70612062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043697 WO2020095999A1 (ja) 2018-11-09 2019-11-07 水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット

Country Status (5)

Country Link
US (1) US11186508B2 (ja)
EP (1) EP3878818A4 (ja)
JP (1) JP6815617B2 (ja)
CN (1) CN112955407A (ja)
WO (1) WO2020095999A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945184A (zh) * 2020-07-14 2020-11-17 武汉大学 一种Fe2+/Fe3+氢氧化物的电化学制备装置及制备方法与应用
JP7010525B1 (ja) 2021-06-14 2022-01-26 日本エコシステム株式会社 原油スラッジ用処理剤、原油スラッジの処理方法、及び原油スラッジ用処理剤キット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347886B2 (ja) 1982-12-06 1988-09-26 Nissan Motor
JP2006289338A (ja) * 2004-09-10 2006-10-26 Mitsubishi Materials Corp 還元性水質浄化材とその製造方法
JP5170461B2 (ja) 2009-08-31 2013-03-27 三菱マテリアル株式会社 セレン含有排水の処理方法
JP2013184074A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 生物処理剤
JP2013184983A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 化学処理剤
JP2013184073A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 酵素処理剤
JP2016502459A (ja) * 2012-11-01 2016-01-28 ハロソース, インコーポレイテッド 水処理組成物およびそれを使用する方法
JP2018134597A (ja) * 2017-02-22 2018-08-30 株式会社セイネン 水質浄化システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926071B (zh) * 2004-04-26 2012-02-22 三菱麻铁里亚尔株式会社 还原性水净化材料、用于生产还原性水净化材料的方法、用于处理废水的方法和废水处理设备
EP2142295B1 (fr) * 2007-01-31 2020-03-11 Université de Lorraine Utilisation d'un catalyseur a base de fer pour la mise en uvre d'un procede d'oxydoreduction de substances a reduire
KR101186814B1 (ko) 2010-03-26 2012-09-28 포항공과대학교 산학협력단 포도씨 추출물 또는 식물 유래 다가페놀을 이용한 난분해성 양이온 염료수처리 방법
CN105745319B (zh) 2013-05-20 2020-06-26 美国宝微技术股份有限公司 基于微生物的废水处理组合物及其使用方法
CN103570114B (zh) * 2013-10-24 2015-03-25 上海大学 一种还原处理水中硝酸盐的方法
US10392267B2 (en) * 2017-04-18 2019-08-27 King Abdulaziz University Azo dye intercalated Fe(II)/Fe(III) layered double hydroxide for water purification
JP6347886B1 (ja) * 2017-12-04 2018-06-27 株式会社セイネン グリーンラストの製造方法及びその用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347886B2 (ja) 1982-12-06 1988-09-26 Nissan Motor
JP2006289338A (ja) * 2004-09-10 2006-10-26 Mitsubishi Materials Corp 還元性水質浄化材とその製造方法
JP5170461B2 (ja) 2009-08-31 2013-03-27 三菱マテリアル株式会社 セレン含有排水の処理方法
JP2013184074A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 生物処理剤
JP2013184983A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 化学処理剤
JP2013184073A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 酵素処理剤
JP5963241B2 (ja) 2012-03-05 2016-08-03 株式会社セイネン 酵素処理剤
JP2016502459A (ja) * 2012-11-01 2016-01-28 ハロソース, インコーポレイテッド 水処理組成物およびそれを使用する方法
JP2018134597A (ja) * 2017-02-22 2018-08-30 株式会社セイネン 水質浄化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3878818A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945184A (zh) * 2020-07-14 2020-11-17 武汉大学 一种Fe2+/Fe3+氢氧化物的电化学制备装置及制备方法与应用
JP7010525B1 (ja) 2021-06-14 2022-01-26 日本エコシステム株式会社 原油スラッジ用処理剤、原油スラッジの処理方法、及び原油スラッジ用処理剤キット
CN115180784A (zh) * 2021-06-14 2022-10-14 日本环保系统株式会社 原油污泥用处理剂、原油污泥的处理方法以及原油污泥用处理剂试剂盒
EP4105183A1 (en) 2021-06-14 2022-12-21 Japan Ecosystem Co., Ltd. Crude oil sludge treatment agent, crude oil sludge treatment method and crude oil sludge treatment agent kit
JP2022190279A (ja) * 2021-06-14 2022-12-26 日本エコシステム株式会社 原油スラッジ用処理剤、原油スラッジの処理方法、及び原油スラッジ用処理剤キット
US11618703B2 (en) 2021-06-14 2023-04-04 Japan Ecosystem Co., Ltd. Crude oil sludge treatment agent, crude oil sludge treatment method and crude oil sludge treatment agent kit
CN115180784B (zh) * 2021-06-14 2024-03-15 日本环保系统株式会社 原油污泥用处理剂、原油污泥的处理方法以及原油污泥用处理剂试剂盒

Also Published As

Publication number Publication date
JP6815617B2 (ja) 2021-01-20
US20210317024A1 (en) 2021-10-14
CN112955407A (zh) 2021-06-11
JPWO2020095999A1 (ja) 2021-02-15
EP3878818A1 (en) 2021-09-15
EP3878818A4 (en) 2021-12-08
US11186508B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP3737410B2 (ja) バイオメーカーを用いる高濃度有機性廃水の処理方法および装置
JP6347886B1 (ja) グリーンラストの製造方法及びその用途
JP3445901B2 (ja) セレン含有排水の処理方法及び装置
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
WO2020095999A1 (ja) 水処理剤、水処理剤の製造方法、水処理剤を用いた被処理水の処理方法、及び、水処理剤を製造するためのキット
US20230013004A1 (en) Systems, methods, and apparatus for increased wastewater effluent and biosolids quality
Heidari et al. Evaluation and start-up of an electro-Fenton-sequencing batch reactor for dairy wastewater treatment
WO2009099208A1 (ja) 放射性硝酸塩廃液処理装置及び方法
JP3811522B2 (ja) 火力発電所排水の処理方法
JP2006110482A (ja) 液状有機性廃棄物の処理方法及び処理システム
Ju et al. Phosphorus release in aerobic sludge digestion
CN108314208A (zh) 一种利用Fe(VI)/Fenton体系氧化絮凝焦化废水中菲和煤颗粒物的方法
WO2019244969A1 (ja) 水処理方法および水処理装置
JP4382167B2 (ja) 火力発電所排水の処理方法
Hong et al. Treatment of weak sewage by continuous electrochemical process using noble metal electrodes
JP2019217474A (ja) 水質浄化システム
JP4976032B2 (ja) 有機性廃水の処理方法
US20220234920A1 (en) Method of removing contaminate in wastewater
JP2006035093A (ja) ホルムアルデヒドの分解方法
Jannati BIO-ELECTROCHEMICAL REMOVAL OF LEAD BY EXOELECTROGENS AND PHOSPHATE REMOVAL USING ZEOLITE FOR POTENTIAL INDUSTRIAL WASTEWATER TREATMENT
CN110885126A (zh) 一种饮用水处理方法
JP2003275765A (ja) 難分解性排水の処理方法
JP6088378B2 (ja) セレン含有水の処理方法およびセレン含有水の処理装置
JP2022190279A (ja) 原油スラッジ用処理剤、原油スラッジの処理方法、及び原油スラッジ用処理剤キット
JPH11128982A (ja) セレン含有排水の処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020511416

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019881716

Country of ref document: EP

Effective date: 20210609