WO2021208542A1 - 导电膜及极片 - Google Patents

导电膜及极片 Download PDF

Info

Publication number
WO2021208542A1
WO2021208542A1 PCT/CN2021/071609 CN2021071609W WO2021208542A1 WO 2021208542 A1 WO2021208542 A1 WO 2021208542A1 CN 2021071609 W CN2021071609 W CN 2021071609W WO 2021208542 A1 WO2021208542 A1 WO 2021208542A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive film
thickness
functional layer
transition
Prior art date
Application number
PCT/CN2021/071609
Other languages
English (en)
French (fr)
Inventor
张芹
Original Assignee
深圳市海鸿新能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010288893.XA external-priority patent/CN114023972A/zh
Priority claimed from CN202020540025.1U external-priority patent/CN212257552U/zh
Application filed by 深圳市海鸿新能源技术有限公司 filed Critical 深圳市海鸿新能源技术有限公司
Publication of WO2021208542A1 publication Critical patent/WO2021208542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of conductive films, and in particular to conductive films and pole pieces.
  • the purpose of the present disclosure is to provide a conductive film and a pole piece to improve the technical problems of low density, low elongation at break, and high resistivity of the conductive film.
  • the purpose of the present disclosure is also to clarify the relative structural relationship of the bonding layer, the transition layer, the protective layer, and the functional layer, so that the structure, physical properties, and cost control of the entire conductive film are more reasonable.
  • embodiments of the present disclosure provide a conductive film, which includes a base film and a structural layer, and the structural layer is disposed on both sides of the base film.
  • the structural layer includes a transition layer and a functional layer sequentially arranged on the base film, the transition layer and the functional layer are both metal layers, and the thickness of the transition layer is 1%-4% of the thickness of the functional layer.
  • the embodiments of the present disclosure provide a conductive film, including a base film, the base film has a first surface and a second surface that are opposed to each other, the first surface is provided with a first structure layer, and the second surface is provided with a second structure layer.
  • Both the first structural layer and the second structural layer include a transition layer and a functional layer, and the transition layer is located between the base film and the functional layer. Both the transition layer and the functional layer are metal layers.
  • the thickness of the transition layer is 1% of the thickness of the functional layer. %-4%.
  • the conductive film improves the structural layer.
  • a transition layer is provided between the base film and the functional layer.
  • the transition layer is a metal layer with conductive properties, and the transition layer has better compactness and lower resistivity, improving conductivity
  • the denseness of the film reduces the resistivity of the conductive film.
  • the thickness of the transition layer is 1%-4% of the thickness of the functional layer. This structure reduces the process cost and the thickness of the structure layer while the conductive film has better compactness and lower resistivity.
  • the preparation process of the transition layer includes at least one of magnetron sputtering, alkaline electroplating, and electroless plating, and the metal materials of the transition layer all include Cu, Ni, Cr, NiCu alloys, and At least one of NiCr alloys.
  • the preparation process of the functional layer includes one or both of the evaporation method and the water electroplating method, and the metal material of the functional layer includes at least one of Cu, Ni, Cr, NiCu alloy, and NiCr alloy.
  • the selection of the transition layer and the functional layer is independent, and can be the same or different.
  • the transition layer and the functional layer adopt different processes to obtain layer structures with different properties, so that the transition layer and the functional layer have better conductivity, but also have better compactness and lower resistivity.
  • the structural layer further includes an adhesive layer disposed between the transition layer and the base film, that is, the first structural layer and the second structural layer both include an adhesive layer, and the thickness of the adhesive layer is a function 0.1%-2% of the thickness of the layer.
  • the material of the bonding layer is metal, and the thickness of the bonding layer is 0.2%-0.5% of the thickness of the functional layer.
  • the metal material of the bonding layer includes at least one of Ni, Cr, NiCu alloy, NiCr alloy, and NiV alloy.
  • the material of the bonding layer is non-metal, and the thickness of the bonding layer is 0.5%-2% of the thickness of the functional layer.
  • the non-metallic materials of the bonding layer include polytetrafluoroethylene, polypropylene, polyethylene, titanium nitride, NbO x (1 ⁇ x ⁇ 2.5), SiC, Si 3 N 4 , SiO x (1.5 ⁇ x ⁇ 2), At least one of AlO x (1 ⁇ x ⁇ 1.5), polyvinylidene chloride, and melamine.
  • the bonding layer serves to connect the base film and the transition layer, and improves the bonding strength of the layer structure.
  • the thickness ratio of the adhesive layer makes the base film and the transition layer have better adhesion.
  • the structural layer further includes a protective layer disposed on the surface of the functional layer away from the transition layer, the thickness of the protective layer is 0.1% to 6% of the thickness of the functional layer, the protective layer is a metal layer, and the protective layer
  • the metal material includes at least one of Ni, Cr, NiCu alloy, NiCr alloy, and NiCu alloy.
  • the protective layer is a non-metallic layer, and the non-metallic material of the protective layer includes at least one of glucose complex and potassium dichromate.
  • the functional layer plays a role in protecting the functional layer and avoiding its oxidation. While the protective layer of this thickness ratio has better protection, the thickness of the protective layer is reduced, the amount of pollutants discharged during the processing process is reduced, and the cost is reduced.
  • the thickness of the base film is 1.2 ⁇ m-12 ⁇ m, and the thickness of the functional layer is 300-1500 nm.
  • the structure makes the structure layer thinner than the structure layer of the existing conductive film, and more active materials can be coated in this area during the manufacturing process of the lithium battery. That is to say, when the thickness of the active material coated on the pole piece of the battery cell of the same volume is the same, more layers of pole piece material can be accommodated, and finally the energy density of the battery cell can be increased by 0.5-2%.
  • embodiments of the present disclosure provide a method for preparing a conductive film, which includes sequentially forming a transition layer and a functional layer on two opposite surfaces of a base film. Since the transition layer has better compactness and lower resistivity, the compactness of the conductive film is improved, and the resistivity of the conductive film is reduced.
  • the method for preparing the conductive film includes the following steps: forming an adhesive layer, a transition layer, a functional layer, and a protective layer on two opposite surfaces of the base film in sequence;
  • the bonding layer is formed by a physical vapor deposition method or a chemical vapor deposition method
  • the transition layer is formed by at least one of a magnetron sputtering method, an alkaline electroplating method, and an electroless plating;
  • the functional layer is formed by at least one of an evaporation method and a water electroplating method
  • the protective layer is formed using at least one of a physical vapor deposition method, a magnetron sputtering method, a water electroplating method, and a coating method.
  • embodiments of the present disclosure provide a pole piece, which includes the above-mentioned conductive film and an active material coated on the conductive film. Since the conductive film provided by the present disclosure has better electrical conductivity and tensile mechanical properties, and has a thinner structural layer, the pole piece has better electrical conductivity and tensile mechanical properties.
  • FIG. 1 is a schematic structural diagram of a conductive film provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of another conductive film provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of another conductive film provided by an embodiment of the disclosure.
  • FIG. 5 is a backlight illumination diagram of the conductive film provided in Embodiment 1 of the disclosure.
  • FIG. 6 is an SEM image of the conductive film provided by Comparative Example 1 of the present disclosure.
  • FIG. 7 is a backlight illumination diagram of the conductive film provided in Comparative Example 1 of the present disclosure.
  • FIG. 8 is an SEM image of the conductive film provided by Comparative Example 2 of the present disclosure.
  • FIG. 9 is a backlight illumination diagram of the conductive film provided in Comparative Example 2 of the present disclosure.
  • Icon 100-conductive film; 110-base film; 120-structure layer; 121-adhesive layer; 122-transition layer; 123-functional layer; 124-protective layer.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, etc. is based on the orientation or positional relationship shown in the drawings, or is habitually placed when the application product is used.
  • the orientation or positional relationship is only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying that the pointed device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the present disclosure.
  • the current multi-layer structure composite conductive film generally includes a base film, a functional layer, and a protective layer.
  • the functional layer acts as a conductive layer to conduct electricity
  • the protective layer is used to protect the functional layer.
  • Some multi-layer structured composite conductive films add a bonding layer on this basis to improve the adhesion between the base film and the functional layer. With the development of power batteries, the requirements for structures such as pole pieces and conductive films have gradually increased.
  • the inventor of the present disclosure through research on the structure of the multilayer structure composite conductive film, proposes to improve the structural layer, and set a transition layer between the bonding layer and the functional layer.
  • the transition layer has better compactness and Low resistivity, while the transition layer is a metal layer, which has conductive properties and will not affect the overcurrent capability of the conductive film.
  • FIG. 1 to FIG. 3 are schematic diagrams of three different structures of the conductive film 100 provided by this embodiment.
  • This embodiment provides a conductive film 100 including a base film 110 and a structural layer 120, and the structural layer 120 is disposed on both sides of the base film 110.
  • the base film 110 has a first surface and a second surface opposite to each other.
  • the first surface is provided with a first structure layer 120
  • the second surface is provided with a second structure layer 120.
  • the structures of the first structure layer 120 and the second structure layer 120 are the same.
  • the first structure layer 120 may be different from the second structure layer 120.
  • the specific structure is based on Need to change.
  • the base film 110 in the embodiment of the present disclosure is a flexible film material, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polypropylene ( PP), polyethylene (PE), polyphenylene sulfide (PPS), etc.
  • the base film 110 functions as a basic support in the conductive film 100.
  • the thickness of the base film 110 in the embodiment of the present disclosure is 1.2 ⁇ m-12 ⁇ m.
  • the thickness of the base film 110 may be 1.2 ⁇ m, 2 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 5 ⁇ m, or 6 ⁇ m.
  • Both the first structure layer 120 and the second structure layer 120 in the embodiment of the present disclosure include an adhesive layer 121, a transition layer 122, a functional layer 123, and a protective layer 124 that are sequentially disposed on the base film 110.
  • the adhesive layer 121 is disposed on both surfaces of the base film 110 and functions to connect the base film 110 and the transition layer 122.
  • the transition layer 122 is disposed on the surface of the adhesive layer 121, and plays a role of improving electrical conductivity and enhancing compactness.
  • the functional layer 123 is disposed on the surface of the transition layer 122 and mainly performs a conductive function.
  • the protective layer 124 is disposed on the surface of the functional layer 123 to protect the functional layer 123 and avoid oxidation.
  • the adhesive layer 121 and the protective layer 124 may be selectively provided as required. 2 and 3, the structural layer in FIG. 2 only includes the transition layer 122 and the functional layer 123, and the structural layer in FIG. 3 only includes the transition layer 122, the functional layer 123, and the protective layer 124.
  • the transition layer 122 and the functional layer 123 in the present disclosure are made of the same material, both are metal layers, and have a conductive effect.
  • the metal material of the transition layer 122 and the functional layer 123 includes at least one of Cu, Ni, Cr, NiCu alloy, and NiCr alloy.
  • the transition layer 122 and the functional layer 123 adopt different preparation processes, so that the transition layer 122 has a higher density and a lower resistivity.
  • the preparation process of the transition layer 122 includes at least one of magnetron sputtering, alkaline electroplating, and electroless plating
  • the preparation process of the functional layer 123 includes evaporation and water electroplating. One or two of them.
  • the thickness of the transition layer 122 is generally smaller than that of the functional layer 123. According to the research of the inventor of the present disclosure, the thickness of the transition layer 122 is 1%-4% of the thickness of the functional layer 123. This structure improves the density of the conductive film 100, reduces the light-transmitting holes of the conductive film 100, reduces the resistivity of the conductive film 100, and improves the elongation of the conductive film 100 while the conductive film 100 has certain conductive properties. .
  • the thickness of the transition layer 122 is 1%, 5%, 10%, 15%, 20%, 25%, or 30% of the thickness of the functional layer 123.
  • the thickness of the adhesive layer 121 in the embodiment of the present disclosure is 0.1%-2 of the thickness of the functional layer 123 %.
  • This layer structure makes the adhesive force between the base film 110 and the transition layer 122 reach more than 100-300 N/m.
  • the thickness of the adhesive layer 121 is 0.1%, 0.5%, 1%, 2%, 5%, 6%, 8% or 10% of the thickness of the functional layer 123.
  • the material of the bonding layer 121 in the embodiment of the present disclosure is metal or non-metal.
  • the metal material of the bonding layer 121 includes at least one of Ni, Cr, NiCu alloy, NiCr alloy, and NiV alloy, and the thickness of the bonding layer 121 is 0.2 of the thickness of the functional layer 123 %-0.5% is better.
  • the non-metallic materials of the bonding layer 121 include polytetrafluoroethylene, polypropylene, polyethylene, titanium nitride, NbOx (1 ⁇ x ⁇ 2.5), SiC, Si3N4, SiOx (1.5 ⁇ x ⁇ 2), AlOx (1 ⁇ x ⁇ 1.5), at least one of polyvinylidene chloride (PVDC) and melamine, and the thickness of the adhesive layer 121 is 0.5%-2% of the thickness of the functional layer 123 Better.
  • the thickness of the protective layer 124 is the thickness of the functional layer 123 Of 0.1%-6%. While this layer structure has better protection for the functional layer 123, the thickness of the protective layer 124 is reduced. Further, the thickness of the protective layer 124 is 3%-7% of the thickness of the functional layer 123. Optionally, the thickness of the protective layer 124 is 0.1%, 1%, 2%, 3%, 5%, 7%, 8% or 10% of the thickness of the functional layer 123.
  • the material of the protective layer 124 in the embodiment of the present disclosure is metal or non-metal.
  • the metal material of the protective layer 124 includes at least one of Ni, Cr, NiCu alloy, NiCr alloy, and NiCu alloy.
  • the protective layer 124 is a non-metallic layer, the non-metallic material of the protective layer 124 includes at least one of glucose complex and potassium dichromate.
  • the existing multi-layer structure composite conductive film defines the structure of each layer relatively broadly, but the present disclosure clarifies the relative structural relationship of the adhesive layer 121, the transition layer 122, the protective layer 124, and the functional layer 123, so that the entire conductive layer The structure, physical properties and cost control of the film 100 are more reasonable.
  • the thickness of the functional layer 123 is 300-1500 nm, and the thickness ratio of the structural layer 120 makes the conductive film 100 have better physical properties such as adhesion, oxidation resistance, and electrical conductivity.
  • This structure makes the structure layer 120 thinner than the structure layer 120 of the existing conductive film 100, and more active materials can be coated in this area during the manufacturing process of the lithium battery. That is to say, when the thickness of the active material coated on the pole piece of the battery cell of the same volume is the same, more layers of pole piece material can be accommodated, and finally the energy density of the battery cell can be increased by 0.5-2%.
  • the conductive film 100 has the characteristics of conducting electricity on both sides, the square resistance of the film surface is 300-10m ⁇ ; the resistivity of the film surface is 1.8 ⁇ 10E -8 -2.5 ⁇ 10E -8 ⁇ .m, and the film surface is stretched by TD and MD Rate ⁇ 3%; TD and MD tensile strength of film surface ⁇ 200MPa; Surface tension test dyne value ⁇ 38. It shows that the conductive film 100 provided by the present disclosure has good electrical conductivity and tensile mechanical properties, and can be widely used in the field of power batteries.
  • the embodiment of the present disclosure also provides a method for preparing a conductive film, which includes sequentially forming a transition layer 122 and a functional layer 123 on two opposite surfaces of the base film.
  • the preparation process of the transition layer 122 includes at least one of a magnetron sputtering method, an alkaline electroplating method, and an electroless plating, and the preparation process of the functional layer 123 includes one or two of an evaporation method and a water electroplating method.
  • the above-mentioned conductive film provided by the present disclosure can be prepared by the following steps:
  • the preparation process of the bonding layer in the embodiment of the present disclosure includes at least one of physical vapor deposition and chemical vapor deposition.
  • the physical vapor deposition method includes: placing the base film roll in a vacuum coating machine, sealing the vacuum chamber, and evacuating step by step until the vacuum degree reaches 10 -4 -10 -1 Pa, using magnetron sputtering or using crucible high frequency Heating or using resistance heating or electron beam heating as the deposition source, the deposited raw materials are metallic nickel, chromium, nickel alloy, chromium alloy or non-metallic SiC, Si 3 N 4 , SiO 2 or Al 2 O 3 , purity ⁇ 99.9%, adjust the rewinding and unwinding speed, the evaporated atoms or molecules form a layer of coating on the moving base film, that is, the adhesive layer;
  • the chemical vapor deposition method includes: placing the base film roll in a vacuum coating machine, sealing the vacuum chamber, and evacuating step by step until the vacuum degree reaches 10 -4 -10 -1 Pa, using crucible high-frequency heating or using resistance Type heating method or electron beam heating method as the evaporation source, use the oxygen supply mechanism near the evaporation source or between the evaporation source to the tympanic surface or near the main drum to pass in compressed oxygen to adjust the ventilation.
  • Evaporation source evaporation raw materials are metal aluminum wire, aluminum ingot, silicon, purity ⁇ 99.9%, adjust the winding and unwinding speed, the evaporated atoms react with oxygen and form a layer of SiO x (1.5 ⁇ x ⁇ 2) Or AlO x (1 ⁇ x ⁇ 1.5), namely the bonding layer.
  • the preparation process of the transition layer in the embodiment of the present disclosure includes at least one of a magnetron sputtering method, an alkaline electroplating method, and an electroless plating method.
  • the magnetron sputtering method includes: putting the film coil coated with the adhesive layer into the vacuum coating machine, sealing the vacuum chamber, and evacuating step by step until the vacuum degree reaches 10 -5 -10 -1 Pa, using magnetron sputtering
  • the way of injection is to excite metals with purity ⁇ 99.9%, such as copper, adjust the unwinding speed, winding speed and evaporation rate, and form a metal layer on the surface of the film coated with the bonding layer, such as a copper-plated layer, according to the actual situation. Need to repeat several times to get a certain thickness of transition layer;
  • Alkaline plating includes:
  • the sheet resistance of the conductive film is 50-2 ⁇ . Adjust the appropriate winding speed, current, and copper. Ion concentration, brightener concentration, auxiliary agent concentration, pH value and electrolyte temperature can be deposited from 5-300nm each time according to actual needs, repeated several times to obtain a certain thickness of transition layer;
  • Electroless plating includes: placing the film coil plated with a metal or metal alloy bonding layer in a roll-to-roll electroless coating equipment, using sodium salt as the main salt, copper sulfate as the raw material, potassium sodium tartrate and EDTA two Sodium salt is used as complexing agent, sodium hydroxide is used to adjust pH to 11.5-13, formaldehyde is used as reducing agent, potassium ferrocyanide, ⁇ , ⁇ '-bipyridine, methyldichlorosilane, etc. are used as Stabilizer, adjust the appropriate winding and unwinding speed, according to actual needs, repeat several times to obtain a certain thickness of transition layer.
  • the preparation process of the functional layer in the embodiment of the present disclosure includes one or both of the evaporation method and the water electroplating method.
  • the evaporation method includes: placing the film coil plated with the transition layer into the vacuum coating machine, sealing the vacuum chamber, and evacuating step by step until the vacuum degree reaches 10 -4 -10 -1 Pa, using the crucible high-frequency heating method Or use resistance heating or electron gun accelerated electrons as the evaporation source, and use evaporation to heat metals with a purity of ⁇ 99.9%, such as copper, and adjust the unwinding speed, winding speed and evaporation rate.
  • the copper is in the evaporation source. Continue to melt and evaporate to form a metal layer such as a copper-plated layer on the surface of the transition layer, and repeat several times according to actual needs to obtain a functional layer with a certain thickness;
  • the water electroplating method includes: placing the conductive film coil plated with the transition layer in a roll-to-roll water electroplating equipment.
  • the sheet resistance of the conductive film is 10000-20m ⁇ , and the appropriate winding and unwinding speed is adjusted.
  • Current, copper ion concentration, brightener concentration, auxiliary agent concentration, pH value and electrolyte temperature can deposit 2-2500nm each time, repeat several times to obtain a certain thickness of functional layer.
  • the preparation process of the protective layer in the embodiment of the present disclosure includes at least one of a physical vapor deposition method, a magnetron sputtering method, a water electroplating method, and a coating method.
  • the physical vapor deposition method includes: putting the coil material coated with the functional layer into the vacuum chamber of a single-sided or double-sided or double-sided reciprocating vacuum coating machine, sealing the vacuum chamber, and evacuating step by step until the vacuum degree reaches 10 -4- 10 -1 Pa, using crucible high-frequency heating or resistance heating or electron beam heating as the evaporation source.
  • the evaporation source is metal nickel, chromium, nickel alloy, and chromium alloy. The purity is ⁇ 99.9% , Adjust the unwinding speed and winding speed, the evaporated atoms or molecules will form a coating on the surface of the functional layer, that is, the protective layer;
  • Magnetron sputtering includes: placing the coil material coated with the functional layer into the vacuum chamber of a single-sided or double-sided or double-sided reciprocating vacuum coating machine, sealing the vacuum chamber, and evacuating step by step until the vacuum degree reaches 10 -5- 10 -1 Pa, use magnetron sputtering to coat the functional layer on the surface of the thin film, the target material is nickel, chromium or nickel alloy, chromium alloy, the purity of the target material is ⁇ 99.9%, adjust the unwinding speed, rewinding speed, and sputtering
  • the ions formed a layer of magnetron sputtering coating on the surface of the functional layer, that is, the protective layer;
  • the water electroplating method includes: placing the coil material plated with the functional layer in a roll-to-roll water electroplating equipment or device, and immersing the material in the solution of the solution pool by winding the film, and dissolving in the solution of the solution pool With proper concentration of potassium dichromate or glucose or other organic matter with antioxidant properties, adjust the proper winding and unwinding speed, current, concentration, pH value and temperature to form a coating on the surface of the functional layer, namely The protective layer;
  • the coating method includes: placing the coil material coated with the functional layer into a single-sided or double-sided roll-to-roll surface coating equipment or device, and passing the material through the coating device by winding the film.
  • the device can uniformly coat the surface of the functional layer with potassium dichromate or glucose or other organic matter with anti-oxidation properties at a proper concentration. Adjust the proper winding and unwinding speed to form a coating on the surface of the functional layer.
  • Layer the protective layer.
  • the thickness ratio of the plating layer of the multilayer structure can be used to produce the multilayer structure current collector with stable quality through the curing production process. Under the premise of ensuring the flow capacity of the current collector, it also has better physical properties such as adhesion, oxidation resistance and electrical conductivity.
  • the present disclosure also provides a pole piece (not shown in the figure), which includes the above-mentioned conductive film 100 and an active material coated on the conductive film 100. Since the conductive film 100 provided by the present disclosure has good electrical conductivity and tensile mechanical properties, and has a thinner structure layer 120, the pole piece has good electrical conductivity and tensile mechanical properties.
  • This embodiment provides a conductive film, which includes a base film and a structure layer, and the structure layer is disposed on both sides of the base film.
  • the structural layer includes an adhesive layer, a transition layer, a functional layer and a protective layer which are sequentially arranged on the base film.
  • the thickness of the base film is 4 ⁇ m, and the thickness of the functional layer is 1500 nm.
  • the transition layer and the functional layer are copper-plated layers, and the thickness of the transition layer is 10% of the thickness of the functional layer.
  • the bonding layer is a Ni metal layer, and the thickness of the bonding layer is 6% of the thickness of the functional layer.
  • the protective layer is a glucose complex non-metallic layer, and the thickness of the protective layer is 5% of the thickness of the functional layer.
  • This embodiment provides a conductive film, which includes a base film and a structure layer, and the structure layer is disposed on both sides of the base film.
  • the structural layer includes an adhesive layer, a transition layer, a functional layer and a protective layer which are sequentially arranged on the base film.
  • the thickness of the base film is 3.5 ⁇ m, and the thickness of the functional layer is 300 nm.
  • the transition layer and the functional layer are copper-plated layers, and the thickness of the transition layer is 15% of the thickness of the functional layer.
  • the bonding layer is a Si 3 N 4 non-metallic layer, and the thickness of the bonding layer is 2% of the thickness of the functional layer.
  • the protective layer is a NiCu alloy metal layer, and the thickness of the protective layer is 1% of the thickness of the functional layer.
  • This embodiment provides a conductive film, which includes a base film and a structure layer, and the structure layer is disposed on both sides of the base film.
  • the structural layer includes an adhesive layer, a transition layer, a functional layer and a protective layer which are sequentially arranged on the base film.
  • the thickness of the base film is 6 ⁇ m, and the thickness of the functional layer is 1000 nm.
  • the transition layer and the functional layer are copper-plated layers, and the thickness of the transition layer is 20% of the thickness of the functional layer.
  • the bonding layer is a NiCu alloy metal layer, and the thickness of the bonding layer is 10% of the thickness of the functional layer.
  • the protective layer is a potassium dichromate non-metallic layer, and the thickness of the protective layer is 8% of the thickness of the functional layer.
  • This embodiment provides a conductive film, which is different from the first embodiment only in that no adhesive layer is provided in the structural layer of the conductive film.
  • This embodiment provides a conductive film, which is different from the first embodiment only in that no protective layer is provided in the structural layer of the conductive film.
  • This comparative example provides a conductive film, which is different from Example 1 only in that the structure layer of the conductive film does not have a transition layer.
  • This comparative example provides a conductive film, which is different from Example 1 only in that the thickness of the transition layer of the conductive film is 0.01% of the thickness of the functional layer.
  • Example 1 The conductive film provided in Example 1, Comparative Example 1-2 was subjected to SEM inspection and backlight illumination to test the compactness performance.
  • Figures 4 and 5 are the test results of the conductive film provided in Example 1
  • Figures 6 and 7 are the test results of the conductive film provided in Comparative Example 1
  • Figures 8 and 9 are the test results of the conductive film provided in Comparative Example 2 . It can be seen from the figure that the surface of the conductive film of Example 1 is uniform and there are no spots, while the surface of the conductive film of Comparative Example 1 and Comparative Example 2 is relatively rough and has many spots.
  • the resistivity of the conductive film provided in Examples 1-5 and Comparative Example 1-2 was detected by using the multi-point test fitting conversion algorithm of the daily internal resistance meter, and the steps include:
  • the adhesion test of the conductive films provided in Examples 1-5 and Comparative Examples 1-2 is carried out.
  • the specific steps are: take a double-sided tape with a width of 20 mm and a length of 100 mm, stick it on the desktop for use, take the test sample, and stick it on The surface of the double-sided tape is covered with the double-sided tape, and then the excess samples are stolen.
  • the samples are peeled off with tapes with different adhesive strengths. Generally, tapes with different gradients of 300-100N/m are used for testing, and the tapes are not peeled off. Adhesion level.
  • the oxidation resistance test of the conductive film provided in Example 1-5 and Comparative Example 1-2 was carried out by observing the changes in the surface of the conductive film under an environment with a relative humidity of less than 60% and a temperature of normal temperature, and recording the oxidation resistance time (Number of days).
  • the conductive film layer structure provided in Examples 1-3 includes an adhesive layer, a transition layer, a functional layer, and a protective layer, and the thickness ratio of each layer is within the range provided in the present disclosure, so that the conductive film has a relatively high
  • the compactness, lower resistivity and better oxidation resistance, the layer structure of the conductive film has better bonding strength.
  • Comparative Example 1 is not provided with a transition layer, so that the conductive film has a lower density and a higher resistivity.
  • the transition layer in Comparative Example 2 was relatively thin, and could not achieve better compactness and lower resistivity.
  • the conductive film and the preparation method thereof provided in the present disclosure clarify the relative structural relationship of the bonding layer, the transition layer, the protective layer and the functional layer, so that the structure, physical properties and cost control of the entire conductive film are more reasonable.
  • the transition layer between the base film and the functional layer has better conductivity, and the transition layer has better compactness and lower resistivity, which can improve the density of the conductive film and reduce the resistivity of the conductive film.
  • By further controlling the thickness of the transition layer and the functional layer while the conductive film has better compactness and lower resistivity, the process cost and the thickness of the structural layer are reduced.
  • the conductive film can be further formed into pole pieces, has good electrical conductivity and tensile mechanical properties, and has very good industrial application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

一种导电膜(100)及极片,涉及导电膜技术领域。一种导电膜(100),包括基膜(110)和结构层(120),结构层(120)设置于基膜(110)的两面。结构层(120)包括依次设置于基膜(110)的过渡层(122)和功能层(123),过渡层(122)和功能层(123)均为金属层,过渡层(122)的厚度是功能层(123)的厚度的1%-4%。该导电膜(100)对结构层(120)进行改进,在基膜(110)与功能层(123)之间设置过渡层(122),过渡层(122)为金属层,具有导电性能,并且该过渡层(122)具有较好的致密性和较低的电阻率,提高导电膜(100)的致密性和断裂延伸率,降低导电膜(100)的电阻率。过渡层(122)的厚度是功能层(123)厚度的1%-4%,该结构在导电膜(100)具有较好致密性和较低电阻率的同时,降低工艺成本,降低结构层(120)的厚度。

Description

导电膜及极片
相关申请的交叉引用
本公开要求于2020年04月13日提交中国专利局的申请号为202010288893.X、名称为“导电膜及极片”和申请号为202020540025.1名称为“导电膜及极片”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及导电膜技术领域,具体而言,涉及导电膜及极片。
背景技术
随着动力电池技术不断的发展,对电芯的轻量化、高能量密度的要求逐渐提高,同时消费市场对电芯的降本也极具挑战。目前多层结构的复合导电薄膜替代传统铜铝箔作为集流体的应用逐渐成熟。成本低、质量高的复合导电膜对动力电池的发展具有积极意义。
发明内容
本公开的目的在于提供导电膜及极片,以改善导电膜致密性低、断裂延伸率低、电阻率高的技术问题。
本公开的目的还在于明确了粘结层、过渡层、保护层和功能层的相对结构关系,使得整个导电膜的结构、物性和成本控制更合理。
第一方面,本公开实施例提供了一种导电膜,包括基膜和结构层,结构层设置于基膜的两面。结构层包括依次设置于基膜的过渡层和功能层,过渡层和功能层均为金属层,过渡层的厚度是功能层厚度的1%-4%。
本公开实施例提供了一种导电膜,包括基膜,基膜具有相对设置的第一表面和第二表面,第一表面设置有第一结构层,第二表面设置有第二结构层,第一结构层和所述第二结构层均包括过渡层和功能层,且过渡层位于基膜和功能层之间,过渡层和功能层均为金属层,过渡层的厚度是功能层厚度的1%-4%。
该导电膜对结构层进行改进,在基膜与功能层之间设置过渡层,过渡层为金属层,具有导电性能,并且该过渡层具有较好的致密性和较低的电阻率,提高导电膜的致密性,降低导电膜的电阻率。过渡层的厚度是功能层厚度的1%-4%,该结构在导电膜具有较好致密性和较低电阻率的同时,降低工艺成本,降低结构层的厚度。
在一种可能的实现方式中,过渡层的制备工艺包括磁控溅射法、碱性电镀法以及化学镀中的至少一种,过渡层的金属材料均包括Cu、Ni、Cr、NiCu合金以及NiCr合金中的至少一种。
在一种可能的实现方式中,功能层的制备工艺包括蒸镀法和水电镀法中的一种或两种,功能层的金属材料包括Cu、Ni、Cr、NiCu合金以及NiCr合金中的至少一种,过渡层和功能层的选材是独立的,可以相同或者不同。
过渡层和功能层分别采用不同的工艺得到不同性能的层结构,使得过渡层和功能层具有较好导电性能的同时,还具有较好的致密性和较低的电阻率。
在一种可能的实现方式中,结构层还包括设置于过渡层与基膜之间的粘结层,即第一结构层和第二结构层均包括粘结层,粘结层的厚度为功能层的厚度的0.1%-2%。
在一种可能的实现方式中,粘结层的材质为金属,粘结层的厚度为功能层的厚度的0.2%-0.5%。粘结层的金属材料包括Ni、Cr、NiCu合金、NiCr合金以及NiV合金中的至少一种。
在一种可能的实现方式中,粘结层的材质为非金属,粘结层的厚度为功能层的厚度的0.5%-2%。粘结层的非金属材料包括聚四氟乙烯、聚丙烯、聚乙烯、氮化钛、NbO x(1≤x≤2.5)、SiC、Si 3N 4、SiO x(1.5≤x≤2)、AlO x(1≤x≤1.5)、聚偏二氯乙烯以及三聚氰胺中的至少一种。
粘结层起连接基膜和过渡层的作用,提高层结构的粘接强度。该厚度比例的粘结层使得基膜与过渡层之间具有较好的粘接力。
在一种可能的实现方式中,结构层还包括设置于功能层远离过渡层一侧表面的保护层,保护层的厚度为功能层厚度的0.1%-6%,保护层为金属层,保护层的金属材料包括Ni、Cr、NiCu合金、NiCr合金、NiCu合金中的至少一种。
在一种可能的实现方式中,保护层为非金属层,保护层的非金属材料包括葡萄糖络合物和重铬酸钾中的至少一种。
功能层起到保护功能层、避免其氧化的作用。该厚度比例的保护层具有较好的保护的同时,降低了保护层的厚度,降低加工过程中排污量,降低成本。
在一种可能的实现方式中,基膜的厚度为1.2μm-12μm,功能层的厚度为300-1500nm。
该结构使得结构层相比现有导电膜的结构层较薄,锂电池制造过程中就可以在该区域涂覆更多的活性物质。即相同体积的电芯,极片上涂覆活性物质厚度相同时,可容纳更多层极片材料,最终能够使电芯的能量密度提高0.5-2%。
第二方面,本公开实施例提供了一种导电膜的制备方法,包括在基膜相对的两个表面均依次形成过渡层和功能层。由于该过渡层具有较好的致密性和较低的电阻率,提高导电膜的致密性,降低导电膜的电阻率。
在一种可能的实现方式中,导电膜的制备方法包括如下步骤:在基膜相对的两个表面均依次形成粘结层、过渡层、功能层和保护层;
可选地,粘结层采用物理气相沉积法或化学气相沉积法形成;
可选地,过渡层采用磁控溅射法、碱性电镀法和化学镀中的至少一种形成;
可选地,功能层采用蒸镀法和水电镀法中的至少一种形成;
可选地,保护层采用物理气相沉积法、磁控溅射法、水电镀法和涂覆法中的至少一种形成。
第三方面,本公开实施例提供了一种极片,包括上述导电膜和涂覆于导电膜上的活性材料。由于本公开提供的导电膜具有较好的导电性能和拉伸力学性能,并且具有较薄的结构层,因此该极片具有较好的导电性能和拉伸力学性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的一种导电膜的结构示意图;
图2为本公开实施例提供的另一种导电膜的结构示意图;
图3为本公开实施例提供的又一种导电膜的结构示意图;
图4为本公开实施例1提供的导电膜的SEM图;
图5为本公开实施例1提供的导电膜的背光灯照射图;
图6为本公开对比例1提供的导电膜的SEM图;
图7为本公开对比例1提供的导电膜的背光灯照射图;
图8为本公开对比例2提供的导电膜的SEM图;
图9为本公开对比例2提供的导电膜的背光灯照射图。
图标:100-导电膜;110-基膜;120-结构层;121-粘结层;122-过渡层;123-功能层;124-保护层。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附 图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
目前的多层结构复合导电薄膜一般包括基膜、功能层和保护层,功能层作为导电层起导电作用,保护层则用于保护功能层。有的多层结构复合导电薄膜在此基础上增加了粘结层,以提高基膜与功能层的粘接性。随着动力电池的发展,对极片、导电膜等结构的要求逐渐增高。
在此需求下,本公开发明人通过对多层结构复合导电薄膜结构的研究,提出对结构层进行改进,在粘结层与功能层之间设置过渡层,过渡层具有较好的致密性和较低的电阻率,同时过渡层为金属层,具有导电性能,不会影响导电膜的过流能力。下面结合附图,对本公开的一些实施方式作详细说明。
请参照图1、图2和图3,图1-图3为本实施例提供的导电膜100的三种不同的结构示意图。
本实施例提供一种导电膜100,包括基膜110和结构层120,结构层120设置于基膜110的两面。可以理解为,基膜110具有相对设置的第一表面和第二表面,第一表面设有第一结构层120,第二表面设有第二结构层120。在本实施例中,第一结构层120和第二结构层120的结构是相同,在本公开的其他实施例中,第一结构层120可以与第二结构层120有区别,具体的结构根据需要改变。
本公开实施例中的基膜110为柔性薄膜材料,如聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚丙烯(PP)、聚乙烯(PE)、聚苯硫醚(PPS)等,基膜110在导电膜100中起基础支撑的作用。本公开实施例中的基膜110的厚度为1.2μm-12μm,可选地,基膜110的厚度可以为1.2μm、2μm、3.5μm、4μm、5μm或6μm。
本公开实施例中的第一结构层120和第二结构层120均包括依次设置于基膜110的粘结层121、过渡层122、功能层123和保护层124。粘结层121设置于基膜110的两个表面上,起连接基膜110和过渡层122的作用。过渡层122设置于粘结层121的表面,起提高电导率和增强致密性的作用。功能层123设置于过渡层122的表面,主要起导电作用。保护层124设置于功能层123的表面,起到保护功能层123、避免氧化的作用。在本公开的其他实施例中,可以根据需要选择性设置粘结层121和保护层124。请参照图2和图3,图2中的结构层仅包括过渡层122和功能层123,图3中的结构层仅包括过渡层122、功能层123和保护层124。
本公开中的过渡层122与功能层123的材质相同,均为金属层,具有导电作用。在本公开的部分实施例中,过渡层122与功能层123的金属材料包括Cu、Ni、Cr、NiCu合金 以及NiCr合金中的至少一种。但过渡层122与功能层123采用不同的制备工艺,使得过渡层122具有较高的致密性,同时具有较低的电阻率。经过本公开发明人的研究得出,过渡层122的制备工艺包括磁控溅射法、碱性电镀法以及化学镀中的至少一种,功能层123的制备工艺包括蒸镀法和水电镀法中的一种或两种。采用上述制备工艺,得到了致密性高的过渡层122,提高了导电膜100的致密性,减少了导电膜100的透光孔。
由于过渡层122的制备工艺较功能层123的制备工艺要求高、成本高,因此为了降低成本,过渡层122的厚度一般小于功能层123。经过本公开发明人的研究得出,过渡层122的厚度为功能层123厚度的1%-4%。该结构在导电膜100具有一定的导电性能的同时,提高了导电膜100的致密性,减少了导电膜100的透光孔,降低了导电膜100的电阻率,改善了导电膜100的延伸率。可选地,过渡层122的厚度为功能层123厚度的1%、5%、10%、15%、20%、25%或30%。
在上述层结构的基础上,为了使得基膜110与过渡层122之间具有较好的粘接力,本公开实施例中的粘结层121的厚度为功能层123的厚度的0.1%-2%。该层结构使得基膜110与过渡层122之间的粘接力达到100-300N/m以上。可选地,粘结层121的厚度为功能层123的厚度的0.1%、0.5%、1%、2%、5%、6%、8%或10%。
本公开实施例中的粘结层121的材质为金属或非金属。粘结层121为金属层时,粘结层121的金属材料包括Ni、Cr、NiCu合金、NiCr合金以及NiV合金中的至少一种,并且粘结层121的厚度为功能层123的厚度的0.2%-0.5%较优。粘结层121为非金属层时,粘结层121的非金属材料包括聚四氟乙烯、聚丙烯、聚乙烯、氮化钛、NbOx(1≤x≤2.5)、SiC、Si3N4、SiOx(1.5≤x≤2)、AlOx(1≤x≤1.5)、聚偏二氯乙烯(PVDC)以及三聚氰胺中的至少一种,并且粘结层121的厚度为功能层123的厚度的0.5%-2%较优。
在上述层结构的基础上,为了较大程度的减小结构层120的厚度,降低加工过程中排污量,降低成本,在本公开的部分实施例中,保护层124的厚度为功能层123厚度的0.1%-6%。该层结构对功能层123具有较好的保护的同时,降低了保护层124的厚度。进一步的,保护层124的厚度为功能层123厚度的3%-7%。可选地,保护层124的厚度为功能层123厚度的0.1%、1%、2%、3%、5%、7%、8%或10%。
本公开实施例中的保护层124的材质为金属或非金属。粘结层121为金属层时,保护层124的金属材料包括Ni、Cr、NiCu合金、NiCr合金、NiCu合金中的至少一种。保护层124为非金属层时,保护层124的非金属材料包括葡萄糖络合物和重铬酸钾中的至少一种。
现有的多层结构复合导电薄膜对其各个层的结构限定的较为宽泛,而本公开则明确了粘结层121、过渡层122、保护层124和功能层123的相对结构关系,使得整个导电膜100的结构、物性和成本控制更合理。
本公开实施例中,功能层123的厚度为300-1500nm,该结构层120的厚度比例关系使得导电膜100具有较好的附着力、抗氧化能力、电导率等物理性能。该结构使得结构层120相比现有导电膜100的结构层120较薄,锂电池制造过程中就可以在该区域涂覆更多的活性物质。即相同体积的电芯,极片上涂覆活性物质厚度相同时,可容纳更多层极片材料,最终能够使电芯的能量密度提高0.5-2%。
该导电膜100具备双面均可导电的特性,膜面的方阻为300-10mΩ;膜面电阻率1.8×10E -8-2.5×10E -8Ω.m,膜面TD与MD断裂拉伸率≥3%;膜面TD与MD拉伸强度≥200MPa;表面张力测试达因值≥38。说明本公开提供的导电膜100具有较好的导电性能和拉伸力学性能,能够广泛应用于动力电池领域中。
本公开实施例还提供了一种导电膜的制备方法,包括在基膜相对的两个表面均依次形成过渡层122和功能层123。过渡层122的制备工艺包括磁控溅射法、碱性电镀法以及化学镀中的至少一种,功能层123的制备工艺包括蒸镀法和水电镀法中的一种或两种。采用上述制备工艺,得到了致密性高的过渡层122,提高了导电膜100的致密性,减少了导电膜100的透光孔。
本公开提供的上述导电膜可以通过以下步骤制得:
1.制备粘结层。本公开实施例中粘结层的制备工艺包括物理气相沉积以及化学气相沉积法中的至少一种。
物理气相沉积法包括:将基膜卷料置于真空镀膜机内,将真空室密封,逐级抽真空至真空度达到10 -4-10 -1Pa,采用磁控溅射或采用坩埚高频加热或采用电阻式加热或采用电子束加热的方式作为沉积源,沉积的原料为金属镍、铬、镍合金、铬合金或非金属SiC、Si 3N 4、SiO 2或Al 2O 3,纯度≥99.9%,调整好收放卷速度,蒸发的原子或分子在移动的基膜上形成一层镀层,即粘结层;
化学气相沉积法包括:将基膜卷料置于真空镀膜机内,将真空室密封,逐级抽真空至真空度达到10 -4-10 -1Pa,采用坩埚高频加热的方式或采用电阻式加热的方式或采用电子束加热的方式作为蒸发源,利用蒸发源附近或蒸发源至贴鼓膜面之间或主鼓附近的送氧机构通氧结构通入压缩氧气,调整好通气量。蒸发源蒸镀原料为金属铝丝、铝锭、硅,纯度≥99.9%,调整好收放卷速度,蒸发的原子与氧气反应并在移动的基膜上形成一层SiO x(1.5≤x≤2)或AlO x(1≤x≤1.5),即粘结层。
2.制备过渡层。本公开实施例中过渡层的制备工艺包括磁控溅射法、碱性电镀法以及化学镀中的至少一种。
磁控溅射法包括:将镀有粘结层的薄膜卷料置入真空镀膜机内,将真空室密封,逐级抽真空至真空度达到10 -5-10 -1Pa,采用磁控溅射的方式对纯度≥99.9%的金属如铜进行激发, 调整好放卷速度、收卷速度和蒸发量,在镀有粘结层的膜表面形成一层金属层,如镀铜层,根据实际需要重复若干次得到一定厚度的过渡层;
碱性电镀包括:
将镀有粘结层的可导电的薄膜卷料置于卷对卷的水电镀设备中,可导电的薄膜的膜面方块电阻为50-2Ω,调好适当的收放卷速度、电流、铜离子浓度、光亮剂浓度、辅助剂浓度、pH值和电解液温度,根据实际需要可每次沉积5-300nm,重复若干次得到一定厚度的过渡层;
化学镀包括:将镀有金属或金属合金粘结层的薄膜卷料置于卷对卷的化学镀膜设备中,以钠盐作为主盐,以硫酸铜为主原料,以酒石酸钾钠和EDTA二钠盐等作为络合剂,以氢氧化钠调整适当的pH值为11.5-13,以甲醛作为还原剂,以亚铁氰化钾、α,α’-联吡啶、甲基二氯硅烷等作为稳定剂,调整好适当的收放卷速度,根据实际需要,重复若干次得到一定厚度的过渡层。
3.制备功能层。本公开实施例中功能层的制备工艺包括蒸镀法和水电镀法中的一种或两种。
蒸镀法包括:将镀有过渡层的薄膜卷料置入真空镀膜机内,将真空室密封,逐级抽真空至真空度达到10 -4-10 -1Pa,采用坩埚高频加热的方式或采用电阻式加热的方式或采用电子枪加速电子作为蒸发源,采用蒸发的方式对纯度≥99.9%的金属如铜进行加热,调整好放卷速度、收卷速度和蒸发量,铜在蒸发源中持续熔化、蒸发,在过渡层的表面形成一层金属层如镀铜层,根据实际需要重复若干次得到一定厚度的功能层;
水电镀法包括:将镀有过渡层的可导电的薄膜卷料置于卷对卷的水电镀设备中,可导电的薄膜的膜面方块电阻为10000-20mΩ,调好适当的收放卷速度、电流、铜离子浓度、光亮剂浓度、辅助剂浓度、pH值和电解液温度,根据实际需要可每次沉积2-2500nm,重复若干次得到一定厚度的功能层。
4.制备保护层。本公开实施例中保护层的制备工艺包括物理气相沉积法、磁控溅射法、水电镀法以及涂覆法中的至少一种。
物理气相沉积法包括:将镀有功能层的卷料置入单面或双面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10 -4-10 -1Pa,采用坩埚高频加热的方式或采用电阻式加热的方式或采用电子束加热的方式作为蒸发源,蒸发源蒸镀原料为金属镍、铬、镍合金、铬合金纯度≥99.9%,调整好放卷速度、收卷速度,蒸发的原子或分子在功能层表面上形成一层镀层,即保护层;
磁控溅射包括:将镀有功能层的卷料置入单面或双面或双面可往返的真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10 -5-10 -1Pa,利用磁控溅射在薄膜表面功能 层上镀膜,靶材为镍、铬或者镍合金、铬合金,靶材纯度≥99.9%,调整好放卷速度、收卷速度,溅射的离子在功能层表面上形成一层磁控溅射镀层,即保护层;
水电镀法包括:将镀有功能层的卷料置入卷对卷的水电镀设备或装置中,采用卷绕走膜的方式使物料浸入溶液池的溶液内,所述溶液池的溶液中溶解有适当浓度的重铬酸钾或葡萄糖或其它具备抗氧化性能的有机质,调好适当的收放卷速度、电流、浓度、pH值和温度,即可在功能层表面上形成一层镀层,即保护层;
涂覆法包括:将镀有功能层的卷料置入单面或双面的卷对卷表面涂覆设备或装置中,采用卷绕走膜的方式使物料通过涂覆装置,所述涂覆装置可将适当浓度的重铬酸钾或葡萄糖或其它具备抗氧化性能的有机质均匀地涂覆在功能层表面,调好适当的收放卷速度,即可在功能层表面上形成一层涂覆层,即保护层。
多层结构的镀层厚度比例,通过固化的生产工艺,可以生产出质量稳定的多层结构集流体。在保障集流体过流能力前提下,还拥有更好的附着力、抗氧化能力、电导率等物理性能。
本公开还提供了一种极片(图未示),包括上述导电膜100和涂覆于导电膜100上的活性材料。由于本公开提供的导电膜100具有较好的导电性能和拉伸力学性能,并且具有较薄的结构层120,因此该极片具有较好的导电性能和拉伸力学性能。
实施例1
本实施例提供了一种导电膜,包括基膜和结构层,结构层设置于基膜的两面。结构层包括依次设置于基膜的粘结层、过渡层、功能层和保护层。基膜的厚度为4μm,功能层的厚度为1500nm。
过渡层和功能层为镀铜层,过渡层的厚度为功能层厚度的10%。粘结层为Ni金属层,粘结层的厚度为功能层的厚度的6%。保护层为葡萄糖络合物非金属层,保护层的厚度为功能层厚度的5%。
实施例2
本实施例提供了一种导电膜,包括基膜和结构层,结构层设置于基膜的两面。结构层包括依次设置于基膜的粘结层、过渡层、功能层和保护层。基膜的厚度为3.5μm,功能层的厚度为300nm。
过渡层和功能层为镀铜层,过渡层的厚度为功能层厚度的15%。粘结层为Si 3N 4非金属层,粘结层的厚度为功能层的厚度的2%。保护层为NiCu合金金属层,保护层的厚度为功能层厚度的1%。
实施例3
本实施例提供了一种导电膜,包括基膜和结构层,结构层设置于基膜的两面。结构层 包括依次设置于基膜的粘结层、过渡层、功能层和保护层。基膜的厚度为6μm,功能层的厚度为1000nm。
过渡层和功能层为镀铜层,过渡层的厚度为功能层厚度的20%。粘结层为NiCu合金金属层,粘结层的厚度为功能层的厚度的10%。保护层为重铬酸钾非金属层,保护层的厚度为功能层厚度的8%。
实施例4
本实施例提供了一种导电膜,与实施例1的区别仅在于:导电膜的结构层中没有设置粘结层。
实施例5
本实施例提供了一种导电膜,与实施例1的区别仅在于:导电膜的结构层中没有设置保护层。
对比例1
本对比例提供了一种导电膜,与实施例1的区别仅在于:导电膜的结构层没有过渡层。
对比例2
本对比例提供了一种导电膜,与实施例1的区别仅在于:导电膜的过渡层的厚度为功能层厚度的0.01%。
试验例
对实施例1、对比例1-2提供的导电膜进行SEM检测和背光灯照射,以检测致密性能。图4和图5为实施例1提供的导电膜的检测结果,图6和图7为对比例1提供的导电膜的检测结果,图8和图9为对比例2提供的导电膜的检测结果。由图可知,实施例1的导电膜表面均匀,没有什么斑点,而对比例1和对比例2的导电膜表面较为粗糙,斑点较多。
采用日置内阻仪多点测试拟合换算法检测实施例1-5、对比例1-2提供的导电膜的电阻率,步骤包括:
1.将样品切成小条,小条规格为15mm×210mm。
2.用记号笔在样品上每隔20mm标记一点,所有点位于样品中线上。
3.使用探针式电阻测试线对准图中的红点位置测量,分别测试20mm,40mm,60mm,80mm…的电阻值,测试到基材末端为止,记录位置和电阻。
4.重复以上步骤,每个样品测试3个平行样,将测量数据以测量距离为横坐标,电阻为纵坐标作图并进行线性拟合,读取斜率k。
5.根据公式k=ρ/(宽度镀层厚度)来计算电阻率ρ(样品宽度为15mm,镀层厚度根据重量换算得到)。
对实施例1-5、对比例1-2提供的导电膜进行附着力测试,具体步骤为:取双面胶带, 宽度20mm,长100mm,粘于桌面上备用,取测试样品,将其粘于双面胶表面以覆盖双面胶,然后将多余的样品窃取,用不同粘结力的胶带对样品进行剥离测试,一般选用300-100N/m的不同梯度的胶带进行测试,不剥离视时确认粘结力等级。
对实施例1-5、对比例1-2提供的导电膜进行抗氧化性测试,方法为:在相对湿度<60%,温度为常温的环境下,观察导电膜表面的变化,记录抗氧化时间(天数)。
测试结果如下表:
表1 导电膜的性能
Figure PCTCN2021071609-appb-000001
由表1可知,由于实施例1-3提供的导电膜层结构包括粘结层、过渡层、功能层和保护层,且各层厚度比例在本公开提供的范围内,使得导电膜具有较高的致密性、较低的电阻率和较好的抗氧化性能,导电膜的层结构具有较好的粘接强度。对比例1没有设置过渡层,使得导电膜的致密性较低,电阻率较高。对比例2中的过渡层较薄,也达不到较好的致密性和较低的电阻率。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供的导电膜及其制备方法明确了粘结层、过渡层、保护层和功能层的相对结构关系,使得整个导电膜的结构、物性和成本控制更合理。基膜与功能层之间的过渡层具有较好的导电性能,并且该过渡层具有较好的致密性和较低的电阻率,能够提高导电膜的致密性,降低导电膜的电阻率。通过进一步控制过渡层和功能层的厚度,在导电膜具有较好致密性和较低电阻率的同时,降低工艺成本,降低结构层的厚度。该导电膜可以进一步 形成极片,具有较好的导电性能和拉伸力学性能,具有非常好的工业应用前景。

Claims (18)

  1. 一种导电膜,其特征在于,包括
    基膜;以及
    结构层,所述结构层设置于所述基膜的两面;
    所述结构层包括依次设置于所述基膜的过渡层和功能层,所述过渡层和所述功能层均为金属层,所述过渡层的厚度是所述功能层厚度的1%-4%。
  2. 一种导电膜,其特征在于,包括基膜,所述基膜具有相对设置的第一表面和第二表面,所述第一表面设置有第一结构层,所述第二表面设置有第二结构层,所述第一结构层和所述第二结构层均包括过渡层和功能层,且所述过渡层位于所述基膜和所述功能层之间,所述过渡层和所述功能层均为金属层,所述过渡层的厚度是所述功能层厚度的1%-4%。
  3. 根据权利要求1或2所述的导电膜,其特征在于,所述过渡层的金属材料包括Cu、Ni、Cr、NiCu合金以及NiCr合金中的至少一种。
  4. 根据权利要求1-3中任一项所述的导电膜,其特征在于,所述过渡层的制备工艺包括磁控溅射法、碱性电镀法以及化学镀中的至少一种。
  5. 根据权利要求1-4中任一项所述的导电膜,其特征在于,所述功能层的金属材料包括Cu、Ni、Cr、NiCu合金以及NiCr合金中的至少一种。
  6. 根据权利要求5所述的导电膜,其特征在于,所述功能层的制备工艺包括蒸镀法和水电镀法中的一种或两种。
  7. 根据权利要求1或2所述的导电膜,其特征在于,还包括设置于所述过渡层与所述基膜之间的粘结层,所述粘结层的厚度为所述功能层的厚度的0.1%-2%。
  8. 根据权利要求7所述的导电膜,其特征在于,所述粘结层的材质为金属,所述粘结层的厚度为所述功能层的厚度的0.2%-0.5%。
  9. 根据权利要求8所述的导电膜,其特征在于,所述粘结层的金属材料包括Ni、Cr、NiCu合金、NiCr合金以及NiV合金中的至少一种。
  10. 根据权利要求7所述的导电膜,其特征在于,所述粘结层的材质为非金属,所述粘结层的厚度为所述功能层的厚度的0.5%-2%。
  11. 根据权利要求10所述的导电膜,其特征在于,所述粘结层的非金属材料包括聚四氟乙烯、聚丙烯、聚乙烯、氮化钛、NbO x(1≤x≤2.5)、SiC、Si 3N 4、SiO x(1.5≤x≤2)、AlO x(1≤x≤1.5)、聚偏二氯乙烯以及三聚氰胺中的至少一种。
  12. 根据权利要求1或2所述的导电膜,其特征在于,还包括设置于所述功能层远 离所述过渡层一侧表面的保护层,所述保护层的厚度为所述功能层厚度的0.1%-6%。
  13. 根据权利要求12所述的导电膜,其特征在于,所述保护层为金属层,所述保护层的金属材料包括Ni、Cr、NiCu合金、NiCr合金、NiCu合金中的至少一种。
  14. 根据权利要求12所述的导电膜,其特征在于,所述保护层为非金属层,所述保护层的非金属材料包括葡萄糖络合物和重铬酸钾中的至少一种。
  15. 根据权利要求1-14中任一项所述的导电膜,其特征在于,所述基膜的厚度为1.2μm-12μm,所述功能层的厚度为300-1500nm。
  16. 一种权利要求1-15中任一项所述导电膜的制备方法,其特征在于,包括在所述基膜相对的两个表面均依次形成所述过渡层和所述功能层。
  17. 根据权利要求16中所述导电膜的制备方法,其特征在于,包括如下步骤:在所述基膜相对的两个表面均依次形成粘结层、过渡层、功能层和保护层;
    可选地,所述粘结层采用物理气相沉积法或化学气相沉积法形成;
    可选地,所述过渡层采用磁控溅射法、碱性电镀法和化学镀中的至少一种形成;
    可选地,所述功能层采用蒸镀法和水电镀法中的至少一种形成;
    可选地,所述保护层采用物理气相沉积法、磁控溅射法、水电镀法和涂覆法中的至少一种形成。
  18. 一种极片,其特征在于,包括如权利要求1-15中任一项所述的导电膜和涂覆于所述导电膜上的活性材料。
PCT/CN2021/071609 2020-04-13 2021-01-13 导电膜及极片 WO2021208542A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010288893.X 2020-04-13
CN202020540025.1 2020-04-13
CN202010288893.XA CN114023972A (zh) 2020-04-13 2020-04-13 导电膜及极片
CN202020540025.1U CN212257552U (zh) 2020-04-13 2020-04-13 导电膜及极片

Publications (1)

Publication Number Publication Date
WO2021208542A1 true WO2021208542A1 (zh) 2021-10-21

Family

ID=78083936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071609 WO2021208542A1 (zh) 2020-04-13 2021-01-13 导电膜及极片

Country Status (1)

Country Link
WO (1) WO2021208542A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293184A (zh) * 2021-12-13 2022-04-08 温州安能科技有限公司 一种铝合金带的防腐导电膜层的卷对卷表面处理工艺及其专用镀膜液
WO2023216345A1 (zh) * 2022-05-13 2023-11-16 扬州纳力新材料科技有限公司 多层结构集流体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882614A (zh) * 2015-04-28 2015-09-02 超威电源有限公司 一种高能量密度铅酸电池极板
CN204659076U (zh) * 2015-01-30 2015-09-23 四川亚力超膜科技有限公司 一种柔性基底镀铜膜结构
CN106981665A (zh) * 2017-04-14 2017-07-25 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
CN108531876A (zh) * 2018-03-26 2018-09-14 安徽金美新材料科技有限公司 一种用于锂电池集流体的镀膜工艺流程
CN109994740A (zh) * 2019-03-29 2019-07-09 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置
CN110943215A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 锂离子二次电池
CN212257552U (zh) * 2020-04-13 2020-12-29 深圳市海鸿新能源技术有限公司 导电膜及极片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204659076U (zh) * 2015-01-30 2015-09-23 四川亚力超膜科技有限公司 一种柔性基底镀铜膜结构
CN104882614A (zh) * 2015-04-28 2015-09-02 超威电源有限公司 一种高能量密度铅酸电池极板
CN106981665A (zh) * 2017-04-14 2017-07-25 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
CN108531876A (zh) * 2018-03-26 2018-09-14 安徽金美新材料科技有限公司 一种用于锂电池集流体的镀膜工艺流程
CN109994740A (zh) * 2019-03-29 2019-07-09 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置
CN110943215A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 锂离子二次电池
CN212257552U (zh) * 2020-04-13 2020-12-29 深圳市海鸿新能源技术有限公司 导电膜及极片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293184A (zh) * 2021-12-13 2022-04-08 温州安能科技有限公司 一种铝合金带的防腐导电膜层的卷对卷表面处理工艺及其专用镀膜液
WO2023216345A1 (zh) * 2022-05-13 2023-11-16 扬州纳力新材料科技有限公司 多层结构集流体及其制备方法

Similar Documents

Publication Publication Date Title
CN211088397U (zh) 一种二次电池及其极片
WO2021208542A1 (zh) 导电膜及极片
JP3563730B2 (ja) フレキシブルプリント回路基板
JP2019102429A (ja) 集電体、その極シート及び電気化学デバイス
KR20180116096A (ko) 부극 집전체, 그의 제조방법 및 그의 응용
CN212257552U (zh) 导电膜及极片
CN113622008A (zh) 一种导电膜及其制备方法
JP7320862B2 (ja) 膜及び製造プロセス
JP2006324362A (ja) フレキシブル基板とそのエッチング方法
WO2022001968A1 (zh) 集流体及其制备工艺、极片及其制备工艺及锂电池
CN211879035U (zh) 一种导电膜
TW201525167A (zh) 2層可撓性佈線用基板及其製造方法,暨2層可撓性佈線板及其製造方法
WO2022041446A1 (zh) 一种导电薄膜的制备方法、电流汇集传输材料以及能量储存装置
CN114023972A (zh) 导电膜及极片
JP5072435B2 (ja) 導電性薄膜付きフィルムおよびその製造方法
WO2021136551A1 (zh) 一种二次电池、其极片及极片的制备方法
JP6398175B2 (ja) 2層フレキシブル配線板およびその製造方法
CN113990580A (zh) 一种导电膜及其制备方法
WO2021136536A1 (zh) 正极集流体及其制备方法和正极片、电芯以及电池
CN220409904U (zh) 一种柔性复合膜
CN108642446A (zh) 一种多孔CrN涂层及其制备方法和一种超级电容器
TWI792449B (zh) 電解銅箔、包含其的電極和覆銅積層板
WO2021208541A1 (zh) 一种导电膜及其制备方法
EP3876307B1 (en) Film preparation process
JP2004241785A (ja) フレキシブルプリント回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21789521

Country of ref document: EP

Kind code of ref document: A1