WO2020093877A1 - 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法 - Google Patents

一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法 Download PDF

Info

Publication number
WO2020093877A1
WO2020093877A1 PCT/CN2019/113067 CN2019113067W WO2020093877A1 WO 2020093877 A1 WO2020093877 A1 WO 2020093877A1 CN 2019113067 W CN2019113067 W CN 2019113067W WO 2020093877 A1 WO2020093877 A1 WO 2020093877A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic framework
propyne
propane
propadiene
framework material
Prior art date
Application number
PCT/CN2019/113067
Other languages
English (en)
French (fr)
Inventor
鲍宗必
李良英
任其龙
张治国
杨亦文
杨启炜
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2021524190A priority Critical patent/JP7154516B2/ja
Priority to US17/282,727 priority patent/US11530174B2/en
Publication of WO2020093877A1 publication Critical patent/WO2020093877A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons

Definitions

  • the invention relates to the technical field of adsorption materials and energy sources, in particular to a method for adsorbing and separating propylene, propyne, propane and propadiene.
  • Partial hydrogenation is commonly used in industry to selectively hydrogenate propyne to remove propylene remaining in propylene (such as Teschner D, Borsodi J, Wootsch A, et al. Science, 2008, 320 (5872): 86-89.)
  • this method usually uses precious metals such as Pd as effective catalytic components, which are expensive, and some propylene will be converted into propane with low added value by hydrogenation, resulting in a decrease in propylene production.
  • adsorbent with considerable adsorption capacity and high adsorption selectivity.
  • Commonly used adsorbents include activated carbon, clay, molecular sieve, silica gel, etc.
  • the adsorption capacity and selectivity cannot reach the level of industrial application.
  • Metal organic framework materials have extremely high specific surface area and pore volume, and by changing the type of metal ions and ligands, as well as the synthesis conditions, porous structures with different channel shapes and pore sizes can be obtained, which has very broad applications in the field of gas separation prospect.
  • the research on the separation of propylene / propyne by metal-organic framework materials is still less, such as Xing et al. (Yang L, Cui X, Yang Q, et al. Adv. Mater., 2018, 30 (10): 1705374.
  • the studied anionic pillar materials SIFSIX-1-Cu, SIFSIX-2-Cu-i, SIFSIX-3-Ni, SIFSIX-3-Zn, NbOFFIVE-1-Ni have a high efficiency adsorption and separation performance for propyne / propylene .
  • the most effective separation means is to form a ⁇ -electron complex between unsaturated hydrocarbons and open metal sites, such as MOF-74, MIL-100 and Cu-BTC, etc. (Bloch E, D, Queen W, L Krishna R, et al. Science, 2012, 335 (6076): 1606-1610.
  • metal-organic framework materials have poor hydrothermal stability and high preparation costs. Not only are the ligands expensive, but they also need to be reacted in organic solvents throughout the synthesis process. Organic solvents such as N, N-dimethyl Benzyl formamide or N, N-dimethylacetamide, etc. At the same time, the subsequent purification process of the material generates a large amount of organic waste liquid. How to prepare metal organic framework materials with good stability, considerable gas adsorption capacity and high level of adsorption separation selectivity at low cost is a very challenging technical problem.
  • the present invention provides a new application of metal organic framework materials to separate propylene, propyne, propane and propadiene from the mixed gas.
  • the structural formula of the metal organic framework material is [M (C 4 O 4 ) (H 2 O)] ⁇ 1.5H 2 O, where M is a metal ion.
  • a method for separating propylene, propyne, propane and propadiene from mixed gas includes the following steps:
  • the metal organic framework material is used as an adsorbent to obtain a single gas by adsorption separation and purification from a mixed gas containing propylene, propyne, propane and propadiene;
  • the structural formula of the metal organic framework material is [M (C 4 O 4 ) (H 2 O)] ⁇ 1.5H 2 O, where M is a metal ion, the channels of the metal organic framework material are square or diamond-shaped, and the channel size is 3.2-4.5 angstroms.
  • the metal organic framework material is a three-dimensional network structure formed by transition metal ions or alkaline earth metal ions and squaric acid through coordination bonds or intermolecular forces.
  • the adsorption separation process of the present invention is simple, and the mixed gas under a certain pressure can be passed through an adsorption tower or an adsorption column filled with the adsorbent. Further, the adsorption tower can also be composed of one or more, using existing changes Pressure adsorption or vacuum pressure swing adsorption or temperature swing adsorption achieve separation.
  • the temperature of the adsorption separation is -5 to 50 ° C, and the total pressure of the mixed gas is 100 to 1000 kPa; further preferably, the temperature of the adsorption separation is 20 to 50 ° C, and the total pressure of the mixed gas is 100 to 400 kPa; Most preferably, the temperature of the adsorption separation is 25 ° C, and the total pressure of the mixed gas is 100 kPa.
  • the metal ion is calcium, molybdenum, chromium, iron, cobalt, nickel, copper, magnesium or manganese ions. Further preferably, the metal ion is calcium, cobalt or nickel.
  • the shape of the metal organic framework material is cube, rod, particle or column.
  • the metal organic framework material has square or diamond-shaped pores with a pore size of 3.2 to 4.5 Angstroms, which has a molecular size similar to that of the gas to be separated, has a good separation effect, and is increasing
  • the material structure contains hydroxide radicals to participate in the coordination, which has the role of incompletely coordinated oxygen atoms that induce polarization, so that the gas with a higher molecular polarization rate can enter the pore channel faster and interact with the material pores.
  • the functional groups on the surface interact strongly, while the gas with a low molecular polarizability interacts weakly with the functional groups on the pore surface of the material.
  • thermodynamics and kinetics make the adsorption amount of the two gases on the surface of the material significantly different.
  • the role of the gas and the material is weak and the adsorption capacity is small.
  • the material has strong effect and large adsorption capacity, and it takes longer time to flow out from the outlet of the tower, so as to realize the efficient adsorption separation of the gas to be separated.
  • the metal organic framework material is prepared by the following method:
  • Inorganic salt, squaric acid, alkali, deionized water are mixed in proportion, stirred and dissolved, and then put into a normal pressure or high pressure reactor for reaction;
  • the inorganic salt is a metal ion chloride, nitrate, or ethyl Salt, carbonate, sulfate or perchlorate.
  • the metal organic framework material In the preparation process of the metal organic framework material, squaric acid is used as the organic ligand and reacts with a series of metal inorganic salts in pure water without using toxic and volatile organic solvents. Mild, simple operation, easy post-processing, low material synthesis cost.
  • the metal-organic framework material has high selectivity for adsorption and separation of methane and nitrogen, and has stable material structure and adsorption performance, good water resistance, and good industrial application prospects.
  • the adsorbent used in the present invention After the adsorbent used in the present invention is saturated by adsorption, it is only necessary to control the temperature under vacuum or helium inert atmosphere at 25-150 ° C for 10 to 48 hours to realize regeneration. If the temperature is too high or the time is too long, the structure of the adsorbent will be destroyed; if the temperature is too low or the time is too short, the remaining adsorbate in the adsorbent will not be completely removed.
  • the adsorbent prepared by the above preferred method in the present invention has stable structural performance, regular particle shape and appropriate pore size, and has high selectivity and considerable adsorption capacity for the adsorption and separation of propylene, propyne, propane and propadiene.
  • the molar ratio of the inorganic salt, squaric acid and base is 1: (0.5-3): (0-5). Water as a solvent is evaporated during the subsequent drying process.
  • the inorganic salt is a cobalt salt, a nickel salt or a molybdenum salt
  • the molar ratio of the inorganic salt, squaric acid and base is 1: (1 to 1.5): (2 to 4); when the inorganic salt is a calcium salt
  • the addition amount of alkali is 0, and the molar ratio of inorganic salt and squaric acid is 1: 1.
  • the ratio of metal salt, squaric acid and alkali will change the crystal size, crystal form, regularity, etc., and it will also affect the amount of methane and nitrogen adsorption and selective adsorption separation performance of the material.
  • the inorganic salt is a calcium salt
  • the amount of alkali added is 0, and the molar ratio of inorganic salt to squaric acid is 1: 1.
  • the inorganic salt is cobalt chloride, and the ratio of metal salt, squaric acid, and base is 1 mmol: 1.5 mmol: 4 mmol.
  • the stirring step is as follows: stirring at 500-1000 rpm for an appropriate time to mix the solution evenly. Uneven mixing will lead to irregular crystal form of the reaction.
  • the reaction temperature of the hydrothermal reaction is 100-220 ° C, and the reaction time is 12-112 hours; further preferably, the reaction is 120-220 ° C for 24-100 hours.
  • the reaction temperature affects the formation of crystals, too high or too low will result in the failure to generate crystals.
  • the product after hydrothermal reaction is washed and centrifuged several times with water to replace the remaining ligands, alkaline solution and remaining inorganic salts in the pores.
  • the temperature for vacuum drying is 25 to 150 ° C., and the time is 10 to 24 hours.
  • the mixed gas is not limited to containing propylene, propyne, propane and propadiene, but may also contain other gases such as carbon dioxide, methane, helium, argon, oxygen and the like.
  • the composition range of the raw material gas of the present invention is very wide, various concentrations can be applied, and the content of each gas can be from 5% to 85%.
  • the metal-organic framework material used in the present invention can be prepared into adsorption separation materials such as spheres, columns, particles, etc. through different processing techniques or can be made into membrane materials according to existing conventional technologies for membrane separation of propylene, propyne, propane and propadiene.
  • the present invention has the following advantages:
  • the metal salts used in the preparation of the metal organic framework materials involved in the present invention are rich in nature, especially calcium carbonate, which exists in large amounts in mineral reserves as metal resources, organic ligand squaric acid is cheap and easy to obtain, the synthesis conditions are mild, and the purification steps are simple, Easy to operate and enlarge.
  • the metal organic framework material involved in the present invention has stable structure and stable performance, and has very high adsorption selectivity for propylene / propyne / propane / propadiene, and after repeated adsorption-regeneration for many times, the adsorption performance still maintains the original effect. In terms of adsorption separation of the mixed gas, the adsorbent prepared by the present invention is far superior to most solid adsorbents.
  • FIG. 1 is an XRD chart of the stability investigation of the metal organic framework material prepared in Example 1.
  • FIG. 1 is an XRD chart of the stability investigation of the metal organic framework material prepared in Example 1.
  • FIG. 2 is an XRD diagram of the stability investigation of the metal organic framework material prepared in Example 2.
  • FIG. 3 is an XRD diagram of the stability investigation of the metal organic framework material prepared in Example 3.
  • FIG. 3 is an XRD diagram of the stability investigation of the metal organic framework material prepared in Example 3.
  • a single-component adsorption isotherm of propylene, propyne, propane and propadiene was carried out using the above adsorbent. Take an appropriate amount of adsorbent, the adsorption temperature is 0 degrees and 25 degrees. At 0 ° C and 1 bar, the adsorption capacity of propylene reaches 2.9 mmol / g, the adsorption capacity of propyne is 3.3 mmol / g, the adsorption capacity of propane is 2.7 mmol / g, and the adsorption capacity of propadiene is 3.5 mmol / g.
  • This system is at 0 °C and 0.01 bar; the adsorption capacity of propylene reaches 1.3 mmol / g, the adsorption capacity of propyne is 2.8 mmol / g, the adsorption capacity of propane is 0.3 mmol / g, and the adsorption capacity of propadiene is 3.0 mmol / g g; At low pressure, the material has a significant difference in the adsorption capacity of various gases, indicating that the material has a good adsorption and separation effect for these four types of gases.
  • the adsorption capacity of propylene reached 2.6 mmol / g
  • the adsorption capacity of propyne was 3.1 mmol / g
  • the adsorption capacity of propane was 2.3 mmol / g
  • the adsorption capacity of propadiene was 3.3 mmol / g.
  • This system is at 25 ° C and 0.01 bar; the adsorption capacity of propylene reaches 0.6 mmol / g, the adsorption capacity of propyne is 2.6 mmol / g, the adsorption capacity of propane is 0.3 mmol / g, and the adsorption capacity of propadiene is 2.8 mmol / g g.
  • the adsorption selectivity of the adsorbent to two gases at 0.01 bar is 10.6 and 8.1 at 0 °C and 25 °C, respectively;
  • the adsorption selectivity of the adsorbent to two gases at 0.01 bar is 52.1 and 26.0 at 0 ° C and 25 ° C, respectively;
  • the volume ratio of propane / propyne is 50:50, the The selectivity of the adsorbent to the two gases is 365.8 and 136.3 at 0 °C and 25 °C, respectively;
  • the selectivity of the adsorbent to the two gases is 0.01 bar At 0 ° C and 25 ° C, they were 25.2 and 16.3, respectively.
  • the samples were exposed to air with a relative humidity of 60% for 7 days and immersed in pure water for 7 days, and then the XRD of the adsorbent was measured under various conditions.
  • the XRD graph is shown in Figure 1 of the annex. From the results, no matter after immersed in water for 7 days or exposed to air with a relative humidity of 60% for 7 days, the XRD of the adsorbent is consistent with that just synthesized, indicating the excellent stability of the material.
  • the samples were exposed to air with a relative humidity of 60% for 7 days and immersed in pure water solvent for 7 days before the XRD measurement of the samples under various conditions.
  • the XRD graph is shown in Figure 2 of the annex. From the results, no matter after immersed in water for 7 days or exposed to air with a relative humidity of 60% for 7 days, the XRD of the adsorbent is consistent with that just synthesized, indicating the excellent stability of the material.
  • the samples were exposed to air with a relative humidity of 60% for 7 days and immersed in pure water for 7 days, and then the XRD of the adsorbent was measured under various conditions.
  • the XRD curve is shown in Figure 3 of the attachment. From the results, no matter after immersed in water for 7 days or exposed to air with a relative humidity of 60% for 7 days, the XRD of the adsorbent is consistent with that just synthesized, indicating the excellent stability of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明公开了一种从混合气中分离丙烯、丙炔、丙烷和丙二烯的方法,包括如下步骤:以金属有机框架材料为吸附剂,从含丙烯、丙炔、丙烷和丙二烯的混合气中分离得到各单一组分的气体;金属有机框架材料结构通式为[M(C 4O 4)(H 2O)]·1.5H 2O,式子中M为金属离子,由过渡金属离子或碱土金属离子与方酸通过配位键或者分子间作用力形成的三维网络结构。本发明的金属有机框架材料对丙烯、丙炔、丙烷和丙二烯有优异的吸附分离选择性。合成该材料的原料廉价易得,材料制备工艺简单、成本低;且材料的再生和重复性能良好,经过真空或加热再生后仍能维持原来的吸附效果,具有广阔的工业应用前景。

Description

一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法 技术领域
本发明涉及吸附材料以及能源的技术领域,尤其涉及一种在丙烯、丙炔、丙烷和丙二烯吸附分离的方法。
背景技术
丙烯(C 3H 6)作为最基本的化工原料已广泛应用于生产各类化学品,如聚丙烯的生产总量在2013年已达到8500万吨,仅次于聚乙烯的产量。目前,丙烯一般通过石油和多碳的碳氢化合物裂解获得,但是裂解产物往往成分复杂,通常含有微量(1000~2000ppm)的丙炔(C 3H 4)和丙二烯等。为了获得聚合级的丙烯用于生产,丙炔、丙二烯的量必须降低到5ppm甚至是1ppm,但是由于丙烯/丙炔相似的结构、相近的分子动力学尺寸以及极痕量的含量,使得丙烯/丙炔/丙二烯的分离极具挑战性。
工业上常用部分氢化法对丙炔进行选择性加氢以去除丙烯中残留的丙炔(如Teschner D,Borsodi J,Wootsch A,et al.Science,2008,320(5872):86-89.),但是该方法通常以Pd等贵金属为有效催化成分,价格昂贵,并且会有部分丙烯被加氢转化为附加值很低的丙烷,导致丙烯产量下降。通过精馏方法分离丙烯/丙烷以此获得聚合级的丙烯是非常困难的,因为丙烯和丙烷的相对挥发度仅差0.1,而精馏所需的温度和压力条件极苛刻,需在244-327K和1.7-30bar下实现,现在工业上聚合级的丙烯需要在超过200块塔板的精馏装置上实现,精馏过程中巨大的能耗和对中小规模设备的不友好限制了它的普及和运用。因此,目前仍亟需一种更加经济节能的分离手段来纯化分离丙烯、丙炔、丙烷和丙二烯。相比,吸附分离法具有操作简便、能耗小、成本低等特点,但丙烯、丙炔、丙烷和丙二烯的吸附分离最关键的是选择具有可观吸附量和高吸附选择性的吸附剂。常用的吸附剂包括活性炭、粘土、分子筛、硅胶等,但是由于此类材料的内部孔结构不均一导致吸附的容量和选择性并不能达到工业应用水平。
金属有机框架材料具有极高的比表面积和孔容,并且通过改变金属离 子和配体种类,以及合成条件能够得到具有不同孔道形状和孔径大小的多孔结构,其在气体分离领域具有十分广阔的应用前景。现阶段金属有机骨架材料对于丙烯/丙炔的分离研究的还较少,如Xing等人(Yang L,Cui X,Yang Q,et al.Adv.Mater.,2018,30(10):1705374.)研究的阴离子柱撑的材料SIFSIX-1-Cu,SIFSIX-2-Cu-i,SIFSIX-3-Ni,SIFSIX-3-Zn,NbOFFIVE-1-Ni对丙炔/丙烯具有高效的吸附分离性能。对基于吸附平衡影响的丙烯/丙烷分离而言,最有效的分离手段即通过不饱和的烃类与开放的金属位点之间形成π-电子络合物,比如MOF-74,MIL-100和Cu-BTC等(Bloch E D,Queen W L,Krishna R,et al.Science,2012,335(6076):1606-1610.Yoon J W,Seo Y K,Hwang Y K,et al.Angew.Chem.Int.Ed.,2010,49(34):5949-5952.He Y,Krishna R,Chen B.Energy Environ.Sci.,2012,5(10):9107-9120.)。同时,基于气体分子尺寸大小,依靠分子的扩散动力学不同来分离,如Li团队报道的ZIF-8通过气体分子在材料孔道内的扩散差异使丙烯/丙炔可以高效分离(Li K,Olson D H,Seidel J,et al.J.Am.Chem.Soc.,2009,131(30):10368-10369.)。
然而,大多数金属有机框架材料的水热稳定性较差且制备成本较高,不仅配体价格较高,而且在整个合成过程需要在有机溶剂中进行反应,有机溶剂诸如N,N-二甲基甲酰胺或者N,N-二甲基乙酰胺等,同时材料后续的纯化过程产生大量的有机废液。如何低成本制备得到良好稳定性、可观的气体吸附量以及高水平的吸附分离选择性的金属有机框架材料是一个十分具有挑战性的技术难题。
发明内容
为克服现有技术存在的问题,本发明提供一种金属有机框架材料的新应用,从混合气中分离丙烯、丙炔、丙烷和丙二烯。
一种金属有机框架材料在分离丙烯、丙炔、丙烷和丙二烯中的应用,所述金属有机框架材料的结构通式为[M(C 4O 4)(H 2O)]·1.5H 2O,式子中M为金属离子。
一种从混合气中分离丙烯、丙炔、丙烷和丙二烯的方法,包括如下步骤:
以金属有机框架材料为吸附剂,从含丙烯、丙炔、丙烷和丙二烯的混 合气中吸附分离提纯获得单一气体;所述金属有机框架材料的结构通式为[M(C 4O 4)(H 2O)]·1.5H 2O,式子中M为金属离子,所述金属有机框架材料的孔道为正方形或菱形,孔道尺寸在3.2~4.5埃。
所述金属有机框架材料由过渡金属离子或碱土金属离子与方酸通过配位键或者分子间作用力形成的三维网络结构。
本发明的吸附分离过程简单,将一定压力下的混合气,通过装填有该吸附剂的吸附塔或者吸附柱即可,进一步地,吸附塔也可以由一个或多个组成,采用现有的变压吸附或者真空变压吸附或者变温吸附实现分离。
优选地,所述吸附分离的温度为-5~50℃,混合气的总压为100~1000kPa;进一步优选地,吸附分离的温度为20~50℃,混合气的总压为100~400kPa;最优选地,吸附分离的温度为25℃,混合气的总压为100kPa。
优选地,所述金属离子为钙、钼、铬、铁、钴、镍、铜、镁或锰离子。进一步优选地,所述金属离子为钙、钴或镍。
优选地,所述金属有机框架材料的形状为立方体、棒状、颗粒或柱状。
本发明吸附分离的原理:该类金属有机框架材料孔道为正方形或菱形,孔道尺寸在3.2~4.5埃,该尺寸与上述待分离气体具有相近的分子尺寸,具有很好的分离效果,并且在增加碱作为反应试剂时,该材料结构中含有氢氧根参与配位,有诱导极化的未完全配位的氧原子作用,使得分子极化率较大的气体能更快进入孔道且与材料孔表面的功能基团发生强烈的相互作用,而分子极化率较小的气体则与材料孔表面的功能基团的相互作用较弱。热力学和动力学两方面因素使得两个气体在材料表面的吸附量有显著差异,在混合气通过吸附塔时,气体与材料的作用弱且吸附容量小,最先从塔出口流出,而气体与材料的作用强且吸附容量大,从塔出口流出所需的时间更长,从而实现上述待分离气体的高效吸附分离。
优选地,所述金属有机框架材料由如下方法制备:
(1)将无机盐、方酸、碱、去离子水按比例混合,搅拌溶解后,投入常压或者高压反应釜中进行反应;所述无机盐为金属离子的氯化盐、硝酸盐、乙酸盐、碳酸盐、硫酸盐或高氯酸盐。
(2)水热反应结束后,用去离子水洗涤数次,然后真空干燥即得。
该金属有机框架材料的制备过程中是以方酸为有机配体,与一系列金 属无机盐在纯水中进行反应,无需使用有毒、易挥发的有机溶剂,制备材料的原料价格低、合成条件温和、操作简单、后处理容易、材料合成成本低。本发明的方法中,金属有机框架材料对甲烷和氮气有很高的吸附分离选择性,且材料结构和吸附性能稳定,耐水性好,具有良好的工业化应用前景。
本发明所采用的吸附剂吸附饱和后只需在真空或氦气惰性氛条件下控温在25~150℃,保持10~48小时即可实现再生。温度过高或者时间过长会导致吸附剂结构破坏;温度过低或者时间过短,吸附剂内残留的吸附质将无法全部脱除。
本发明中上述优选方法制备的吸附剂结构性能稳定,颗粒形状规则,孔径尺寸合适,对丙烯、丙炔、丙烷和丙二烯的吸附分离有着较高的选择性和可观的吸附容量。
优选地,所述无机盐、方酸和碱的摩尔比为1:(0.5~3):(0~5)。水作为溶剂,在后续的干燥过程中被蒸发。进一步优选地,无机盐为钴盐、镍盐或钼盐时,所述无机盐、方酸和碱的摩尔比为1:(1~1.5):(2~4);无机盐为钙盐时,碱的加入量为0,无机盐和方酸的摩尔比为1:1。
改变金属盐、方酸和碱的配比会改变晶体的大小、晶型,规整度等,同时还会影响该材料对甲烷和氮气的吸附量和选择吸附分离性能。最优选地,无机盐为钙盐时,碱的加入量为0,无机盐和方酸的摩尔比为1:1。
最优选地,所述无机盐为氯化钴,金属盐、方酸、碱的配比为1mmol:1.5mmol:4mmol。
所述的搅拌步骤为:在500~1000转/分钟下搅拌适当时间将溶液混合均匀。混合不均匀会导致反应得到的晶体晶型不规整。
进一步优选地,所述水热反应的反应温度为100~220℃,反应时间为12~112小时;进一步优选地,120~220℃反应24~100小时。反应温度影响晶体的生成,过高或过低都会导致无法生成晶体。
水热反应后的产品经水洗涤离心若干次,置换掉孔道内残留的配体、碱溶液和残留的无机盐。
进一步优选地,真空干燥的温度为25~150℃、时间为10~24小时。
优选地,所述混合气不仅限于含有丙烯、丙炔、丙烷和丙二烯,也可以含有其它如二氧化碳、甲烷、氦气、氩气、氧气等气体。本发明的原料 气组成范围很宽,各种浓度都可以适用,各气体含量可以从5%到85%。
本发明所用金属有机框架材料可以通过不同的加工工艺制备成球形、柱状、颗粒等吸附分离材料或按照现有常规技术制成膜材料用于丙烯、丙炔、丙烷和丙二烯的膜分离。
与现有技术相比,本发明具有以下优点:
本发明所涉及的金属有机框架材料制备所用金属盐在自然界中含量丰富,尤其是矿物储量中大量存在的碳酸钙作为金属资源,有机配体方酸廉价易得,合成条件温和,纯化步骤简单,易于操作和放大。本发明所涉及的金属有机框架材料结构稳定,性能稳定,对具丙烯/丙炔/丙烷/丙二烯有非常高的吸附选择性,并且多次反复吸附-再生后,吸附性能仍然保持原有效果。在该混合气体的吸附分离方面,本发明制备的吸附剂远优于绝大多数固体吸附剂。
附图说明
图1为实施例1制备的金属有机框架材料稳定性考察的XRD图。
图2为实施例2制备的金属有机框架材料稳定性考察的XRD图。
图3为实施例3制备的金属有机框架材料稳定性考察的XRD图。
具体实施方式
下面的实施实例对本发明作进一步的说明,但本发明的内容完全不局限于这些实例。
实施例1
将0.151mmol碳酸钙、0.151mmol方酸、20mL去离子水混合,放入25mL水热反应釜中,搅拌30分钟后于120℃下反应24小时。反应完成后,待反应釜冷却,用纯水洗涤多次得到纯化后的金属有机框架材料。将纯化后的吸附剂在100℃真空脱气12小时得到去溶剂的吸附剂,随后进行气体吸附。
使用上述吸附剂进行了丙烯、丙炔、丙烷和丙二烯的单组份吸附等温线。取适量吸附剂,吸附温度为0度和25度。在0℃和1bar时,丙烯的吸附量达到2.9mmol/g,丙炔的吸附量为3.3mmol/g,丙烷的吸附容量为2.7mmol/g,丙二烯的吸附容量为3.5mmol/g,此体系在0℃和0.01bar; 丙烯的吸附量达到1.3mmol/g,丙炔的吸附量为2.8mmol/g,丙烷的吸附容量为0.3mmol/g,丙二烯的吸附容量为3.0mmol/g;在低压下,该材料对各类气体的吸附容量差异明显,说明该材料对这四类气体有很好的吸附分离效果。在25℃和1bar时,丙烯的吸附量达到2.6mmol/g,丙炔的吸附量为3.1mmol/g,丙烷的吸附容量为2.3mmol/g,丙二烯的吸附容量为3.3mmol/g,此体系在25℃和0.01bar;丙烯的吸附量达到0.6mmol/g,丙炔的吸附量为2.6mmol/g,丙烷的吸附容量为0.3mmol/g,丙二烯的吸附容量为2.8mmol/g。经IAST计算,当丙烯/丙烷体积比为50:50时,0.01bar下该吸附剂对两种气体的吸附选择性在0℃和25℃下分别为10.6和8.1;当丙烯/丙炔体积比为50:50时,0.01bar下该吸附剂对两种气体的吸附选择性在0℃和25℃下分别为52.1和26.0;当丙烷/丙炔体积比为50:50时,0.01bar下该吸附剂对两种气体的吸附选择性在0℃和25℃下分别为365.8和136.3;当丙烯/丙二烯体积比为50:50时0.01bar下该吸附剂对两种气体的吸附选择性在0℃和25℃下分别为25.2和16.3。
为了测试样品的稳定性,将样品暴露在相对湿度为60%的空气中7天和浸泡在纯水中7天后再进行各条件下吸附剂XRD的测定。XRD曲线图见附件图1。从结果来看,无论是浸泡在水中7天后还是暴露在相对湿度为60%的空气中7天,吸附剂的XRD与刚合成的一致,说明该材料极好的稳定性。
实施例2
将1.93mmol六水合氯化钴、2.88mmol方酸、7.72mmol氢氧化钾、7ml去离子水混合,放入25mL水热反应釜中,搅拌30分钟,然后加热至220℃下反应48小时。反应完成后,待反应釜冷却,反应所得固体用纯水洗涤多次得到纯化后的金属有机框架材料。将纯化后的吸附剂在120℃真空脱气12小时得到去溶剂的吸附剂,随后进行气体吸附。
为了测试样品的稳定性,将样品暴露在相对湿度为60%的空气中7天和浸泡在纯水溶剂中7天后再进行各条件下的样品XRD测定。XRD曲线图见附件图2。从结果来看,无论是浸泡在水中7天后还是暴露在相对湿度为60%的空气中7天,吸附剂的XRD与刚合成的一致,说明该材料极好的稳定性。
实施例3
将1.93mmol六水氯化镍、2.88mmol方酸、7.72mmol氢氧化钾、7mL去离子水混合,放入25mL水热反应釜中,搅拌30分钟后于220℃下反应48小时。反应完成后,待其冷却,用纯水洗涤多次得到纯化后的金属有机框架材料。将纯化后的吸附剂在120℃真空脱气12小时得到去溶剂的吸附剂,随后进行气体吸附。
为了测试样品的稳定性,将样品暴露在相对湿度为60%的空气中7天和浸泡在纯水中7天后再进行各条件下吸附剂XRD的测定。XRD曲线图见附件图3。从结果来看,无论是浸泡在水中7天后还是暴露在相对湿度为60%的空气中7天,吸附剂的XRD与刚合成的一致,说明该材料极好的稳定性。
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。

Claims (8)

  1. 一种金属有机框架材料在分离丙烯、丙炔、丙烷和丙二烯中的应用,所述金属有机框架材料的结构通式为[M(C 4O 4)(H 2O)]·1.5H 2O,式子中M为金属离子。
  2. 一种从混合气中分离丙烯、丙炔、丙烷和丙二烯的方法,其特征在于,包括如下步骤:
    以金属有机框架材料为吸附剂,从含丙烯、丙炔、丙烷和丙二烯的混合气中吸附分离提纯获得单一气体;所述金属有机框架材料的结构通式为[M(C 4O 4)(H 2O)]·1.5H 2O,式子中M为金属离子;所述金属有机框架材料的孔道为正方形或菱形,孔道尺寸在3.2~4.5埃。
  3. 根据权利要求2所述方法,其特征在于,所述吸附分离的温度为-5~50℃。
  4. 根据权利要求2所述方法,其特征在于,所述混合气的总压为100~1000kPa。
  5. 根据权利要求2所述方法,其特征在于,所述金属离子为钙、钼、铬、铁、钴、镍、铜、镁或锰离子。
  6. 根据权利要求2所述方法,其特征在于,所述金属有机框架材料的形状为立方体、棒状、颗粒或柱状。
  7. 根据权利要求2所述方法,其特征在于,所述金属有机框架材料由如下方法制备:
    (1)将无机盐、方酸、碱、去离子水按比例混合,搅拌溶解后,投入常压或者高压反应釜中进行反应;所述无机盐为金属离子的氯化盐、硝酸盐、乙酸盐、碳酸盐、硫酸盐或高氯酸盐。
    (2)水热反应结束后,用去离子水洗涤数次,然后真空干燥即得。
  8. 根据权利要求7所述方法,其特征在于,所述无机盐、方酸和碱的摩尔比为1:(0.5~3):(0~5)。
PCT/CN2019/113067 2018-11-09 2019-10-24 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法 WO2020093877A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524190A JP7154516B2 (ja) 2018-11-09 2019-10-24 プロピレン、プロピン、プロパンおよびプロパジエンの吸着分離方法
US17/282,727 US11530174B2 (en) 2018-11-09 2019-10-24 Method for adsorption and separation of propylene, propyne, propane and propadiene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811332100.9A CN109293467B (zh) 2018-11-09 2018-11-09 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法
CN201811332100.9 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020093877A1 true WO2020093877A1 (zh) 2020-05-14

Family

ID=65146844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113067 WO2020093877A1 (zh) 2018-11-09 2019-10-24 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法

Country Status (4)

Country Link
US (1) US11530174B2 (zh)
JP (1) JP7154516B2 (zh)
CN (1) CN109293467B (zh)
WO (1) WO2020093877A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684808A (zh) * 2022-05-10 2022-07-01 大连理工大学 一种多孔纳米炭材料的制备方法及其在分离丙烯/丙烷中的应用
CN116037078A (zh) * 2023-01-07 2023-05-02 昆明理工大学 一种新型多金属mof材料及其制备方法及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293467B (zh) * 2018-11-09 2021-05-25 浙江大学 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法
CN110240219B (zh) * 2019-07-20 2022-02-22 福建师范大学 一种以3D骨架做为金属来源合成3D骨架@MOFs水处理器件的方法
CN110639475B (zh) * 2019-10-10 2021-10-08 太原理工大学 一种utsa-280吸附剂材料大批量合成及成型方法
CN114426672B (zh) * 2020-10-13 2023-06-13 中国石油化工股份有限公司 多孔配位聚合物及其制备方法和从样品中分离挥发性有机化合物的方法及吸附体系
CN112661971B (zh) * 2020-12-22 2022-06-07 江西师范大学 钍配位聚合物及其制备方法和在丙炔存储中的应用
CN114307525B (zh) * 2021-11-30 2022-11-01 浙江大学 一种吸附分离丙烯和丙烷的方法
CN116284823B (zh) * 2023-03-18 2024-05-14 西安工业大学 一种晶态多孔材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454260A (zh) * 2006-03-29 2009-06-10 巴斯夫欧洲公司 获得丙烯的工业方法
CN108727607A (zh) * 2018-05-22 2018-11-02 浙江大学 一种用于分离氙气和氪气的金属有机框架材料及氙气氪气的分离方法
CN109293467A (zh) * 2018-11-09 2019-02-01 浙江大学 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010050A1 (de) * 2008-07-21 2010-01-28 Basf Se Verfahren zur technischen gewinnung von propen
US8592626B2 (en) * 2008-08-19 2013-11-26 Kuraray Co., Ltd. Metal complex and manufacturing method therefor
JP2012031161A (ja) * 2010-07-05 2012-02-16 Kuraray Co Ltd 金属錯体、並びにそれからなる吸蔵材及び分離材
JP6272696B2 (ja) * 2011-09-05 2018-01-31 株式会社クラレ 吸着材
US9586170B2 (en) * 2012-07-02 2017-03-07 Kuraray Co., Ltd. Metal complex, and adsorbent material, storage material and separation material comprising metal complex
JP5955135B2 (ja) * 2012-07-04 2016-07-20 昭和電工株式会社 オキソカーボン酸の金属錯体を含むガス分離材及び炭化水素ガスの分離方法
EP2871174A4 (en) * 2012-07-04 2016-03-09 Kuraray Co METAL COMPLEX, AND ABSORBENT, OCCLUSION MATERIAL AND SEPARATION MATERIAL OBTAINED THEREFROM
CN105944680B (zh) * 2016-05-17 2018-12-25 浙江大学 一种吸附分离丙烯丙炔的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454260A (zh) * 2006-03-29 2009-06-10 巴斯夫欧洲公司 获得丙烯的工业方法
CN108727607A (zh) * 2018-05-22 2018-11-02 浙江大学 一种用于分离氙气和氪气的金属有机框架材料及氙气氪气的分离方法
CN109293467A (zh) * 2018-11-09 2019-02-01 浙江大学 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684808A (zh) * 2022-05-10 2022-07-01 大连理工大学 一种多孔纳米炭材料的制备方法及其在分离丙烯/丙烷中的应用
CN116037078A (zh) * 2023-01-07 2023-05-02 昆明理工大学 一种新型多金属mof材料及其制备方法及其应用

Also Published As

Publication number Publication date
JP7154516B2 (ja) 2022-10-18
US20220002217A1 (en) 2022-01-06
JP2022512925A (ja) 2022-02-07
US11530174B2 (en) 2022-12-20
CN109293467B (zh) 2021-05-25
CN109293467A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2020093877A1 (zh) 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法
Chen et al. An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene
Yuan et al. Novel room-temperature synthesis of MIL-100 (Fe) and its excellent adsorption performances for separation of light hydrocarbons
CN108014752B (zh) 一种用于分离乙烷和乙烯的金属有机框架材料及乙烯乙烷的分离方法
CN109107329B (zh) 一种分离甲烷和氮气的方法
Zhao et al. Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals
CN110938213B (zh) 一种铜基微孔金属有机骨架材料的制备方法及其气体分离应用
CN110016145B (zh) 多孔金属-有机骨架材料、制备方法及其吸附分离应用
US11285455B2 (en) Organic-inorganic hybrid nanoporous material containing intramolecular acid anhydride functional group, composition for adsorption comprising the same, and use thereof for separation of hydrocarbon gas mixture
CN108440235B (zh) 一种从四碳烃混合气中分离1,3-丁二烯的方法
Feng et al. Transformation of Al-CDC from 3D crystals to 2D nanosheets in macroporous polyacrylates with enhanced CH4/N2 separation efficiency and stability
Zhang et al. A new honeycomb MOF for C 2 H 4 purification and C 3 H 6 enrichment by separating methanol to olefin products
CN110237823B (zh) 一种乙烷优先吸附的金属有机框架材料及其制备方法
CN101890332B (zh) 变压吸附专用高性能5a分子筛的制备方法
Kang et al. Ultramicroporous hydrogen-bond decorated robust metal–organic framework for high xenon capture performances
CN114181403A (zh) 四齿配体构筑的阴离子柱撑金属有机框架材料及其应用
CN110639474A (zh) 一种用于分离丙烯和丙烷的吸附剂及其制备方法
CN112661594A (zh) 一种混合气中乙炔的高效分离方法
CN114682231B (zh) 选择性吸附乙炔的氰基MOFs吸附剂、制备方法和应用
Bu et al. A binary all-nanoporous composite membrane constructed via vapor phase transformation for high-permeance gas separation
CN114085386B (zh) 一种低成本Cu(BDC)的规模化合成方法及其在乙烷乙烯分离中的应用
CN116082657B (zh) 一种锌基金属有机框架材料及其制备方法和乙烯分离应用
CN115612116B (zh) 一种多孔mof材料及其合成方法,丙烯/丙烷吸附剂及分离提纯方法
CN114479095B (zh) Cu基金属-有机骨架材料及其制备方法和应用
CN117487187B (zh) 一种用于乙炔和乙烯混合气分离的Zn-MOF材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882220

Country of ref document: EP

Kind code of ref document: A1