WO2020093444A1 - 一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用 - Google Patents

一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用 Download PDF

Info

Publication number
WO2020093444A1
WO2020093444A1 PCT/CN2018/116448 CN2018116448W WO2020093444A1 WO 2020093444 A1 WO2020093444 A1 WO 2020093444A1 CN 2018116448 W CN2018116448 W CN 2018116448W WO 2020093444 A1 WO2020093444 A1 WO 2020093444A1
Authority
WO
WIPO (PCT)
Prior art keywords
mannich base
corrosion inhibitor
quaternary ammonium
same
ammonium salt
Prior art date
Application number
PCT/CN2018/116448
Other languages
English (en)
French (fr)
Inventor
王鼎立
李勇明
陈曦宇
江有适
朱炬辉
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to US16/622,832 priority Critical patent/US11161811B2/en
Publication of WO2020093444A1 publication Critical patent/WO2020093444A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/10Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
    • C07D211/14Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/22Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than halogen singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/32Anticorrosion additives

Definitions

  • the invention relates to a preparation method and application of a Mannich base quaternary ammonium salt high temperature resistant acidification corrosion inhibitor in the field of corrosion inhibitor materials.
  • the pipeline is perforated, there is a serious safety hazard, and the metal iron ions that are corroded by the acid solution may cause damage to the formation.
  • a corrosion inhibitor to the acid is indispensable and the most commonly used and effective anticorrosive measure.
  • most of the commercially available corrosion inhibitors have the disadvantages of easy coking, delamination, unstable dissolving and dispersing performance at high temperature, toxic raw materials, flammability and explosion, and greater pollution.
  • a highly water-soluble, high temperature resistant Mannich base corrosion inhibitor intermediate and its preparation method (201410086970.8), does not apply any solvent, only in the presence of alkali metal alkoxide catalyst, aldehyde, ketone, amine condensate and Hydrophilic surfactant reacts to obtain high water soluble, high temperature resistant Mannich base corrosion inhibitor intermediate. Since no solvent is used, the shortcomings caused by the use of solvents are low or difficult to recycle, and the shortcomings of other corrosion inhibitors such as poor water solubility and easy decomposition at high temperatures are solved, reducing the inconvenience of toxic substances to production , And can inhibit high temperature hydrochloric acid acid corrosion. However, the raw material alkali metal alkoxides such as sodium methoxide are sensitive to oxygen, flammable and explosive, and highly corrosive.
  • a triazole-modified Mannich base compound and its preparation method (201610073911.6), a triazole-modified Mannich base buffer was prepared through the Mannich reaction, the epoxidation of ketones, and the ring-opening reaction of ethers Etching agent, because the Mannich base is a corrosion inhibitor molecule with N and O atoms as active centers, the lone pair of electrons in the form of coordination bonds can be complexed with metal ions to form a polymer, and can be combined with metal atoms , Covered on the surface of the equipment in the form of adsorption film to play a role in corrosion inhibition.
  • the raw material lithium hydroxide and the like are highly toxic substances, which have high requirements on the preparation process and are not conducive to safe production and environmental protection.
  • the purpose of the present invention is to provide a preparation method and application of a Mannich base quaternary ammonium salt high temperature resistant acid corrosion inhibitor, which is simple and feasible, and the obtained corrosion inhibitor has good corrosion inhibition performance at high temperature,
  • the raw materials are non-toxic, safe and environmentally friendly.
  • the quaternary ammonium salt corrosion inhibitor is used as an acidification corrosion inhibitor for oil and gas wells, it has good solubility in hydrochloric acid solution and has a significant inhibitory effect on acid corrosion of carbon steel in oil and gas wells.
  • the present invention provides the following technical solutions.
  • a method for preparing a Mannich base quaternary ammonium salt high-temperature acid-resistant corrosion inhibitor includes the following steps in sequence:
  • step (1) the molar ratio of amine substances, aldehyde substances, and ketone substances is 1: 1: 1-1: 1: 2.
  • the organic solvent is ethanol or acetonitrile.
  • step (2) the molar ratio of the Mannich base to the quaternization reagent is 1: 1 to 1: 2.
  • Mannich base quaternary ammonium salt high-temperature acid corrosion inhibitor refers to its use as an oil and gas well acid corrosion inhibitor. Because of its good dispersibility and solubility in acid fluids, it The acid corrosion has obvious inhibitory effect.
  • the reaction history of the acidified corrosion inhibitor is as follows:
  • the preparation method of the invention is simple, and the reaction mechanism is: the compounds with active ⁇ -H such as aldehyde and ketone and aldehyde and amine are refluxed in solution such as ethanol, so that the ⁇ -H of ketone is replaced by amine methyl and the reaction also becomes amine methyl ⁇ ⁇ Chemical reaction.
  • the carbonyl group is protonated, and the amine undergoes nucleophilic addition to the carbonyl group, deprotonation, electron transfer on nitrogen, and water leaves.
  • An imine ion intermediate can be obtained.
  • the imine ion acts as an electrophilic reagent to attack active hydrogen-containing compounds.
  • the enol type structure loses protons, and the product Mannich base is obtained.
  • the Mannich base quaternary ammonium salt prepared by the present invention contains polar groups such as carbonyl groups and amine groups, and the nitrogen and oxygen atoms contain unshared electrons, which can enter into the empty orbits of iron atoms to form coordination bonds to slow down
  • the etchant molecules are adsorbed on the metal surface.
  • the addition of ⁇ bond adsorption means that the inhibitor molecule contains ⁇ bond or large ⁇ bond, and the electrons in it enter the empty orbit of the metal atom, forming ⁇ bond adsorption and tightly adsorbed on the iron Inhibit its corrosion;
  • the multiple hydroxyl groups in the corrosion inhibitor molecule can greatly improve the dispersibility of the corrosion inhibitor and the solubility in acid solution.
  • a preparation method of a Mannich base quaternary ammonium salt high temperature resistant acid corrosion inhibitor includes the following steps:
  • the nitrogen atoms on the raw materials benzalacetone and dibenzylamine used in this example have high activity. Under the above reaction conditions, the resulting quaternary ammonium hydrochloride corrosion inhibitor has good corrosion inhibition performance.
  • a preparation method of a Mannich base quaternary ammonium salt high temperature resistant acid corrosion inhibitor includes the following steps:
  • a preparation method of a Mannich base quaternary ammonium salt high temperature resistant acid corrosion inhibitor includes the following steps:
  • a preparation method of a Mannich base quaternary ammonium salt high temperature resistant acid corrosion inhibitor includes the following steps:
  • the water solubility of the corrosion inhibitor prepared in Example 1-4 and the compatibility of the system with iron ion stabilizer, clay stabilizer and drainage aid added at 90 ° C were measured.
  • the specific process is: weigh the corrosion inhibitor separately Each 0.1g, respectively dissolved in 200mL of 20% hydrochloric acid solution, stirring, observe the dissolution; preparation and addition of iron ion stabilizer citric acid, clay stabilizer potassium chloride, drainage aid OP-10 or fluorocarbon surfactant, etc.
  • the 20% hydrochloric acid acid system was weighed with 0.1g each of the corrosion inhibitor, added to it, and observed for compatibility. The results are shown in Table 1.
  • the corrosion inhibitor prepared by the present invention is excellent in water solubility, and has good compatibility with various additives in a high-temperature hydrochloric acid system, and the system is uniform and transparent without delamination.
  • the preparation process of the present invention is simple and feasible.
  • the prepared corrosion inhibitor is ionic and has good water solubility in acid solution. Under the high temperature condition of 90 °C, it can obviously inhibit the corrosion of carbon steel in oil and gas wells. Function, and the surface of the hanging piece is flat after cleaning, without obvious pitting corrosion, indicating that the corrosion inhibitor prepared by the invention has the characteristics of acid resistance and high temperature resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用,制备如下:(1)将胺类物质吲哚、二苯甲基哌啶、二苯基乙胺、二苄胺或者二异丙醇胺溶于有机溶剂中,缓慢加入醛类物质3-(2-噻吩基)苯甲醛或肉桂醛,放入恒温水浴锅中,60-80℃下搅拌反应1-3h,然后将酮类物质苄叉丙酮、二苯乙烯丙酮或1,1-二苯基丙酮加入其中,调节pH值至3-4,反应7-10h,冷却至室温,减压蒸馏除去溶剂,得到曼尼希碱;(2)将曼尼希碱溶于有机溶剂中,加入季铵化试剂氯甲基萘、氯化苄或者三苯氯甲烷,在70-90℃反应14-16h,冷却至室温,减压蒸馏。本方法简单可行,原料无毒,安全环保,制备的酸化缓蚀剂对油气井碳钢的酸腐蚀有明显的抑制作用。

Description

一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用 技术领域
本发明涉及缓蚀剂材料领域中一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及其应用。
背景技术
在油气田增产改造过程中,压裂酸化已经成为主流的油气田增产改造方式。在酸压过程中,酸液的注入可以很大程度上解除油气井筒以及地层堵塞,提高基质渗透率,从而提高油气采收率。但是酸化施工也会给油田带来诸多问题,在酸化施工过程中,盐酸等酸液的注入会造成油气井管柱、施工管线和金属设备的腐蚀,严重时可能导致井下管材突发性破裂事故,管线穿孔,存在严重安全隐患,同时被酸液溶蚀的金属铁离子又可能对地层造成伤害。为了防止酸液对油管、套管以及施工设备的腐蚀,在酸液中添加缓蚀剂是必不可少且最为常用、有效的防腐措施。目前大部分市售缓蚀剂存在高温下易结焦、分层、溶解分散性能不稳定、原料有毒、易燃易爆、污染较大等缺点。
“一种炔醇类曼尼希碱缓蚀剂及其合成方法与应用”(201610436640.6),通过对缓蚀剂关键合成方法的原料、配比、工艺步骤等进行改进,制备得到的缓蚀剂无毒、环境友好,缓蚀效果好、且可耐高温,尤其适用于作为盐酸缓蚀剂在酸洗碳钢中使用。但所用原料丙炔醇为剧毒物质,易燃易爆,腐蚀性强。
“一种高水溶性、耐高温曼尼希碱缓蚀剂中间体及其制备方法”(201410086970.8),不适用任何溶剂,只在碱金属醇盐催化剂存在下,醛、酮、胺缩合物与亲水基表面活性剂反应得到高水溶性、耐高温曼尼希碱缓蚀剂中间体。由于不使用任何溶剂,解决了使用溶剂带来的产品含量低或难于回收利用的缺点,解决了其他缓蚀剂水溶性差、在高温下易分解的缺点,减少了有毒物 质对生产带来的不便,且能抑制高温盐酸酸化腐蚀。但所用原料碱金属醇盐如甲醇钠等对氧气敏感,易燃易爆,具有强腐蚀性。
“一种三氮唑改性曼尼希碱化合物及其制备方法”(201610073911.6),通过Mannich反应、酮的环氧化反应、醚的开环反应制得三氮唑改性曼尼希碱缓蚀剂,由于曼尼希碱是以N和O原子为活性中心的缓蚀剂分子,其中的孤对电子可以以配位键的形式与金属离子络合形成聚合物,且能与金属原子结合,以吸附膜的形式覆盖在设备表面起到缓蚀作用。但是原料氢氧化锂等为高毒物质,对制备工艺要求高,不利于安全生产和环境保护。
因此,研制一种配方简单、合成条件温和、无毒安全、绿色环保,且能满足目前油气井酸化施工苛刻要求的新型耐高温酸化缓蚀剂具有重要的意义。
发明内容
本发明的目的在于提供一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及其应用,该制备方法简单可行,制得的缓蚀剂在高温下具有良好的缓蚀性能,而且原料无毒,安全环保,使用该季铵盐缓蚀剂作为油气井酸化缓蚀剂时,在盐酸溶液中具有良好的溶解性,对油气井碳钢的酸腐蚀有明显的抑制作用。
为实现上述技术目的,本发明提供以下技术方案。
一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,依次包括以下步骤:
(1)将胺类物质吲哚、二苯甲基哌啶、二苯基乙胺、二苄胺或者二异丙醇胺溶于有机溶剂中,缓慢加入醛类物质3-(2-噻吩基)苯甲醛或肉桂醛,放入恒温水浴锅中,60-80℃下搅拌反应1-3h,然后将酮类物质苄叉丙酮、二苯乙烯丙酮或1,1-二苯基丙酮以一定比例加入其中,使用盐酸溶液调节反应体系PH值至3—4,反应7-10h,冷却至室温后,减压蒸馏除去溶剂,得到曼尼希碱;
(2)将曼尼希碱溶于有机溶剂中,按一定比例加入季铵化试剂氯甲基萘、氯化苄或者三苯氯甲烷,在70-90℃反应14-16h,冷却至室温后,减压蒸馏制得曼尼希碱季铵盐耐高温酸化缓蚀剂。
进一步地,步骤(1)中胺类物质、醛类物质、酮类物质的摩尔比为1:1:1-1:1:2。
进一步地,所述有机溶剂为乙醇或乙腈。
进一步地,步骤(2)中曼尼希碱与季铵化试剂的摩尔比为1:1-1:2。
所述曼尼希碱季铵盐耐高温酸化缓蚀剂的应用,是指将其作为油气井酸化缓蚀剂,由于其在酸液中具有良好的分散性和溶解性,对油气井碳钢的酸腐蚀有明显的抑制作用。
该酸化缓蚀剂的反应历程如下:
Figure PCTCN2018116448-appb-000001
本发明制备方法简单,反应机理为:醛、酮等具有活泼α-H的化合物与醛、胺在乙醇等溶液中回流,使酮的α-H被胺甲基取代,反应也成为胺甲基化反应。首先羰基质子化,胺对羰基发生亲核加成,去质子,氮上的电子转移,水离去,可以得到一个亚胺离子中间体,亚胺离子作为亲电试剂,进攻含活泼氢化合物的烯醇型结构,失去质子,便得到产物曼尼希碱。本发明制备的曼尼希碱季铵盐中含有羰基、胺基等极性基团,其中的氮、氧原子都含有未共用的电子,可进入铁原子的空轨道形成配位键,使缓蚀剂分子吸附在金属表面。为使缓蚀剂在金属表面吸附更加牢固,加入π键吸附即缓蚀剂分子中含有π键或大π键,其中的电子进入金属原子的空轨道,形成π键吸附紧紧吸附在铁上,抑制其腐蚀;此外,该缓蚀剂分子中的多个羟基可以大大地提高缓蚀剂的分散性和在酸液中的溶解性。
具体实施方式
下面通过实施例进一步说明本发明。
实施例1
一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,包括以下步骤:
(1)将1.97g二苄胺加入到250mL三颈烧瓶中,然后缓慢加入1.88g 3-(2-噻吩基)苯甲醛,同时加入70mL无水乙醇作为溶剂并搅拌均匀,并将反应体系放入恒温水浴锅中,70℃下搅拌反应1h;
(2)向烧瓶中加入1.46g苄叉丙酮,使用盐酸溶液调节反应体系PH值至4,反应8h,冷却至室温后,减压蒸馏除去溶剂,得到曼尼希碱;
(3)将上述曼尼希碱产物5.13g加入到250mL三颈烧瓶中,加入110mL无水乙醇作为溶剂并搅拌均匀,缓慢加入1.27g氯化苄搅拌均匀,在80℃下搅拌反应12h,冷却至室温后,减压蒸馏制得曼尼希碱季铵盐缓蚀剂。
本实施例所用原料苄叉丙酮、二苄胺上的氮原子具有较高的活性,在上述反应条件下,所得季铵盐酸化缓蚀剂具有良好的缓蚀性能。
上述制备方法的具体反应方程式如下:
Figure PCTCN2018116448-appb-000002
实施例2
一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,包括以下步骤:
(1)将2.51g二苯甲基哌啶加入到250mL三颈烧瓶中,然后缓慢加入1.32g肉桂醛,同时加入100mL无水乙醇作为溶剂并搅拌均匀,并将反应体系放入恒温水浴锅中,70℃下搅拌反应1h;
(2)向烧瓶中加入3.12g二苯乙烯丙酮,使用盐酸溶液调节反应体系PH值至4,反应8h,冷却至室温后,减压蒸馏除去溶剂,得到曼尼希碱;
(3)将上述曼尼希碱产物6.77g加入到250mL三颈烧瓶中,加入120mL乙腈作为溶剂并搅拌均匀,缓慢加入1.76g氯甲基萘搅拌均匀,在85℃下搅拌反应12h,冷却至室温后,减压蒸馏制得曼尼希碱季铵盐缓蚀剂。
Figure PCTCN2018116448-appb-000003
实施例3
一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,包括以下步骤:
(1)将1.17g吲哚加入到250mL三颈烧瓶中,然后缓慢加入1.32g肉桂醛,同时加入90mL无水乙醇作为溶剂并搅拌均匀,并将反应体系放入恒温水浴锅中,80℃下搅拌反应1h;
(2)向烧瓶中加入1.46g苄叉丙酮,使用盐酸溶液调节反应体系PH值至3,反应9h,冷却至室温后,减压蒸馏除去溶剂,得到曼尼希碱;
(3)将上述曼尼希碱产物3.77g加入到250mL三颈烧瓶中,加入110mL无水乙醇作为溶剂并搅拌均匀,缓慢加入2.78g三苯氯甲烷搅拌均匀,在80℃下搅拌反应13h,冷却至室温后,减压蒸馏制得曼尼希碱季铵盐缓蚀剂。
Figure PCTCN2018116448-appb-000004
实施例4
一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,包括以下步骤:
(1)将1.33g二异丙醇胺加入到250mL三颈烧瓶中,然后缓慢加入1.88g3-(2-噻吩基)苯甲醛,同时加入120mL乙腈作为溶剂并搅拌均匀,并将反应体系放入恒温水浴锅中,80℃下搅拌反应1.5h;
(2)向烧瓶中加入3.12g二苯乙烯丙酮,使用盐酸溶液调节反应体系PH值至4,反应10h,冷却至室温后,减压蒸馏除去溶剂,得到曼尼希碱;
(3)将上述曼尼希碱产物6.33g加入到250mL三颈烧瓶中,加入130mL无水乙醇作为溶剂并搅拌均匀,缓慢加入1.76g氯甲基萘搅拌均匀,在80℃下搅拌反应14h,冷却至室温后,减压蒸馏制得曼尼希碱季铵盐缓蚀剂。
Figure PCTCN2018116448-appb-000005
性能测试1 缓蚀剂的水溶性测定
测定实施例1-4制得的缓蚀剂的水溶性以及在90℃下,添加铁离子稳定剂、粘土稳定剂、助排剂等体系的配伍性,具体过程为:分别称取缓蚀剂各0.1g,分别溶于200mL20%的盐酸溶液中,搅拌,观察其溶解情况;配制添加铁离子稳定剂柠檬酸、粘土稳定剂氯化钾、助排剂OP-10或氟碳表面活性剂等的20%的盐酸酸液体系,分别称取缓蚀剂各0.1g,加入其中,观察其配伍性,结果见表1。
表1不同缓蚀剂的水溶性及配伍性测试
缓蚀剂 水溶性 配伍性
实施例1 易溶的红褐色透明液体 均一透明,无分层
实施例2 易溶的红褐色透明液体 均一透明,无分层
实施例3 易溶的红褐色透明液体 均一透明,无分层
实施例4 易溶的红褐色透明液体 均一透明,无分层
由表1可知,本发明制得的缓蚀剂水溶性优异,且在高温盐酸体系中与各种添加剂配伍性良好,体系均一透明,无分层现象。
性能测试2 缓蚀剂的缓蚀性能测定
以20%盐酸作为为腐蚀介质,采用P110碳钢,于90℃通过4h腐蚀挂片失 重实验测定实施例1-4的缓蚀性能,缓蚀剂用量均为1000ppm,结果见表2。
表2各缓蚀剂的缓蚀性能测定
Figure PCTCN2018116448-appb-000006
由表2可知,通过本发明方法制得的缓蚀剂具有良好的缓蚀效果。
综上所述,本发明制备工艺简单可行,制得的缓蚀剂为离子型,在酸溶液中具有良好的水溶性,在90℃高温条件下,对油气井碳钢的腐蚀有明显的抑制作用,且挂片清洗后表面平整,无明显点蚀,说明本发明制得的缓蚀剂具有耐酸耐高温特性。

Claims (5)

  1. 一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,依次包括以下步骤:
    (1)将胺类物质吲哚、二苯甲基哌啶、二苯基乙胺、二苄胺或者二异丙醇胺溶于有机溶剂中,缓慢加入醛类物质3-(2-噻吩基)苯甲醛或肉桂醛,放入恒温水浴锅中,60-80℃下搅拌反应1-3h,然后将酮类物质苄叉丙酮、二苯乙烯丙酮或1,1-二苯基丙酮加入其中,使用盐酸溶液调节反应体系PH值至3—4,反应7-10h,冷却至室温后,减压蒸馏除去溶剂,得到曼尼希碱;
    (2)将曼尼希碱溶于有机溶剂中,加入季铵化试剂氯甲基萘、氯化苄或者三苯氯甲烷,在70-90℃反应14-16h,冷却至室温后,减压蒸馏制得曼尼希碱季铵盐耐高温酸化缓蚀剂。
  2. 如权利要求1所述的一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,其特征在于,所述步骤(1)中胺类物质、醛类物质、酮类物质的摩尔比为1:1:1-1:1:2。
  3. 如权利要求1所述的一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,其特征在于,所述有机溶剂为乙醇或乙腈。
  4. 如权利要求1所述的一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法,其特征在于,所述步骤(2)中曼尼希碱与季铵化试剂的摩尔比为1:1-1:2。
  5. 如权利要求1、2、3或4所述的一种曼尼希碱季铵盐耐高温酸化缓蚀剂的应用,是指将其作为油气井酸化缓蚀剂,对油气井碳钢的酸腐蚀有明显的抑制作用。
PCT/CN2018/116448 2018-11-07 2018-11-20 一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用 WO2020093444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,832 US11161811B2 (en) 2018-11-07 2018-11-20 Process for preparing Mannich base quaternary ammonium salt high-temperature resistant corrosion inhibitor and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811320918.9 2018-11-07
CN201811320918.9A CN109810040B (zh) 2018-11-07 2018-11-07 一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2020093444A1 true WO2020093444A1 (zh) 2020-05-14

Family

ID=66601555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116448 WO2020093444A1 (zh) 2018-11-07 2018-11-20 一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用

Country Status (3)

Country Link
US (1) US11161811B2 (zh)
CN (1) CN109810040B (zh)
WO (1) WO2020093444A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156617B (zh) * 2019-06-12 2022-04-19 中国石油化工股份有限公司 一种缓蚀剂的制备方法及其应用
CN110437813B (zh) * 2019-08-15 2021-10-15 西安石油大学 一种高温油井用缓蚀防蜡剂及其制备方法
CN111499527B (zh) * 2020-06-08 2023-04-07 中国石油大学(华东) 一种交联酸体系耐高温酸化缓蚀剂的制备方法与应用
CN111748048B (zh) * 2020-08-03 2020-12-11 西南石油大学 一种改性壳聚糖酸化缓蚀剂的制备方法
CN113292976A (zh) * 2021-05-26 2021-08-24 西南石油大学 一种耐高温高矿化度缓蚀剂
CN114990554B (zh) * 2021-07-31 2023-11-14 武汉三友石化有限公司 一种中和缓蚀剂及其制备方法和应用
CN113717065A (zh) * 2021-10-11 2021-11-30 西安石油大学 一种新型曼尼希碱型酸化缓蚀剂及其制备方法
CN116333706B (zh) * 2021-12-22 2024-06-14 中国石油天然气股份有限公司 一种耐温180℃酸化用缓蚀剂体系及其制备方法与应用
CN114957108B (zh) * 2022-05-11 2023-11-03 东营施普瑞石油工程技术有限公司 油田酸化压裂助排剂
CN116445146B (zh) * 2023-04-18 2023-10-03 庆阳东祥石油科技有限公司 一种酸化解堵剂及其制备方法
CN117843511B (zh) * 2023-12-18 2024-05-24 山东滨州昱诚化工科技有限公司 一种酸化压裂液用铁离子稳定剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842127B2 (en) * 2006-12-19 2010-11-30 Nalco Company Corrosion inhibitor composition comprising a built-in intensifier
CN103289663A (zh) * 2013-02-06 2013-09-11 陕西延长石油(集团)有限责任公司研究院 一种低毒酸化缓蚀剂的制备方法及其应用
CN105154049A (zh) * 2015-08-04 2015-12-16 中国石油化工股份有限公司 一种缓蚀剂及其制备方法
CN105419774A (zh) * 2015-11-10 2016-03-23 西南石油大学 一种用于高温浓酸环境中的酸化缓蚀剂的制备方法
WO2018111230A1 (en) * 2016-12-13 2018-06-21 Halliburton Energy Services, Inc. Compositions and methods for corrosion inhibition
CN108753271A (zh) * 2018-07-23 2018-11-06 中石化石油工程技术服务有限公司 一种酸化用复合缓蚀剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1301312B (de) * 1966-12-03 1969-08-21 Ruetgerswerke Ag Verfahren zur Herstellung von Pyrryl-(2)-acetonitrilen
US3514465A (en) * 1966-12-30 1970-05-26 Degussa Certain thiazolyl- and pyridinylaminoketones
GB1460999A (en) * 1973-11-07 1977-01-06 Lubrizol Corp Salts of mannich bases or derivatives thereof and liquid hydrocarbon fuels containing them
US4374256A (en) * 1975-06-02 1983-02-15 Ethyl Corporation Process for the preparation of pyrryl-2-acetonitrile
US4137165A (en) * 1976-10-26 1979-01-30 American Cyanamid Company Process for clarifying raw water
US7112559B1 (en) * 2005-03-14 2006-09-26 Ecolab Inc. Thickened quaternary ammonium compound sanitizer
CN102295642B (zh) * 2010-06-25 2016-04-06 中国人民解放军军事医学科学院毒物药物研究所 2-芳基咪唑并[1,2-a]吡啶-3-乙酰胺衍生物、其制备方法及用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842127B2 (en) * 2006-12-19 2010-11-30 Nalco Company Corrosion inhibitor composition comprising a built-in intensifier
CN103289663A (zh) * 2013-02-06 2013-09-11 陕西延长石油(集团)有限责任公司研究院 一种低毒酸化缓蚀剂的制备方法及其应用
CN105154049A (zh) * 2015-08-04 2015-12-16 中国石油化工股份有限公司 一种缓蚀剂及其制备方法
CN105419774A (zh) * 2015-11-10 2016-03-23 西南石油大学 一种用于高温浓酸环境中的酸化缓蚀剂的制备方法
WO2018111230A1 (en) * 2016-12-13 2018-06-21 Halliburton Energy Services, Inc. Compositions and methods for corrosion inhibition
CN108753271A (zh) * 2018-07-23 2018-11-06 中石化石油工程技术服务有限公司 一种酸化用复合缓蚀剂及其制备方法

Also Published As

Publication number Publication date
CN109810040B (zh) 2020-02-18
US20200331856A1 (en) 2020-10-22
US11161811B2 (en) 2021-11-02
CN109810040A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020093444A1 (zh) 一种曼尼希碱季铵盐耐高温酸化缓蚀剂的制备方法及应用
CN107418549B (zh) 一种耐温120~140℃的复合酸化缓蚀剂
US10889748B2 (en) Process for preparing dibenzylamine quaternary ammonium salt high-temperature resistant corrosion inhibitor and applications thereof
WO2022152193A1 (zh) 适用于200℃的酸化用缓蚀剂及应用
CN107502333B (zh) 一种喹啉衍生物与新型曼尼希碱复合酸化缓蚀剂
CN103555313A (zh) 一种咪唑盐离子液体酸化缓蚀剂及其制备方法与应用
CN100577877C (zh) 合成曼尼希碱钢铁缓蚀剂母液的方法及钢铁缓蚀剂母液
CN104861956A (zh) 一种油气田酸化用高温缓蚀剂及其制备方法
CN105483708A (zh) 适用于油气田含h2s/co2腐蚀环境输送管线的缓蚀剂及其制备方法
US9771657B2 (en) Compositions for corrosion inhibition
CN109336851B (zh) 一种四子席夫碱酸化缓蚀剂及其制备方法和应用
CN108689865A (zh) 一种含联苯基的水溶性缓蚀剂及其制备方法及应用
CN108642500A (zh) 一种水溶性联吡啶双子季铵盐缓蚀剂及其制备方法及应用
CN113278409B (zh) 一种高温酸化缓蚀剂
CN114437694B (zh) 酸液用缓蚀剂及其制备和应用
CN104630783A (zh) 含Cr油管用酸化缓蚀剂及其制备方法
CN107573914A (zh) 一种基于曼尼希碱与baa的复合酸化缓蚀剂
CN110156617B (zh) 一种缓蚀剂的制备方法及其应用
CN113046046A (zh) 一种适用于质量分数20-28%盐酸体系的缓蚀剂及其制备方法
CN110760300B (zh) 一种油井高温酸化缓蚀剂、其制备方法及应用
Jiangshan et al. Research Progress of Mannich Base Corrosion Inhibitor
CN109705059B (zh) 一种不对称双子酸化缓蚀剂及其制备方法
US10240240B2 (en) Environmentally friendly corrosion inhibitors for high temperature applications
CN114806530B (zh) 一种高温酸化缓蚀剂及其制备方法和应用
WO2013170492A1 (zh) 一种复合型油气田缓蚀剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939529

Country of ref document: EP

Kind code of ref document: A1