WO2020093375A1 - 膜及制备工艺 - Google Patents

膜及制备工艺 Download PDF

Info

Publication number
WO2020093375A1
WO2020093375A1 PCT/CN2018/114847 CN2018114847W WO2020093375A1 WO 2020093375 A1 WO2020093375 A1 WO 2020093375A1 CN 2018114847 W CN2018114847 W CN 2018114847W WO 2020093375 A1 WO2020093375 A1 WO 2020093375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite copper
alloy
metal
film according
Prior art date
Application number
PCT/CN2018/114847
Other languages
English (en)
French (fr)
Inventor
魏鼎
Original Assignee
深圳市元子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元子科技有限公司 filed Critical 深圳市元子科技有限公司
Priority to US17/292,434 priority Critical patent/US11962016B2/en
Priority to EP18939164.2A priority patent/EP3876307B1/en
Priority to JP2021525135A priority patent/JP7320862B2/ja
Priority to PCT/CN2018/114847 priority patent/WO2020093375A1/zh
Publication of WO2020093375A1 publication Critical patent/WO2020093375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of energy storage unit materials, and particularly relates to a membrane and a preparation process.
  • the negative electrode material of the lithium energy storage unit is copper foil, and the maximum thickness of the existing copper foil can only be 6 microns. With the development of energy storage unit technology, there are higher requirements for the volume and weight of the energy storage unit. A negative current collector structure for ultra-thin energy storage units has gradually emerged. It is coated with a copper layer on the plastic base layer. A relatively good thickness is achieved, but in the process of charge and discharge of the energy storage unit, the bonding strength of the copper plating layer and the plastic base layer is weak, and it is easy to fall off
  • the copper plating layer in the prior art is also a functional layer, which adopts a one-time plating process, that is, a copper layer that is electroplated to the required thickness at one time, which has complicated processes and high costs, and it also causes the film surface to wrinkle at the same time. , Many pinholes, low resistivity and other problems.
  • the purpose of the invention of the present invention is to overcome the problems of the prior art and provide a film with low cost, simple process and good appearance performance.
  • Another object of the present invention is to propose a film preparation process with low cost, simple process and good appearance performance.
  • the film includes a base layer, and a bonding layer, a functional layer, and a protective layer are sequentially arranged on the front and back sides of the base layer, the functional layer is composed of a first composite copper layer and a second composite copper layer, the first composite
  • the copper layer is set to be formed by repeatedly processing copper metal on the surface of the adhesive layer 1 to 500 times
  • the second composite copper layer is set to be formed by repeatedly processing copper metal on the surface of the first composite copper layer 1 to 500 times.
  • the first composite copper layer is formed by repeating the PVD process for 1 to 30 times
  • the second composite copper layer is formed by repeating the plating process for 1 to 10 times.
  • the functional layer is composed of a first composite copper layer and a second composite copper layer on the outer layer, first depositing the first composite copper layer on the bonding layer, and then plating the second composite copper layer on the first composite copper layer For the copper layer, the thickness of the first composite copper layer is smaller than the thickness of the second composite copper layer.
  • the sum of the thicknesses of the first composite copper layer and the second composite copper layer is 30-2500 nm.
  • the film includes a base layer, and a bonding layer, a functional layer, and a protective layer are sequentially arranged on the front and back sides of the base layer, the functional layer is composed of a first composite copper layer, and the first composite copper layer is configured to Metal processing is repeated 2 to 500 times on the surface of the adhesive layer.
  • the thickness of the first composite copper layer is 15-1500 nm.
  • the functional layer is composed of a second composite copper layer
  • the second composite copper layer is configured to Metal processing is repeated 2 to 500 times on the surface of the adhesive layer.
  • the thickness of the second composite copper layer is 15-1500 nm.
  • the bonding layer is a metal material layer, and the metal of the metal material layer is one of TI, W, Cr, NI, Ni alloy, and Cr alloy.
  • the bonding layer is a non-metallic material layer
  • the non-metal is PVDC, NIO, Si, PTFE, PP, PE, SiC, Si3N4, SiOx (1.5 ⁇ x ⁇ 2), AlOx (1 ⁇ x ⁇ 1.5 ), One of the combination of AlOx (1 ⁇ x ⁇ 1.5) and melamine.
  • the bonding layer is a composite material layer composed of a metal material layer and a non-metal material layer
  • the metal of the metal material layer is one of TI, W, Cr, NI, Ni alloy, Cr alloy
  • the metal material layer is the non-metallic materials such as PVDC, NIO, Si, PTFE, PP, PE, SiC, Si3N4, SiOx (1.5 ⁇ x ⁇ 2), AlOx (1 ⁇ x ⁇ 1.5), AlOx (1 ⁇ x ⁇ 1.5) ) In combination with melamine.
  • the metal material layer is composed of 1-10 metal materials.
  • the metal material layer is composed of 1 to 2 metal materials.
  • the metal of the metal material layer is the Ni alloy, and the Ni alloy is one of NiCu alloy, NiCr alloy and NiV alloy;
  • NiCu alloy when it is a NiCu alloy, it is composed of 60% to 80% Ni and 20% to 40% Cu;
  • NiCr alloy When it is a NiCr alloy, it is composed of 70% to 90% Ni and 10% to 30% Cr; when it is a NiV alloy, it is composed of 80% to 95% Ni and 5% to 20% V.
  • the metal of the metal material layer is the Cr alloy, and the Cr alloy is one of CrCu alloy, CrV alloy or CrCo alloy;
  • the metal material layer is 3-40 nm.
  • the thickness of the non-metallic material layer is 10 to 40 nm.
  • the thickness of the non-metallic material layer is 3-40 nm.
  • the non-metallic material layer is provided as 1-10 layers.
  • the non-metallic material layer is provided as 1 to 2 layers.
  • the thickness of the non-metallic material layer is 3-40 nm.
  • the metal material layer is provided as 1-10 layers; the non-metal material layer is provided as 1-10 layers.
  • the thickness of the metal material layer is 1.5 to 28.5 nm; the thickness of the non-metallic material layer is 1.5 to 30 nm.
  • the protective layer is a metal material layer
  • the metal of the metal material layer is one of Cr, NI, Ni alloy and Cr alloy.
  • the protective layer is a non-metallic material layer, and when the protective layer is a non-metallic material layer, the non-metallic material is one of glucose complex and potassium dichromate.
  • the protective layer is provided outside the functional layer, and is formed by repeating the coating process 1-20 times.
  • the thickness of the protective layer is 2-100 nm.
  • the material of the base layer is one or two or more of OPP, PET, PI, PS, PPS, CPP, PEN, PVC, SPS, PEEK, PES, PPSU, non-woven fabric, two or more, two and When two or more types are used, the base layer is processed by a co-extrusion process.
  • the thickness of the base layer is 1.2-12 ⁇ m.
  • the thickness of the base layer is preferably 1.2 to 6 ⁇ m.
  • a film preparation method includes the following steps:
  • Step 1 Form a bonding layer on the base layer
  • Step 2 Form a functional layer outside the adhesive layer, the functional layer is a composite copper layer, which is a first composite copper layer formed by repeating copper metal 2 to 500 times;
  • Step 3 Form a protective layer of metallic material or a protective layer of non-metallic material outside the functional layer.
  • a film preparation method includes the following steps:
  • Step 1 Form a bonding layer on the base layer
  • Step 2 Form a functional layer outside the adhesive layer;
  • the functional layer is a composite copper layer, which is a second composite copper layer that repeats copper metal 2 to 500 times;
  • Step 3 Form a protective layer outside the functional layer.
  • a film preparation method includes the following steps:
  • Step 1 Form a bonding layer on the base layer
  • Step 2 Form a functional layer outside the adhesive layer, the functional layer is a first composite copper layer and a second composite copper layer, which is the first composite copper processed by processing copper metal outside the adhesive layer 1 to 500 times Layer; this is the second composite copper layer where the copper metal is processed on the first composite copper layer and repeated 2 to 500 times
  • Step 3 Form a protective layer of metallic material or a protective layer of non-metallic material outside the functional layer.
  • step S1 a bonding layer is formed on both sides of the base layer by PVD process or by one of CVD process or ALD process;
  • step S2 the base layer coated with the adhesive layer through S1 is formed into a copper-plated layer on the surface of the base layer coated with the adhesive layer by one of the PVD process, the water plating process or the CVD process, according to For practical needs, it is possible to deposit 5 to 2500 nm each time and repeat 2 to 500 times to obtain a functional layer with a total thickness reaching the standard.
  • the process when the bonding layer is a metal material layer, the process is a magnetron sputtering process; when the bonding layer is a non-metallic material layer, the process method of the non-metallic material layer is a CVD process or ALD
  • the CVD process includes one of CVD direct reaction to produce oxides, CVD ion assisted oxidation process, CVD reaction to prepare other compounds, and oxidation reaction magnetron process.
  • the process method of the first composite copper layer is one of PVD process and CVD process; the process method of the second composite copper layer It is one of water electroplating process and electroless plating process.
  • the protective layer is a metal material layer
  • the protective layer is a non-metallic material layer
  • the preparation process method when the protective layer is a metal material layer, the preparation process method is a PVD process; when the protective layer is a non-metallic material layer, the preparation process method is one of a water electroplating process and a surface coating process.
  • the present invention uses a composite copper layer to replace the original single copper layer, which greatly reduces the manufacturing cost, the process is simple, and the processing efficiency is higher; using multiple processes instead of the single process makes the copper plating efficiency higher and the cost lower, thereby Greatly reduces the complexity and difficulty of the process, reduces the cost of the process, and improves the efficiency of copper plating.
  • the invention can make the film's film surface wrinkle-free, less pinholes, fewer defects, and better appearance performance under the premise of satisfying the conductive performance of the film.
  • the film has the characteristics of being conductive on both sides after preparation and molding.
  • the square resistance of the film surface is 10000 ⁇ 5m ⁇ ; the resistivity of the film surface is 1.8 ⁇ 10E ⁇ 8 ⁇ 2.5 ⁇ 10E ⁇ 8 ⁇ .m. Elongation at break ⁇ 6%; TD and MD tensile strength of film surface ⁇ 200MPa; Dyne value of surface tension test ⁇ 42.
  • FIG. 1 is a schematic diagram of the structure of the PAB1B2C of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the PAB2B1C of the present invention.
  • FIG. 3 is a schematic diagram of the PAB1C structure of the present invention.
  • Figure 4 is a schematic diagram of the PAB2C structure of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the PA1A2BC of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the PA2A1BC of the present invention.
  • FIG. 7 is a schematic diagram of the PA1BC structure of the present invention.
  • FIG. 8 is a schematic diagram of the PA2BC structure of the present invention.
  • FIG. 9 is a schematic diagram of the PABC1 structure of the present invention.
  • FIG. 10 is a schematic diagram of the structure of PABC2 of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the PA1A2B1C of the present invention.
  • FIG. 12 is a schematic diagram of the structure of the PA1A2B2C of the present invention.
  • FIG. 13 is a schematic diagram of the structure of the PA1A2B1B2C of the present invention.
  • FIG. 14 is a schematic diagram of the structure of the PA1B1C of the present invention.
  • 15 is a schematic diagram of the PA1B2C structure of the present invention.
  • 16 is a schematic diagram of the structure of the PA1B1B2C of the present invention.
  • 17 is a schematic diagram of the structure of the PA2B1C of the present invention.
  • 19 is a schematic diagram of the structure of the PA2B1B2C of the present invention.
  • 20 is a schematic diagram of the structure of the PA1A2BC1 of the present invention.
  • 21 is a schematic diagram of the structure of the PA1A2BC2 of the present invention.
  • FIG. 22 is a schematic diagram of the structure of the PA1A2B1B2C1 of the present invention.
  • FIG. 23 is a schematic structural diagram of P1A2A1B2C2 of the present invention.
  • the reference signs are as follows:
  • P-base layer A1-metal material bonding layer, A2-non-metallic material bonding layer, B1-first composite copper layer, B2-second composite copper layer, C1-metal material protective layer, C2——Protective layer of non-metallic materials.
  • the film, the structure includes a base layer; and then an adhesive layer, a functional layer, and a protective layer are sequentially arranged on the front and back sides of the base layer, and the functional layer is composed of a first composite copper layer and / or The second composite copper layer is formed.
  • the solution of this embodiment is that the functional layer is composed of a first composite copper layer, and the first composite copper layer is formed through a deposition process 2 to 500 times.
  • the film has the characteristics of both sides can be conductive after preparation and molding. ⁇ 10E ⁇ 8 ⁇ 2.5 ⁇ 10E ⁇ 8 ⁇ .m, film surface TD and MD breaking tensile rate ⁇ 3%; film surface TD and MD tensile strength ⁇ 200MPa; surface tension test dyne value ⁇ 38.
  • the surface square resistance and resistivity of the above-mentioned functional layer have all been tested to reach the processing parameters of the energy storage unit, and meet the performance requirements of the ultra-thin negative electrode current collector.
  • the parameters and appearance performance of the first composite copper layer in the processing of different repetition times are as follows:
  • the thickness of the first composite copper layer is 15-1500 nm
  • a film preparation method includes the following steps:
  • Step 1 Form a bonding layer on the base layer
  • Step 2 Form a functional layer outside the adhesive layer, the functional layer is a composite copper layer, which is a first composite copper layer formed by repeating copper metal 2 to 500 times;
  • Step 3 Form a protective layer of metallic material or a protective layer of non-metallic material outside the functional layer.
  • the main technical solution of this embodiment is basically the same as that of Embodiment 1.
  • the features that are not explained in this embodiment are explained in Embodiment 1.
  • the difference between this embodiment and Embodiment 1 is that the solution of this embodiment is that the functional layer is composed of a second composite copper layer, and the second composite copper layer is formed by a deposition process 2 to 500 times.
  • the functional layer is formed through the coating process repeatedly 2 to 500 times.
  • the thickness of the second composite copper layer is 15-1500 nm.
  • the number of times is different. The more the number of times, the higher the increase of the process cost, preferably 2-50 times.
  • the adhesive layer is a non-metallic material layer, and the non-metal is PTFE, PP, PE, SiC, Si3N4, SiOx (1.5 ⁇ x ⁇ 2), AlOx (1 ⁇ x ⁇ 1.5), AlOx (1 ⁇ x ⁇ 1.5)
  • PTFE polyvinyl ether
  • PE polyvinyl ether
  • SiC polyvinyl ether
  • Si3N4 SiOx (1.5 ⁇ x ⁇ 2)
  • AlOx (1 ⁇ x ⁇ 1.5) One of the combination with melamine.
  • the non-metallic material layer is used as a bonding layer, which has better chemical stability and corrosion resistance, effectively improves the stability of the bonding layer in the structure of the energy storage unit, and prolongs the service life of the entire negative electrode current collector.
  • the non-metallic material layer is provided as 1 to 10 layers, and the non-metallic material layer is preferably provided as 1 to 2 layers.
  • the non-metallic material layer adopting this design has better performance, lower cost and simple process.
  • a film preparation method includes the following steps:
  • Step 1 Form a bonding layer on the base layer
  • Step 2 Form a functional layer outside the adhesive layer;
  • the functional layer is a composite copper layer, which is a second composite copper layer that repeats copper metal 2 to 500 times;
  • Step 3 Form a protective layer outside the functional layer.
  • the main technical solution of this embodiment is basically the same as that of Embodiment 1 and Embodiment 2.
  • the features not explained in this embodiment are adopted in Embodiment 1.
  • the explanation in Embodiment 2 will not be repeated again.
  • the difference between this embodiment and Embodiment 1 and Embodiment 2 is that this embodiment is the best embodiment.
  • the solution of this embodiment is that the functional layer is composed of a first composite copper layer and a second composite copper layer.
  • the first composite copper layer is formed by PVD process deposition 1 to 500
  • the second composite copper layer is formed by electroplating process 1 to 500 times.
  • the first composite copper layer is repeated 1 to 30 times through the deposition process, and the second composite copper layer is repeated 1 to 10 times through the coating process.
  • the functional layer is composed of a first composite copper layer and a second composite copper layer attached to its outer layer.
  • the first composite copper layer is first deposited on the bonding layer, and then the second composite copper is plated on the first composite copper layer Layer, the thickness of the first composite copper layer is less than the thickness of the second composite copper layer.
  • the cost of the PVD process is higher than that of the electroplating process. Therefore, when the thickness of the first composite copper layer is smaller than the thickness of the second composite copper layer, the total processing cost can be effectively reduced.
  • the composite copper layer is a first composite copper layer and a second composite copper layer.
  • the process method of the first composite copper layer is one of PVD process and CVD process; the process method of the second composite copper layer is water electroplating One of process, electroless plating process.
  • the functional layer is a first composite copper layer and a second composite copper layer
  • the sum of the thicknesses of the first composite copper layer and the second composite copper layer is 30-2500 nm.
  • the comparison data is as follows
  • the bonding layer is a composite material layer composed of a metal material layer and a non-metal material layer, the metal of the metal material layer is one of Cr, Ni alloy, and Cr alloy, and the non-metal material layer is the non-metal It is one of the combinations of PTFE, PP, PE, SiC, Si3N4, SiOx (1.5 ⁇ x ⁇ 2), AlOx (1 ⁇ x ⁇ 1.5), AlOx (1 ⁇ x ⁇ 1.5) and melamine.
  • the composite material layer composed of a metal material layer and a non-metallic material layer has both the conductivity and physical properties of the metal material layer, and also has the corrosion resistance characteristics of the non-metallic material layer, which can effectively guarantee the bonding strength when used , And wide range of application, excellent performance.
  • the cost of the bonding layer is greatly reduced. Compared with nickel, the use of alloys and non-metallic materials can reduce the cost of the bonding layer by about 20% and increase the deposition efficiency by 20%.
  • the metal material layer is composed of 1-10 metal materials.
  • the metal material layer of the present invention is formed by depositing the metal material on the surface of the plastic base layer through a plating or deposition process.
  • the metal material layer is composed of 1 to 2 metal materials.
  • the combination strength and process cost are preferably 1 to 2 layers.
  • the metal of the metal material layer is the Ni alloy, and the Ni alloy is one of NiCu alloy, NiCr alloy, and NiV alloy;
  • the metal of the metal material layer is the Ni alloy, and the Ni alloy is one of NiCu alloy, NiCr alloy, and NiV alloy;
  • NiCu alloy when it is NiCu alloy, it is composed of 60% to 80% Ni and 20% to 40% Cu; when it is NiCr alloy, it is composed of 70% to 90% Ni and 10% to 30% Cr composition;
  • NiV alloy When it is a NiV alloy, it is composed of 80% -95% Ni and 5% -20% V.
  • the metal of the metal material layer is the Cr alloy, and the Cr alloy is one of CrCu alloy, CrV alloy or CrCo alloy;
  • the deposition efficiency is increased by about 20%, and the process difficulty is greatly reduced.
  • the thickness of the metal material layer is 3 to 30 nm.
  • the metal material layer adopting the above range of solutions has better square resistance, better stability, and low cost. It can reduce the raw material cost by about 50%, and can be made thinner. Repeated deposition or plating can maintain the bonding strength. At the same time, it is made thinner and the cost of raw materials is reduced.
  • the metal material layer is provided as 1-10 layers; the non-metal material layer is provided as 1-10 layers.
  • the metal material layer is 1 to 2 layers, and the non-metal material layer is 1 to 2 layers. Using this design has the advantages of cost and performance.
  • the thickness of the metal material layer is 1.5-28.5nm; the thickness of the non-metallic material layer is 1.5-30nm, when the material of the non-metallic material layer is AlOx (1 ⁇ x ⁇ 1.5), the thickness of the non-metallic material layer is 8-15nm
  • the thickness of the adhesive layer is 3-40nm.
  • the base layer is one or two or more of OPP, PET, PI, PS, PPS, CPP, PEN, PVC, SPS, PEEK, PES, PPSU, non-woven fabric, which are processed by co-extrusion process and to make.
  • the above-mentioned base material can meet the physical properties, while being thinner, easier to process, and excellent in physical properties and chemical properties.
  • the thickness of the base layer is 1.2-12 ⁇ m.
  • the thickness of the base layer is preferably 1.2 to 6 ⁇ m.
  • the protective layer is a metal material layer, and the metal of the metal material layer is one of Ni, Cr, Ni alloy, and Cr alloy.
  • the protective layer may also be a non-metallic material layer, and the non-metallic material of the non-metallic material layer is one of glucose complex and potassium dichromate.
  • the protective layer is provided outside the functional layer, and the coating process is repeated 1-20 times.
  • the thickness of the protective layer is 2-100 nm.
  • the metal of the metal material layer is the Ni alloy, and the Ni alloy is one of NiCu alloy, NiCr alloy, and NiV alloy;
  • NiCu alloy when it is a NiCu alloy, it is composed of 60% to 80% Ni and 20% to 40% Cu;
  • NiCr alloy When it is a NiCr alloy, it is composed of 70% to 90% Ni and 10% to 30% Cr;
  • NiV alloy When it is a NiV alloy, it is composed of 80% -95% Ni and 5% -20% V.
  • the metal of the metal material layer is the Cr alloy, and the Cr alloy is one of CrCu alloy, CrV alloy or CrCo alloy;
  • the non-metallic material layer will form a protective layer of organic matter on the surface of the functional layer, which has strong chemical stability and excellent corrosion resistance.
  • the alloy metal layer forms a mixed passivation film on the surface of the functional layer to exert anti-corrosion performance at high temperature.
  • the elemental metal forms a mixed passivation film on the surface of the functional layer to exert anti-corrosion performance at higher temperatures.
  • a film preparation method includes the following steps:
  • Step 1 Form a bonding layer on the base layer
  • Step 2 Form a functional layer outside the adhesive layer, the functional layer is a first composite copper layer and a second composite copper layer, which is the first composite copper processed by processing copper metal outside the adhesive layer 1 to 500 times Layer; this is the second composite copper layer where the copper metal is processed on the first composite copper layer and repeated 2 to 500 times
  • Step 3 Form a protective layer of metallic material or a protective layer of non-metallic material outside the functional layer.
  • the first step S1 On the front and back sides of the base layer through the resistance evaporation process, high-frequency crucible evaporation process, electron beam thermal evaporation process or through CVD direct reaction to produce oxides or CVD ion-assisted oxidation process or CVD reaction to prepare One of the compound process or the magnetron sputtering process or the oxidation reaction magnetron process or the ALD process forms the bonding layer;
  • the technical parameters are basically the same as using nickel as the bonding layer, but it can effectively reduce the material cost, and its physical properties and chemical properties are better than traditional technologies, which can effectively reduce the material cost.
  • step S2 the base layer coated with the adhesive layer through S1 is formed into a copper-plated layer on the surface of the base layer coated with the adhesive layer or part of the functional layer by one of the PVD process, the water electroplating process or the CVD process According to the actual needs, it can deposit 5 ⁇ 2500nm each time and repeat 2 ⁇ 500 times to obtain the functional layer with the total thickness reaching the standard.
  • the membrane with the functional layer treated by S2 is subjected to one of PVD process, water electroplating process, surface coating process or chemical reaction process to form a layer on the surface of the functional layer, namely The protective layer.
  • the process is a magnetron sputtering process
  • the process method of the non-metallic material layer is CVD direct reaction oxidation One of species process, CVD ion-assisted oxidation process, CVD reaction preparation of other compounds process, oxidation reaction magnetron process, ALD process. With the combination of the above processes, the processing efficiency is the highest.
  • the composite copper layer is a first composite copper layer and a second composite copper layer.
  • the process method of the first composite copper layer is one of PVD process and CVD process; the process method of the second composite copper layer is water electroplating One of process, electroless plating process. With the combination of the above processes, the processing efficiency is high.
  • the protective layer is a metal material layer
  • the protective layer is a non-metallic material layer
  • the preparation process method is a PVD process
  • the preparation process method is one of a water electroplating process and a surface coating process.
  • the technological process of the bonding layer is as follows:
  • the evaporation source evaporation material is chromium, nickel alloy, chromium alloy or non-metal SiC, Si3N4, SiO2 or Al2O3, purity ⁇ 99.9%, adjust the unwinding and unwinding speed, the evaporated atoms or molecules form a layer of adhesion on the moving base layer; (PVD)
  • Evaporation source evaporation raw materials are metal aluminum wire, aluminum ingot, silicon, purity ⁇ 99.9%, adjust the speed of unwinding and unwinding, evaporated atoms react with oxygen and form a layer of SiOx on the moving base layer (1.5 ⁇ x ⁇ 2) Or AlOx (1 ⁇ x ⁇ 1.5), that is, the bonding layer; (oxides produced by CVD direct reaction)
  • Evaporation source evaporation raw materials are metal aluminum wire, aluminum ingot, silicon, purity ⁇ 99.9%, adjust the speed of unwinding and unwinding, evaporated atoms react with oxygen and form a layer of SiOx on the moving base layer (1.5 ⁇ x ⁇ 2) Or AlOx (1 ⁇ x ⁇ 1.5), which is the bonding layer; (CVD ion assisted oxidation)
  • the corona or plasma-treated substrate or untreated substrate roll into the vacuum chamber of a single- or double-sided reversible vacuum coating machine, seal the vacuum chamber, and evacuate to vacuum degree step by step Reaching 10 ⁇ 5 ⁇ 10 ⁇ 1Pa, using magnetron sputtering to coat the surface of the base layer, the target material is aluminum or silicon, purity ⁇ 99.9%; using oxygen, ozone or ionized oxygen as the sputtering gas, during sputtering
  • the target material is oxidized during the process of the target material.
  • the sputtering target ions react with the incoming gas molecules or ions to form a layer of magnetron sputtering coating SiOx (1.5 ⁇ x ⁇ 2) or AlOx on the moving substrate 1 ⁇ x ⁇ 1.5), that is, the adhesive layer. (Oxidation reaction magnetron)
  • the crucible high-frequency heating method, the resistance heating method, or the electron gun accelerated electrons are used as the evaporation source, and the evaporation method is used to heat the copper with a purity of ⁇ 99.9%, and the unwinding speed and rewinding are adjusted.
  • Speed and evaporation copper continues to melt and evaporate in the evaporation source, and a layer of copper plating is formed on the surface of the film coated with the adhesive layer or part of the functional layer. According to actual needs, it can be deposited every time 5 ⁇ 2500nm, repeat 2 ⁇ 500 Obtain the functional layer with the total thickness up to the standard; (PVD)
  • the conductive film roll material coated with the metal or metal alloy bonding layer by S1 or partially functional layer plated by S2 is placed in the roll-to-roll water electroplating equipment, the conductive film,
  • the characteristic is that the square resistance of the membrane surface is 10000 ⁇ 5.5m ⁇ , and the appropriate winding speed, current, copper ion concentration, brightener concentration, auxiliary agent concentration, PH value and electrolyte temperature can be adjusted each time according to actual needs.
  • the evaporation source evaporation material is metal nickel, chromium, nickel alloy, chromium alloy purity ⁇ 99.9% , Adjust the unwinding speed and rewinding speed, the evaporated atoms or molecules form a layer of coating on the surface of the functional layer, that is, the protective layer; (PVD)
  • the roll-to-roll water electroplating device may be included in the water electroplating equipment of S2 process, or It is an independent set of equipment that uses the method of winding the film to immerse the material into the solution in the solution pool.
  • the solution in the solution pool is dissolved with potassium dichromate, glucose or other substances with anti-oxidant properties of appropriate concentration Organic matter, adjust the appropriate winding speed, current, concentration, PH value and temperature, you can form a layer on the surface of the functional layer, that is, a protective layer. (Water electroplating)
  • the roll-to-roll surface coating device may be included in the S2 process. In the equipment, it can also be an independent set of equipment, which adopts the method of winding the film to pass the material through the coating device.
  • the coating device can apply potassium dichromate, glucose, or other anti-oxidant properties of an appropriate concentration.
  • the organic matter is evenly coated on the surface of the functional layer, and a proper coating and unwinding speed is adjusted to form a coating layer, that is, a protective layer, on the surface of the functional layer. (Surface coating)
  • a film preparation method includes the following steps:
  • the target material is a nickel-copper alloy
  • the content of nickel is 20%
  • the content of copper is 80%
  • the purity of the target material (content of nickel + copper) ⁇ 99.995% take away
  • the film speed is 100m / min
  • the target power is 30Kw
  • the amount of argon gas is 2000SCCM
  • the working vacuum when the argon gas is passed through the film is 6 ⁇ 10 ⁇ 3Pa ⁇ 8 ⁇ 10 ⁇ 3Pa
  • the sputtered ions are formed on the moving substrate
  • a layer of magnetron sputter coating is about 3nm.
  • the coating device can An appropriate concentration of potassium dichromate solution is evenly coated on the surface of the functional layer, and the winding and unwinding speed is 80m / min, and a protective layer can be coated on the surface of the functional layer, corresponding to a thickness of 5-8nm.
  • a film preparation method includes the following steps:
  • the speed of winding and unwinding is 800m / min.
  • the normal cooling temperature is set to ⁇ 50 °C. 30A, copper continues to melt and evaporate in the evaporation source, forming a layer of copper plating on the upper and lower surfaces of the film coated with the adhesive layer, each time to obtain a 10nm plating layer, the equipment is repeated 10 times to obtain a function with a total thickness of 90-100nm Layer B1; the square resistance of the film at this time is 300-200m ⁇ .
  • the coating device can An appropriate concentration of potassium dichromate solution is evenly coated on the surface of the functional layer, and the winding and unwinding speed is 80m / min, and a protective layer can be coated on the surface of the functional layer, corresponding to a thickness of 5-8nm.
  • a film preparation method includes the following steps:
  • the corona or plasma-treated substrate or untreated substrate roll into the vacuum chamber of the double-sided vacuum coating machine, seal the vacuum chamber, and evacuate step by step until the vacuum degree reaches 5 ⁇ 10 ⁇ 3Pa.
  • the working vacuum is 6 ⁇ 10 ⁇ 3Pa ⁇ 9 ⁇ 10 ⁇ 3Pa
  • the sputtered oxygen ions form a layer of magnetron sputter coating on the moving base layer of about 5nm.
  • the roll material with adhesive layer A2 after S1 treatment into the vacuum chamber of the double-sided vacuum coating machine, seal the vacuum chamber, and evacuate step by step until the vacuum degree reaches 5 ⁇ 10 ⁇ 3Pa, using magnetron splashing
  • the film is shot on the surface of the film, the target material is metallic chromium, the purity of the chromium target material is ⁇ 99.99%, the speed of the film winding is 30m / min, the target power is 20Kw, the amount of argon is 600SCCM,
  • the working vacuum is 6 ⁇ 10 ⁇ 3Pa ⁇ 9 ⁇ 10 ⁇ 3Pa, and the sputtered ions form a layer of magnetron sputter coating on the moving base layer, about 5 ⁇ 9nm.
  • the sputtered ions form a magnetron sputtered copper plating layer on the moving base layer at 60nm. After one pass, there is no need to open and clean. Repeat the above process conditions 20 times, each time you can get a layer of 60nm magnetron sputtering coating, 20 times can get a total of 1200nm copper coating on both sides of the film is the functional layer 1, which is B1, at this time, the square resistance of the film is 15-17m ⁇ .
  • the coating device can An appropriate concentration of potassium dichromate solution is evenly coated on the surface of the functional layer, and the winding and unwinding speed is 80m / min, and a protective layer can be coated on the surface of the functional layer, corresponding to a thickness of 5-8nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

膜及制备工艺,包括基层(P),在所述基层的正反两面分别依次设置有粘结层(A)、功能层、保护层(C),所述功能层由第一复合铜层(B1)和/或第二复合铜层(B2)构成,所述第一复合铜层(B1)将铜金属加工在粘结层(A)表面重复2~500次形成,所述第二复合铜层(B2)设置为将铜金属加工在粘结层(A)表面重复2~500次形成。其成本低、工艺简单、外观性能好,属于储能单元材料技术领域。

Description

膜及制备工艺 技术领域
本发明属于储能单元材料技术领域,具体涉及一种膜及制备工艺。
背景技术
随着工业的发展和化石能源的枯竭,环境污染和能源匮乏的压力越来越大,寻找新的能源和发展新的节能工具。
锂储能单元的负极材料是铜箔,现有的铜箔最大的厚度只能做到6微米。随着储能单元技术的发展,对于储能单元的体积和重量都有了更高的要求,逐渐出现了一种超薄储能单元负极集流体结构,其在塑料基层上镀铜层,能达到比较良好的厚度,但是在储能单元的充放电使用过程中,镀铜层与塑料基层的接合强度较弱,容易脱落
现有技术中的镀铜层也就是功能层,采用一次镀的工艺,即一次电镀到所需的厚度的铜层,存在工艺复杂,成本高,其同时也存在一次镀会造成膜面打皱、针孔多、电阻率低等问题。
发明内容
本发明的发明目的在于克服现有技术存在的问题,提供一种成本低、工艺简单、外观性能好的的膜。
本发明的另一发明目的在于提出一种成本低、工艺简单、外观性能好的的膜制备工艺。
本发明技术方案如下:
膜,包括基层,在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层由第一复合铜层和第二复合铜层构成,所述第一复合铜层设置为将铜金属加工在粘结层表面重复1~500次形成,所述第二复合铜层设置为将铜金属加工在第一复合铜层表面重复1~500次形成。
其中,第一复合铜层经PVD工艺重复1~30次形成,第二复合铜层经电镀工艺重复1~10次形成。
其中,所述功能层由第一复合铜层和在其外层的第二复合铜层构成,先在粘结层上沉积第一复合铜层,然后在第一复合铜层上镀第二复合铜层,所述第一复合铜层的厚度小于第二复合铜层的厚度。
其中,第一复合铜层与第二复合铜层的厚度之和为30~2500nm。
膜,包括基层,在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层由第一复合铜层构成,所述第一复合铜层设置为将铜金属加工在粘结层表面重复2~500次形成。
其中,第一复合铜层厚度为15~1500nm。
其中,包括基层,在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层由第二复合铜层构成,所述第二复合铜层设置为将铜金属加工在粘结层表面重复2~500次形成。
其中,第二复合铜层的厚度为15~1500nm。其中,所述粘结层为金属材料层,所述金属材料层的金属为TI、W、Cr、NI、Ni合金、Cr合金其中一种。
其中,所述粘结层为非金属材料层,所述非金属为PVDC、NIO、Si、PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、AlOx(1≤x≤1.5)和三聚氰胺的组合其中一种。
其中,所述粘结层为金属材料层和非金属材料层构成的复合材料层,所述金属材料层的金属为TI、W、Cr、NI、Ni合金、Cr合金其中一种,所述非金属材料层为所述非金属为PVDC、NIO、Si、PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、AlOx(1≤x≤1.5)和三聚氰胺的组合其中一种。
其中,所述金属材料层设置为1~10层金属材料构成。
其中,所述金属材料层设置为1~2层金属材料构成。
其中,所述金属材料层的金属为所述Ni合金,所述Ni合金为NiCu合金、NiCr合金、NiV合金其中一种;
以质量百分比计,当为NiCu合金时,由60%~80%的Ni和20%~40%的Cu组成;
当为NiCr合金时,由70%~90%的Ni和10%~30%的Cr组成;当为NiV合金时,由80%~95%的Ni和5%~20%的V组成。
其中,所述金属材料层的金属为所述Cr合金,所述Cr合金为CrCu合金、CrV合金或CrCo合金其中一种;
以质量百分比计,当为CrCu合金时,由60%~90%的Cr和10%~40%的Cu组成;
当为CrV合金时,由40%~80%的Cr和20%~60%的V组成;
当为CrCo合金时,由60%~90%的Cr和10%~40%的Co组成。其中,金属材料层的厚度为3~40nm。
其中,当所非金属材料层的非金属材料为SiOx(1.5≤x≤2)时,非金属材料层的厚 度为10~40nm。
其中,当所非金属材料层的非金属材料为AlOx(1≤x≤1.5)时,非金属材料层的厚度为3~40nm。
其中,所述非金属材料层设置为1~10层。
其中,所述非金属材料层设置为1~2层。
其中,非金属材料层的厚度为3~40nm。
其中,所述金属材料层设置为1~10层;所述非金属材料层设置为1~10层。
其中,金属材料层的厚度为1.5~28.5nm;非金属材料层的厚度为1.5~30nm。
其中,所述保护层为金属材料层,所述金属材料层的金属为Cr、NI、Ni合金、Cr合金其中一种。
其中,所述保护层为非金属材料层,所述保护层为非金属材料层时,所述非金属材料为葡萄糖络合物、重铬酸钾其中一种。
其中,所述保护层设置于功能层外,经镀膜工艺重复1~20次形成。
其中,所述保护层的厚度为2~100nm。
其中,所述基层的材料为OPP、PET、PI、PS、PPS、CPP、PEN、PVC、SPS,PEEK、PES、PPSU、无纺布的其中一种或两种和两种以上,两种及两种以上时,通过共挤工艺加工为基层。
其中,所述基层的厚度为1.2~12μm。
其中,优选基层的厚度为1.2~6μm。
本发明的另一发明目的,通过下述技术方案实现:
一种膜的制备方法,包括如下步骤:
步骤一、在基层上形成粘结层;
步骤二、在粘结层外形成功能层,所述功能层为复合铜层,其为将铜金属重复2~500次形成的第一复合铜层;
步骤三、在功能层外形成金属材料保护层或非金属材料保护层。
一种膜的制备方法,包括如下步骤:
步骤一、在基层上形成粘结层;
步骤二、在粘结层外形成功能层;所述功能层为复合铜层,其为将铜金属重复2~500次的第二复合铜层;
步骤三、在功能层外形成保护层。
一种膜的制备方法,包括如下步骤:
步骤一、在基层上形成粘结层;
步骤二、在粘结层外形成功能层,所述功能层为第一复合铜层和第二复合铜层,其为将铜金属加工于粘结层外重复1~500次的第一复合铜层;其为将铜金属加工于第一复合铜层重复2~500次的第二复合铜层
步骤三、在功能层外形成金属材料保护层或非金属材料保护层。
其中,所述步骤一中S1.在基层正反两面通过PVD工艺或通过CVD工艺或ALD工艺的其中一种形成粘结层;
其中,所述步骤二中S2.将经过S1镀有粘结层的基层通过PVD工艺或水电镀工艺或CVD工艺的其中一种在镀有粘结层的基层表面形成一层镀铜层,根据实际需要可每次沉积5~2500nm,重复2~500次获得总厚度达标的功能层。
其中,所述步骤三中,S3.将S2处理后的带有功能层的基层经PVD工艺或CVD工艺或电镀工艺或表面涂覆工艺的其中一种在功能层表面上形成保护层。
其中,当所述粘结层为金属材料层时,其工艺为磁控溅射工艺;当所述粘结层为非金属材料层时,所述非金属材料层的工艺方法为CVD工艺或ALD工艺的其中一种,CVD工艺包括CVD直接反应制氧化物类工艺、CVD离子辅助氧化工艺、CVD反应制备其它化合物工艺、氧化反应磁控工艺的其中一种。
其中,所述功能层为第一复合铜层和第二复合铜层时,所述第一复合铜层的工艺方法为PVD工艺、、CVD工艺的其中一种;第二复合铜层的工艺方法为水电镀工艺、化学镀工艺的其中一种。
其中,功能层的表面层为第一复合铜层时,所述保护层为金属材料层,当功能层的表面层为第二复合铜层时,保护层为非金属材料层。
其中,所述保护层为金属材料层时,其制备工艺方法为PVD工艺;所述保护层为非金属材料层时,其制备工艺方法为水电镀工艺和表面涂覆工艺其中一种。本发明的有益之处:
1、本发明使用复合铜层代替了原有的单铜层,其制造成本大大降低,工艺简单,加工效率更高;用多工艺代替单工艺,使得镀铜效率更高,成本更低,从而大大降低了工艺的复杂性,降低难度,工艺成本降低,同时提升了镀铜的效率。
2、,采用本发明可以使得满足膜的导电性能的前提下,同时产品的膜面不起皱,针孔更少,缺陷更少,外观性能更好。
3、该膜制备成型后具备双面均可导电的特性,膜面方阻为10000~5mΩ,;膜面电阻率为1.8×10E~8~2.5×10E~8Ω.m,膜面TD与MD断裂拉伸率≥6%;膜面TD与MD拉伸强度≥200MPa;表面张力测试达因值≥42。
附图说明
图1是本发明的PAB1B2C结构示意图。
图2是本发明的PAB2B1C结构示意图。
图3是本发明的PAB1C结构示意图。
图4是本发明的PAB2C结构示意图。
图5是本发明的PA1A2BC结构示意图。
图6是本发明的PA2A1BC结构示意图。
图7是本发明的PA1BC结构示意图。
图8是本发明的PA2BC结构示意图。
图9是本发明的PABC1结构示意图。
图10是本发明的PABC2结构示意图。
图11是本发明的PA1A2B1C结构示意图。
图12是本发明的PA1A2B2C结构示意图。
图13是本发明的PA1A2B1B2C结构示意图。
图14是本发明的PA1B1C结构示意图。
图15是本发明的PA1B2C结构示意图。
图16是本发明的PA1B1B2C结构示意图。
图17是本发明的PA2B1C结构示意图。
图18是本发明的PA2B2C结构示意图。
图19是本发明的PA2B1B2C结构示意图。
图20是本发明的PA1A2BC1结构示意图。
图21是本发明的PA1A2BC2结构示意图。
图22是本发明的PA1A2B1B2C1结构示意图。
图23是本发明的P A1A2B1B2C2结构示意图。附图标记如下:
P——基层、A1——金属材料粘结层、A2——非金属材料粘结层、B1——第一复合铜层、B2——第二复合铜层、C1——金属材料保护层、C2——非金属材料保护层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进列进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,膜,所述结构包括基层;然后在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层由第一复合铜层和/或第二复合铜层构成。
本实施例的方案为功能层由第一复合铜层构成,第一复合铜层经沉积工艺2~500次形成。
将一次镀改为多次镀,即每次镀较小厚度的一层铜层,然后继续镀第二层铜层,重复2~500次,这样使膜在满足导电需求的情况下,工艺简化,导致成本降低,同时膜面不起皱、无针孔、外观性能好,该膜制备成型后具备双面均可导电的特性,膜面方阻为10000~5mΩ,;膜面电阻率为1.8×10E~8~2.5×10E~8Ω.m,膜面TD与MD断裂拉伸率≥3%;膜面TD与MD拉伸强度≥200MPa;表面张力测试达因值≥38。
上述的功能层的表面方阻和电阻率经过测试均达到储能单元加工参数,满足超薄负极集流体要求的性能。
第一复合铜层在不同重复次数的加工时的参数和外观性能如下表:
Figure PCTCN2018114847-appb-000001
由上述数据可知,第一复合铜层在加工厚度一致的情况下,次数越多,工艺成本的递增幅度越大,其外观性能均保持良好的状态。厚度一致性变低。因此,优选重复2~30次。
当功能层为第一复合铜层时,第一复合铜层厚度为15~1500nm,
一种膜的制备方法,包括如下步骤:
步骤一、在基层上形成粘结层;
步骤二、在粘结层外形成功能层,所述功能层为复合铜层,其为将铜金属重复2~500次形成的第一复合铜层;
步骤三、在功能层外形成金属材料保护层或非金属材料保护层。
实施例2
本发明的膜的实施方式之一,如图2所示,本实施例的主要技术方案与实施例1基本相同, 在本实施例中未作解释的特征,采用实施例1中的解释,再次不在进行赘述,本实施例与实施例1的区别在于:本实施例的方案为功能层由第二复合铜层构成,第二复合铜层经沉积工艺2~500次形成。
所述功能层经镀膜工艺重复2~500次形成。
功能层为第二复合铜层时,第二复合铜层的厚度为15~1500nm。
第二复合铜层在加工厚度一致的情况下,次数不同,次数越多,工艺成本的递增幅度越高,优选2~50次。
Figure PCTCN2018114847-appb-000002
所述粘结层为非金属材料层,所述非金属为PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、AlOx(1≤x≤1.5)和三聚氰胺的组合其中一种。非金属材料层作为粘结层,化学稳定性更好,耐腐蚀,有效提高粘结层在储能单元结构内的稳定性,使整个负极集流体使用寿命延长。
所述非金属材料层设置为1~10层,优选的所述非金属材料层设置为1~2层。采用此种设计的非金属材料层的性能较好、成本较低、工艺简单。
非金属材料层的厚度为3~30nm。一种膜的制备方法,包括如下步骤:
步骤一、在基层上形成粘结层;
步骤二、在粘结层外形成功能层;所述功能层为复合铜层,其为将铜金属重复2~500次的第二复合铜层;
步骤三、在功能层外形成保护层。
实施例3
本发明的膜的实施方式之一,如图3所示,本实施例的主要技术方案与实施例1、实施例2基本相同,在本实施例中未作解释的特征,采用实施例1、实施例2中的解释,再次不在进行赘述,本实施例与实施例1、实施例2的区别在于:本实施例为最佳实施例。本实施例的方案为功能层由第一复合铜层和第二复合铜层构成,第一复合铜层由PVD工艺沉积1~500形成,第二复合铜层经电镀工艺1~500次形成。
优选的,第一复合铜层经沉积工艺重复1~30次,第二复合铜层经镀膜工艺重复1~10次。
所述功能层由第一复合铜层和在其外层附着的第二复合铜层构成,先在粘结层上沉积第一复合铜层,然后在第一复合铜层上镀第二复合铜层,第一复合铜层的厚度小于第二复合铜层的厚度。PVD工艺相比电镀工艺的成本要高,因此第一复合铜层的厚度小于第二复合铜层的厚度时,总的加工成本能够有效降低。所述复合铜层为第一复合铜层和第二复合铜层,所述第一复合铜层的工艺方法为PVD工艺、CVD工艺的其中一种;第二复合铜层的工艺方法为水电镀工艺、化学镀工艺的其中一种。
当功能层为第一复合铜层和第二复合铜层时,第一复合铜层与第二复合铜层的厚度之和为30~2500nm。
Figure PCTCN2018114847-appb-000003
第一复合铜层和第二复合铜层在加工厚度一致的情况下,次数不同,对比数据如下表
Figure PCTCN2018114847-appb-000004
所述粘结层为金属材料层和非金属材料层构成的复合材料层,所述金属材料层的金属为Cr、Ni合金、Cr合金其中一种,所述非金属材料层为所述非金属为PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、AlOx(1≤x≤1.5)和三聚氰胺的组合之 一。采用金属材料层和非金属材料层构成的复合材料层,其兼具了金属材料层的导电性、物理性能,也同时具有非金属材料层的耐腐蚀特性,使用时,能够有效保证粘结强度,并且适用范围广,性能优异。
粘结层的成本极大降低,相比镍,采用合金和非金属材料可以使粘结层成本降低约20%,沉积效率提升20%。
所述金属材料层设置为1~10层金属材料构成。本发明的金属材料层通过镀膜或沉积工艺,将金属材料沉积在塑料基层表面形成。
所述金属材料层设置为1~2层金属材料构成。结合强度和工艺成本,优选1~2层。
所述金属材料层的金属为所述Ni合金,所述Ni合金为NiCu合金、NiCr合金、NiV合金其中一种;
所述金属材料层的金属为所述Ni合金,所述Ni合金为NiCu合金、NiCr合金、NiV合金其中一种;
以质量百分比计,当为NiCu合金时,由60%~80%的Ni和20%~40%的Cu组成;当为NiCr合金时,由70%~90%的Ni和10%~30%的Cr组成;
当为NiV合金时,由80%~95%的Ni和5%~20%的V组成。
其中,所述金属材料层的金属为所述Cr合金,所述Cr合金为CrCu合金、CrV合金或CrCo合金其中一种;
以质量百分比计,当为CrCu合金时,由60%~90%的Cr和10%~40%的Cu组成;
当为CrV合金时,由40%~80%的Cr和20%~60%的V组成;
当为CrCo合金时,由60%~90%的Cr和10%~40%的Co组成。
采用上述组分的铬合金,沉积效率提升约20%,工艺难度大大降低。
金属材料层的厚度为3~30nm。采用上述范围种方案的金属材料层的方阻较佳,稳定性较好,并且成本低,可以降低约50%的原料成本,并且可以做的更薄,反复沉积或镀可以在保持结合强度的同时,做的更薄,原料成本降低。
所述金属材料层设置为1~10层;所述非金属材料层设置为1~10层。
为金属材料层为1~2层,非金属材料层为1~2层。采用此种设计兼具了成本与性能的优势。
金属材料层的厚度为1.5~28.5nm;非金属材料层的厚度为1.5~30nm,当非金属材料层为的材料为AlOx(1≤x≤1.5)时,非金属材料层厚度为8~15nm,粘结层的厚度为 3~40nm。
实施例4
本发明的膜的实施方式之一,本实施例的主要技术方案与实施例1、实施例2、实施例3基本相同,在本实施例中未作解释的特征,采用实施例1、实施例2、实施例3中的解释,再次不在进行赘述,本实施例与实施例1、实施例2、实施例3的区别在于:
所述基层为OPP、PET、PI、PS、PPS、CPP、PEN、PVC、SPS,PEEK、PES、PPSU、无纺布的其中一种或两种及两种以上,其以共挤工艺加工而成。上述的基层材料能够满足物理性能的同时,更薄,更易加工,物理性能和化学性能优异。
所述基层的厚度为1.2~12μm。优选基层的厚度为1.2~6μm。
实施例5
本发明的膜的实施方式之一,本实施例的主要技术方案与实施例1、实施例2、实施例3基本相同,在本实施例中未作解释的特征,采用实施例1、实施例2、实施例3中的解释,再次不在进行赘述,本实施例与实施例1、实施例2、实施例3的区别在于:
所述保护层为金属材料层,所述金属材料层的金属是Ni、Cr、Ni合金、Cr合金的其中一种。所述保护层还可以是非金属材料层,所述非金属材料层的非金属材料为葡萄糖络合物、重铬酸钾其中一种。
其中,所述保护层设置于功能层外,经镀膜工艺重复1~20次。
其中,所述保护层的厚度为2~100nm。
所述金属材料层的金属为所述Ni合金,所述Ni合金为NiCu合金、NiCr合金、NiV合金其中一种;
以质量百分比计,当为NiCu合金时,由60%~80%的Ni和20%~40%的Cu组成;
当为NiCr合金时,由70%~90%的Ni和10%~30%的Cr组成;
当为NiV合金时,由80%~95%的Ni和5%~20%的V组成。
其中,所述金属材料层的金属为所述Cr合金,所述Cr合金为CrCu合金、CrV合金或CrCo合金其中一种;
以质量百分比计,当为CrCu合金时,由60%~90%的Cr和10%~40%的Cu组成;
当为CrV合金时,由40%~80%的Cr和20%~60%的V组成;
当为CrCo合金时,由60%~90%的Cr和10%~40%的Co组成。
非金属材料层会在功能层表面形成一层有机物保护层,化学稳定性强,具有非常优秀的抗腐蚀性。合金金属层在功能层表面形成一层混合钝化膜,在高温下发挥防腐性能。
单质金属在功能层表面形成一层混合钝化膜,在较高温下发挥防腐性能。
  非金属 合金金属 单质金属
成分 葡萄糖络合物 铬合金
工作方式 浸泡 电镀 电镀
清洗 不需要水洗+烘干 需要水洗+烘干 不需要水洗+烘干
抗氧化性能 100℃,15分钟 180~200℃,15分钟 150℃,15分钟
有效期 三个月 大于一年 大于一年
成本 78% 85% 88%
实施例6
本发明的膜的实施方式之一,本实施例的主要技术方案与实施例1、实施例2、实施例3基本相同,在本实施例中未作解释的特征,采用实施例1、实施例2、实施例3中的解释,再次不在进行赘述,本实施例与实施例1、实施例2、实施例3的区别在于:
一种膜的制备方法,包括如下步骤:
步骤一、在基层上形成粘结层;
步骤二、在粘结层外形成功能层,所述功能层为第一复合铜层和第二复合铜层,其为将铜金属加工于粘结层外重复1~500次的第一复合铜层;其为将铜金属加工于第一复合铜层重复2~500次的第二复合铜层
步骤三、在功能层外形成金属材料保护层或非金属材料保护层。
采用上述工艺,能够有效降低材料成本,其物理性能和化学性能均优于传统技术,可有效降低材料成本,
所述步骤一中S1.在基层正反两面通过电阻式蒸发工艺、高频坩埚蒸发工艺、电子束热蒸发工艺或通过CVD直接反应制氧化物类工艺或CVD离子辅助氧化工艺或CVD反应制备其它化合物工艺或磁控溅射工艺或氧化反应磁控工艺或ALD工艺的其中一种形成粘结层;
其技术参数与使用镍作为粘结层的基本相同,但是能够有效降低材料成本,其物理性能和化学性能均优于传统技术,可有效降低材料成本。
所述步骤二中S2.将经过S1镀有粘结层的基层通过PVD工艺或水电镀工艺或CVD工艺的其中一种在镀有粘结层或部分功能层的基层表面形成一层镀铜层,根据实际需要可每次沉积5~2500nm,重复2~500次获得总厚度达标的功能层。
所述步骤三中,S3.将S2处理后的带有功能层的膜经PVD工艺或水电镀工艺或表面涂覆工艺或化学反应工艺的其中一种在功能层表面上形成一层镀层,即保护层。
当所述粘结层为金属材料层时,其工艺为磁控溅射工艺的;当所述粘结层为非金属材料层时,所述非金属材料层的工艺方法为CVD直接反应制氧化物类工艺、CVD离子辅助氧化工艺、CVD反应制备其它化合物工艺、氧化反应磁控工艺、ALD工艺的其中一种。采用 上述工艺的组合,加工效率最高,。
所述复合铜层为第一复合铜层和第二复合铜层,所述第一复合铜层的工艺方法为PVD工艺、CVD工艺的其中一种;第二复合铜层的工艺方法为水电镀工艺、化学镀工艺的其中一种。采用上述工艺的组合,加工效率高。
功能层的表面层为第一复合铜层时,所述保护层为金属材料层,当功能层的表面层为第二复合铜层时,保护层为非金属材料层。采用上述工艺的组合,加工效率高。
所述保护层为金属材料层时,其制备工艺方法为PVD工艺;所述保护层为非金属材料层时,其制备工艺方法为水电镀工艺和表面涂覆工艺其中一种。采用上述工艺的组合,加工效率最高,工艺成本低。
粘结层的工艺流程如下:
S1-1.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~4~10~1Pa,采用坩埚高频加热的方式或采用电阻式加热的方式或采用电子束加热的方式作为蒸发源,蒸发源蒸镀原料为铬、镍合金、铬合金或非金属SiC、Si3N4、SiO2或Al2O3,纯度≥99.9%,调整好收放卷速度,蒸发的原子或分子在移动的基层上形成一层粘结层;(PVD)
S1~2.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~4~10~1Pa,采用坩埚高频加热的方式或采用电阻式加热的方式或采用电子束加热的方式作为蒸发源,利用蒸发源附近或蒸发源至贴鼓膜面之间或主鼓附近的送氧机构通氧结构通入压缩氧气,调整好通气量。蒸发源蒸镀原料为金属铝丝、铝锭、硅,纯度≥99.9%,调整好收放卷速度,蒸发的原子与氧气反应并在移动的基层上形成一层SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5),即粘结层;(CVD直接反应制氧化物类)
S1~3.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~4~10~1Pa,采用坩埚高频加热的方式或采用电阻式加热的方式或采用电子束加热的方式作为蒸发源,利用蒸发源附近或蒸发源至贴鼓膜面之间或主鼓附近的送氧机构通氧结构通入压缩氧气,同时在蒸发源附近或蒸发源至贴鼓膜面之间或主鼓附近增加一套离子辅助沉积设备对氧气进行电离,调整好电流、电压和通气量。蒸发源蒸镀原料为金属铝丝、铝锭、硅,纯度≥99.9%,调整好收放卷速度,蒸发的原子与氧气反应并在移动的基层上形成一层SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5),即粘结层;(CVD离子辅助氧化)
S1~4.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的CVD设备中。①采用氧化亚硅,或三甲基铝或氯化铝作为原料,采用氧气,臭氧,水分,或二氧化碳作为反应气源,调整好反应配比,收卷速度,放卷速度,采用化学气相沉积的方法即可在膜上沉积一层SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5);②采用氯化硅和甲烷作为原料,采用氩气或氢气作为反应气源,调整好反应配比,收卷速度,放卷速度,采用化学气相沉积的方法即可在膜上沉积一层SiC;③采用氯化硅作为原料,采用氮气和氢气作为反应气源,调整好反应配比,收卷速度,放卷速度,采用化学气相沉积的方法即可在膜上沉积一层Si3N4;④采用氢化硅和氨气作为原料,采用氩气和氢气作为反应气源,调整好反应配比,收卷速度,放卷速度,采用化学气相沉积的方法即可在膜上沉积一层Si3N4;即粘结层。(CVD反应制备其它化合物)
S1~5.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~5~10~1Pa,利用磁控溅射在基层表面上镀膜,靶材为金属时包含镍、铬或者镍合金、铬合金、靶材为非金属时包含PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5)、AlOx和三聚氰胺;采用惰性气体为溅射气体,如氮气、氩气、氦气等。调整好放卷速度、收卷速度,溅射的离子在移动的基层上形成一层磁控溅射镀层,即粘结层。靶材为金属时纯度≥99.9%,靶材为非金属时纯度≥99.8%。(磁控溅射)
S1~6.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~5~10~1Pa,利用磁控溅射在基层表面上镀膜,靶材为铝、或硅,纯度≥99.9%;采用氧气、臭氧或离子化的氧气为溅射气体,在溅射靶材的过程中将靶材氧化。调整好放卷速度、收卷速度,溅射的靶材离子和通入的气体分子或离子反应,在移动的基层上形成一层磁控溅射镀层SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5),即粘结层。(氧化反应磁控)
S1~7.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面或双面可往返的ALD设备中,在设备内通入原料氧化亚硅或三甲基铝,以及氧源氧气或者水,将原料和氧源依次通入反应腔体内,最后在膜上反应生成一层SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5),即粘结层。(ALD)
S2~1.将经过S1镀有粘结层、或者采用其它S2方式镀有部分功能层的膜卷料置入含有等离子装置的单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~4~10~1Pa,在进入蒸发区前,先通过等离子设备电离惰性气体如氮气、氩气、 氦气等,对膜表面进行清洁,然后进入蒸镀区,采用坩埚高频加热的方式、或采用电阻式加热的方式、或采用电子枪加速电子作为蒸发源,采用蒸发的方式对纯度≥99.9%的铜进行加热,调整好放卷速度、收卷速度和蒸发量,铜在蒸发源中持续熔化、蒸发,在镀有粘结层或部分功能层的膜表面形成一层镀铜层,根据实际需要可每次沉积5~2500nm,重复2~500次获得总厚度达标的功能层;(PVD)
S2~2.将经过S1镀有粘结层、或者采用其它S2方式镀有部分功能层的膜卷料置入含有等离子装置的单面或双面可往返的真空磁控溅射镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~5~10~1Pa,在进入镀膜区前,先通过等离子设备电离惰性气体如氮气、氩气、氦气等,对膜表面进行清洁,然后进入镀膜区,采用磁控溅射的方式对纯度≥99.9%的铜进行激发,调整好放卷速度、收卷速度和蒸发量,在镀有粘结层或部分功能层的膜表面形成一层镀铜层,根据实际需要可每次沉积2~2500nm,重复2~500次获得总厚度达标的功能层;(磁控溅射)
S2~3.将经过S1镀有金属或金属合金粘结层、或者采用S2镀有部分功能层的可导电的膜卷料置于卷对卷的水电镀设备中,所述可导电的膜,其特征在于,膜面方块电阻为10000~5.5mΩ,调好适当的收放卷速度、电流、铜离子浓度、光亮剂浓度、辅助剂浓度、PH值和电解液温度,根据实际需要可每次沉积2~2500nm,重复2~500次获得总厚度达标的功能层;(水电镀)
S2~4.将经过S1镀有粘结层、或者采用其它S2方式镀有部分功能层的膜卷料置于CVD设备中。采用氯化亚铜,或氯化铜或丁基铜或碘化铜做为原料,采用氢气或氩气作为反应气源,调整好反应配比,收卷速度,放卷速度,采用化学气相沉积的方法即可在膜上沉积一层铜镀层,即为功能层;(CVD)
S2~5.将经过S1镀有金属或金属合金粘结层、或者采用S2镀有部分功能层的膜卷料置于卷对卷的化学镀膜设备中,以钠盐作为主盐,以硫酸铜为主原料,以酒石酸钾钠和EDTA二钠盐等作为络合剂,以氢氧化钠调整适当的PH值为11.5~13,以甲醛作为还原剂,以亚铁氰化钾、α,α’~联吡啶、甲基二氯硅烷等作为稳定剂,调整好适当的收放卷速度,根据实际需要可每次沉积2~2500nm,重复2~500次获得总厚度达标的功能层;(化学镀)
S3~1.将S2处理后的带有功能层的卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~4~10~1Pa,采用坩埚高频加热的方式、或采用电阻式加热的方式、或采用电子束加热的方式作为蒸发源,蒸发源蒸镀原料为金属镍、铬、镍合金、铬合金纯度≥99.9%,调整好放卷速度、收卷速度,蒸发的原子或分子在功能 层表面上形成一层镀层,即保护层;(PVD)
S3~2.将S2处理后的带有功能层的卷料置入单面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10~5~10~1Pa,利用磁控溅射在膜表面功能层上镀膜,靶材为镍、铬或者镍合金、铬合金,靶材纯度≥99.9%,调整好放卷速度、收卷速度,溅射的离子在功能层表面上形成一层磁控溅射镀层,即保护层。(磁控溅射)
S3~3.将S2处理后的带有功能层的卷料置入卷对卷的水电镀设备或装置中,所述卷对卷水电镀装置可以包含在S2工艺的水电镀设备中,也可以是独立的一套设备,采用卷绕走膜的方式使物料浸入溶液池的溶液内,所述溶液池的溶液中溶解有适当浓度的重铬酸钾、或葡萄糖、或其它具备抗氧化性能的有机质,调好适当的收放卷速度、电流、浓度、PH值和温度,即可在功能层表面上形成一层镀层,即保护层。(水电镀)
S3~4.将S2处理后的带有功能层的卷料置入单面或双面的卷对卷表面涂覆设备或装置中,所述卷对卷表面涂覆装置可以包含在S2工艺的设备中,也可以是独立的一套设备,采用卷绕走膜的方式使物料通过涂覆装置,所述涂覆装置可将适当浓度的重铬酸钾、或葡萄糖、或其它具备抗氧化性能的有机质均匀地涂覆在功能层表面,调好适当的收放卷速度,即可在功能层表面上形成一层涂覆层,即保护层。(表面涂覆)
一种膜的制备方法,包括如下步骤:
S1.将经过电晕处或等离子处理后的基层或未经处理的基层卷料置入双面真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10~3Pa,利用磁控溅射在基层表面上镀膜,靶材为镍铜合金,镍的含量为20%,铜的含量为80%,靶材纯度(镍+铜的含量)≥99.995%,收放卷走膜速度为100m/min,靶功率为30Kw,氩气量为2000SCCM,通入氩气走膜时的工作真空为6×10~3Pa~8×10~3Pa,溅射的离子在移动的基层上形成一层磁控溅射镀层约为3nm。一遍完成后,开仓清洁设备,重复上述工艺条件10遍,每遍均可获得一层3nm的磁控溅射镀层,10遍即可在膜两面均获得一共30nm的镍镀层即为粘结层,该粘结层膜面方阻为6~1Ω。
S2.将经过S1镀有金属合金粘结层的膜卷料置于卷对卷的水电镀设备中,收放卷速度调整为10m/min、电流500000A、铜离子浓度适当、光亮剂浓度适当、辅助剂浓度适当、PH值7~13,电解液温度15~25℃,一次即可在膜两面均获得1500nm的功能层;
S3.将S2处理后的带有功能层的卷料置入单面卷对卷表面涂覆设备或装置中,采用卷绕走膜的方式使物料通过涂覆装置,所述涂覆装置可将适当浓度的重铬酸钾溶液均匀地涂覆在功能层表面,收放卷速度80m/min,即可在功能层表面上涂覆一层保护层,对应厚度为5~ 8nm。
一种膜的制备方法,包括如下步骤:
S1.将经过电晕或等离子处理后的基层或未经处理的基层卷料置入单面真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到8×10~3~1×10~2Pa,采用坩埚加热的方式作为蒸发源,利用蒸发源附近的通氧结构通入压缩氧气,通氧量为12000SCCM,。蒸发源蒸镀原料为金属铝丝,纯度≥99.99%,收放卷速度为1200m/min,蒸发的原子与氧气反应并在移动的基层上形成一层AlOx,x=1~1.5,即粘结层,粘结层厚度为2~30nm;
S2.将经过S1镀有粘结层的膜卷料置入含有等离子装置的双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到8×10~3~1×10~2Pa,在进入蒸发区前,先通过等离子设备电离惰性气体如干燥空气,干燥空气通入量为3000SCCM,等离子功率为50Kw,对膜表面进行清洁,然后进入蒸镀区,采用石墨坩埚中频加热的方式作为蒸发源,采用坩埚加热蒸发的方式对纯度≥99.99%的铜锭进行加热,收放卷走膜速度为800m/min,普冷温度设置为~50℃,中频电源电流为30A,铜在蒸发源中持续熔化、蒸发,在镀有粘结层膜上下表面形成一层镀铜层,每次可获得10nm的镀层,设备往返重复10次获得总厚度为90~100nm的功能层B1;此时膜面方阻为300~200mΩ。
S2.将经过S2镀有部分金属功能层的膜卷料置于卷对卷的水电镀设备中,收放卷速度调整为20m/min、电流3000A、铜离子浓度适当、光亮剂浓度适当、辅助剂浓度适当、PH值7~13,电解液温度15~25℃,一次即可在膜两面均获得1500nm的功能层B2;此时B1和B2共同构成1600nm的功能层;
S3.将S2处理后的带有功能层的卷料置入单面卷对卷表面涂覆设备或装置中,采用卷绕走膜的方式使物料通过涂覆装置,所述涂覆装置可将适当浓度的重铬酸钾溶液均匀地涂覆在功能层表面,收放卷速度80m/min,即可在功能层表面上涂覆一层保护层,对应厚度为5~8nm。
一种膜的制备方法,包括如下步骤:
S1.将经过电晕处或等离子处理后的基层或未经处理的基层卷料置入双面真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10~3Pa,利用磁控溅射在基层表面上镀膜,靶材为氧化铝,靶材纯度≥99.995%,收放卷走膜速度为10m/min,靶功率为80Kw,氧气量为2000SCCM,通入氧气走膜时的工作真空为6×10~3Pa~9×10~3Pa,溅射的氧离子在移动的基层上形成一层磁控溅射镀层约为5nm。一遍完成后,开仓清洁设备,重复上述工艺条件5遍,每遍均可获得一层5nm的磁控溅射镀层,5遍即可在膜两面均获得一共 25nm的氧化铝镀层即为粘结层A2。
S1.将经过S1处理后的带有粘结层A2的卷料置入双面真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10~3Pa,利用磁控溅射在膜表面上镀膜,靶材为金属铬,铬靶材纯度≥99.99%,收放卷走膜速度为30m/min,靶功率为20Kw,氩气量为600SCCM,通入氩气走膜时的工作真空为6×10~3Pa~9×10~3Pa,溅射的离子在移动的基层上形成一层磁控溅射镀层约为5~9nm。一遍完成后,开仓清洁设备,重复上述工艺条件2遍,每遍均可获得一层5~9nm的磁控溅射镀层,2遍即可在膜两面均获得一共10~18nm的铬镀层即为粘结层A1。此时A2和A1共同构成35~43nm的粘结层;
S2.将经过S1处理后的带有35~43nm的粘结层的卷料置入双面往返真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10~3Pa,利用磁控溅射在膜表面上镀膜,靶材为金属铜,铜靶材纯度≥99.995%,收放卷走膜速度为10m/min,靶功率为10Kw,氩气量为530SCCM,通入氩气走膜时的工作真空为6×10~3Pa~9×10~3Pa,溅射的离子在移动的基层上形成一层磁控溅射铜镀层为60nm。一遍完成后,无需开仓清洁,往返重复上述工艺条件20遍,每遍均可获得一层60nm的磁控溅射镀层,20遍即可在膜两面均获得一共1200nm的铜镀层即为功能层1,即为B1,此时膜面方阻为15~17mΩ。
S4.将S3处理后的带有功能层的卷料置入单面卷对卷表面涂覆设备或装置中,采用卷绕走膜的方式使物料通过涂覆装置,所述涂覆装置可将适当浓度的重铬酸钾溶液均匀地涂覆在功能层表面,收放卷速度80m/min,即可在功能层表面上涂覆一层保护层,对应厚度为5~8nm。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (39)

  1. 膜,其特征在于:包括基层,在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层包括由第一复合铜层和第二复合铜层构成,所述第一复合铜层设置为将铜金属加工在粘结层表面重复1~500次形成,所述第二复合铜层设置为将铜金属加工在第一复合铜层表面重复1~500次形成。
  2. 根据权利要求1所述的膜,其特征在于,第一复合铜层经PVD工艺重复1~30次形成,第二复合铜层经电镀工艺重复1~10次形成。
  3. 根据权利要求1所述的膜,其特征在于:所述功能层由第一复合铜层和在其外层的第二复合铜层构成,先在粘结层上沉积第一复合铜层,然后在第一复合铜层上镀第二复合铜层,所述第一复合铜层的厚度小于第二复合铜层的厚度。
  4. 根据权利要求1所述的膜,其特征在于,第一复合铜层与第二复合铜层的厚度之和为30~2500nm。
  5. 膜,其特征在于,包括基层,在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层由第一复合铜层构成,所述第一复合铜层设置为将铜金属加工在粘结层表面重复2~500次形成。
  6. 根据权利要求5所述的膜,其特征在于:第一复合铜层厚度为15~1500nm。
  7. 膜,其特征在于:包括基层,在所述基层的正反两面分别依次设置有粘结层、功能层、保护层,所述功能层由第二复合铜层构成,所述第二复合铜层设置为将铜金属加工在粘结层表面重复2~500次形成。
  8. 根据权利要求7所述的膜,其特征在于:第二复合铜层的厚度为15~1500nm。
  9. 根据权利要求1至8任意一项所述的膜,其特征在于:所述粘结层为金属材料层,所述金属材料层的金属为TI、W、Cr、NI、Ni合金、Cr合金其中一种。
  10. 根据权利要求9所述的膜,其特征在于:所述粘结层为非金属材料层,所述非金属材料层的材料为PVDC、NIO、Si、PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、AlOx(1≤x≤1.5)和三聚氰胺的组合其中一种。
  11. 根据权利要求9所述的膜,其特征在于:所述粘结层为金属材料层和非金属材料层构成的复合材料层,所述金属材料层的金属为TI、W、Cr、NI、Ni合金、Cr合金其中一种,所述非金属材料层为所述非金属为PVDC、NIO、Si、PTFE、PP、PE、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、AlOx(1≤x≤1.5)和三聚氰胺的组合其中一种。
  12. 根据权利要求9或11所述的膜,其特征在于:所述金属材料层设置为1~10层金属材料构成。
  13. 根据权利要求9或11所述的膜,其特征在于,所述金属材料层设置为1~2层金属材料构成。
  14. 根据权利要求9或11所述的膜,其特征在于,所述金属材料层的金属为所述Ni合金,所述Ni合金为NiCu合金、NiCr合金、NiV合金其中一种;
    以质量百分比计,当为NiCu合金时,由60%~80%的Ni和20%~40%的Cu组成;
    当为NiCr合金时,由70%~90%的Ni和10%~30%的Cr组成;
    当为NiV合金时,由80%~95%的Ni和5%~20%的V组成。
  15. 根据权利要求9或11所述的膜,其特征在于,所述金属材料层的金属为所述Cr合金,所述Cr合金为CrCu合金、CrV合金或CrCo合金其中一种;
    以质量百分比计,当为CrCu合金时,由60%~90%的Cr和10%~40%的Cu组成;
    当为CrV合金时,由40%~80%的Cr和20%~60%的V组成;
    当为CrCo合金时,由60%~90%的Cr和10%~40%的Co组成。
  16. 根据权利要求9或11所述的膜,其特征在于,金属材料层的厚度为3~40nm。
  17. 根据权利要求10或11所述的膜,其特征在于:当所非金属材料层的非金属材料为SiOx(1.5≤x≤2)时,非金属材料层的厚度为10~40nm。
  18. 根据权利要求10或11所述的膜,其特征在于:当所非金属材料层的非金属材料为AlOx(1≤x≤1.5)时,非金属材料层的厚度为3~40nm。
  19. 根据权利要求10或11所述的膜,其特征在于:所述非金属材料层设置为1~10层。
  20. 根据权利要求10或11所述的膜,其特征在于:所述非金属材料层设置为1~2层。
  21. 根据权利要求10或11所述的膜,其特征在于:非金属材料层的厚度为3~40nm。
  22. 根据权利要求11所的膜,其特征在于,所述金属材料层设置为1~10层;所述非金属材料层设置为1~10层。
  23. 根据权利要求11所的膜,其特征在于,金属材料层的厚度为1.5~28.5nm;非金属材料层的厚度为1.5~30nm。
  24. 根据权利要求1至8任意一项所述的膜,其特征在于:所述保护层为金属材料层,所述金属材料层的金属为Cr、NI、Ni合金、Cr合金其中一种。
  25. 根据权利要求1至8任意一项所述的膜,其特征在于:所述保护层为非金属材料层,所述保护层为非金属材料层时,所述非金属材料为葡萄糖络合物、重铬酸钾其中一种。
  26. 根据权利要求25所述的膜,其特征在于,所述保护层设置于功能层外,经镀膜工艺重复1~20次形成。
  27. 根据权利要求26所述的膜,其特征在于,所述保护层的厚度为2~100nm。
  28. 根据权利要求1至8任意一项所述的膜,其特征在于,所述基层的材料为OPP、PET、PI、PS、PPS、CPP、PEN、PVC、SPS,PEEK、PES、PPSU、PE、无纺布的其中一种或两种或两种以上。
  29. 根据权利要求28所述的膜,其特征在于:所述基层的厚度为1.2~12μm。
  30. 根据权利要求28所述的膜,其特征在于:所述基层的厚度为1.2~6μm。
  31. 一种膜的制备方法,其特征在于,包括如下步骤:
    步骤一、在基层上形成粘结层;
    步骤二、在粘结层外形成功能层,所述功能层为复合铜层,其为将铜金属重复2~500次形成的第一复合铜层;
    步骤三、在功能层外形成金属材料保护层或非金属材料保护层。
  32. 一种膜的制备方法,其特征在于,包括如下步骤:
    步骤一、在基层上形成粘结层;
    步骤二、在粘结层外形成功能层;所述功能层为复合铜层,其为将铜金属重复2~500次的第二复合铜层;
    步骤三、在功能层外形成保护层。
  33. 一种膜的制备方法,其特征在于,包括如下步骤:
    步骤一、在基层上形成粘结层;
    步骤二、在粘结层外形成功能层,所述功能层为第一复合铜层和第二复合铜层,其为将铜金属加工于粘结层外重复1~500次的第一复合铜层;其为将铜金属加工于第一复合铜层重复1~500次的第二复合铜层;
    步骤三、在功能层外形成金属材料保护层或非金属材料保护层。
  34. 根据权利要求31至33任意一项所述的一种膜的制备方法,其特征在于:所述步骤一中在基层正反两面通过PVD工艺或CVD工艺或ALD工艺其中一种形成粘结层。
  35. 根据权利要求31至33任意一项所述的一种膜的制备方法,其特征在于:所述步骤二中将经过步骤一设置有粘结层的基层通过PVD工艺或电镀工艺或CVD工艺的其中一种在粘结层的表面形成一层镀铜层,根据设定厚度每次沉积5~2500nm,重复2~500次获得设定总厚度的功能层。
  36. 根据权利要求31至33任意一项所述的一种膜的制备方法,其特征在于:所述步骤三中,将步骤二处理后的带有功能层的基层经PVD工艺或CVD工艺或电镀工艺或表面涂覆工 艺的其中一种在功能层表面上形成保护层。
  37. 根据权力要求34所述的膜的制备工艺,其特征在于,当所述粘结层为金属材料层时,其工艺为PVD工艺;当所述粘结层为非金属材料层时,所述非金属材料层的工艺方法为CVD直接反应制氧化物类工艺、CVD离子辅助氧化工艺、CVD反应制备其它化合物工艺、ALD工艺的其中一种。
  38. 根据权力要求33所述的膜的制备工艺,其特征在于:所述功能层为第一复合铜层和第二复合铜层,所述第一复合铜层的工艺方法为PVD工艺、CVD工艺的其中一种;第二复合铜层的工艺方法为电镀工艺、化学镀工艺的其中一种。
  39. 根据权力要求36所述的膜的制备工艺,其特征在于:所述保护层为金属材料层时,其制备工艺方法为PVD工艺;所述保护层为非金属材料层时,其制备工艺方法为电镀工艺和表面涂覆工艺其中一种。
PCT/CN2018/114847 2018-11-09 2018-11-09 膜及制备工艺 WO2020093375A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/292,434 US11962016B2 (en) 2018-11-09 2018-11-09 Film and preparation process
EP18939164.2A EP3876307B1 (en) 2018-11-09 2018-11-09 Film preparation process
JP2021525135A JP7320862B2 (ja) 2018-11-09 2018-11-09 膜及び製造プロセス
PCT/CN2018/114847 WO2020093375A1 (zh) 2018-11-09 2018-11-09 膜及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114847 WO2020093375A1 (zh) 2018-11-09 2018-11-09 膜及制备工艺

Publications (1)

Publication Number Publication Date
WO2020093375A1 true WO2020093375A1 (zh) 2020-05-14

Family

ID=70611459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114847 WO2020093375A1 (zh) 2018-11-09 2018-11-09 膜及制备工艺

Country Status (4)

Country Link
US (1) US11962016B2 (zh)
EP (1) EP3876307B1 (zh)
JP (1) JP7320862B2 (zh)
WO (1) WO2020093375A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710831A (zh) * 2020-07-09 2020-09-25 夏笔文 一种固态电池负极箔及其生产工艺
CN111740044A (zh) * 2020-07-09 2020-10-02 夏笔文 一种复合箔及其生产工艺
CN115084789A (zh) * 2022-07-26 2022-09-20 常州欣盛半导体技术股份有限公司 复合集流体及其制备方法、电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736302A (zh) * 2009-12-18 2010-06-16 西安交通大学 一种同质多层纳米金属薄膜材料的制备方法
CN102779988A (zh) * 2012-08-06 2012-11-14 常州大学 一种锂离子电池复合负极材料镀膜的改性方法
CN102884660A (zh) * 2010-03-01 2013-01-16 古河电气工业株式会社 铜箔的表面处理方法、表面处理铜箔及锂离子充电电池的负极集电体用铜箔
CN106972175A (zh) * 2016-01-14 2017-07-21 长春石油化学股份有限公司 表面处理铜箔
CN107369810A (zh) * 2017-04-14 2017-11-21 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
WO2018168468A1 (ja) * 2017-03-17 2018-09-20 日立金属株式会社 二次電池の負極集電体用箔およびその製造方法
CN108624860A (zh) * 2018-08-07 2018-10-09 安徽金美新材料科技有限公司 一种双面往返连续真空镀膜设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921469B2 (en) * 2002-03-26 2005-07-26 Lattice Energy Llc Electrode constructs, and related cells and methods
TWI244792B (en) * 2004-08-18 2005-12-01 Nan Ya Printed Circuit Board C Flat panel direct methanol fuel cell and method of making the same
US7919409B2 (en) * 2008-08-15 2011-04-05 Air Products And Chemicals, Inc. Materials for adhesion enhancement of copper film on diffusion barriers
JP4948654B2 (ja) 2010-03-01 2012-06-06 古河電気工業株式会社 リチウムイオン二次電池の負極集電体用銅箔、その製造方法、及びリチウムイオン二次電池の負極電極、その製造方法
JP5648402B2 (ja) 2010-09-30 2015-01-07 住友金属鉱山株式会社 スパッタリング装置、スパッタリング方法及び金属ベース層付樹脂フィルムの製造方法
JP6261820B2 (ja) * 2015-05-11 2018-01-17 富士フイルム株式会社 電気音響変換フィルム原反、電気音響変換フィルム、および、その製造方法
KR102393911B1 (ko) * 2015-05-27 2022-05-03 데쿠세리아루즈 가부시키가이샤 적층 박막, 및 적층 박막의 제조 방법
KR102158241B1 (ko) * 2015-06-24 2020-09-21 에스케이넥실리스 주식회사 전해 동박, 그것을 포함하는 집전체, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
JP6953698B2 (ja) 2016-09-30 2021-10-27 住友金属鉱山株式会社 被成膜物の搬送方法および乾式成膜装置ならびに該搬送方法を用いた被成膜物の成膜方法
KR102575789B1 (ko) 2016-10-04 2023-09-06 에스케이넥실리스 주식회사 낮은 치수변화율을 갖는 연성동박적층필름 및 그 제조방법
DE102018107673A1 (de) * 2018-03-15 2019-09-19 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Herstellungsverfahren für einen optoelektronischen Halbleiterchip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736302A (zh) * 2009-12-18 2010-06-16 西安交通大学 一种同质多层纳米金属薄膜材料的制备方法
CN102884660A (zh) * 2010-03-01 2013-01-16 古河电气工业株式会社 铜箔的表面处理方法、表面处理铜箔及锂离子充电电池的负极集电体用铜箔
CN102779988A (zh) * 2012-08-06 2012-11-14 常州大学 一种锂离子电池复合负极材料镀膜的改性方法
CN106972175A (zh) * 2016-01-14 2017-07-21 长春石油化学股份有限公司 表面处理铜箔
WO2018168468A1 (ja) * 2017-03-17 2018-09-20 日立金属株式会社 二次電池の負極集電体用箔およびその製造方法
CN107369810A (zh) * 2017-04-14 2017-11-21 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
CN108624860A (zh) * 2018-08-07 2018-10-09 安徽金美新材料科技有限公司 一种双面往返连续真空镀膜设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876307A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710831A (zh) * 2020-07-09 2020-09-25 夏笔文 一种固态电池负极箔及其生产工艺
CN111740044A (zh) * 2020-07-09 2020-10-02 夏笔文 一种复合箔及其生产工艺
CN115084789A (zh) * 2022-07-26 2022-09-20 常州欣盛半导体技术股份有限公司 复合集流体及其制备方法、电池

Also Published As

Publication number Publication date
JP2022512978A (ja) 2022-02-07
EP3876307C0 (en) 2024-07-10
EP3876307A1 (en) 2021-09-08
US20220021003A1 (en) 2022-01-20
EP3876307B1 (en) 2024-07-10
JP7320862B2 (ja) 2023-08-04
EP3876307A4 (en) 2022-10-26
US11962016B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2020093375A1 (zh) 膜及制备工艺
JP2018181823A (ja) 負極集電体、その製造方法及びその応用
CN105047958B (zh) 用于燃料电池金属极板的石墨烯复合涂层及其制备方法
JP6014807B2 (ja) 燃料電池用セパレータ又は燃料電池用集電部材、及びその製造方法
CN108060398A (zh) 一种燃料电池复合纳米涂层及其镀制方法
CN113622008A (zh) 一种导电膜及其制备方法
CN105386003A (zh) 一种三维结构石墨烯增强铜基复合材料的制备方法
TW201501947A (zh) 透明氣體障蔽膜、透明氣體障蔽膜之製造方法、有機el元件、太陽電池及薄膜電池(一)
JP2014141732A (ja) ステンレス鋼を母材とする耐食性及び伝導性ナノカーボンコーティング方法及びそれによる燃料電池分離板
WO2003100111A1 (en) Method for producing porous metal by composite physical vapour deposition and the equipment thereof
CN212257552U (zh) 导电膜及极片
WO2021208542A1 (zh) 导电膜及极片
CN117154102A (zh) 复合集流体及其制备方法和应用
JP6759780B2 (ja) 燃料電池用金属セパレータ及びこれを用いた燃料電池
WO2022041446A1 (zh) 一种导电薄膜的制备方法、电流汇集传输材料以及能量储存装置
JP2007297712A (ja) プラズマを利用して堆積された薄いシード層を介してのメタライゼーション
WO2020093395A1 (zh) 膜及制备工艺
Tang et al. Research progress on coating and coating technology of fuel cell metallic bipolar plate
CN108735825B (zh) 太阳能电池背电极和太阳能电池及其制备方法
JP2012228786A (ja) ガスバリア性フィルム及びその製造方法
CN110783595B (zh) 一种金属双极板及其制备方法以及燃料电池
CN114023972A (zh) 导电膜及极片
CN108642446A (zh) 一种多孔CrN涂层及其制备方法和一种超级电容器
CN206878105U (zh) 一种燃料电池双极板
JP6229771B2 (ja) 燃料電池用セパレータ又は燃料電池用集電部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018939164

Country of ref document: EP

Effective date: 20210531