WO2009099208A1 - 放射性硝酸塩廃液処理装置及び方法 - Google Patents

放射性硝酸塩廃液処理装置及び方法 Download PDF

Info

Publication number
WO2009099208A1
WO2009099208A1 PCT/JP2009/052096 JP2009052096W WO2009099208A1 WO 2009099208 A1 WO2009099208 A1 WO 2009099208A1 JP 2009052096 W JP2009052096 W JP 2009052096W WO 2009099208 A1 WO2009099208 A1 WO 2009099208A1
Authority
WO
WIPO (PCT)
Prior art keywords
denitrification
liquid
waste liquid
tank
nitrate waste
Prior art date
Application number
PCT/JP2009/052096
Other languages
English (en)
French (fr)
Inventor
Naoki Ogawa
Katsushi Shibata
Osamu Kohanawa
Kazuhiko Kuroda
Hiromitsu Nagayasu
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to JP2009552550A priority Critical patent/JP4774120B2/ja
Priority to EP09708931.2A priority patent/EP2242060B1/en
Priority to US12/743,319 priority patent/US8409438B2/en
Publication of WO2009099208A1 publication Critical patent/WO2009099208A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/18Processing by biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a radioactive nitrate waste liquid treatment apparatus and method capable of removing nitric acid contained in waste water.
  • Nitrate waste liquid generated from nuclear facilities such as reprocessing factories is highly concentrated (salt concentration of 1% or more) and radioactive, so it cannot be discharged as it is, and is finally molded into cemented solids. It is supposed to be buried.
  • Methods for treating nitrate include an electroreduction method, a chemical reduction method, a bioreduction method, and the like, but the electroreduction method has problems such as inhibition by heavy metals and generation of ammonia. Further, the chemical reduction method has problems such as exothermic reaction and generation of ammonia.
  • Patent Document 1 a method of treating nitrate by biological treatment has been studied (Patent Document 1).
  • Patent Document 1 uses only one type of carbon source, there is a problem that the amount of surplus sludge generated with the nitric acid reduction treatment is increased and the secondary waste disposal cost is increased. .
  • FIG. 11 is a schematic diagram showing the configuration of a radioactive nitrate waste liquid treatment apparatus using a conventional organism.
  • a conventional radioactive nitrate waste liquid treatment apparatus 100 includes a denitrification tank 102 for reducing nitric acid in nitrate waste liquid 101 generated from a nuclear power facility (not shown) to nitrogen gas, and a denitrified denitrification liquid 103.
  • the denitrification tank 102 contains activated sludge containing a large amount of denitrification bacteria (not shown), and nitrate ions in the nitric acid waste liquid in the denitrification tank 102 are expressed by the following formula (1) by the action of anaerobic microorganisms (denitrification bacteria). ) To be reduced to nitrogen gas (N 2 ) and removed from the nitric acid waste solution. At this time, for example, methanol and a pH adjusting agent 120 are supplied to the denitrification tank 102 as the carbon source 121. Further, the inside of the denitrification tank 102 is stirred by a stirrer 110. NO 3 ⁇ + 5 / 6CH 3 OH ⁇ 1 / 2N 2 + 5 / 6CO 2 + 7 / 6H 2 O + OH ⁇ (1)
  • the re-aeration liquid 105 is sent from the re-aeration tank 104 to the subsequent process (not shown) as the processing liquid 107 through the precipitation tank 108.
  • the sludge 106 that has settled in the sedimentation tank 108 is recovered as excess sludge 131 by the circulation pump 111.
  • Part of the sludge 106 that has settled in the sedimentation tank 108 is returned to the denitrification tank 102 via the return sludge supply line 112 and reused. Sludge that is not reused is pulled out of the system as surplus sludge 131 and sent to a disposal step (not shown).
  • Patent Document 2 there is a method and apparatus for treating nitrate-containing waste liquid with multiple treatment tanks that include microbial treatment steps for reducing nitrate nitrogen and nitrite nitrogen to nitrogen by anaerobic denitrifying bacteria in microorganism-containing sludge.
  • the concentration of nitrate in the nitrate waste liquid 101 is low (the salt concentration is less than 1%), the denitrifying bacteria are not killed, but in the nitrate waste liquid 101,
  • the concentration of nitrate is high (for example, about 1 to 7%), there is a problem that the denitrifying bacteria may be killed due to an increase in pH accompanying the biological denitrification reaction.
  • the nitrate concentration in the nitrate waste liquid 101 is high (for example, about 1 to 7%), water is leached out from the living body due to the increase in osmotic pressure, and the organism cannot be maintained. There is a problem that the sludge flocs become finer and the sludge 106 does not settle in the settling tank 108 and, as a result, flows out to the rear side together with the treatment liquid 107.
  • the carbon source 121 supplied in the denitrification tank 102 for example, organic acid such as acetic acid or saccharides
  • the growth of microorganisms occurs, the amount of surplus sludge 131 generated increases, and the amount of disposal increases. There is a problem.
  • an object of the present invention is to provide a radioactive nitrate waste liquid treatment apparatus and method that are installed in a radiation control area and that can efficiently microbially treat waste liquid having a high nitrate concentration.
  • the first invention of the present invention for solving the above-described problem is that an anaerobic microorganism that adsorbs or absorbs a radioactive substance in a nitrate waste liquid containing nitric acid and a radioactive substance and reduces the nitric acid to nitrogen gas.
  • a radioactive nitrate waste liquid treatment apparatus comprising: a denitrification tank that contains activated sludge that grows; and a re-aeration tank that aeration mixes the denitrification treatment liquid treated in the denitrification tank with the activated sludge on which aerobic microorganisms grow.
  • the denitrification tank supplies a pH adjusting means for adjusting the pH of the nitrate waste liquid, a carbon source supply means for supplying a carbon source to the denitrification tank, and a denitrification liquid treated with the activated sludge Is separated into a solid content containing sludge and a denitrification treatment liquid, and a gas not containing oxygen is provided in the lower side of the first solid-liquid separation means.
  • Gas supply means for supplying The re-aeration tank further includes a second solid-liquid separation means for further separating the denitrification treatment liquid treated with the activated sludge into excess sludge and a treatment liquid, and a lower part of the second solid-liquid separation means And an air supply means for supplying air into the re-aeration tank.
  • the second invention is the radioactive nitrate waste liquid treatment apparatus according to the first invention, wherein the pH of the denitrification liquid in the denitrification tank is 7.0 to 10.0.
  • the denitrification tank nitrogen gas and carbon dioxide generated when the anaerobic microorganisms react with the nitric acid in the denitrification liquid are supplied to the denitrification tank. It exists in the radioactive nitrate waste liquid processing apparatus characterized by having the gas circulation line to circulate.
  • a pH sensor for measuring a pH of the denitrification solution, and a carbon dioxide supply amount for adjusting a gas amount of carbon dioxide supplied to the denitrification tank. It is in the radioactive nitrate waste liquid processing apparatus characterized by having an adjustment valve.
  • the carbon source supplied to the denitrification tank is acetic acid
  • the pH sensor that measures the pH of the denitrification liquid
  • the supply to the denitrification tank And a carbon nitrate supply amount adjusting valve for adjusting a supply amount of the carbon source to be used.
  • the carbon source supplied to the denitrification tank is either one or both of an organic acid and a saccharide, and air is supplied to the gas circulation line via an air supply amount adjustment valve.
  • a radioactive nitrate waste liquid treatment apparatus characterized by being temporarily supplied.
  • the seventh invention is the radioactive nitrate waste liquid treatment apparatus according to the sixth invention, wherein the denitrification tank has a redox potential meter for measuring a redox potential of the denitrification liquid.
  • an adjustment tank is provided on the upstream side of the denitrification tank, and the adjustment tank includes an electric conductivity meter for measuring electric conductivity, and an industrial A radioactive nitrate waste liquid treatment apparatus comprising an industrial water introduction line and an industrial water supply amount adjustment valve which is interposed in the industrial water introduction line and adjusts the amount of water supply based on the measured value of the electric conductivity meter It is in.
  • a ninth aspect of the present invention is the radioactive material according to any one of the first to eighth aspects, wherein the first solid-liquid separation means and the second solid-liquid separation means are solid-liquid separation membranes. Nitrate waste liquid treatment equipment.
  • a tenth aspect of the present invention is a denitrification tank that contains activated sludge in which anaerobic microorganisms that adsorb or absorb the radioactive substance in a nitrate waste liquid containing nitric acid and radioactive substance and reduce the nitric acid to nitrogen gas grow;
  • the denitrification treatment liquid treated in the denitrification tank is a radioactive nitrate waste liquid treatment apparatus having a re-aeration tank for aeration mixing with activated sludge on which aerobic microorganisms grow, wherein the denitrification tank has a pH of the nitrate waste liquid.
  • PH adjusting means for supplying a pH adjusting agent for adjusting the denitrification tank, carbon source supply means for supplying a carbon source to the denitrification tank, and a weir for preventing the outflow of sludge in the denitrification tank, and the re-aeration
  • a tank is provided on the lower side of the second solid-liquid separation means, a second solid-liquid separation means for further separating the denitrification treatment liquid treated with the activated sludge into excess sludge and treatment liquid, Air is supplied into the re-aeration tank
  • Radioactive nitrate waste liquid treatment apparatus comprising: the air supply means.
  • An eleventh aspect of the present invention is a denitrification tank that contains activated sludge in which anaerobic microorganisms that adsorb or absorb the radioactive substance in a nitrate waste liquid containing nitric acid and radioactive substance and reduce the nitric acid to nitrogen gas grow. While adjusting the pH of the nitrate waste liquid, a carbon source is supplied and treated with activated sludge, and the denitrification liquid treated with the activated sludge is converted into a solid component containing sludge and a denitrification liquid.
  • a gas containing no oxygen is supplied to promote the reduction treatment of the anaerobic microorganisms, and the activated sludge adhering to the solid-liquid separation means is gas-washed, and the treatment is performed in the denitrification tank.
  • the denitrification treatment liquid treated with the activated sludge is separated into a solid content containing sludge and a re-aeration treatment liquid as a second solid-liquid separation means. And further separating In the radioactive nitrate waste liquid processing method.
  • the denitrification liquid treated with activated sludge has the first solid-liquid separation means for separating the solid content containing sludge and the denitrification treatment liquid, and in the re-aeration tank Since it has the 2nd solid-liquid separation means which further isolate
  • FIG. 1 is a conceptual diagram showing a radioactive nitrate waste liquid treatment apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 5 of the present invention.
  • FIG. 5 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Example 7 of the present invention.
  • FIG. 8 is a schematic diagram showing the configuration of a radioactive nitrate waste liquid treatment apparatus according to Example 8 of the present invention.
  • FIG. 9 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 9 of the present invention.
  • FIG. 10 is a schematic diagram showing a configuration of a biological treatment system using the radioactive nitrate waste liquid treatment apparatus according to Example 10 of the present invention.
  • FIG. 11 is a schematic diagram showing the configuration of a radioactive nitrate waste liquid treatment apparatus using a conventional organism.
  • FIG. 1 is a conceptual diagram showing a radioactive nitrate waste liquid treatment apparatus according to Embodiment 1 of the present invention.
  • the radioactive nitrate waste liquid treatment apparatus 10A according to the present embodiment adsorbs or absorbs the radioactive substance in the nitrate waste liquid 11 containing nitric acid and radioactive substance, and reduces the nitric acid to nitrogen gas.
  • a radioactive nitrate waste liquid treatment apparatus having a denitrification tank 12A for storing activated sludge in which anaerobic microorganisms grow, and a re-aeration tank 14 for aeration mixing of the denitrification treatment liquid 24 treated in the denitrification tank 12A with activated sludge.
  • the denitrification tank 12A supplies pH adjusting means (not shown) for supplying a pH adjusting agent 21 for adjusting the pH of the nitrate waste liquid 11, and carbon source supply means (not shown) for supplying the carbon source 22 to the denitrification tank 12A.
  • a first solid-liquid separation membrane 25 which is a first solid-liquid separation means for separating the denitrification liquid 23 treated with the activated sludge into a solid content containing sludge (excess sludge 26A) and a treatment liquid;
  • the first solid-liquid component Provided in the lower side of the membrane 25, a gas containing no oxygen in the denitrification tank 12A (e.g., nitrogen gas (N 2), carbon dioxide (either or both CO 2)) and the gas supply means 30 for supplying
  • the re-aeration tank 14 re-aerates the denitrification treatment liquid 24 treated with the activated sludge, and further separates the re-aeration liquid 29 into the excess sludge 26B and the re-aeration treatment liquid 27.
  • a second solid-liquid separation membrane 28 which is a solid-liquid separation means, and an air supply means 34 which is provided on the lower side of the second solid-liquid separation membrane 28 and supplies air into the re-aeration tank 14 by a blower 32A. It has.
  • the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 28 have gas supply means 30 and air supply means 34 below the first solid-liquid separation membrane 28, respectively, and activated sludge as the supply gas rises. When the mixed liquid passes through the surface of the separation membrane, only the liquid permeates the membrane and solid-liquid separation is performed.
  • reference numeral P 1 denotes a denitrification treatment liquid supply pump that supplies the denitrification treatment liquid 24 to the reaeration tank 14, and reference symbol P 2 denotes a reaeration treatment liquid supply pump that sends out the reaeration treatment liquid 27.
  • the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 28 are provided in the denitrification tank 12A and the re-aeration tank 14, respectively.
  • the converted sludge can be completely separated from the denitrification liquid 23 or the re-aeration liquid 29. Thereby, the outflow of sludge can be prevented.
  • the types of the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 28 are not particularly limited, but known solid-liquid separation membranes such as flat membranes and hollow fiber membranes are used. What should I do?
  • the refined sludge is completely separated from the denitrification treatment liquid 24 or the re-aeration treatment liquid 27, so that the suspended solid (SS) concentration of the discharged re-aeration treatment liquid 27 can be reduced. it can.
  • the first solid-liquid separation membrane 25 in the denitrification tank 12A, it is possible to prevent the denitrification bacteria from flowing out and there is no contamination with other bacteria, so only the denitrification bacteria that grow in the denitrification tank 12A. Will be present in the tank in large quantities. As a result, a sufficient amount of sludge can be secured, and the sludge concentration in the denitrification tank 12A can be maintained at a high concentration.
  • the sludge concentration in the denitrification tank 12A can be maintained at a high concentration, the denitrification performance of the denitrification tank 12A can be increased, and the apparatus can be made compact.
  • the particulate radioactive material contained in the nitrate waste liquid 11 can also be separated from the re-aeration liquid 29. Therefore, the radioactivity concentration of the re-aeration treatment liquid 27 discharged can be reduced, and the radioactivity concentration of the re-aeration treatment liquid 27 can be reduced.
  • the pH in the denitrification liquid 23 of the denitrification tank 12A is preferably adjusted to 7.0 to 10.0.
  • the pH is preferably 8.0 to 9.5, more preferably 8.0 to 9.0. This is because microorganisms are killed when the pH in the denitrification solution 23 exceeds 10.0. Further, if the pH is less than 7.0, the reaction rate of the reaction of reducing the nitrogen gas of the microorganism decreases.
  • the lower side of the first solid-liquid separation membrane 25 of the denitrification tank 12A (the tank The gas supply means 30 supplies a gas not containing oxygen gas (for example, nitrogen gas) into the denitrification liquid 23 of the denitrification tank 12A on the bottom surface side.
  • oxygen gas for example, nitrogen gas
  • the denitrification liquid 23 in the denitrification tank 12A can be forcibly stirred, and microorganisms Reaction of the reduction treatment of nitrogen gas can be promoted. Further, since nitrogen gas is supplied from the lower side of the first solid-liquid separation membrane 25 through the gas supply means 30, the activated sludge adhering to the first solid-liquid separation membrane 25 is removed. The clogging of the film can be prevented by the gas cleaning effect.
  • nitrogen gas is supplied from the gas supply means, but the present invention is not limited to this, for example, carbon dioxide Any gas that does not contain oxygen, such as gas (CO 2 gas) or inert gas, may be used.
  • nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12A are released to the outside through the gas discharge line 31A.
  • activated sludge is initially charged with sewage sludge or sludge used in industrial wastewater treatment as seed sludge, and the activated sludge concentration is, for example, about 5,000. Those grown up to about 20,000 mg / L can be used.
  • the activated sludge can be held by a granular carrier or a fibrous carrier. However, in the preferred embodiment of the present invention, it is preferable to use floating activated sludge without using these various carriers.
  • an organic acid such as acetic acid can be used as the carbon source 22, but the present invention is not limited to this.
  • radioactive nitrate waste liquid treatment apparatus 10A in the radioactive nitrate waste liquid treatment apparatus 10A according to the present embodiment, sulfuric acid, hydrochloric acid, or the like can be used as the pH adjuster 21, but the present invention is not limited to this.
  • the radioactive nitrate waste liquid treatment apparatus 10A as a microorganism contained in the activated sludge, a known anaerobic microorganism that exhibits denitrification performance can be used in the denitrification tank 12A.
  • a known aerobic microorganisms for re-aeration can be used, and there is no particular limitation.
  • the solid-liquid separation membrane is used as the solid-liquid separation means, but the present invention is not limited to this, and the sludge and liquid can be separated. Anything is acceptable.
  • the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 28 are placed in the denitrification tank 12A and the re-aeration tank 14, respectively. Therefore, the refined sludge can be completely separated from the denitrification treatment liquid 24 and the re-aeration treatment liquid 27. For this reason, the outflow of radioactive substances and sludge can be prevented. Further, the suspended matter (SS) concentration in the re-aeration treatment liquid 27 discharged from the re-aeration tank 14 and separately processed can be improved.
  • SS suspended matter
  • the apparatus can be made compact.
  • the raw water nitrate nitrogen concentration is 6700-9200 mg / L (salt concentration: 4.0-5.5%), methanol and acetic acid are used as carbon sources, and the test temperature is 20
  • the denitrification test was performed at ⁇ 25 ° C. (room temperature).
  • the denitrification performance is 2 kg-N / m 3 / d. Improved the denitrification performance to 7 kg-N / m 3 / d.
  • FIG. 2 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 2 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10B has a nitrogen gas (N generated by reacting the anaerobic microorganisms with the nitric acid in the denitrification liquid 23 in the denitrification tank 12B. 2 ) and a gas circulation line 31B for circulating carbon dioxide gas (CO 2 ) in the denitrification tank 12B is branched from a part of the gas discharge line 31A.
  • N generated by reacting the anaerobic microorganisms with the nitric acid in the denitrification liquid 23 in the denitrification tank 12B. 2
  • a gas circulation line 31B for circulating carbon dioxide gas (CO 2 ) in the denitrification tank 12B is branched from a part of the gas discharge line 31A.
  • the nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12B are supplied to the gas supply means 30 by the blower 32B interposed in the gas circulation line 31B and introduced into the denitrification tank 12B.
  • the nitrogen gas (N 2 ) and the carbon dioxide gas (CO 2 ) generated by the microbial reaction in the denitrification tank 12B are recycled and reused in the denitrification tank 12B. Therefore, it is not necessary to separately provide a nitrogen gas supply means for supplying a gas not containing oxygen. As a result, the nitrogen gas supply means and the gas purchase cost can be reduced.
  • the gas is discharged from a part of the gas discharge line 31A for discharging nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12B.
  • a pressure valve 33 is provided for discharging the gas.
  • surplus nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) can be released by opening the pressure valve 33. Therefore, according to the present embodiment, since the nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12B are used, the gas is efficiently consumed and the gas is supplied. Equipment and gas purchase costs can be reduced.
  • FIG. 3 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 3 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10C introduces carbon dioxide gas (CO 2 ) as a pH treatment agent in addition to nitrogen gas (N 2 ) as a gas to be introduced into the denitrification tank 12C. It is what I did. That is, the radioactive nitrate waste liquid treatment apparatus 10C according to the present embodiment includes a gas introduction line 35 for introducing nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ), and a pH sensor 36 for measuring the pH in the denitrification liquid 23. And a carbon dioxide supply amount adjusting valve 37 for adjusting the amount of carbon dioxide (CO 2 ) supplied as a pH treatment agent to the denitrification tank 12C.
  • CO 2 carbon dioxide gas
  • the carbon dioxide supply amount adjustment valve 37 is opened to lower the pH of the denitrification liquid 23.
  • the carbon dioxide supply amount adjustment valve 37 is closed to raise the pH in the denitrification tank 12C. This eliminates the need to add a pH adjuster such as sulfuric acid or hydrochloric acid.
  • the pH in the denitrification tank 12C is measured by the pH sensor 36, and the pH in the denitrification tank 12C is controlled, so that The microorganism can perform an efficient denitrification reaction, and inhibition of the denitrification reaction of the microorganism in the denitrification tank 12C can be prevented.
  • carbon dioxide (CO 2 ) can be used as the pH adjuster 21.
  • the apparatus is corroded, and when sulfuric acid is used, sodium sulfate is generated, so that the amount of the mixture is limited and as a result, the solidified body increases. Therefore, the disposal cost will increase accordingly.
  • carbon dioxide (CO 2 ) as the pH adjuster 21, the residual salt when solidifying the secondary waste generated when the re-aeration treatment liquid 27 is separately treated is sodium carbonate, or It becomes sodium hydrogen carbonate, and the amount of solidified product obtained when the concentrate is incinerated and solidified can be reduced.
  • carbon dioxide gas (CO 2 ) separately supplied is used as the cleaning of the first solid-liquid separation membrane 25 and the pH adjuster 21, so that inhibition of the denitrification reaction can be prevented, It is possible to reduce the amount of solidified material obtained when the secondary waste produced by treating the re-aeration treatment liquid 27 is incinerated and solidified.
  • FIG. 4 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 4 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10D introduces only carbon dioxide (CO 2 ), and the gas circulation line of the radioactive nitrate waste liquid treatment apparatus 10B according to the second embodiment shown in FIG. 31B, a pH sensor 36 for measuring the pH of the denitrification liquid 23 in the denitrification tank 12C of the radioactive nitrate waste liquid treatment apparatus 10C according to Example 3 shown in FIG. 3, and carbon dioxide gas (CO 2 ) supplied to the denitrification tank 12D And a carbon dioxide supply amount adjusting valve 37 for adjusting the amount of gas.
  • CO 2 carbon dioxide
  • Nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12D are circulated to the denitrification tank 12D through the gas circulation line 31B and used, so that the amount of carbon dioxide (CO 2 ) gas introduced from the outside Can be reduced.
  • FIG. 5 is a schematic diagram showing the configuration of a radioactive nitrate waste liquid treatment apparatus 10E according to Example 5 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10E uses acetic acid as the carbon source 22, and the nitrate waste liquid in the denitrification tank 12A of the radioactive nitrate waste liquid treatment apparatus 10A according to the first embodiment shown in FIG.
  • the acetic acid supply line has a pH sensor 36 that measures the pH of the carbon dioxide 11 and a carbon source supply amount adjustment valve 39 that adjusts the supply amount of the carbon source 22 supplied to the denitrification tank 12E.
  • Acetic acid used as a carbon source also functions as a pH adjuster, so that the use amount of a pH adjuster such as sulfuric acid or hydrochloric acid can be reduced or eliminated.
  • the carbon source supply amount adjusting valve 39 When the pH in the denitrification tank 12E measured by the pH sensor 36 is 9.0 or more, the carbon source supply amount adjusting valve 39 is opened, the pH in the denitrification tank 12E is lowered, and measured by the pH sensor 36. When the pH in the denitrification tank 12E is 8.0 or less, the carbon source supply amount adjustment valve 39 is closed to raise the pH in the denitrification tank 12E. Thereby, both the pH fall by the excessive addition of the acetic acid supplied as a carbon source and the accompanying nitrogen performance fall can be prevented.
  • the pH in the denitrification tank 12E is measured by the pH sensor 36 and the pH in the denitrification tank 12E is constantly controlled, microorganisms in the denitrification tank 12E can perform a denitrification reaction. Inhibition of the denitrification reaction of microorganisms can be prevented.
  • acetic acid as the carbon source 22 is not excessively added, so that the amount of acetic acid used can be reduced. That is, when such adjustment is not performed, the surplus acetic acid is decomposed in the re-aeration tank 14, and a part thereof is surplus sludge 26B.
  • the radioactive nitrate waste liquid treatment apparatus 10E according to the present embodiment since the acetic acid flowing out to the re-aeration tank 14 is reduced, the amount of excess sludge generated in the re-aeration tank 14 can be reduced.
  • FIG. 6 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 6 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10F according to the present embodiment uses nitrogen gas (N 2 ) instead of nitrogen gas to be supplied to the denitrification tank 12F as air, and nitrogen gas generated in the denitrification tank 12F, It has a gas circulation line for circulating carbon dioxide gas to the denitrification tank 12F. That is, the radioactive nitrate waste liquid treatment apparatus 10F according to the present embodiment has an air supply line 41 in which the gas supplied to the denitrification tank of the radioactive nitrate waste liquid treatment apparatus 10A according to the first embodiment shown in FIG.
  • an air supply amount adjustment valve 42 is provided in the air supply line 41, and the air supply amount adjustment valve 42 is repeatedly opened and closed at regular intervals.
  • air may be intermittently supplied into the denitrification tank 12F for about 2 to 5 minutes per week.
  • acetic acid is used as the organic acid, but the present invention is not limited to this.
  • organic acids such as formic acid and propionic acid, and sugars such as fructose, maltose, sucrose, and galactose. Can also be used.
  • the types of carbon sources that can be used when processing the high concentration nitrate waste liquid 11 can be increased.
  • FIG. 7 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Example 7 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10G uses air instead of nitrogen gas as the gas supplied to the denitrification tank, and generates nitrogen gas (N 2 ), dioxide dioxide generated in the denitrification tank 12G.
  • a gas circulation line 31B for circulating carbon gas (CO 2 ) to the denitrification tank 12G is provided. That is, the radioactive nitrate waste liquid treatment apparatus 10G according to the present embodiment measures the oxidation reduction potential (ORP) of the denitrification liquid 23 in the denitrification tank 12G in the radioactive nitrate waste liquid treatment apparatus 10F according to Example 6 shown in FIG.
  • a reduction potential meter (ORP meter) 43 is provided.
  • the air supply amount adjustment valve 42 is controlled based on the value of the oxidation-reduction potential measured by the oxidation-reduction potentiometer 43 provided in the denitrification tank, and the amount of air supplied to the denitrification tank 12G is adjusted.
  • the air supply amount adjustment valve 42 may be opened.
  • the air supply amount adjustment valve 42 may be closed.
  • the oxidation-reduction potential of the denitrification liquid 23 in the denitrification tank 12G can be controlled within a certain range. Even when the reduction potential rises abnormally, it is possible to prevent a decrease in denitrification performance.
  • FIG. 8 is a schematic diagram showing the configuration of a radioactive nitrate waste liquid treatment apparatus according to Example 8 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10H has a nitrate waste liquid (raw water: salt) on the upstream side of the denitrification tank 12A of the radioactive nitrate waste liquid treatment apparatus 10A according to the first embodiment shown in FIG.
  • the adjusting tank 51 for supplying 50 (concentration 30 to 40%) 50 is provided.
  • the adjusting tank 51 includes an electric conductivity meter (EC meter) 52 for measuring electric conductivity, an industrial water introduction line 53, and the industrial water.
  • the introduction line 53 includes an industrial water supply amount adjustment valve 54 that adjusts the flow rate of water to be diluted based on the measured value of the electric conductivity meter (EC meter) 52.
  • the water supplied to the adjustment tank 51 is controlled by controlling the industrial water supply amount adjustment valve 54 provided in the industrial water introduction line 53 based on the EC value measured by the electric conductivity meter (EC meter) 52 provided in the adjustment tank 51.
  • the flow rate is adjusted. Specifically, when the EC value measured by the electric conductivity meter (EC meter) 52 is high, the industrial water supply amount adjustment valve 54 is opened, and the EC value measured by the electric conductivity meter (EC meter) 52 is When it is low, the industrial water supply amount adjustment valve 54 is closed.
  • the radioactive nitrate waste liquid treatment apparatus 10H when the nitrate waste liquid (raw water: salt concentration 30 to 40%) is diluted and biologically treated in a high salt concentration state of about 4%, for example, the electric conduction at this time
  • the control range of the EC value measured by the meter (EC meter) 52 is preferably 50 to 70 mS / cm, more preferably 53 to 68 mS / cm.
  • the radioactive nitrate waste processing apparatus 10H is provided with the nitrate waste liquid supply pump P 3 in nitric acid waste liquid feed line 55 for feeding the nitrate waste (undiluted) 50 to adjusting tank 51.
  • the nitrate waste liquid supply pump P 3 is controlled on the basis of the EC value measured by the electric conductivity meter (EC meter) 52 to adjust the supply amount of the nitrate waste liquid 50 fed to the adjustment tank 51. Specifically, when the EC value measured by the electric conductivity meter (EC meter) 52 is high, the nitrate waste liquid supply pump P 3 is stopped and the nitrate waste liquid (raw solution) 50 is supplied to the adjustment tank 51. When the EC value measured by the electric conductivity meter (EC meter) 52 is low, the nitrate waste liquid supply pump P 3 is operated to supply the nitrate waste liquid (raw solution) 50 to the adjustment tank 51.
  • the concentration of the high concentration nitrate waste liquid from the treatment facility is not always constant, even if the concentration of the nitrate waste liquid (raw solution) 50 is not constant, the fluctuation of the salt concentration in the nitrate waste liquid (raw solution) 50 is changed. Since transmission to the denitrification tank 12A can be prevented, it is possible to prevent the denitrification performance from being significantly lowered when the salt concentration fluctuates greatly.
  • the denitrification tank 12A since it is possible to supply to the denitrification tank 12A the nitrate waste (diluent) 11 of a constant salt concentration by nitrate waste feed pump P 4, it is possible to stabilize the denitrification performance.
  • FIG. 9 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 9 of the present invention. As shown in FIG.
  • the radioactive nitrate waste liquid treatment apparatus 10I has a weir 80 for preventing the outflow of the spilled sludge in the denitrification tank 12I instead of providing the first solid-liquid separation membrane 25 described above. It is what you have. Further, a stirring means 81 for stirring the inside of the denitrification tank 12I is provided.
  • the radioactive nitrate waste liquid treatment apparatus As the radioactive nitrate waste liquid treatment apparatus according to this embodiment, the radioactive nitrate waste liquid treatment apparatus according to Embodiments 1 to 9 shown in FIGS. 1 to 9 can be used, and the description thereof is omitted. As shown in FIG. 10, the biological treatment system 60 according to this embodiment performs a microbial treatment on a diluting device 62 for diluting a nitrate waste liquid (raw solution) 50 with industrial water 61 and nitrate ions in the diluted nitrate waste liquid 11.
  • the sludge 65 and the treatment liquid 70 are separated from the biological treatment apparatus (the radioactive nitrate waste liquid treatment apparatus of Examples 1 to 9) 63 that performs nitrogen reduction and re-aeration, and the biological treatment liquid treated by the biological treatment apparatus 63.
  • the sludge dewatering device 67 for dewatering the water in the separated sludge 65 and the incinerator 69 for incinerating the dewatered sludge 68 are included.
  • the diluting device 62 is performed in the adjustment tank 51 for diluting the raw water as shown in FIG.
  • the biological treatment apparatus 63 is a radioactive nitrate waste liquid treatment apparatus including any one of the denitrification tanks 12A to 12I described above and the re-aeration tank 14.
  • the sludge dewatering device 67 dewaters excess sludge discharged from the denitrification tank and the re-aeration tank of the biological treatment device 63, and the incinerator 69 is a secondary waste discharged from the sludge dewatering device 67.
  • This dehydrated sludge 68 is incinerated to form incinerated ash 71.
  • secondary waste may increase because the salt concentration of water adhering to the sludge during dehydration of excess sludge is high.
  • industrial water 61 is added to wash out the high salt concentration adhering water, and the washed washing water 72 is used as dilution water in the diluting device 62 for diluting the nitrate waste liquid 11. Therefore, since a part of the industrial water 61 used in the diluting device 62 is used for washing during dehydration, it is not necessary to use additional industrial water 61.
  • the amount of secondary waste (incineration ash) can be reduced to about 1/2 by lowering the salt concentration of adhering water.
  • the radioactive nitrate waste liquid treatment apparatus As described above, if the radioactive nitrate waste liquid treatment apparatus according to the present invention is used, the waste liquid with a high nitrate concentration discharged from nuclear facilities such as a reprocessing plant is efficiently microbially treated, and the refined sludge is combined with the treatment liquid. Each can be prevented from flowing out.

Abstract

 硝酸塩廃液(11)中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽(12A)と、該脱窒槽(12A)で処理された脱窒処理液(24)を活性汚泥と曝気混合する再曝気槽(14)とを有する放射性硝酸塩廃液処理装置であって、脱窒槽(12A)にpH調整剤(21)、炭素源(22)及び窒素ガスを供給し、第一の固液分離膜(25)により固形分と脱窒処理液(24)とに分離し、再曝気槽(14)において前記活性汚泥で処理された脱窒処理液(24)を再曝気処理し、第二の固液分離膜(28)により固形分と再曝気処理液(27)とに分離する。

Description

放射性硝酸塩廃液処理装置及び方法
 本発明は、排水中に含まれる硝酸を除去することが可能な放射性硝酸塩廃液処理装置及び方法に関する。
 再処理工場などの原子力施設から発生する硝酸塩廃液は高濃度(塩濃度が1%以上)であると共に、放射性であるため、そのままでは放流できず、最終的にはセメント固化体などに成型して埋設処分することになっている。
 近年、セメント固化体が硝酸塩を含有する場合、この硝酸塩が漏水し、周辺の地下水、土壌環境を汚染することが懸念され、硝酸塩を分解することが検討されている。
 硝酸塩を処理する方法として、電気還元法、化学還元法、生物還元法などがあるが、電気還元法では、重金属による阻害、アンモニアの発生等の問題を有している。
 また、化学還元法では、発熱反応、アンモニアの発生等の問題を有している。
 一方、生物還元法では、常温常圧で処理ができると共に、アンモニアの発生もないため、生物処理により硝酸塩を処理する方法が検討されている(特許文献1)。しかし、特許文献1の方法では使用する炭素源が1種類であるために、硝酸還元処理に伴って発生する余剰汚泥量が増え、2次廃棄物処分費が増大するという課題を有している。
 図11は、従来の生物を利用した放射性硝酸塩廃液処理装置の構成を示す概略図である。
 図11に示すように、従来の放射性硝酸塩廃液処理装置100は、図示しない原子力施設から発生する硝酸塩廃液101中の硝酸を窒素ガスに還元処理する脱窒槽102と、脱窒された脱窒液103を活性汚泥と曝気混合する再曝気槽104と、該再曝気槽104から排出された脱窒処理液である再曝気液105を沈澱した汚泥106と処理液107とに分離する沈澱槽108とを有するものである。
 前記脱窒槽102には、図示しない脱窒菌を多量に含有する活性汚泥が含まれており、該脱窒槽102において硝酸廃液中の硝酸イオンは嫌気性微生物(脱窒菌)の働きにより下記式(1)の反応で窒素ガス(N2)に還元され、硝酸廃液中から除去される。
 この時、脱窒槽102には、炭素源121として例えばメタノールと、pH調整剤120が供給される。また、脱窒槽102内は攪拌機110により攪拌されている。
NO3 -+5/6CH3OH→1/2N2+5/6CO2+7/6H2O+OH-・・・(1)
 その後、再曝気液105は再曝気槽104から沈澱槽108を経て、処理液107として図示しない後の工程に送られる。また、沈澱槽108に沈澱した汚泥106は、循環ポンプ111によって余剰汚泥131として回収される。また、沈澱槽108に沈澱した汚泥106の一部は、返送汚泥供給ライン112を介して脱窒槽102に返送され、再利用されている。再利用されない汚泥は余剰汚泥131として系外に引き抜かれ、図示しない処分工程に送られる。
 また、微生物含有汚泥中の嫌気性脱窒菌により、硝酸態窒素と亜硝酸態窒素を窒素に還元するための微生物処理工程を含む複数の処理槽を持った硝酸塩含有廃液の処理方法と処理装置が利用されている(特許文献2)。
特許第3697037号公報 特開2007-105627号公報
 しかしながら、従来の放射性硝酸塩廃液処理装置100では、硝酸塩廃液101中の硝酸塩の濃度が低い場合(塩濃度が1%未満)には、脱窒菌が死滅することはなかったが、硝酸塩廃液101中の硝酸塩の濃度が高濃度(例えば、1~7%程度)の場合には、生物脱窒反応に伴うpHの上昇により前記脱窒菌が死滅してしまうおそれがある、という問題がある。
 また、硝酸塩廃液101中の硝酸塩の濃度が高濃度(例えば、1~7%程度)の場合には、浸透圧の上昇により生体内から水が浸出し、生態を維持できずに死滅するので、汚泥フロックの微細化が発生し、汚泥106が沈殿槽108において沈殿しなくなり、この結果、処理液107と共に後側に流出してしまう、という問題がある。
 また、脱窒槽102において供給する炭素源121を変更(例えば酢酸などの有機酸や糖類等)することにより、微生物の増殖が発生し、余剰汚泥131の発生量が増大し、処分量が増加する、という問題がある。
 この余剰汚泥131の発生量の増大は、原子力施設にとっては、二次廃棄物は固化体として埋設処分されるため、処分するために膨大な費用がかかる、いわゆる、二次廃棄物量を削減する必要がある、という問題がある。
 また、放射性硝酸塩廃液を処理する設備は、放射線管理区域内に設置する必要があるため、その処理設備をコンパクトにする必要がある、という要望がある。
 また、これと共に、二次廃棄物量を削減する必要がある、という要望がある。
 さらには、放射線管理区域内に設置する微生物処理システムとしては、反応、性能の安定化を図る必要がある、という要望がある。
 本発明は、前記問題に鑑み、放射線管理区域内に設置され、且つ高い硝酸塩濃度の廃液を効率的に微生物処理することができる放射性硝酸塩廃液処理装置及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽が、前記硝酸塩廃液のpHを調整するpH調整剤を供給するpH調整手段と、前記脱窒槽に炭素源を供給する炭素源供給手段と、前記活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに分離する第一の固液分離手段と、該第一の固液分離手段の下部側に設けられ、前記脱窒槽内に酸素を含まないガスを供給するガス供給手段とを有すると共に、前記再曝気槽が、前記活性汚泥で処理された脱窒処理液を、余剰汚泥と処理液とに更に分離する第二の固液分離手段と、該第二の固液分離手段の下部側に設けられ、前記再曝気槽内に空気を供給する空気供給手段と、を有することを特徴とする放射性硝酸塩廃液処理装置にある。
 第2の発明は、第1の発明において、前記脱窒槽の脱窒液のpHが、7.0~10.0であることを特徴とする放射性硝酸塩廃液処理装置にある。
 第3の発明は、第1又は2の発明において、前記脱窒槽において、前記嫌気性微生物が前記脱窒液中の前記硝酸と反応することにより生成される窒素ガス及び二酸化炭素を前記脱窒槽に循環させるガス循環ラインを有することを特徴とする放射性硝酸塩廃液処理装置にある。
 第4の発明は、第1乃至3の発明の何れか一つにおいて、前記脱窒液のpHを測定するpHセンサと、前記脱窒槽に供給する炭酸ガスのガス量を調整する炭酸ガス供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置にある。
 第5の発明は、第1乃至3の発明の何れか一つにおいて、前記脱窒槽に供給する炭素源が酢酸であり、前記脱窒液のpHを測定するpHセンサと、前記脱窒槽に供給する炭素源の供給量を調整する炭素源供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置にある。
 第6の発明は、第3の発明において、前記脱窒槽に供給する炭素源が有機酸又は糖類のいずれか一方又は両方であり、前記ガス循環ラインに、空気供給量調整バルブを介して空気を一時的に供給することを特徴とする放射性硝酸塩廃液処理装置にある。
 第7の発明は、第6の発明において、前記脱窒槽に前記脱窒液の酸化還元電位を測定する酸化還元電位計を有することを特徴とする放射性硝酸塩廃液処理装置にある。
 第8の発明は、第1乃至4の発明の何れか一つにおいて、前記脱窒槽の上流側に調整槽を設けてなり、前記調整槽が、電気伝導度を測定する電気伝導計と、工業用水導入ラインと、該工業用水導入ラインに介装され、前記電気伝導計の測定値に基づいて水供給量を調整する工業用水供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置にある。
 第9の発明は、第1乃至8の発明の何れか一つにおいて、前記第一の固液分離手段及び前記第二の固液分離手段が、固液分離膜であることを特徴とする放射性硝酸塩廃液処理装置にある。
 第10の発明は、硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽が、前記硝酸塩廃液のpHを調整するpH調整剤を供給するpH調整手段と、前記脱窒槽に炭素源を供給する炭素源供給手段と、前記脱窒槽内に流出汚泥の流出を防止する堰とを有すると共に、前記再曝気槽が、前記活性汚泥で処理された脱窒処理液を、余剰汚泥と処理液とに更に分離する第二の固液分離手段と、該第二の固液分離手段の下部側に設けられ、前記再曝気槽内に空気を供給する空気供給手段と、を有することを特徴とする放射性硝酸塩廃液処理装置。
 第11の発明は、硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽において、前記硝酸塩廃液のpHを調整しつつ、炭素源を供給して活性汚泥で処理し、前記活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに第一の固液分離手段で分離する際に、酸素を含まないガスを供給して嫌気性微生物の還元処理を促進すると共に、固液分離手段に付着する活性汚泥をガス洗浄する工程と、該脱窒槽で処理された脱窒処理液を活性汚泥と曝気混合する再曝気槽において、前記活性汚泥で処理された脱窒処理液を、汚泥を含む固形分と再曝気処理液とに第二の固液分離手段で更に分離する工程とを含むことを特徴とする放射性硝酸塩廃液処理方法にある。
 本発明によれば、脱窒槽において、活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに分離する第一の固液分離手段を有すると共に、再曝気槽において処理された再曝気液を、汚泥を含む固形分と再曝気処理液とに更に分離する第二の固液分離手段とを有しているため、微細化した汚泥が処理液と共に各々流出するのを防止することができる。
図1は、本発明の実施例1に係る放射性硝酸塩廃液処理装置を示す概念図である。 図2は、本発明の実施例2に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図3は、本発明の実施例3に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図4は、本発明の実施例4に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図5は、本発明の実施例5に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図6は、本発明の実施例6に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図7は、本発明の実施例7に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図8は、本発明の実施例8に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図9は、本発明の実施例9に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。 図10は、本発明の実施例10に係る放射性硝酸塩廃液処理装置を用いた生物処理システムの構成を示す概略図である。 図11は、従来の生物を利用した放射性硝酸塩廃液処理装置の構成を示す概略図である。
符号の説明
 10A~10I 放射性硝酸塩廃液処理装置
 11 硝酸塩廃液
 12A~12G、12I 脱窒槽
 14 再曝気槽
 21 pH調整剤
 22 炭素源
 23 脱窒液
 24 脱窒処理液
 25 第一の固液分離膜
 26A、26B 固形分(余剰汚泥)
 27 再曝気処理液
 28 第二の固液分離膜
 29 再曝気液
 30 散気管
 31A ガス排出ライン
 31B ガス循環ライン
 32A、32B ブロワ
 33 圧力弁
 34 空気供給手段
 35 ガス導入ライン
 36 pHセンサ
 37 炭酸ガス供給量調整バルブ
 39 炭素源供給量調整バルブ
 41 空気供給ライン
 42 空気供給量調整バルブ
 43 酸化還元電位計
 50 硝酸塩廃液(原液)
 51 調整槽
 52 電気伝導計(EC計)
 53 工業用水導入ライン
 54 工業用水供給量調整バルブ
 55 硝酸廃液供給ライン
 61 工業用水
 62 希釈装置
 63 生物処理装置
 65 汚泥
 67 汚泥脱水装置
 68 脱水汚泥
 69 焼却装置
 70 処理液
 71 焼却灰
 72 洗浄水
 80 堰
 81 撹拌手段
 P3 硝酸塩廃液供給ポンプ
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係る放射性硝酸塩廃液処理装置について、図面を参照して説明する。
 図1は、本発明の実施例1に係る放射性硝酸塩廃液処理装置を示す概念図である。
 図1に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Aは、硝酸と放射性物質とを含む硝酸塩廃液11中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽12Aと、該脱窒槽12Aで処理された脱窒処理液24を活性汚泥と曝気混合する再曝気槽14とを有する放射性硝酸塩廃液処理装置であって、脱窒槽12Aが、硝酸塩廃液11のpHを調整するpH調整剤21を供給するpH調整手段(図示せず)と、脱窒槽12Aに炭素源22を供給する炭素源供給手段(図示せず)と、前記活性汚泥で処理された脱窒液23を汚泥(余剰汚泥26A)を含む固形分と処理液とに分離する第一の固液分離手段である第一の固液分離膜25と、該第一の固液分離膜25の下部側に設けられ、脱窒槽12A内に酸素を含まないガス(例えば、窒素ガス(N2)、炭酸ガス(CO2)の何れか一方又は両方)を供給するガス供給手段30とを有すると共に、再曝気槽14が、前記活性汚泥で処理された脱窒処理液24を再曝気処理し、再曝気液29を余剰汚泥26Bと再曝気処理液27とに更に分離する第二の固液分離手段である第二の固液分離膜28と、該第二の固液分離膜28の下部側に設けられ、前記再曝気槽14内に空気をブロワ32Aにより供給する空気供給手段34とを有するものである。
 また、前記第一の固液分離膜25と第二の固液分離膜28の下部には、各々ガス供給手段30と空気供給手段34とを有し、供給ガスの上昇に伴って、活性汚泥混合液が分離膜表面を通過する際に、液のみが膜を透過して固液分離が行われる。膜の表面には分離された後の活性汚泥が付着するが、膜表面は前記供給ガス流によって常に洗浄されるため、膜表面に付着した活性汚泥は洗浄除去され、常に清浄な膜表面で固液分離を行うことが出来る。なお、図1中、符号P1は脱窒処理液24を再曝気槽14に供給する脱窒処理液供給ポンプ、符号P2は再曝気処理液27を送出する再曝気処理液供給ポンプを図示する。
 本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、第一の固液分離膜25と第二の固液分離膜28とを、それぞれ脱窒槽12Aと再曝気槽14に設けているため、微細化した汚泥は完全に脱窒液23、又は再曝気液29と分離することができることとなる。これにより、汚泥の流出を防ぐことができる。ここで、第一の固液分離膜25と第二の固液分離膜28の種類としては特に限定されるものではないが、例えば平膜、中空糸膜等の公知の固液分離膜を用いるようにすればよい。
 この結果、微細化した汚泥を脱窒処理液24、又は再曝気処理液27と完全に分離することで、排出される再曝気処理液27の浮遊物質(SS)濃度の低減化を図ることができる。
 また、脱窒槽12A内に第一の固液分離膜25を設置することにより、脱窒菌の流出を防止できると共に、他の菌の混入もないことから、脱窒槽12A内で増殖する脱窒菌のみが大量に槽内に存在することになる。その結果、十分な量の汚泥を確保することができ、脱窒槽12A内の汚泥濃度を高濃度に維持することできる。
 また、脱窒槽12A内の汚泥濃度を高濃度に維持することできるため、脱窒槽12Aの脱窒性能を高くすることができ、装置のコンパクト化を図ることができる。
 また、第一の固液分離膜25及び第二の固液分離膜28を設けることにより、硝酸塩廃液11中に含まれる粒子状の放射性物質も再曝気液29から分離することができるため、外部に排出される再曝気処理液27の放射能濃度を低くすることができ、再曝気処理液27の放射能濃度の低減化を図ることができる。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、脱窒槽12Aの脱窒液23中のpHは、7.0~10.0に調整するのがよい。またpHを8.0~9.5、更にはpHを8.0~9.0とするのが好ましい。これは、脱窒液23中のpHが10.0を超えると、微生物が死滅するからである。また、pHが7.0未満であると、微生物の窒素ガスの還元処理の反応の反応速度が低下するためである。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、嫌気性微生物による窒素ガスの還元処理を良好にするために、脱窒槽12Aの第一の固液分離膜25の下部側(槽の底面側)には、脱窒槽12Aの脱窒液23中に酸素ガスを含まないガス(例えば窒素ガス等)をガス供給手段30により供給するようにしている。
 また、前記ガス供給手段30を介して脱窒槽12A内の脱窒液23中に窒素ガスを供給することにより、脱窒槽12A内の脱窒液23を強制的に攪拌することができ、微生物の窒素ガスの還元処理の反応を促進することができる。また、第一の固液分離膜25の下方側からガス供給手段30を介して窒素ガスを供給するようにしているので、第一の固液分離膜25に付着する活性汚泥を除去することとなり、ガス洗浄効果により膜の目詰りを防止することができる。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、ガス供給手段より窒素ガス(N2ガス)を供給するようにしているが、本発明はこれに限定されるものではなく、例えば炭酸ガス(CO2ガス)や不活性ガス等の酸素を含まないガスであればいずれでもよい。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、脱窒槽12Aで発生した窒素ガス(N2)、二酸化炭素ガス(CO2)はガス排出ライン31Aを介して外部に放出される。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、活性汚泥は、当初、下水汚泥や産業排水処理で用いられている汚泥を種汚泥として投入し、活性汚泥濃度が例えば約5,000~20,000mg/L程度に達するまで増殖させたものを用いることができる。活性汚泥は、粒状担体や繊維状担体により保持することもできるが、本発明の好適な実施の形態ではこれらの各種担体を用いず、浮遊性の活性汚泥を用いることが好ましい。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、炭素源22として例えば酢酸等の有機酸を用いることができるが、本発明はこれに限定されるものではない。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、pH調整剤21として硫酸、塩酸等を用いることができるが、本発明はこれに限定されるものではない。
 本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、活性汚泥中に含まれる微生物としては、脱窒槽12Aでは、脱窒性能が発揮される公知の嫌気性微生物を用いることができる。また再曝気槽14では再曝気用の公知の好気性微生物を用いることができ、特に限定されるものではない。
 本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、固液分離手段として固液分離膜を用いているが、本発明はこれに限定されるものではなく、汚泥と液体とを分離できるようなものであればよい。
 以上説明したように、本実施例に係る放射性硝酸塩廃液処理装置10Aによれば、第一の固液分離膜25及び第二の固液分離膜28を、それぞれ脱窒槽12A及び再曝気槽14内に設けているため、微細化した汚泥は脱窒処理液24及び再曝気処理液27と完全に分離することができる。このため、放射性物質及び汚泥の流出を防ぐことができる。また再曝気槽14から排出され、別途処理される再曝気処理液27中の浮遊物質(SS)濃度を改善することができる。
 また、脱窒槽12A内に十分な量の汚泥を確保することができるため、脱窒槽12A内の汚泥濃度を高濃度に維持することができるため、脱窒槽12Aの脱窒性能を高く維持することができ、装置のコンパクト化を図ることができる。
 [試験例]
 本実施例に係る装置を用い、原水硝酸態窒素濃度が6700~9200mg/L(塩濃度:4.0~5.5%)のものを、炭素源としてメタノールと酢酸を用いて、試験温度20~25℃(室温)で脱窒試験を行った。
 脱窒槽に第一の固液分離膜を設けない場合には、脱窒性能が2kg-N/m3/dであったものが、脱窒槽に第一の固液分離膜を設けた場合には、脱窒性能が7kg-N/m3/dに向上した。
 本発明による実施例2に係る放射性硝酸塩廃液処理装置について、図2を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置10Bは、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置10Aの構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図2は、本発明の実施例2に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。図2に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Bは、脱窒槽12Bにおいて、前記嫌気性微生物が脱窒液23中の前記硝酸と反応することにより生成される窒素ガス(N2)及び二酸化炭素ガス(CO2)を脱窒槽12B内に循環させるガス循環ライン31Bをガス排出ライン31Aの一部から分岐して設けるようにしている。
 この結果、脱窒槽12Bで発生した窒素ガス(N2)及び二酸化炭素ガス(CO2)をガス循環ライン31Bに介装されたブロワ32Bによりガス供給手段30に送給し、脱窒槽12Bに導入するようにしている。
 このように脱窒槽12B内の微生物反応で発生した窒素ガス(N2)、二酸化炭素ガス(CO2)を再循環させて脱窒槽12B内で再利用して用いることにより、図1に示すような酸素を含まないガスを供給する窒素ガス供給手段を別途設ける必要がなくなる。この結果、窒素ガス供給手段及びガス購入費を削減することができる。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Bにおいては、脱窒槽12Bで発生した窒素ガス(N2)、二酸化炭素ガス(CO2)を排出するガス排出ライン31Aの一部から外部にガスを排出する圧力弁33を設けるようにしている。これにより、余剰の窒素ガス(N2)及び二酸化炭素ガス(CO2)は圧力弁33を開いて放出することができる。
 よって、本実施例によれば、脱窒槽12Bで発生した窒素ガス(N2)及び二酸化炭素ガス(CO2)を用いているため、ガスの効率的な自己消費を行うこととなり、ガスの供給設備、ガス購入費を削減することができる。
 本発明による実施例3に係る放射性硝酸塩廃液処理装置について、図3を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図3は、本発明の実施例3に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
 図3に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Cは、脱窒槽12Cに導入するガスとして窒素ガス(N2)の他に炭酸ガス(CO2)をpH処理剤として導入するようにしたものである。
 即ち、本実施例に係る放射性硝酸塩廃液処理装置10Cは、窒素ガス(N2)及び炭酸ガス(CO2)を導入するガス導入ライン35と、脱窒液23中のpHを測定するpHセンサ36と、脱窒槽12CにpH処理剤として供給する炭酸ガス(CO2)のガス量を調整する炭酸ガス供給量調整バルブ37とを有するものである。
 pHセンサ36により計測される脱窒液23のpHが9.4以上の場合には、炭酸ガス供給量調整バルブ37を開き、脱窒液23のpHを低下させるようにしている。一方、pHセンサ36により計測される脱窒槽12C内のpHが7.5以下の場合には、炭酸ガス供給量調整バルブ37を閉じ、脱窒槽12C内のpHを上昇させるようにしている。これにより硫酸、塩酸等のpH調整剤を添加する必要がなくなる。
 このように、本実施例に係る放射性硝酸塩廃液処理装置10Cによれば、pHセンサ36により脱窒槽12C内のpHを計測し、脱窒槽12C内のpHを制御することにより、脱窒槽12C内の微生物が効率的な脱窒反応を行うことができることとなり、脱窒槽12C内の微生物の脱窒反応の阻害を防止することができる。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Cにおいては、pH調整剤21として炭酸ガス(CO2)を用いることができる。
 これは、pH調整剤21として塩酸を用いる場合には装置が腐食してしまい、また硫酸を用いると硫酸ナトリウムが生成されるため、混ぜられる量に限界があると共に、その結果固化体が増えるため、その分処分費用が増大することになる。
 これに対し、pH調整剤21として炭酸ガス(CO2)を用いることで、再曝気処理液27を別途処理する際に生成される2次廃棄物を固化する時の残留塩が炭酸ナトリウム、または炭酸水素ナトリウムとなり、濃縮物を焼却、固化した時に得られる固化体の発生量を削減することができる。
 よって、本実施例によれば、別途供給する炭酸ガス(CO2)を第一の固液分離膜25の洗浄及びpH調整剤21として用いているため、脱窒反応の阻害を防止できると共に、再曝気処理液27を処理することで生成される2次廃棄物を焼却、固化した時に得られる固化体の発生量を削減することができる。
 本発明による実施例4に係る放射性硝酸塩廃液処理装置について、図4を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図4は、本発明の実施例4に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
 図4に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Dは、炭酸ガス(CO2)のみを導入し、図2に示す実施例2に係る放射性硝酸塩廃液処理装置10Bのガス循環ライン31Bと、図3に示す実施例3に係る放射性硝酸塩廃液処理装置10Cの脱窒槽12C内の脱窒液23のpHを測定するpHセンサ36と、脱窒槽12Dに供給する炭酸ガス(CO2)のガス量を調整する炭酸ガス供給量調整バルブ37とを有するものである。
 脱窒槽12Dで発生した窒素ガス(N2)及び二酸化炭素ガス(CO2)をガス循環ライン31Bにより脱窒槽12Dに循環させて用いることにより、外部から導入する炭酸ガス(CO2)のガス量を削減することができる。
 また、別途供給する炭酸ガス(CO2)を第一の固液分離膜25の洗浄及びpH調整剤21として用いているため、脱窒反応の阻害を防止できると共に、再曝気処理液27を処理することで生成される2次廃棄物を焼却、固化した時に得られる固化体の発生量を削減することができる。これにより硫酸、塩酸等のpH調整剤を添加する必要がなくなる。
 本発明による実施例5に係る放射性硝酸塩廃液処理装置について、図5を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図5は、本発明の実施例5に係る放射性硝酸塩廃液処理装置10Eの構成を示す概略図である。
 図5に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Eは、炭素源22として酢酸を用い、図1に示す実施例1に係る放射性硝酸塩廃液処理装置10Aの脱窒槽12Aに硝酸塩廃液11のpHを測定するpHセンサ36と、脱窒槽12Eに供給する炭素源22の供給量を調整する炭素源供給量調整バルブ39を酢酸供給ラインに有するものである。
 炭素源として用いる酢酸は、pH調整剤としても機能するため、硫酸、塩酸などのpH調整剤の使用量を削減あるいは不要とすることができる。
 pHセンサ36により計測される脱窒槽12E内のpHが9.0以上の場合には、炭素源供給量調整バルブ39を開き、脱窒槽12E内のpHを低下させ、pHセンサ36により計測される脱窒槽12E内のpHが8.0以下の場合には、炭素源供給量調整バルブ39を閉じ、脱窒槽12E内のpHを上昇させる。これにより、炭素源として供給する酢酸の過剰添加によるpH低下とそれに伴う窒性能低下を共に防止することができる。
 よって、pHセンサ36により脱窒槽12E内のpHを計測し、脱窒槽12E内のpHを常に制御することにより、脱窒槽12E内の微生物が脱窒反応を行うことができるため、脱窒槽12E内の微生物の脱窒反応の阻害を防止することができる。
 また、本実施例では炭素源22としての酢酸を過剰に添加することがなくなるため、酢酸の使用量を削減することができる。すなわち、このような調整を行わない場合には、余剰分の酢酸は再曝気槽14で分解され、一部は余剰汚泥26Bとなっていた。これに対し、本実施例に係る放射性硝酸塩廃液処理装置10Eによれば、再曝気槽14に流出する酢酸が減るため、再曝気槽14での余剰汚泥発生量を減少させることができる。
 本発明による実施例6に係る放射性硝酸塩廃液処理装置について、図6を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図6は、本発明の実施例6に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
 図6に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Fは、脱窒槽12Fに供給するガスを窒素ガス(N2)に代えて空気とし、脱窒槽12Fにおいて生成される窒素ガス、二酸化炭素ガスを脱窒槽12Fに循環させるガス循環ラインを有するものである。
 即ち、本実施例に係る放射性硝酸塩廃液処理装置10Fは、図1に示す実施例1に係る放射性硝酸塩廃液処理装置10Aの脱窒槽に供給するガスを窒素ガスに代えて空気とする空気供給ライン41と、図2に示す実施例2に係る放射性硝酸塩廃液処理装置10Bの脱窒槽において生成される窒素ガス(N2)、二酸化炭素ガス(CO2)を脱窒槽12Fに循環させるガス循環ライン31Bとを有するものである。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Fにおいては、空気供給ライン41に空気供給量調整バルブ42を設け、空気供給量調整バルブ42を一定時間毎に開閉を繰り返すようにしている。この開閉は、例えば1週間に2~5分程度、脱窒槽12F内に間欠的に空気を供給するようにすればよい。
 これは、例えば酢酸、グルコースを炭素源として用い、酸化還元電位(ORP)が低下するような場合には、有機物のみで反応が進行し、硝酸が使用されないことが発生し、このため硝酸が減少しない場合があるが、このように酸素を少し供給することにより脱窒性能の低下を防止することができる。
 なお、本実施例では、酢酸を有機酸として用いているが、本発明はこれに限定されるものではなく、例えばギ酸、プロピオン酸等の有機酸、フルクトース、マルトース、シュクロース、ガラクトース等の糖類を用いることもできる。
 また、高濃度の硝酸塩廃液11を処理する際に使用できる炭素源の種類を増加させることができる。
 また、脱窒槽12F内の還元雰囲気が緩和されるため、硫化水素(H2S)の発生を防止することができ、反応容器の配管などの腐食を抑制することができる。
 本発明による実施例7に係る放射性硝酸塩廃液処理装置について、図7を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図7は、本発明の実施例7に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
 図7に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Gは、脱窒槽に供給するガスを窒素ガスに代えて空気とし、脱窒槽12Gにおいて生成される窒素ガス(N2)、二酸化炭素ガス(CO2)を脱窒槽12Gに循環させるガス循環ライン31Bを有するものである。
 即ち、本実施例に係る放射性硝酸塩廃液処理装置10Gは、図6に示す実施例6に係る放射性硝酸塩廃液処理装置10Fに脱窒槽12Gに脱窒液23の酸化還元電位(ORP)を測定する酸化還元電位計(ORP計)43を有するようにしたものである。
 脱窒槽に設けた酸化還元電位計43により計測される酸化還元電位の値に基づいて空気供給量調整バルブ42を制御し、脱窒槽12Gに供給される空気量を調整するようにしている。
 具体的には、酸化還元電位計43により測定される脱窒槽12G内の脱窒液23の酸化還元電位が-350mV、好ましくは-300mVの時には空気供給量調整バルブ42を開くようにすればよい。
 また、一方酸化還元電位計43により測定される脱窒槽12G内の脱窒液23の酸化還元電位が-50mV、好ましくは-100mVの時には空気供給量調整バルブ42を閉じるようにすればよい。
 酸化還元電位計43により脱窒槽12G内の脱窒液23の酸化還元電位を測定することで、脱窒槽12G内の脱窒液23の酸化還元電位を一定範囲に制御することができるため、酸化還元電位が異常上昇した場合でも、脱窒性能の低下を防止することができる。
 本発明による実施例8に係る放射性硝酸塩廃液処理装置について、図8を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図8は、本発明の実施例8に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
 図8に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Hは、図1に示す実施例1に係る放射性硝酸塩廃液処理装置10Aの脱窒槽12Aの上流側に、硝酸塩廃液(原水:塩濃度30~40%)50を供給する調整槽51を設けており、調整槽51には、電気伝導度を測定する電気伝導計(EC計)52と、工業用水導入ライン53と、該工業用水導入ライン53に前記電気伝導計(EC計)52の測定値に基づいて希釈する水の流量を調整する工業用水供給量調整バルブ54とを有するものである。
 調整槽51に設けた電気伝導計(EC計)52により計測されるEC値に基づいて工業用水導入ライン53に設けた工業用水供給量調整バルブ54を制御し、調整槽51に供給される水の流量を調整するようにしている。
 具体的には、電気伝導計(EC計)52により計測されるEC値が高い場合には、工業用水供給量調整バルブ54を開き、電気伝導計(EC計)52により計測されるEC値が低い場合には、工業用水供給量調整バルブ54を閉じる。
 本実施例に係る放射性硝酸塩廃液処理装置10Hにおいては、硝酸塩廃液(原水:塩濃度30~40%)を希釈して例えば4%程度の高塩濃度状態で生物処理する場合、このときの電気伝導計(EC計)52により計測されるEC値の制御範囲は、50~70mS/cm、更には53~68mS/cmとするのが好ましい。
 また、本実施例に係る放射性硝酸塩廃液処理装置10Hにおいては、硝酸塩廃液(原液)50を調整槽51に送給する硝酸廃液供給ライン55に硝酸塩廃液供給ポンプP3を設けている。電気伝導計(EC計)52により計測されるEC値に基づいて硝酸塩廃液供給ポンプP3を制御して調整槽51に送給される硝酸塩廃液50の供給量を調整するようにしている。
 具体的には、電気伝導計(EC計)52により計測されるEC値が高い場合には、硝酸塩廃液供給ポンプP3を停止して硝酸塩廃液(原液)50を調整槽51に供給するのを停止し、電気伝導計(EC計)52により計測されるEC値が低い場合には、硝酸塩廃液供給ポンプP3を稼働して硝酸塩廃液(原液)50を調整槽51に供給する。
 よって、処理設備からの高濃度の硝酸塩廃液の濃度は常に一定となるわけではないため、硝酸塩廃液(原液)50の濃度が一定でない場合でも、硝酸塩廃液(原液)50中の塩濃度の変動を脱窒槽12Aに伝えるのを防止することができるため、塩濃度が大きく変動した場合における脱窒性能の著しく低下するのを防止することができる。
 また、一定の塩濃度の硝酸塩廃液(希釈液)11を硝酸塩廃液供給ポンプP4により脱窒槽12Aに供給することができるため、脱窒性能を安定にすることができる。
 本発明による実施例9に係る放射性硝酸塩廃液処理装置について、図9を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置10Iは、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置10Aの構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
 図9は、本発明の実施例9に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。図9に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Iは、脱窒槽12Iにおいて、前述した第一の固液分離膜25を設ける代わりに、流出汚泥の流出を防止する堰80を有するものである。また、脱窒槽12I内部を撹拌する撹拌手段81が設けられている。
 この堰80の設置により、脱窒槽12Iにおける汚泥の一部が沈降することとなり、脱窒槽12I内にとどまることとなる。
 この結果、汚泥濃度を高めることができ、適用できる硝酸濃度の範囲が拡がることとなる。
 本発明による実施例10に係る放射性硝酸塩廃液処理装置を用いた生物処理システムについて、図10を参照して説明する。
 本実施例に係る放射性硝酸塩廃液処理装置は、前記図1~9に示した実施例1~9に係る放射性硝酸塩廃液処理装置を用いることができ、説明は省略する。
 本実施例に係る生物処理システム60は、図10に示すように、硝酸塩廃液(原液)50を工業用水61で希釈する希釈装置62と、希釈された硝酸塩廃液11中の硝酸イオンを微生物処理して窒素還元すると共に、再曝気する生物処理装置(実施例1~9の放射性硝酸塩廃液処理装置)63と、生物処理装置63で処理された生物処理液から汚泥65と処理液70とを分離し、分離した汚泥65中の水分を脱水する汚泥脱水装置67と、脱水汚泥68を焼却する焼却装置69とからなる。
 希釈装置62は、前述した実施例8の図8に示すような原水を希釈する調整槽51で行われる。
 生物処理装置63は、前述した脱窒槽12A~12Iのいずれかと再曝気槽14とからなる放射性硝酸塩廃液処理装置である。
 また、汚泥脱水装置67は、生物処理装置63の脱窒槽と再曝気槽とから排出される余剰汚泥を脱水するものであり、焼却装置69は、汚泥脱水装置67から排出される2次廃棄物である脱水汚泥68を焼却し、焼却灰71としている。
 高塩濃度の硝酸廃液を生物処理する生物処理装置63においては、余剰汚泥脱水時に汚泥に付着する水の塩濃度が高いため、2次廃棄物(焼却灰)が増加することがあるが、汚泥脱水装置67において、工業用水61を加えて高塩濃度の付着水を洗い流し、洗い流された洗浄水72を硝酸塩廃液11の希釈する希釈装置62における希釈水として使用するようにしている。
 よって、希釈装置62で用いる工業用水61の一部を脱水時の洗浄に使用するため、追加の工業用水61を用いる必要がない。また、付着水の塩濃度を下げることで、2次廃棄物量(焼却灰)を約1/2程度にまで低減することができる。
 以上のように、本発明に係る放射性硝酸塩廃液処理装置を用いれば、再処理工場などの原子力施設から排出される高い硝酸塩濃度の廃液を効率的に微生物処理し、微細化した汚泥が処理液と共に各々流出するのを防止することができる。

Claims (11)

  1.  硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、
     該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、
     前記脱窒槽が、
     前記硝酸塩廃液のpHを調整するpH調整剤を供給するpH調整手段と、
     前記脱窒槽に炭素源を供給する炭素源供給手段と、
     前記活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに分離する第一の固液分離手段と、
     該第一の固液分離手段の下部側に設けられ、前記脱窒槽内に酸素を含まないガスを供給するガス供給手段とを有すると共に、
     前記再曝気槽が、
     前記活性汚泥で処理された脱窒処理液を、余剰汚泥と処理液とに更に分離する第二の固液分離手段と、
     該第二の固液分離手段の下部側に設けられ、前記再曝気槽内に空気を供給する空気供給手段と、
     を有することを特徴とする放射性硝酸塩廃液処理装置。
  2.  請求項1において、
     前記脱窒槽の脱窒液のpHが、7.0~10.0であることを特徴とする放射性硝酸塩廃液処理装置。
  3.  請求項1又は2において、
     前記脱窒槽において、前記嫌気性微生物が前記脱窒液中の前記硝酸と反応することにより生成される窒素ガス及び二酸化炭素を前記脱窒槽に循環させるガス循環ラインを有することを特徴とする放射性硝酸塩廃液処理装置。
  4.  請求項1乃至3の何れか一つにおいて、
     前記脱窒液のpHを測定するpHセンサと、
     前記脱窒槽に供給する炭酸ガスのガス量を調整する炭酸ガス供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置。
  5.  請求項1乃至3の何れか一つにおいて、
     前記脱窒槽に供給する炭素源が酢酸であり、
     前記脱窒液のpHを測定するpHセンサと、
     前記脱窒槽に供給する炭素源の供給量を調整する炭素源供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置。
  6.  請求項3において、
     前記脱窒槽に供給する炭素源が有機酸又は糖類のいずれか一方又は両方であり、
     前記ガス循環ラインに、空気供給量調整バルブを介して空気を一時的に供給することを特徴とする放射性硝酸塩廃液処理装置。
  7.  請求項6において、
     前記脱窒槽に前記脱窒液の酸化還元電位を測定する酸化還元電位計を有することを特徴とする放射性硝酸塩廃液処理装置。
  8.  請求項1乃至4の何れか一つにおいて、
     前記脱窒槽の上流側に調整槽を設けてなり、
     前記調整槽が、
     電気伝導度を測定する電気伝導計と、
     工業用水導入ラインと、
     該工業用水導入ラインに介装され、前記電気伝導計の測定値に基づいて水供給量を調整する工業用水供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置。
  9.  請求項1乃至8の何れか一つにおいて、
     前記第一の固液分離手段及び前記第二の固液分離手段が、固液分離膜であることを特徴とする放射性硝酸塩廃液処理装置。
  10.  硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、
     該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、
     前記脱窒槽が、
     前記硝酸塩廃液のpHを調整するpH調整剤を供給するpH調整手段と、
     前記脱窒槽に炭素源を供給する炭素源供給手段と、
     前記脱窒槽内に流出汚泥の流出を防止する堰とを有すると共に、
     前記再曝気槽が、
     前記活性汚泥で処理された脱窒処理液を、余剰汚泥と処理液とに更に分離する第二の固液分離手段と、
     該第二の固液分離手段の下部側に設けられ、前記再曝気槽内に空気を供給する空気供給手段と、
     を有することを特徴とする放射性硝酸塩廃液処理装置。
  11.  硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽において、前記硝酸塩廃液のpHを調整しつつ、炭素源を供給して活性汚泥で処理し、前記活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに第一の固液分離手段で分離する際に、酸素を含まないガスを供給して嫌気性微生物の還元処理を促進すると共に、固液分離手段に付着する活性汚泥をガス洗浄する工程と、
     該脱窒槽で処理された脱窒処理液を活性汚泥と曝気混合する再曝気槽において、
     前記活性汚泥で処理された脱窒処理液を、汚泥を含む固形分と再曝気処理液とに第二の固液分離手段で更に分離する工程とを含むことを特徴とする放射性硝酸塩廃液処理方法。
PCT/JP2009/052096 2008-02-08 2009-02-06 放射性硝酸塩廃液処理装置及び方法 WO2009099208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009552550A JP4774120B2 (ja) 2008-02-08 2009-02-06 放射性硝酸塩廃液処理装置及び方法
EP09708931.2A EP2242060B1 (en) 2008-02-08 2009-02-06 Method and apparatus for treating radioactive nitrate waste liquid
US12/743,319 US8409438B2 (en) 2008-02-08 2009-02-06 Apparatus and method for treating radioactive nitrate waste liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-029555 2008-02-08
JP2008029555 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009099208A1 true WO2009099208A1 (ja) 2009-08-13

Family

ID=40952276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052096 WO2009099208A1 (ja) 2008-02-08 2009-02-06 放射性硝酸塩廃液処理装置及び方法

Country Status (4)

Country Link
US (1) US8409438B2 (ja)
EP (1) EP2242060B1 (ja)
JP (1) JP4774120B2 (ja)
WO (1) WO2009099208A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215681A (ja) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd リン酸マグネシウムアンモニウム生成抑制システム及びメタン発酵システム
CN105906058A (zh) * 2016-06-22 2016-08-31 广州德港水产设备科技有限公司 一种缺氧脱氮生物过滤器及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774065B2 (ja) * 2008-02-08 2011-09-14 三菱重工業株式会社 放射性硝酸塩廃液処理装置
JP2014180629A (ja) * 2013-03-19 2014-09-29 Kubota Corp 水処理方法および水処理システム
CN103864205A (zh) * 2014-03-18 2014-06-18 强成诚 微曝气生物膜填料
AU2018419491A1 (en) * 2018-04-17 2019-11-21 E.L.I (Environment Laboratory Impact) Services Pte. Ltd. Process and system for removing radioactive ions present in a liquid
CN114671519B (zh) * 2022-03-09 2023-06-06 南京大学 一种高进水cod浓度条件下修复厌氧反应器酸化系统的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713497U (ja) * 1993-08-13 1995-03-07 大同ほくさん株式会社 排水処理装置
JP3697037B2 (ja) 1997-09-22 2005-09-21 中部電力株式会社 生物脱窒方法
JP2006136853A (ja) * 2004-11-15 2006-06-01 Nitto Denko Corp 排水処理設備およびこれを用いた排水処理システム
JP2006297374A (ja) * 2005-03-25 2006-11-02 Sharp Corp 排水処理装置および排水処理方法
JP2007105627A (ja) 2005-10-13 2007-04-26 Mitsubishi Heavy Ind Ltd 硝酸塩含有廃液の処理方法と処理装置
JP2008012483A (ja) * 2006-07-07 2008-01-24 Kobelco Eco-Solutions Co Ltd 有機性排水処理方法、有機性排水処理装置ならびに有機性排水処理装置改修方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896291B2 (ja) * 1993-06-14 1999-05-31 株式会社エイ・ティ・アール通信システム研究所 画像表示装置
JP3150506B2 (ja) 1993-10-01 2001-03-26 三菱レイヨン株式会社 排水処理方法
FR2730584B1 (fr) * 1995-02-10 1997-04-25 Joanes Pierre Deguitre Procede et dispositif pour traiter des huiles et solvants contamines par des substances radioactives
DE19529021C1 (de) * 1995-07-28 1997-02-27 Ufz Leipzighalle Gmbh Neue sulfatreduzierende Bakterienstämme und deren Verwendung zur Dekontamination von schwefelsauren, metallbeladenen und radioaktiv verseuchten Wässern
US7182871B2 (en) * 1996-12-17 2007-02-27 Global Biosciences, Inc. Wastewater treatment with alkanes
US6923914B2 (en) 1996-12-17 2005-08-02 Global Biosciences, Inc. Remediation of metal contaminants with hydrocarbon-utilizing bacteria
JPH11156392A (ja) * 1997-12-01 1999-06-15 Mitsubishi Heavy Ind Ltd エタノールアミン含有排水の処理方法
JP4358652B2 (ja) 2004-02-25 2009-11-04 三菱重工業株式会社 排水の処理装置及び方法
US7326343B2 (en) * 2005-05-03 2008-02-05 University Of Western Ontario Canada Treatment of wastewater containing phosphorous and nitrogen
US7314563B2 (en) * 2005-11-14 2008-01-01 Korea Institute Of Science And Technology Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
KR100722929B1 (ko) * 2006-07-28 2007-05-30 이인형 물리화학적 및 생물학적 복합공정에 기반한 에탄올아민폐수의 고도처리방법
GB0818698D0 (en) * 2008-10-10 2008-11-19 Univ Cranfield Process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713497U (ja) * 1993-08-13 1995-03-07 大同ほくさん株式会社 排水処理装置
JP3697037B2 (ja) 1997-09-22 2005-09-21 中部電力株式会社 生物脱窒方法
JP2006136853A (ja) * 2004-11-15 2006-06-01 Nitto Denko Corp 排水処理設備およびこれを用いた排水処理システム
JP2006297374A (ja) * 2005-03-25 2006-11-02 Sharp Corp 排水処理装置および排水処理方法
JP2007105627A (ja) 2005-10-13 2007-04-26 Mitsubishi Heavy Ind Ltd 硝酸塩含有廃液の処理方法と処理装置
JP2008012483A (ja) * 2006-07-07 2008-01-24 Kobelco Eco-Solutions Co Ltd 有機性排水処理方法、有機性排水処理装置ならびに有機性排水処理装置改修方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OGAWA N. ET AL.: "Shosan Haieki Seibutsu Shori System no Kaihatsu:Konodo Haieki eno Seibustu Shori no Tekiyo", ATOMIC ENERGY SOCIETY OF JAPAN 2006 AKI NO TAIKAI YOKOSHU, ATOMIC ENERGY SOCIETY OF JAPAN, 17 August 2006 (2006-08-17), XP008137641 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215681A (ja) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd リン酸マグネシウムアンモニウム生成抑制システム及びメタン発酵システム
CN105906058A (zh) * 2016-06-22 2016-08-31 广州德港水产设备科技有限公司 一种缺氧脱氮生物过滤器及其使用方法

Also Published As

Publication number Publication date
US8409438B2 (en) 2013-04-02
EP2242060A1 (en) 2010-10-20
JP4774120B2 (ja) 2011-09-14
EP2242060B1 (en) 2015-07-08
US20100258500A1 (en) 2010-10-14
JPWO2009099208A1 (ja) 2011-05-26
EP2242060A4 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4625508B2 (ja) 硝酸塩廃液処理方法及び装置
JP4774120B2 (ja) 放射性硝酸塩廃液処理装置及び方法
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP4872171B2 (ja) 生物脱窒装置
WO2009099209A1 (ja) 放射性硝酸塩廃液処理装置
JP4017657B1 (ja) 有機物含有排水の処理方法
KR20140063454A (ko) 폐수 처리 방법 및 폐수 처리 장치
JP2000015287A (ja) 排水処理方法および排水処理装置
JP5581872B2 (ja) アンモニア性窒素廃液の脱窒処理方法及び処理装置
JP2008114215A (ja) 汚泥処理方法および処理装置
JP2012011376A (ja) 汚水処理方法および装置
JP3477187B2 (ja) 排水の脱色方法および装置
JP4298602B2 (ja) 有機性汚泥の嫌気性消化処理方法及び装置
JP2004255269A (ja) 脱窒方法及び脱窒装置
JP2006305555A (ja) 排水処理装置および排水処理方法
KR100457698B1 (ko) 하수처리장 잉여슬러지를 이용한 축산폐수처리방법 및 그장치
JPH11347588A (ja) メタン発酵処理装置及び処理方法
JP4648872B2 (ja) 高濃度有機物含有排水の排水処理方法
JP2013208583A (ja) 水処理方法、水処理システム及び超純水製造方法
JP2006289310A (ja) 排水の処理方法
JP2022171516A (ja) 高濃度有機物含有排水の処理方法
Vogelaar et al. A new post-treatment system for anaerobic effluents containing a high Ca 2+ content
JP2006187681A (ja) 有機性廃棄物の処理方法及びシステム
WO2005030654A1 (ja) 硝化処理方法及び装置
JP2019111475A (ja) 有機性廃水処理設備、有機性廃水処理方法及び有機性廃水処理設備の改築方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552550

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12743319

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009708931

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE