WO2021136536A1 - 正极集流体及其制备方法和正极片、电芯以及电池 - Google Patents

正极集流体及其制备方法和正极片、电芯以及电池 Download PDF

Info

Publication number
WO2021136536A1
WO2021136536A1 PCT/CN2020/142528 CN2020142528W WO2021136536A1 WO 2021136536 A1 WO2021136536 A1 WO 2021136536A1 CN 2020142528 W CN2020142528 W CN 2020142528W WO 2021136536 A1 WO2021136536 A1 WO 2021136536A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
section
functional
thickness
positive electrode
Prior art date
Application number
PCT/CN2020/142528
Other languages
English (en)
French (fr)
Inventor
张芹
Original Assignee
深圳市海鸿新能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010009329.XA external-priority patent/CN113991121A/zh
Priority claimed from CN202020013752.2U external-priority patent/CN211088396U/zh
Application filed by 深圳市海鸿新能源技术有限公司 filed Critical 深圳市海鸿新能源技术有限公司
Publication of WO2021136536A1 publication Critical patent/WO2021136536A1/zh
Priority to US17/856,996 priority Critical patent/US11831022B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of battery pole pieces, in particular, to a positive electrode current collector and a preparation method thereof, a positive electrode sheet, a battery, and a battery.
  • the current collector plays a role in supporting the active material and conducting current.
  • the positive electrode current collector generally includes a film segment coated with a positive electrode active material and a tab segment welded to the top cover.
  • the current cathode current collector foil is of equal thickness, and this structure has the problems of material waste and high cost. Studies have reported reducing the thickness of the diaphragm area to reduce costs, but this structure has the problems of reduced conductivity and reduced flow conductivity.
  • the purpose of the present disclosure is to provide a positive electrode current collector and a preparation method thereof, a positive electrode sheet, a battery, and a battery, so as to improve the technical problems of the electrical conductivity and low current conductivity of the positive electrode current collector.
  • a positive electrode current collector including: a base film and a functional layer disposed on the surface of the base film, the base film has a first surface and a second surface disposed opposite to each other, and the first surface is disposed There is a first functional layer, and the second surface is provided with a second functional layer.
  • the first functional layer includes an adhesive layer, a flow guide layer and a protective layer which are sequentially stacked, and the adhesive layer is arranged on the first surface.
  • the first functional layer is divided into a first functional section and a second functional section in a direction parallel to the first surface, and the thickness of the first functional section is greater than the thickness of the second functional section.
  • the first functional section includes a first coating section and a tab section. The surface of the first coating section is used for coating materials, the surface of the tab section is used for connecting with the tab section, and the first coating section is arranged on the tab section. Between and the second functional segment.
  • the positive electrode current collector adopts functional layers of unequal thickness, so that the thickness of the second functional layer is smaller than the thickness of the first functional layer.
  • the surface of the second functional layer is a coating area, and this structure enables the coating area to be coated with more active materials and improves the energy density of the positive electrode current collector.
  • the first functional layer includes a tab section, and the surface of the tab section is a tab area for connecting with the tab.
  • a first coating section is arranged between the tab section and the second functional section, and the thickness of the first coating section is equal to the thickness of the tab section.
  • the structure increases the thickness of the functional layer at the junction of the coating section and the tab section, improves the conductivity and the flow conductivity of the junction between the coating section and the tab section, and improves the comprehensive flow capacity of the positive electrode current collector.
  • the ratio of the thickness of the first functional segment to the thickness of the second functional segment is (5-25): (1-15).
  • the thickness of the first functional segment is 500 nm-2500 nm
  • the thickness of the second functional segment is 100 nm-1500 nm.
  • the thickness of the first functional section and the thickness of the second functional section affect the flow conductivity between the tab area and the coating area.
  • the size of the surface of the first coating section in a direction parallel to the first surface is 0.5 nm-25 nm.
  • the first coating section is where the coating area is thickened, and when the thickening width of the first coating section is within the above range value, the flow capacity of the positive electrode current collector can be better improved.
  • the second functional section includes a second coating section and a third coating section, the second coating section is arranged between the first coating section and the third coating section, and the second coating section The thickness of the coating section gradually decreases from the first coating section to the third coating section.
  • the second coating section is connected to the first coating section.
  • This structure makes the thickness of the first coating section and the thickness change of the second coating section gradually decrease, which improves the flow diversion between the second functional section and the first functional section. Capacity, and then improve the comprehensive flow capacity of the functional layer.
  • the structure avoids the film surface defects of dead wrinkles and vigor due to the difference in the thickness of the functional layer.
  • the surface of the second coating section is a flat surface or a curved surface.
  • the surface of the second coating section and the surface of the third coating section are both flat, and the surface of the second coating section forms an included angle with the surface of the third coating section, and the included angle is 1-50 degrees.
  • the surface of the second coating section can be adjusted in surface shape as required, so that the positive electrode current collector is not affected by bending or bending during actual application.
  • the flow guide layer includes alternately stacked metal layers and reinforcement layers, the thickness of the metal layer is 20-1500nm, the number of layers is 2-50, and the thickness of the reinforcement layer is 2-50nm, The number of layers is 1-49.
  • the thickness of the base film is 1.2 ⁇ m-12 ⁇ m
  • the thickness of the adhesive layer is 2-50 nm
  • the thickness of the protective layer is 2-50 nm.
  • the metal layer and the reinforcement layer are alternately arranged in the above-mentioned layer thickness range, which can ensure the flow conductivity of the flow guide layer to a greater extent, and at the same time, the flow guide layer has better stability.
  • the base film, the adhesive layer, the flow guide layer and the protective layer are within the above-mentioned thickness range.
  • the adhesive layer can make the flow guide layer and the base film connect firmly, so that the positive electrode current collector has better peel strength.
  • the structure of the second functional layer is the same as the structure of the first functional layer, and the second functional layer and the first functional layer are symmetrically arranged with respect to the base film.
  • the positive electrode current collector of this structure has good conductivity and flow conductivity.
  • the metal layer is an aluminum layer
  • the reinforcement layer is a non-metal layer
  • the composition of the reinforcement layer is AlOx, where 1 ⁇ x ⁇ 1.5
  • the protective layer is a non-metal layer
  • the composition of the protective layer is AlOx , Where 1 ⁇ x ⁇ 1.5.
  • the positive electrode current collector containing the aluminum layer has better conductivity and current conductivity.
  • a method for preparing the above-mentioned positive electrode current collector includes: forming an adhesive layer on the first surface and the second surface of the base film, forming an air guiding layer on the adhesive layer, and forming an air guiding layer on the air guiding layer. Form a protective layer.
  • the flow guide layer includes alternately stacked metal layers and reinforcement layers, and the thickness of the flow guide layer is inconsistent.
  • the steps of forming the flow guide layer include: Step 1: Between the bonding layer and the second The surface corresponding to the functional segment is coated with perfluoropolyether oil, and then the surface of the adhesive layer is plated with aluminum.
  • the second functional section includes a second coating section and a third coating section, and the second coating section is arranged between the first functional section and the third coating section; The surface corresponding to the covering section and the second functional section is coated with perfluoropolyether oil to form a coating, so that the thickness of the coating gradually changes from the surface of the adhesive layer corresponding to the first coating section to the surface corresponding to the second functional section.
  • Step 2 Form a reinforcement layer on the aluminum layer obtained in the previous step.
  • Step 3 Continue to plate aluminum on the reinforcement layer obtained in the previous step to form an aluminum layer to obtain a guide layer with inconsistent thickness.
  • step two and step three are repeated to form a reinforcement layer and an aluminum layer alternately stacked until the thickness of the flow guiding layer reaches a predetermined value.
  • perfluoropolyether oil is coated to hinder the formation of the aluminum layer, and a guide layer with inconsistent thickness is obtained.
  • the flow guide layer includes alternately stacked metal layers and reinforcement layers, and the thickness of the flow guide layer is inconsistent.
  • the steps of forming the flow guide layer include: Step 1: Between the bonding layer and the second A water-cooled baffle is arranged between the corresponding surface of the functional section and the evaporation source. The water-cooled baffle is provided with multiple through holes for steam to pass through. The arrangement density of the multiple through holes is along the direction from the first functional section to the second functional section. Gradually reduce, use the vapor deposition method to plate aluminum on the surface of the adhesive layer.
  • Step 2 Form a reinforcement layer on the aluminum layer obtained in the previous step.
  • Step 3 Use the vapor deposition method of step 1 to form an aluminum layer on the reinforcement layer obtained in the previous step to obtain a guide layer with inconsistent thickness.
  • step two and step three are repeated to form a reinforcement layer and an aluminum layer alternately stacked until the thickness of the flow guiding layer reaches a predetermined value.
  • the method adopts a water-cooled baffle to improve the structure of the water-cooled baffle, and can obtain a guide layer with inconsistent thickness through evaporation.
  • the step of forming a reinforcement layer on the aluminum layer includes: placing the aluminum-plated film whose outermost layer is an aluminum layer in an environment with a humidity of less than 50% and letting it stand for 46-50 hours, so that the aluminum layer is Form a reinforcement layer; or use plasma equipment to ionize argon and oxygen to clean and oxidize the surface of the aluminum layer to form a reinforcement layer on the aluminum layer.
  • the method obtains a metal oxide by oxidizing the metal layer, and then forms a reinforcement layer.
  • the reinforcement layer and the metal layer have a strong connection force, so that the flow guide layer has higher stability.
  • a positive electrode sheet including the above-mentioned positive electrode current collector and an active material, the active material being arranged on the surfaces of the first coating section and the second functional section.
  • the positive electrode sheet adopts the positive electrode current collector provided by the present disclosure, can be coated with a larger amount of active material, and improves the energy density of the positive electrode current collector.
  • the thickness of the junction between the functional layer corresponding to the coating area of the positive electrode current collector and the tab section is increased, which further improves the conductivity and conduction capacity of the positive electrode sheet.
  • a battery cell which includes a negative electrode sheet, a separator layer, a casing, and the above-mentioned positive electrode sheet.
  • the negative electrode sheet, the separator layer and the positive electrode sheet are arranged in the casing.
  • the battery cell includes the above-mentioned positive electrode sheet, so that its energy density can be increased by 0.5-2%.
  • a battery including a casing, the above-mentioned battery cell, an insulating member, and a top cover assembly.
  • the battery core is housed in the casing, the insulating member is arranged between the battery core and the casing, and the top cover assembly cover It is arranged in the shell and connected with the electric core through the tabs.
  • the battery has a higher electric capacity, expands the use range of the battery, and can be applied to devices that require a large amount of power.
  • the present disclosure also proposes the application of the positive electrode current collector in the preparation of lithium ion batteries.
  • the positive electrode current collector with good conductivity and conductivity is used to improve the performance of the lithium ion battery, which has very good industrial application prospects.
  • FIG. 1 is a schematic diagram of the structure of a positive electrode current collector provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of another state of the positive electrode current collector provided by the embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of a portion of a positive electrode current collector provided by an embodiment of the disclosure where the thickness of the layer is constant;
  • FIG. 4 is a schematic structural diagram of the division of the positive electrode current collector provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic view of the structure of the cathode current collector in FIG. 4 from another perspective;
  • FIG. 6 is a schematic structural diagram of another positive electrode current collector provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic view of another view of the structure of the positive electrode current collector in FIG. 6;
  • FIG. 8 is a schematic diagram of the structure of a plurality of positive electrode current collectors in FIG. 6; FIG.
  • FIG. 9 is a schematic structural diagram of a plurality of still another positive electrode current collectors provided by this embodiment.
  • Icon 100-positive current collector; 110-base film; 111-first surface; 112-second surface; 120-functional layer; 121-first functional layer; 122-second functional layer; 130-adhesive layer; 140-flow guide layer; 141-metal layer; 143-reinforcement layer; 150-protection layer; 210-first functional section; 211-first coating section; 212-first coating area; 213-ear segment; 214- Tab area; 220-Two functional section; 221-Second coating section; 222-Second coating section; 223-Third coating section; 224-Third coating section.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “left”, “right”, etc. is based on the orientation or positional relationship shown in the drawings, or is The orientation or positional relationship of the products of this application are usually placed in use, only for the convenience of describing the present disclosure and simplifying the description.
  • the terms “first”, “second”, etc. are only used for paragraph description, and cannot be understood as indicating or implying relative importance.
  • FIG. 1 is a schematic structural diagram of the positive electrode current collector 100 provided by this embodiment
  • FIG. 2 is a schematic structural diagram of the positive current collector 100 provided by an embodiment of the disclosure in another state.
  • the present embodiment provides a positive electrode current collector 100, which is used in a battery cell of a lithium battery, and collects the current generated by the active material of the battery and outputs it to the outside.
  • the positive electrode current collector 100 has a multilayer structure and includes a base film 110 and a functional layer 120 disposed on the base film 110.
  • the material of the base film 110 may be o-phenylphenol (OPP), polyethylene terephthalate (PET), polyimide (PI), polyphenylene sulfide (PPS). ), cast polypropylene (CPP), polyethylene naphthalate (PEN), polyvinyl chloride (PVC), preferably, the base film 110 is made of PET, PPS or PEN.
  • the base film 110 may use any one material, or two or more materials to obtain a composite film.
  • the base film 110 is the base film 110.
  • the base film 110 of the above-mentioned material is light in weight, has good stretchability, and has good bonding strength with the functional layer 120.
  • the thickness of the base film 110 is 1.2 ⁇ m-12 ⁇ m, wherein the thickness of the base film 110 may be 1.2 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m or 12 ⁇ m.
  • the upper surface of the base film 110 is the first surface 111, and the lower surface is the second surface 112.
  • both the first surface 111 and the second surface 112 are provided with a functional layer 120.
  • the first surface 111 is provided with a first functional layer 121
  • the second surface 112 is provided with a second functional layer 122.
  • one of the first surface 111 or the second surface 112 of the base film 110 is provided with a functional layer 120, which can be adjusted according to actual needs.
  • the first functional layer 121 and the second functional layer 122 have the same structure, and the first functional layer 121 and the second functional layer 122 are symmetrically arranged with respect to the base film 110 to facilitate processing and preparation. The following takes the first functional layer 121 as an example for detailed description.
  • the first functional layer 121 includes an adhesive layer 130, a flow guide layer 140 and a protective layer 150 which are stacked in sequence, and the adhesive layer 130 is provided on the first surface 111.
  • FIG. 3 is a schematic diagram of the structure of the portion of the positive electrode current collector 100 where the thickness of the layer is constant.
  • the flow guide layer 140 includes metal layers 141 and reinforcement layers 143 alternately stacked, and the dotted line in the figure represents an omitted multilayer structure. It can be understood that the adhesive layer 130 in the first functional layer 121 is provided on the first surface 111, a metal layer 141 is provided on the adhesive layer 130, a reinforcement layer 143 is provided on the metal layer 141, and then A metal layer 141 is provided on the reinforcement layer 143.
  • the metal layer 141 and the reinforcement layer 143 are continuously arranged alternately, so that the flow guide layer 140 is a metal layer 141 and a reinforcement layer 143 Layer structure arranged alternately. Then, a protective layer 150 is provided on the surface of the flow guiding layer 140.
  • the outermost layer of the flow guiding layer 140 is the metal layer 141, and the protective layer 150 is disposed on the outermost metal layer 141.
  • FIG. 1 is a schematic diagram of the smallest unit structure of a positive electrode current collector 100
  • FIG. 2 is a schematic diagram of a plurality of uncut positive electrode current collectors 100.
  • the base film 110 has a continuous film structure.
  • an adhesive layer 130, a flow guide layer 140, and a protective layer 150 are sequentially formed on the base film 110, and then the length is adjusted according to needs. The longer film is cut to obtain the positive electrode current collector 100.
  • the adhesive layer 130 is a non-metallic coating, and the non-metal includes at least one of SiC, Si 3 N 4 , SiOx (1.5 ⁇ x ⁇ 2), and AlOx (1 ⁇ x ⁇ 1.5) .
  • the non-metal bonding layer can be directly deposited on the base film 110 by electron beam evaporation or other methods, or by a method similar to chemical vapor deposition (CVD), directly using metal vapor, organic metal source, oxygen, and water. It is formed by reacting with an oxygen source, which is not limited in the present disclosure.
  • the thickness of the adhesive layer 130 is 2-50 nm.
  • the adhesive layer 130 of this structure can firmly connect the base film 110 with the flow guide layer 140 and the protective layer 150, thereby ensuring the positive electrode current collector 100 to a large extent. Performance.
  • the thickness of the bonding layer 130 is 8-20 nm; when the bonding layer is SiOx (1.5 ⁇ x ⁇ 2), the thickness of the bonding layer 130 The thickness is 10-40nm.
  • the thickness of the adhesive layer 130 may be 2 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, or 50 nm.
  • the existing positive current collector 100 is generally aluminum foil.
  • the metal layer 141 in the positive current collector 100 is an aluminum layer or an aluminum alloy.
  • the thickness of the metal layer 141 is 20-1500 nm.
  • the thickness of the metal layer 141 is 20-1000 nm.
  • the thickness of the metal layer 141 may be 20 nm, 100 nm, 200 nm, 500 nm, 700nm, 800nm, 1000nm, 1200nm, 1300nm or 1500nm.
  • the reinforcement layer 143 in the present disclosure is a dense non-metal layer 141 whose composition is a metal oxide.
  • the reinforcement layer 143 is AlOx (1 ⁇ x ⁇ 1.5).
  • the thickness of the reinforcement layer 143 is 2-50 nm.
  • the thickness of the reinforcement layer 143 can be 3-6 nm, or 2 nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, or 50 nm.
  • the reinforcement layer 143 in the present disclosure can be prepared by evaporation or static curing.
  • the metal layer 141 and the reinforcement layer 143 in the present disclosure constitute the flow guide layer 140.
  • the number of the metal layer 141 can be 2-50 layers, and the number of the reinforcement layer 143 It can be 1-49 layers, that is, the number of layers of the metal layer 141 is one more layer than the number of layers of the reinforcement layer 143.
  • the outermost layer of the positive electrode current collector 100 is provided with a protective layer 150 to avoid oxidation of the metal layer 141, and the protective layer 150 is an anti-oxidation layer.
  • the protective layer 150 is a non-metal layer 141 or a metal layer 141.
  • the metal may be Ni.
  • the protective layer 150 is a non-metal layer 141, the non-metal layer It can be SiC, Si 3 N 4 , SiOx (1.5 ⁇ x ⁇ 2) or AlOx (1 ⁇ x ⁇ 1.5).
  • the thickness of the protective layer 150 is 2-50 nm.
  • the thickness of the protective layer 150 can be 3-12 nm, or 2 nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, or 50 nm.
  • the existing current collector has a structure of equal thickness.
  • the inventor of the present disclosure found that the area coated with the active material does not require high electrical conductivity, and in order to ensure the electrical conductivity of the area connected to the tab, the active material is coated The thickness of the area is large, resulting in excess conductivity, wasting materials, and increasing costs.
  • the present disclosure proposes to design the positive electrode current collector 100 with unequal thickness, so that the thickness of the functional layer 120 corresponding to the tab area 214 is greater than the thickness of the functional layer 120 corresponding to the coating area, which is on the basis of ensuring the flow capacity of the positive electrode current collector 100 Above, reduce the thickness of the functional layer 120 corresponding to the coated area, increase the amount of active material coated on the coated area, increase the energy density of the cell containing the positive electrode current collector 100, and reduce the cost of the positive electrode current collector 100 3-30%.
  • FIG. 4 is a schematic diagram of the structure of the cathode current collector 100 of the present disclosure.
  • the first functional layer 121 is divided into a first functional section 210 and a second functional section 220 in a direction parallel to the first surface 111, and the thickness of the first functional section 210 is greater than that of the second functional section 220 thickness of.
  • the ratio of the thickness of the first functional section 210 to the thickness of the second functional section 220 is (5- 25): (1-15).
  • the thickness of the first functional segment 210 is 500 nm-2500 nm, and the thickness of the second functional segment 220 is 100 nm-1500 nm.
  • the thickness of the first functional segment 210 is 500 nm, 1000 nm, 1500 nm, 2000 nm, 2300 nm, or 2500 nm
  • the thickness of the second functional segment 220 is 100 nm, 500 nm, 800 nm, 1000 nm, 1200 nm, or 1500 nm.
  • FIG. 5 is a schematic view of another view of the structure of the positive electrode current collector 100 in FIG. 4.
  • the first functional section 210 includes a first coating section 211 and a tab section 213.
  • the surface of the tab section 213 is a tab area 214 for connecting with the tab; the surface of the first coating section 211 is a first coating.
  • the area 212 is used for coating the active material, and the surface of the second functional section 220 is a part of the coating area for coating the active material.
  • the first coating section 211 is disposed between the tab section 213 and the second functional section 220, that is, the tab section 213, the first coating section 211, and the second functional section 220 are connected in sequence.
  • this structure Compared with the structure in which the thickness of the functional layer 120 corresponding to the tab region 214 is greater than the thickness of the functional layer 120 corresponding to the coating region, this structure increases the thickness of the functional layer 120 corresponding to the coating region near the tab region 214. thickness. Since the positive electrode current collector 100 has high requirements for the conduction energy of the tab interface, this structure improves the conductivity and conduction ability of the connection between the coating area and the tab area 214, and avoids the short plate effect.
  • the size of the surface of the first coating section 211 in a direction parallel to the first surface 111 is 0.5 nm-25 nm. It can be understood that the width of the first coating region 212 is 0.5 nm-25 nm. Optionally, the width of the first coating area 212 is 1 nm-15 nm. The width of the first coating area 212 may be 0.5 nm, 1 nm, 5 nm, 10 nm, 15 nm, 20 nm, or 25 nm.
  • FIG. 6 is a schematic diagram of another structure of the positive electrode current collector 100 of the present disclosure
  • FIG. 7 is a schematic diagram of another view of the structure of the positive electrode current collector 100 in FIG. 6.
  • the inventors of the present disclosure have discovered through research that there are certain limitations on the flow conductivity of the functional layer 120 of the above structure. In order to break through this limitation, the inventors of the present disclosure have improved the structure of the second functional section 220.
  • the second functional section 220 includes a second coating section 221 and a third coating section 223, the surface of the second coating section 221 is the second coating area 222, and the third coating section 223
  • the surface of the is the third coating zone 224
  • the second coating section 221 is arranged between the first coating section 211 and the third coating section 223, from the end close to the first coating section 211 to close to the third coating section
  • the thickness of the second coating section 221 gradually decreases. That is, the first coating section 211, the second coating section 221, and the third coating section 223 are sequentially connected to form a coating section.
  • the first coating region 212, the second coating region 222, and the third coating region 224 form a coating section.
  • the thickness of the first coating section 211 is equal to the thickness of the tab area 214
  • the thickness of the third coating section 223 is equal to the thickness of the second functional section 220
  • the thickness of the second coating section 221 is changed from the thickness of the first coating section 221.
  • the covering section 211 gradually decreases in the direction of the third covering section 223.
  • This structure increases the contact area between the second functional section 220 and the first functional section 210, improves the flow conductivity of the connection between the second functional section 220 and the first functional section 210, and further improves the comprehensive flow capacity of the functional layer 120.
  • the structure avoids the defects of dead wrinkles and vigorous film surface at different positions of the thickness of the functional layer 120.
  • the surface of the second coating section 221 is a flat surface or a curved surface, that is, the second coating area 222 is a flat surface or a curved surface.
  • the surface of the first functional section 210 is flat.
  • the surface of the second coating section 221 and the surface of the first functional section 210 form an included angle ⁇ , when the included angle is When 1-50 degrees, the flow capacity of the functional layer 120 is better.
  • the included angle is 1-30 degrees.
  • FIG. 8 is a schematic diagram of a plurality of structures of the positive electrode current collectors 100 in FIG. 6.
  • FIG. 9 is a schematic diagram of another structure when a plurality of positive electrode current collectors 100 are connected together.
  • the surface of the first functional layer 121 is wavy.
  • the surface shape of the second coating section 221 and the surface shape of the third coating section 223 can be changed as required, and the present disclosure does not limit it.
  • the cathode current collector 100 provided in the present disclosure has a functional layer 120 of unequal thickness.
  • the thickness of the second functional layer 122 is smaller than the thickness of the first functional layer 121, and the thickness of the second coating section 221 and the third coating section 223 is smaller than that of the electrode.
  • the thickness of the ear segment 213 enables the coating area to be coated with more active material, and improves the energy density of the positive electrode current collector 100.
  • a first coating section 211 is provided between the tab section 213 and the second functional section 220, and the thickness of the first coating section 211 is equal to the thickness of the tab section 213.
  • the thickness of the second coating section 221 gradually decreases, increasing the second functional section 220 and the first functional section 210
  • the contact area of the second functional section 220 and the first functional section 210 is improved, and the overall flow capacity of the functional layer 120 is improved.
  • the present disclosure also provides a battery (not shown), including a casing, a battery core, an insulating member, and a top cover assembly.
  • the battery core is accommodated in the casing, and the insulating member is arranged between the battery core and the casing.
  • the cover assembly is arranged on the shell and connected with the electric core through the tabs.
  • the battery core includes a negative electrode sheet, a separator layer, a casing, and a positive electrode sheet.
  • the negative electrode sheet, the separator layer and the positive electrode sheet are arranged in the casing.
  • the positive electrode sheet includes a positive electrode current collector 100 and an active material, and the active material is coated on the surfaces of the first coating section 211 and the second functional section 220.
  • the positive electrode current collector 100 can be coated with more active materials, so that the energy density of the battery cell containing the positive electrode sheet can be increased by 0.5-2%, so that the battery has a higher electric capacity, expands the use range of the battery, and can be applied in On devices that require a lot of power.
  • the present disclosure also provides a method for preparing a positive electrode current collector, including: forming an adhesive layer on the first surface of the base film, forming a flow guide layer with inconsistent thickness on the adhesive layer, and forming a reinforcement layer on the flow guide layer .
  • the preparation method of the positive electrode current collector will be described in detail below.
  • the base film can be pretreated before the adhesive layer is prepared, including: corona treatment is performed on the first surface and the second surface of the base film. Then, an adhesive layer is formed on the surface of the base film by an evaporation method.
  • the adhesive layer is non-metal, and optionally, the non-metal can be at least one of SiC, Si3N4, SiOx (1.5 ⁇ x ⁇ 2), and AlOx (1 ⁇ x ⁇ 1.5).
  • the forming method of the adhesive layer includes:
  • the vacuum chamber After the corona or non-corona-free base film is placed in the vacuum chamber of the single-sided or double-sided reciprocating vacuum coater, the vacuum chamber is sealed, and the vacuum is evacuated step by step until the vacuum degree reaches 10 -4 Pa-10 -1 Pa. Compressed oxygen or ozone is introduced into the oxygen-permeable structure near the evaporation source, the air volume, unwinding speed, and winding speed are adjusted, and the evaporation source is used to evaporate the raw materials to form an adhesive layer on the moving base film.
  • the evaporation source is made of metal aluminum wire or aluminum ingot, the purity is ⁇ 99.9%, the winding speed is set to 300-400m/min, the wire feed rate is set to 250-350mm/min, and the evaporation is The aluminum atoms react with oxygen and form a layer of AlOx (1 ⁇ x ⁇ 1.5) on the moving base film, that is, the bonding layer, with a thickness of 2-50nm.
  • the evaporation raw material is aluminum oxide, and the aluminum oxide absorbs heat and vaporizes to form a layer of AlOx (1 ⁇ x ⁇ 1.5) coating on the surface of the base film.
  • the target material is high-purity alumina with a purity of ⁇ 99.9%.
  • the unwinding speed and winding speed are adjusted.
  • the sputtered alumina molecules form a layer of AlOx (1 ⁇ x ⁇ 1.5), namely the bonding layer.
  • the target is high-purity aluminum with a purity of ⁇ 99.9%, and high-purity oxygen is passed through the sputtering path, so that the aluminum reacts with the oxygen to form AlOx (1 ⁇ x ⁇ 1.5), which is deposited on On the base film, the adhesive layer.
  • the corona or uncorona-free base film in a continuous chemical vapor deposition equipment, use trimethylaluminum or aluminum chloride as the aluminum source, oxygen, ozone, moisture, or carbon dioxide as the oxygen source, adjust the gas composition Ratio, winding speed and unwinding speed, the gas ionizes and reacts and deposits an aluminum oxide layer on the base film, that is, the bonding layer.
  • the flow guide layer in the present disclosure includes a metal layer and a reinforcement layer.
  • the metal layer is an aluminum layer
  • the reinforcement layer is an aluminum oxide. The following is taken as an example for description.
  • the perfluoropolyether oil that prevents aluminum plating is selectively coated on the adhesive layer to make it difficult to form an aluminum layer on the adhesive layer coated with the perfluoropolyether oil, thereby obtaining Aluminum layer with inconsistent thickness. Specifically, it includes the following steps:
  • Step 1 Apply perfluoropolyether oil on the surface of the adhesive layer corresponding to the first coating section and the second functional section to form a coating, so that the thickness of the coating varies from that of the adhesive layer to that of the first coating section.
  • the corresponding surface gradually becomes smaller toward the surface corresponding to the second functional segment.
  • the surface of the adhesive layer is plated with aluminum.
  • no aluminum layer is formed at the position coated with perfluoropolyether oil.
  • the perfluoropolyether oil gradually decreases to disappear
  • an aluminum layer began to form on the surface of the adhesive layer that had been coated with perfluoropolyether oil.
  • Step 2 Form a reinforcement layer on the aluminum layer obtained in the previous step.
  • the previous step refers to the previous step, and this step refers to step one.
  • the forming method of the reinforcement layer in the present disclosure includes:
  • the aluminum-plated film whose outermost layer is an aluminum layer is placed in an environment with a humidity of less than 50% and allowed to stand for 46-50 hours to form a reinforcement layer on the aluminum layer.
  • an AlOx (1 ⁇ x ⁇ 1.5) layer is formed through the reaction of the aluminum layer with oxygen in the environment to obtain a reinforcement layer.
  • an AlOx (1 ⁇ x ⁇ 1.5) layer is formed by oxidizing the aluminum on the surface of the aluminum layer to obtain a reinforcement layer.
  • the reinforcement layer when the reinforcement layer is made of other materials, the reinforcement layer can be formed on the aluminum layer by conventional technical means in the art, such as evaporation and magnetron sputtering.
  • Step 3 Continue to plate aluminum on the reinforcement layer obtained in the previous step to form an aluminum layer to obtain a guide layer with inconsistent thickness.
  • the aluminum can be plated according to the normal process.
  • the reinforcement layer obtained in the previous step is coated with perfluoropolyether oil.
  • the method is the same as step one. After coating, aluminum is plated on the reinforcement layer coated with perfluoropolyether oil. Among them, perfluoropolyether oil can be replaced with other solutions with low surface dyne value.
  • perfluoropolyether oil can be coated every time aluminum plating to obtain an aluminum layer with inconsistent thickness, or it can be selectively coated with perfluoropolyether oil.
  • polyether oil the specific preparation process is adjusted according to actual needs, and the present disclosure does not limit it.
  • a water-cooled baffle is used to control the amount of the bonding layer formed by the aluminum vapor at different positions, so as to obtain an aluminum layer with inconsistent thickness. Specifically, it includes the following steps:
  • Step 1 Set a water-cooled baffle between the surface of the adhesive layer corresponding to the second functional section and the evaporation source.
  • the water-cooled baffle is provided with multiple through holes for steam to pass through.
  • the direction from the first functional section to the second functional section is gradually reduced, and aluminum is plated on the surface of the adhesive layer by an evaporation method. Due to the effect of the water-cooled baffle, the amount of aluminum deposited on the surface of the bonding layer is different, and combined with the rolling speed and the amount of evaporation, an aluminum layer with a certain structure and inconsistent thickness is formed.
  • other structures of the evaporation mechanism used in the present disclosure are existing structures, which are not limited by the present disclosure.
  • Step 2 Form a reinforcement layer on the aluminum layer obtained in the previous step.
  • the method of forming the reinforcement layer is the same as described above.
  • the aluminum-plated film whose outermost layer is an aluminum layer is placed in an environment with a humidity of less than 50% and allowed to stand for 46-50 hours to form a reinforcement layer on the aluminum layer.
  • an AlOx (1 ⁇ x ⁇ 1.5) layer is formed through the reaction of the aluminum layer with oxygen in the environment to obtain a reinforcement layer.
  • an AlOx (1 ⁇ x ⁇ 1.5) layer is formed by oxidizing the aluminum on the surface of the aluminum layer to obtain a reinforcement layer.
  • Step 3 Use the vapor deposition method of step 1 to form an aluminum layer on the reinforcement layer obtained in the previous step to obtain a guide layer with inconsistent thickness.
  • the aluminum layer in the embodiment of the present disclosure is multi-layered, and a water-cooled baffle can be used in each aluminum plating to obtain an aluminum layer with inconsistent thicknesses, or a water-cooled baffle can be selectively provided for specific preparation
  • the process is adjusted according to actual needs, and this disclosure does not limit it.
  • steps 2 and 3 are repeated to form the reinforcement layer and the aluminum layer alternately stacked until the thickness of the flow guiding layer reaches a predetermined value.
  • the protective layer in the embodiments of the present disclosure may be a metal layer or a non-metal layer, and a protective layer of corresponding material is prepared on the guide layer according to different materials.
  • the protective layer is an AlOx (1 ⁇ x ⁇ 1.5) layer.
  • the preparation method of the protective layer includes:
  • the surface of the aluminized film will form a denser oxide layer due to the penetration of oxygen or a small amount of moisture in the air. , That is, a protective layer with anti-oxidation effect.
  • the film with the flow guide layer into the vacuum chamber of a single- or double-sided evaporation coating machine containing a plasma device, seal the vacuum chamber, and evacuate step by step until the vacuum degree reaches 10 -4 -10 -1 Pa.
  • the evaporation source and use plasma equipment to ionize argon and oxygen to clean and oxidize the surface of the aluminized film to generate a denser layer of AlOx (1.4 ⁇ x ⁇ 1.5), that is, the protective layer.
  • This embodiment provides a positive electrode current collector and a preparation method thereof, including the following steps:
  • the evaporation source material is metal aluminum wire or aluminum ingot, purity ⁇ 99.9%, winding speed is set to 350m/min, wire feeding rate is set to 300mm/min, evaporated aluminum atoms react with oxygen and form on the moving film
  • An Al 2 O 3 oxide layer, that is, the bonding layer, has a thickness of about 10 nm.
  • the film with the adhesive layer on the surface obtained in S1 into the vacuum chamber of a single-sided or double-sided reciprocating evaporation coating machine containing a plasma device seal the vacuum chamber, and evacuate step by step until the vacuum degree reaches 2 ⁇ 10 -2 Pa
  • the surface of the bonding layer is cleaned by ionizing argon with a plasma device.
  • the amount of argon is 500sccm.
  • a coating device is used to coat perfluoropolyether oil on the surface of the adhesive layer at a fixed point and width, and the thickness of the coating layer is the same.
  • the evaporation zone use the evaporation method to heat the aluminum with a purity of ⁇ 99.9%, set the winding speed to 300m/min, and the wire feed rate to 1100mm/min.
  • the aluminum continues to melt and evaporate in the evaporation mechanism.
  • An aluminum-plated layer of inconsistent thickness is formed on the surface of the junction layer, that is, an aluminum metal plating layer, and the thickness of the aluminum metal plating layer is about 50-55 nm where the thickness is larger.
  • the aluminized film obtained from S2 into the vacuum chamber of a single-sided or double-sided reciprocating evaporation coating machine containing a plasma device, seal the vacuum chamber, and evacuate step by step until the vacuum degree reaches 2 ⁇ 10 -2 Pa, and then enter the evaporation Before the zone, the surface of the aluminum-plated film is cleaned and oxidized by plasma equipment ionizing argon and oxygen.
  • the argon gas is 500 sccm and the oxygen content is 350 sccm.
  • a dense Al 2 O 3 oxide layer is formed on the surface of the aluminum-plated metal layer, that is, reinforcement The thickness of the reinforcement layer is about 4nm.
  • this step is repeated 40 times to obtain a diversion layer with alternately stacked metal layers and reinforcement layers, and the outermost layer of the diversion layer is an aluminum layer.
  • the aluminized film obtained by S3 in a humidity ⁇ 50%, room temperature environment, and leave it to mature for 48h.
  • the surface of the aluminized film will form a dense layer of Al 2 O due to the penetration of oxygen in the air or a small amount of moisture.
  • 3 Oxide layer, namely the protective layer, the thickness of the protective layer is about 3nm.
  • Embodiment 1 provides a positive electrode current collector and a preparation method thereof. The difference from Embodiment 1 is only:
  • the thickness of the coating is gradually reduced from the surface of the adhesive layer corresponding to the first coating section to the surface corresponding to the second functional section. After evaporation, an aluminum-plated layer with inconsistent thickness is formed on the surface of the bonding layer, and the thickness of the aluminum-plated layer gradually changes.
  • the structure of the positive electrode current collector of unequal thickness obtained in this embodiment is shown in FIG. 6.
  • This embodiment provides a positive electrode current collector and a preparation method thereof, including the following steps:
  • the water-cooled baffle in this embodiment is provided with multiple through holes for steam to pass through, and the arrangement density of the multiple through holes is uniformly arranged.
  • the aluminum with a purity of ⁇ 99.9% is heated by evaporation, the winding speed is set to 380m/min, the wire feed rate is set to 900mm/min, the aluminum is continuously melted and evaporated in the evaporation mechanism, and the thickness of the adhesive layer is inconsistent.
  • the aluminum-plated layer, that is, the aluminum metal coating, the thickness of the aluminum metal coating is about 60-65nm.
  • aluminized film obtained from S2 into the vacuum chamber of a single-sided or double-sided reciprocating evaporation coating machine containing a plasma device, seal the vacuum chamber, and evacuate step by step until the vacuum degree reaches 2 ⁇ 10 -2 Pa, and then enter the evaporation Before the zone, plasma equipment is used to ionize argon and oxygen to clean and oxidize the surface of the aluminized film.
  • the argon is 600sccm and the amount of oxygen is 400sccm.
  • a denser Al 2 O 3 oxide layer is formed on the surface of the aluminized metal layer. That is, the reinforcement layer, the thickness of the reinforcement layer is about 4 nm.
  • the evaporation zone set the above-mentioned water-cooled baffle between the adhesive layer and the evaporation source, use the evaporation method to heat the aluminum with a purity of ⁇ 99.9%, adjust the unwinding speed, winding speed and evaporation volume, and the aluminum is in The evaporation mechanism continues to melt and evaporate, forming a layer of aluminum plating on the surface of the bonding layer.
  • this step is repeated 30 times to obtain a diversion layer with alternately stacked metal layers and reinforcement layers, and the outermost layer of the diversion layer is an aluminum layer.
  • a positive electrode current collector of unequal thickness is obtained. Since the through holes of the water-cooled baffle are uniformly arranged, the thickness of the obtained aluminum layer changes uniformly.
  • the structure of the positive electrode current collector is the same as that of Example 1, but the thickness is different.
  • This embodiment provides a positive electrode current collector and a preparation method thereof.
  • the difference from Embodiment 3 is only:
  • a water-cooled baffle is arranged between the adhesive layer and the evaporation source, so that the water-cooled baffle covers the surface of the adhesive layer corresponding to the second functional section.
  • the water-cooled baffle in this embodiment is provided with multiple through holes for steam to pass through, and the arrangement density of the multiple through holes is gradually reduced according to the arrangement.
  • the thickness of the formed aluminum layer is not uniform due to the different arrangement density of the through holes of the water-cooled baffle, and an aluminum layer with a gradually changing thickness is obtained.
  • the positive electrode current collector of unequal thickness obtained in this embodiment has the structure of the positive electrode current collector as shown in Fig. 6, and the structure is the same as the positive electrode current collector of Example 2, but the specific thickness is different.
  • This embodiment provides a positive electrode current collector and a preparation method thereof.
  • the difference from Embodiment 3 is only that the thickness of the base film used in this embodiment is 6 ⁇ m.
  • the thickness of the base film used in this embodiment is smaller than that in Embodiment 3, so that the mechanical properties of the positive electrode current collector are changed.
  • This embodiment provides a positive electrode current collector and a preparation method thereof.
  • the difference from Embodiment 3 is only:
  • This embodiment provides a positive electrode current collector and a preparation method thereof.
  • the difference from Embodiment 3 is only:
  • Embodiment 1 provides a positive electrode current collector and a preparation method thereof. The difference from Embodiment 1 is only:
  • the positive electrode current collector obtained in this embodiment has a structure of equal thickness.
  • This comparative example provides a common cathode current collector.
  • the electrical conductivity of the first functional section and the second functional section of the positive electrode current collector provided in Examples 1-7 and Comparative Example 1-2 were tested by using a square resistance meter and a balance.
  • the methods include:
  • the probe of the square resistance meter needs to be perpendicular to the membrane surface and pressed to the end, until the displayed value is stable and recorded.
  • the initial distance of the tensile machine is set to 50mm, and the test speed is 50mm/min; use the tensile machine fixture to flatten the strip and clamp both ends of the sample for testing.
  • the positive electrode current collectors provided by Examples 1-4 and 6-7 of the present disclosure have better electrical and mechanical properties.
  • the thin base film affects the mechanical properties of the positive electrode current collector.
  • the positive electrode current collector provided in the embodiments 1-4 and 6-7 of the present disclosure is divided into two functional sections, the square resistance of the first functional section is 40-50m ⁇ , and the resistivity is 3.5-4.5 ⁇ 10 -8 ⁇ m .
  • the transverse tensile strength is about 185-220MPa, and the longitudinal tensile strength is about 190-230MPa.
  • the square resistance of the second functional section of Examples 1-4 and 6-7 is 75-80m ⁇ , the resistivity is 3.5-6.0 ⁇ 10 -8 ⁇ m, the transverse tensile strength is about 210-230MPa, and the longitudinal tensile strength is about 210-230MPa.
  • the tensile strength is about 190-260MPa, the transverse elongation at break is about 94%-110%, the longitudinal elongation at break is about 95-130%, and the dyne value of the positive electrode current collector is about 56.
  • the positive electrode current collector and the preparation method thereof, the positive electrode sheet, the battery, and the battery provided by the embodiments of the present disclosure improve the first functional layer and the second functional layer in the positive electrode current collector, and by adding a coating section and a tab section
  • the thickness of the functional layer at the junction improves the electrical conductivity and flow conductivity of the junction between the coating area and the tab area, and improves the overall flow capacity of the positive electrode current collector. It can be prepared to form a positive electrode sheet, a battery cell and a battery, and is applied in the field of lithium ion batteries to improve the performance of lithium ion batteries, and has very broad industrial application prospects.

Abstract

一种正极集流体(100),包括:基膜(110)和设置在基膜表面上的功能层(120),基膜具有相背设置的第一表面(111)和第二表面(112),第一表面(111)设有第一功能层(121),第二表面(112)设有第二功能层(122);第一功能层(121)包括依次叠层设置的粘接层(130)、导流层(140)以及保护层(150),粘接层(130)设置于第一表面(111);第一功能层(121)在平行于第一表面(111)的方向上划分有第一功能段(210)和第二功能段(220),第一功能段(210)的厚度大于第二功能段(220)的厚度;第一功能段(210)包括第一涂覆段(211)和极耳段(213),第一涂覆段(211)的表面用于涂覆材料,极耳段(213)的表面用于与极耳连接,第一涂覆段(211)设置于极耳段(213)与第二功能段(220)之间。还提供一种正极集流体(100)的制备方法、正极片、电芯以及电池。

Description

正极集流体及其制备方法和正极片、电芯以及电池
相关申请的交叉引用
本公开要求于2020年01月03日提交中国专利局的申请号为202010009329.X、名称为“正极集流体及其制备方法和正极片、电芯以及电池”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。本公开要求于2020年01月03日提交中国专利局的申请号为2020200137522、名称为“正极集流体、正极片及电池”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池极片技术领域,具体而言,涉及正极集流体及其制备方法和正极片、电芯以及电池。
背景技术
集流体作为锂离子电池的重要组成部分,起着支撑活性物质以及导通电流的作用。正极集流体一般包括涂覆正极活性物质的膜片段和同顶盖焊接的极耳段。目前的正极集流体的箔材是等厚的,该结构存在材料浪费、成本较高的问题。有研究报道减小膜片区的厚度以降低成本,但该结构存在导电性能下降、导流能力降低的问题。
发明内容
本公开的目的在于提供正极集流体及其制备方法和正极片、电芯以及电池,以改善正极集流体导电性能和导流能力低的技术问题。
第一方面,本公开实施例提供了一种正极集流体,包括:基膜和设置在基膜表面上的功能层,基膜具有相背设置的第一表面和第二表面,第一表面设有第一功能层,第二表面设有第二功能层。第一功能层包括依次叠层设置的粘接层、导流层以及保护层,粘接层设置于第一表面。第一功能层在平行于第一表面的方向上划分有第一功能段和第二功能段,第一功能段的厚度大于第二功能段的厚度。第一功能段包括第一涂覆段和极耳段,第一涂覆段的表面用于涂覆材料,极耳段的表面用于与极耳连接,第一涂覆段设置于极耳段与第二功能段之间。
该正极集流体采用不等厚度的功能层,使得第二功能层的厚度小于第一功能层的厚度。第二功能层的表面为涂覆区,该结构使得涂覆区能够涂覆更多的活性物质,提高正极集流体的能量密度。第一功能层包括极耳段,极耳段的表面为极耳区,用于与极耳连接。在极耳段与第二功能段之间设有第一涂覆段,第一涂覆段的厚度与极耳段的厚度相等。该结构通过增加涂覆段与极耳段连接处的功能层的厚度,提高涂覆区与极耳区连接处的导电性和导流能力,提高正极集流体的综合过流能力。
在一种可能的实现方式中,第一功能段的厚度与第二功能段的厚度的比值为(5-25):(1-15)。可选地,第一功能段的厚度为500nm-2500nm,第二功能段的厚度为100nm-1500nm。
第一功能段的厚度与第二功能段的厚度影响极耳区与涂覆区之间的导流能力,经过大量的试验研究,当第一功能段的厚度与第二功能段的厚度比例在上述范围内,能够保证极耳区的导电能力,能够较大程度提高涂覆区的导电能力。
在一种可能的实现方式中,第一涂覆段的表面在平行于第一表面的方向上的尺寸为0.5nm-25nm。
第一涂覆段为涂覆区加厚处,第一涂覆段的加厚宽度为上述范围值时,能够较好提高正极集流体的过流能力。
在一种可能的实现方式中,第二功能段包括第二涂覆段和第三涂覆段,第二涂覆段设置于第一涂覆段和第三涂覆段之间,第二涂覆段的厚度由第一涂覆段向第三涂覆段的方向逐渐减小。
第二涂覆段与第一涂覆段连接,该结构使得第一涂覆段的厚度与第二涂覆段的厚度变化逐渐减小,提高了第二功能段与第一功能段的导流能力,进而提高功能层的综合过流能力。同时,该结构避免了由于功能层的厚度不同而出现死皱、鼓劲的膜面缺陷。
在一种可能的实现方式中,第二涂覆段的表面为平面或曲面。可选地,第二涂覆段的表面和第三涂覆段的表面均为平面,第二涂覆段的表面与第三涂覆段的表面形成夹角,夹角为1-50度。
第二涂覆段的表面可以根据需要调整表面形状,使得正极集流体在实际应用时不受弯曲、弯折的影响。
在一种可能的实现方式中,导流层包括交替叠层设置的金属层和加固层,金属层的厚度为20-1500nm,层数为2-50层,加固层的厚度为2-50nm,层数为1-49层。在一种可能的实现方式中,基膜的厚度为1.2μm-12μm,粘接层的厚度为2-50nm,保护层的厚度为2-50nm。
金属层和加固层在上述层厚度范围内交替叠层设置,能够较大程度保证导流层的导流能力,同时导流层具有较好的稳固性。基膜、粘接层、导流层和保护层在上述厚度范围内,粘接层能够使导流层与基膜连接稳固,使得正极集流体具有较好的剥离强度。
在一种可能的实现方式中,第二功能层的结构与第一功能层的结构相同,第二功能层与第一功能层相对基膜对称设置。该结构的正极集流体具有较好的导电性和导流能力。
在一种可能的实现方式中,金属层为铝层,加固层为非金属层,加固层的成分为AlOx,其中,1≤x≤1.5,保护层为非金属层,保护层的成分为AlOx,其中,1≤x≤1.5。含有铝 层的正极集流体具有较好的导电性和导流能力。
第二方面,提供了一种上述正极集流体的制备方法,包括:在基膜的第一表面和第二表面上形成粘接层,在粘接层上形成导流层,在导流层上形成保护层。通过该制备方法得到不等厚的正极集流体。
在一种可能的实现方式中,导流层包括交替叠层设置的金属层和加固层,且导流层厚度不一致,导流层的形成步骤包括:步骤一:在粘接层的与第二功能段对应的表面上涂覆全氟聚醚油,然后在粘接层的表面镀铝。可选地,第二功能段包括第二涂覆段和第三涂覆段,第二涂覆段设置于第一功能段和第三涂覆段之间;在粘接层的与第一涂覆段和第二功能段对应的表面上涂覆全氟聚醚油形成涂层,使涂层的厚度由粘接层的与第一涂覆段对应的表面向第二功能段对应的表面逐渐变小。步骤二:在上一步骤得到的铝层上形成加固层。步骤三:在上一步骤得到的加固层上继续镀铝形成铝层,得到厚度不一致的导流层。可选地,重复步骤二和步骤三,以形成交替叠层设置的加固层和铝层,直至导流层的厚度达到预定值。
该方法采用涂覆全氟聚醚油阻碍铝层的形成,得到厚度不一致的导流层。
在一种可能的实现方式中,导流层包括交替叠层设置的金属层和加固层,且导流层厚度不一致,导流层的形成步骤包括:步骤一:在粘接层的与第二功能段对应的表面和蒸发源之间设置水冷挡板,水冷挡板设有供蒸汽穿过的多个通孔,多个通孔的排设密度沿第一功能段至第二功能段的方向逐渐减小,采用蒸镀法在粘接层的表面镀铝。步骤二:在上一步骤得到的铝层上形成加固层。步骤三:采用步骤一的蒸镀法在上一步骤得到的加固层上形成铝层,得到厚度不一致的导流层。可选地,重复步骤二和步骤三,以形成交替叠层设置的加固层和铝层,直至导流层的厚度达到预定值。
该方法采用水冷挡板,对水冷挡板的结构进行改进,通过蒸镀能够得到厚度不一致的导流层。
在一种可能的实现方式中,在铝层上形成加固层的步骤包括:将最外层为铝层的镀铝膜放置于湿度小于50%的环境中静置46-50h,使铝层上形成加固层;或采用等离子设备电离氩气和氧气对铝层表面进行清洁和氧化,使铝层上形成加固层。
该方法通过对金属层氧化得到金属氧化物,进而形成加固层,该加固层与金属层的连接力强,使得导流层的具有较高的稳固性。
第三方面,提供了一种正极片,包括上述正极集流体以及活性物质,活性物质设置于第一涂覆段以及第二功能段的表面。该正极片采用本公开提供的正极集流体,能够涂覆较多量的活性物质,提高正极集流体的能量密度。并且该正极集流体的涂覆区对应的功能层与极耳段的连接处厚度增大,进一步提高正极片的导电性和导流能力。
第四方面,提供了一种电芯,包括负极片、隔膜层、外壳以及上述正极片,负极片、隔膜层以及正极片设置于外壳内。该电芯包括上述正极片,使其能量密度能够提高0.5-2%。
第五方面,提供了一种电池,包括壳体、上述电芯、绝缘件以及顶盖组件,电芯收容于壳体的内部,绝缘件设置于电芯与壳体之间,顶盖组件盖设于壳体,且通过极耳与电芯连接。该电池具有较高的电容量,扩大电池的使用范围,可以应用在电量需求较大的设备上。
第六方面,本公开还提出了正极集流体在制备锂离子电池中的应用,利用导电性能和导流能力很好的正极集流体改善锂离子电池的性能,具有非常好的工业应用前景。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的正极集流体的结构示意图;
图2为本公开实施例提供的正极集流体的另一种状态的结构示意图;
图3为本公开实施例提供的正极集流体的层厚度不变的部分的结构示意图;
图4为本公开实施例提供的正极集流体划分的结构示意图;
图5为图4中的正极集流体另一视角的结构示意图;
图6为本公开实施例提供的另一种正极集流体的结构示意图;
图7为图6中的正极集流体的另一视角的结构示意图;
图8为多个图6中的正极集流体的结构示意图;
图9为本实施例提供的多个又一种正极集流体的结构示意图。
图标:100-正极集流体;110-基膜;111-第一表面;112-第二表面;120-功能层;121-第一功能层;122-第二功能层;130-粘接层;140-导流层;141-金属层;143-加固层;150-保护层;210-第一功能段;211-第一涂覆段;212-第一涂覆区;213-极耳段;214-极耳区;220-二功能段;221-第二涂覆段;222-第二涂覆区;223-第三涂覆段;224-第三涂覆区。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。 基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述。术语“第一”、“第二”等仅用于段分描述,而不能理解为指示或暗示相对重要性。
下面结合附图,对本公开的一些实施方式作详细说明。
请参照图1和图2,图1为本实施例提供的正极集流体100的结构示意图,图2为本公开实施例提供的正极集流体100另一种状态的结构示意图。
本实施例提供一种正极集流体100,用于锂电池的电芯中,将电池的活性物质产生的电流汇集并对外输出。正极集流体100为多层结构,包括基膜110和设置在基膜110上的功能层120。在本公开的实施例中,基膜110的材质可以为邻苯基苯酚(OPP)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)、聚苯硫醚(PPS)、流延聚丙烯(CPP)、聚萘二甲酸乙二醇酯(PEN)、聚氯乙烯(PVC),优选地,基膜110的材质为PET、PPS或PEN。基膜110可以采用任一种材料,或两种以上的材料得到复合膜。在本公开的部分实施例中,基膜110为基膜110。上述材质的基膜110重量较轻,拉伸性能好,与功能层120的粘接强度好。在本公开部分实施例中,基膜110的厚度为1.2μm-12μm,其中,基膜110的厚度可以为1.2μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm或12μm。
请参照图2,基膜110的上表面为第一表面111,下表面为第二表面112。在本公开实施例中,第一表面111和第二表面112均设有功能层120,进一步地,第一表面111设有第一功能层121,第二表面112设有第二功能层122。在本公开的其他实施例中,基膜110的第一表面111或第二表面112其中一个表面设有功能层120,根据实际需要进行调整。本实施例中,第一功能层121与第二功能层122的结构相同,且第一功能层121与第二功能层122相对基膜110对称设置,以便于加工制备。下面以第一功能层121为例进行详细说明。
请参照图1和图2,第一功能层121包括依次叠层设置的粘接层130、导流层140以及保护层150,粘接层130设置于第一表面111。请参照图3,图3为正极集流体100中层厚度不变的部分的结构示意图。导流层140包括交替叠层设置的金属层141和加固层143,图中虚线段表示省略的多层结构。可以理解为,第一功能层121中的粘接层130设置于第一表面111上,粘接层130上设置一层金属层141,在该金属层141上设置一层加固层143,再在该加固层143上设置一层金属层141,根据实际需求,如调节导流层140的导电率,继续交替设置金属层141和加固层143,使得导流层140为金属层141和加固层143交替 叠层设置的层结构。然后在导流层140的表面设置保护层150。在本实施例中,导流层140的最外层为金属层141,保护层150设置于最外层的金属层141上。
图1为正极集流体100的最小单元结构示意图,图2为多个未切割的正极集流体100的结构示意图。在制备正极集流体100的过程中,基膜110为连续的膜结构,在基膜110上依次形成具有一定结构的粘接层130、导流层140和保护层150,然后再根据需要对长度较长的膜进行切割,得到正极集流体100。
在本公开的部分实施例中,粘接层130为非金属镀膜,非金属包括SiC、Si 3N 4、SiOx(1.5≤x≤2)以及AlOx(1≤x≤1.5)中的至少一种。非金属粘结层可以通过电子束蒸镀或其他方式直接将上述化合物镀至基膜110上,也可以通过类似化学气相沉积(CVD)的方式,直接利用金属蒸气、有机金属源和氧气、水等氧源反应而成,本公开对其不做限定。在本公开部分实施例中,粘接层130的厚度为2-50nm,该结构的粘接层130能够稳固连接基膜110与导流层140、保护层150,较大程度保证正极集流体100的使用性能。可选地,当粘结层为AlOx(1≤x≤1.5)时,粘接层130的厚度为8-20nm;当粘结层为SiOx(1.5≤x≤2)时,粘接层130的厚度为10-40nm。可选地,粘接层130的厚度可以为2nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm或50nm。
现有的正极集流体100一般为铝箔,在本公开实施例中,正极集流体100中的金属层141为铝层或铝合金。在本公开部分实施例中,金属层141的厚度为20-1500nm,可选地,金属层141的厚度为20-1000nm,进一步的,金属层141的厚度可以为20nm、100nm、200nm、500nm、700nm、800nm、1000nm、1200nm、1300nm或1500nm。
本公开中的加固层143为致密的非金属层141,成分为金属氧化物。在本公开的部分实施例中,加固层143为AlOx(1≤x≤1.5)。加固层143的厚度为2-50nm,可选地,加固层143的厚度可以为3-6nm,也可以为2nm、5nm、10nm、20nm、30nm、40nm或50nm。本公开中的加固层143可以采用蒸镀或静止熟化的方法制备。本公开中的金属层141和加固层143组成导流层140,在上述金属层141和加固层143的厚度范围内,金属层141的个数可以为2-50层,加固层143的个数可以为1-49层,即金属层141的层数比加固层143的层数多一层。
在本公开优选的实施例中,正极集流体100最外层设置保护层150,以避免金属层141氧化,保护层150为抗氧化层。在本公开的部分实施例中,保护层150为非金属层141或金属层141,当保护层150为金属层141时,金属可以为Ni,当保护层150为非金属层141时,非金属可以为SiC、Si 3N 4、SiOx(1.5≤x≤2)或AlOx(1≤x≤1.5)。保护层150的厚度为2-50nm,可选地,保护层150的厚度可以为3-12nm,也可以为2nm、5nm、10nm、20nm、30nm、40nm或50nm。
现有的集流体为等厚结构,本公开发明人在实际应用中发现由于涂覆活性物质的区域对导电能力要求不高,而为了保证与极耳连接区域的导电能力,涂覆活性物质的区域的厚度较大,导致其导电能力过剩,浪费材料,提高了成本。
本公开提出对正极集流体100进行不等厚设计,使得极耳区214对应的功能层120的厚度大于涂覆区对应的功能层120的厚度,在保证正极集流体100的过流能力的基础上,降低涂覆区对应的功能层120的厚度,增大涂覆区上涂覆的活性物质的量,提高含有该正极集流体100的电芯的能量密度,使正极集流体100的成本降低3-30%。
请参照图4,图4为本公开正极集流体100划分的结构示意图。在本公开的实施例中,第一功能层121在平行于第一表面111的方向上划分有第一功能段210和第二功能段220,第一功能段210的厚度大于第二功能段220的厚度。进一步地,为了保证极耳区214的导电能力的同时,还能够较大程度地提高涂覆区的导电能力,第一功能段210的厚度与第二功能段220的厚度的比值为(5-25):(1-15)。在本公开的部分实施例中,第一功能段210的厚度为500nm-2500nm,第二功能段220的厚度为100nm-1500nm。可选地,第一功能段210的厚度为500nm、1000nm、1500nm、2000nm、2300nm或2500nm,第二功能段220的厚度为100nm、500nm、800nm、1000nm、1200nm或1500nm。
请参照图4和图5,图5为图4中的正极集流体100的另一视角的结构示意图。第一功能段210包括第一涂覆段211和极耳段213,极耳段213的表面为极耳区214,用于与极耳连接;第一涂覆段211的表面为第一涂覆区212,用于涂覆活性材料,第二功能段220的表面为涂覆区的一部分,用于涂覆活性材料。第一涂覆段211设置于极耳段213与第二功能段220之间,即极耳段213、第一涂覆段211和第二功能段220依次连接。该结构相较于极耳区214对应的功能层120的厚度大于涂覆区对应的功能层120的厚度的结构,增加了涂覆区所对应的功能层120靠近极耳区214的一侧的厚度。由于正极集流体100对极耳界面的导流能要求较高,该结构提高了涂覆区与极耳区214连接处的导电性和导流能力,避免出现短板效应。
为了进一步提高正极集流体100的过流能力,第一涂覆段211的表面在平行于第一表面111的方向上的尺寸为0.5nm-25nm。可以理解为第一涂覆区212的宽度为0.5nm-25nm。可选地,第一涂覆区212的宽度为1nm-15nm。第一涂覆区212的宽度可以为0.5nm、1nm、5nm、10nm、15nm、20nm或25nm。
请参照图6和图7,图6为本公开正极集流体100的另一种结构示意图,图7为图6中的正极集流体100的另一视角的结构示意图。本公开发明人经研究发现上述结构的功能层120的导流能力存在一定的限制,为了突破该限制,本公开发明人对第二功能段220的结构进行改进。在本公开的实施例中,第二功能段220包括第二涂覆段221和第三涂覆段 223,第二涂覆段221的表面为第二涂覆区222,第三涂覆段223的表面为第三涂覆区224,第二涂覆段221设置于第一涂覆段211和第三涂覆段223之间,从靠近第一涂覆段211的一端至靠近第三涂覆段223的一端,第二涂覆段221的厚度逐渐减小。即第一涂覆段211、第二涂覆段221和第三涂覆段223依次连接组成涂覆段,第一涂覆区212、第二涂覆区222和第三涂覆区224形成涂覆区,第一涂覆段211的厚度与极耳区214的厚度相等,第三涂覆段223的厚度与第二功能段220的厚度相等,第二涂覆段221的厚度由第一涂覆段211向第三涂覆段223的方向逐渐减小。该结构提高了第二功能段220与第一功能段210的接触面积,提高了第二功能段220与第一功能段210连接处的导流能力,进而提高功能层120的综合过流能力。同时该结构避免了在功能层120的厚度不同位置出现死皱、鼓劲的膜面缺陷。
进一步的,第二涂覆段221的表面为平面或曲面,即第二涂覆区222为平面或曲面。请参照图6,在本公开实施例中,第一功能段210的表面为平面,优选地,第二涂覆段221的表面与第一功能段210的表面形成夹角α,当夹角为1-50度时,功能层120的过流能力较好,可选的,夹角为1-30度。请参照图6和图8,图8为多个图6中的正极集流体100的结构示意图。当第二涂覆段221的表面与第三涂覆段223的表面均为平面时,第一功能层121的表面为阶梯状。请参照图9,图9为又一种多个正极集流体100连接一起时的结构示意图。当第二涂覆段221的表面与第三涂覆段223的表面均为曲面时,第一功能层121的表面为波浪状。在本公开的其他实施例中,第二涂覆段221的表面与第三涂覆段223的表面形状可以根据需要改变,本公开对其不做限定。
本公开提供的正极集流体100具有不等厚度的功能层120,第二功能层122的厚度小于第一功能层121的厚度,第二涂覆段221、第三涂覆段223的厚度小于极耳段213的厚度,使得涂覆区能够涂覆更多的活性物质,提高正极集流体100的能量密度。
进一步地,极耳段213与第二功能段220之间设有第一涂覆段211,第一涂覆段211的厚度与极耳段213的厚度相等。通过增加涂覆区所对应的功能层120的厚度,提高了涂覆区与极耳区214连接处的导电性和导流能力。
更进一步地,从靠近第一涂覆段211的一端至靠近第三涂覆段223的一端,第二涂覆段221的厚度逐渐减小,提高了第二功能段220与第一功能段210的接触面积,提高了第二功能段220与第一功能段210连接处的导流能力,进而提高功能层120的综合过流能力。
本公开还提供了一种电池(图未示),包括壳体、电芯、绝缘件以及顶盖组件,电芯收容于壳体的内部,绝缘件设置于电芯与壳体之间,顶盖组件盖设于壳体,且通过极耳与电芯连接。该电芯包括负极片、隔膜层、外壳以及正极片,负极片、隔膜层以及正极片设置于外壳内。正极片包括正极集流体100以及活性物质,活性物质涂覆于第一涂覆段211以 及第二功能段220的表面。该正极集流体100能够涂覆较多的活性物质,使得含有该正极片的电芯的能量密度能够提高0.5-2%,使得电池具有较高的电容量,扩大电池的使用范围,可以应用在电量需求较大的设备上。
本公开还提供了一种正极集流体的制备方法,包括:在基膜的第一表面上形成粘接层,在粘接层上形成厚度不一致的导流层,在导流层上形成加固层。下面对正极集流体的制备方法进行具体说明。
粘接层的制备:在制备粘接层之前可以对基膜进行预处理,包括:对基膜的第一表面和第二表面进行电晕处理。然后采用蒸镀法在基膜表面形成粘接层。粘接层为非金属,可选的,非金属选SiC、Si3N4、SiOx(1.5≤x≤2)以及AlOx(1≤x≤1.5)中的至少一种。
在本公开的部分实施例中,粘接层的形成方法包括:
将电晕或者未电晕的基膜置入单面或双面往返真空镀膜机的真空室后,将真空室密封,逐级抽真空至真空度达到10 -4Pa-10 -1Pa,利用蒸发源附近的通氧结构通入压缩氧气或臭氧,调整好通气量、放卷速度以及收卷速度,采用蒸发源蒸镀原料,使得移动的基膜上形成粘接层。在一种可实现的实例中,蒸发源蒸镀原料采用金属铝丝或铝锭,纯度≥99.9%,走卷速度设置为300-400m/min,送丝量设置为250-350mm/min,蒸发的铝原子与氧气反应并在移动的基膜上形成一层AlOx(1≤x≤1.5)层,即粘结层,层厚度为2-50nm。需要说明的是,本公开实施例中形成的AlOx根据氧化是否完全确定x的值,当铝氧化完全时,x=1.5,得到的是Al 2O 3,铝氧化不完全时,1≤x<1.5。
或,将电晕或者未电晕的基膜置入单面或双面往返真空镀膜机的真空室后,将真空室密封,逐级抽真空至真空度达到10 -4Pa-10 -1Pa,采用电子枪加速电子轰击碰撞蒸镀原料,调整好放卷速度、收卷速度和蒸发量,原料吸热气化,在移动的基膜表面形成一层镀层,即粘结层。在一种可实现的实例中,蒸镀原料为氧化铝,氧化铝吸热气化,在基膜表面形成一层AlOx(1≤x≤1.5)镀层。
或,将电晕或者未电晕的基膜置入单面或双面往返真空镀膜机的真空室后,将真空室密封,逐级抽真空至真空度达到10 -4Pa-10 -1Pa,利用磁控溅射在基膜上双面往返高效镀膜。在一种可实现的实例中,靶材为高纯氧化铝,纯度≥99.9%,调整好放卷速度、收卷速度,溅射的氧化铝分子在移动的薄膜上形成一层AlOx(1≤x≤1.5),即粘结层。
或,将电晕或者未电晕的基膜置入单面或双面往返真空镀膜机的真空室后,将真空室密封,逐级抽真空至真空度达到10 -4Pa-10 -1Pa,利用磁控溅射在基膜上双面往返高效镀膜。在一种可实现的实例中,靶材为高纯铝,纯度≥99.9%,在溅射路径上通入高纯氧气,使得铝与氧气反应生成AlOx(1≤x≤1.5),并沉积在基膜上,即粘结层。
或,将电晕或者未电晕的基膜置入连续式化学气相沉积设备中,采用三甲基铝或氯化 铝作为铝源,氧气,臭氧,水分,或二氧化碳作为氧源,调整气体配比、收卷速度以及放卷速度,气体电离后反应并在基膜上沉积氧化铝层,即粘结层。
导流层的制备。本公开中的导流层包括金属层和加固层,在本公开的部分实施例中,金属层为铝层,加固层为铝的氧化物,下面以此为例进行说明。
在本公开的部分实施例中,通过在粘接层上选择性的涂覆阻碍镀铝的全氟聚醚油,使得涂有全氟聚醚油的粘接层上不易形成铝层,进而得到厚度不一致的铝层。具体地,包括如下步骤:
步骤一:在粘接层的与第一涂覆段和第二功能段对应的表面上涂覆全氟聚醚油形成涂层,使涂层的厚度由粘接层的与第一涂覆段对应的表面向第二功能段对应的表面逐渐变小。然后在粘接层的表面镀铝,在镀铝的过程中,涂覆有全氟聚醚油的位置起初不形成铝层,随着镀铝量的增加,全氟聚醚油逐渐减少至消失,此时曾涂覆有全氟聚醚油的粘接层表面开始形成铝层。通过该方法结合基膜的走卷速度、蒸发量在粘接层上形成具有一定结构的厚度不一致的铝层。
步骤二:在上一步骤得到的铝层上形成加固层。上一步骤指前一步骤,在本步骤中指步骤一。本公开中的加固层的形成方法包括:
将最外层为铝层的镀铝膜放置于湿度小于50%的环境中静置46-50h,使铝层上形成加固层。该方法通过铝层与环境中的氧反应生成AlOx(1≤x≤1.5)层,即得到加固层。
或采用等离子设备电离氩气和氧气对铝层表面进行清洁和氧化,使铝层上形成加固层。该方法通过将铝层表面的铝氧化生成AlOx(1≤x≤1.5)层,即得到加固层。
需要说明的是,当加固层为其他物质时,可以采用蒸镀、磁控溅射等本领域的常规技术手段在铝层上形成加固层。
步骤三:在上一步骤得到的加固层上继续镀铝形成铝层,得到厚度不一致的导流层。当之前形成的铝层的厚度达到需求,可以按照正常的工艺镀铝,当需要继续形成厚度不一致的铝层时,在上一步骤得到的加固层上涂覆全氟聚醚油,涂覆的方法与步骤一相同。涂覆后,在涂有全氟聚醚油的加固层上镀铝。其中,全氟聚醚油可以用其他表面达因值低的溶液替代。
需要说明的是,由于本公开实施例中的铝层为多层,可以在每次镀铝时均涂覆全氟聚醚油以得到厚度不一致的铝层,也可以选择性的涂覆全氟聚醚油,具体的制备工艺根据实际需要调整,本公开对其不做限定。当制备多层铝层和加固层时,重复步骤二和步骤三,以形成交替叠层设置的加固层和铝层,直至导流层的厚度达到预定值。
在本公开的部分实施例中,采用水冷挡板调控铝蒸汽在不同位置的粘接层形成的量,以得到厚度不一致的铝层。具体地,包括如下步骤:
步骤一:在粘接层的与第二功能段对应的表面和蒸发源之间设置水冷挡板,水冷挡板设有供蒸汽穿过的多个通孔,多个通孔的排设密度沿第一功能段至第二功能段的方向逐渐减小,采用蒸镀法在粘接层的表面镀铝。由于水冷挡板的作用,使得沉积在粘接层表面的铝的量不同,结合走卷速度、蒸发量形成具有一定结构的厚度不一致的铝层。需要说明的是,本公开采用的蒸发机构的其他结构现有结构,本公开对其不做限定。
步骤二:在上一步骤得到的铝层上形成加固层。其中,加固层的形成方法与上述记载相同。将最外层为铝层的镀铝膜放置于湿度小于50%的环境中静置46-50h,使铝层上形成加固层。该方法通过铝层与环境中的氧反应生成AlOx(1≤x≤1.5)层,即得到加固层。或采用等离子设备电离氩气和氧气对铝层表面进行清洁和氧化,使铝层上形成加固层。该方法通过将铝层表面的铝氧化生成AlOx(1≤x≤1.5)层,即得到加固层。
步骤三:采用步骤一的蒸镀法在上一步骤得到的加固层上形成铝层,得到厚度不一致的导流层。
需要说明的是,本公开实施例中的铝层为多层,可以在每次镀铝时均采用水冷挡板以得到厚度不一致的铝层,也可以选择性的设置水冷挡板,具体的制备工艺根据实际需要调整,本公开对其不做限定。当制备多层铝层和加固层时,重复步骤二和步骤三,以形成交替叠层设置的加固层和铝层,直至导流层的厚度达到预定值。
保护层的制备:本公开实施例的保护层可以为金属层或非金属层,根据不同的材质在导流层上制备相应材质的保护层。在本公开的部分实施例中,保护层为AlOx(1≤x≤1.5)层。保护层的制备方法包括:
将形成有导流层的膜置于湿度<50%,室温环境中,静置熟化46-50h,镀铝膜表面会因空气中的氧气或少量水分的渗透,形成一层较致密的氧化层,即具有抗氧化作用的保护层。
或,将形成有导流层的膜置入含有等离子装置的单面或双面蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到10 -4-10 -1Pa,不开蒸发源,利用等离子设备电离氩气和氧气对镀铝膜表面进行清洁和氧化,生成较致密的一层AlOx(1.4≤x≤1.5),即保护层。
或,将形成有导流层的膜置入高温臭氧反应装置内,调整反应温度和臭氧含量,在镀铝膜表面形成较致密的AlOx(1.4≤x≤1.5),即保护层。
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种正极集流体及其制备方法,包括如下步骤:
S1.首先对需要镀膜的基膜表面进行电晕处理,基膜的厚度为12μm,然后将卷筒基膜置入真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10 -2Pa,利用蒸发源附近的通氧结构通入压缩氧气,通气量为4000sccm和3500sccm。蒸发源蒸镀原料为金 属铝丝或铝锭,纯度≥99.9%,走卷速度设置为350m/min,送丝量设置为300mm/min,蒸发的铝原子与氧气反应并在移动的薄膜上形成一层Al 2O 3氧化层,即粘结层,该层厚度约10nm。
S2.将S1得到的表面有粘结层的膜置入含有等离子装置的单面或双面往返蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到2×10 -2Pa,在进入蒸发区前,先通过等离子设备电离氩气对粘结层表面进行清洁,氩气量为500sccm。采用涂覆装置在粘接层的表面定点定宽涂覆全氟聚醚油,涂覆层的厚度相同。
然后进入蒸镀区,采用蒸发的方式对纯度≥99.9%的铝进行加热,走卷速度设置为300m/min,送丝量设置为1100mm/min,铝在蒸发机构中持续熔化、蒸发,在粘结层表面形成厚度不一致的镀铝层,即铝金属镀层,该铝金属镀层厚度较大处的厚度约50-55nm。
S3.将S2得到的镀铝膜置入含有等离子装置的单面或双面往返蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到2×10 -2Pa,在进入蒸发区前,先通过等离子设备电离氩气和氧气对镀铝膜表面进行清洁和氧化,其中氩气为500sccm,氧气量350sccm,镀铝金属层表面生成较致密的Al 2O 3氧化层,即加固层,该加固层厚度约为4nm。
然后进入蒸镀区,采用蒸发的方式对纯度≥99.9%的铝进行加热,调整好放卷速度、收卷速度和蒸发量,铝在蒸发机构中持续熔化、蒸发,在粘结层表面形成一层镀铝层。
依据设备单双面成型的设计,重复该步骤40次,得到金属层和加固层交替叠层设置的导流层,且导流层的最外层为铝层。
S4.将S3得到的镀铝膜置于湿度<50%,室温环境中,静置熟化48h,镀铝膜表面会因空气中的氧气或少量水分的渗透,形成一层较致密的Al 2O 3氧化层,即保护层,该保护层厚度约为3nm。
通过上述步骤得到不等厚的正极集流体,该正极集流体的结构如图1。
实施例2
本实施例提供了一种正极集流体及其制备方法,与实施例1的不同之处仅在于:
S2中涂覆全氟聚醚油时,使涂层的厚度由粘接层的与第一涂覆段对应的表面向第二功能段对应的表面逐渐变小。经过蒸镀后,在粘结层表面形成厚度不一致的镀铝层,且该镀铝层的厚度逐渐变化。
本实施例得到的不等厚的正极集流体,该正极集流体的结构如图6。
实施例3
本实施例提供了一种正极集流体及其制备方法,包括如下步骤:
S1.首先对需要镀膜的基膜表面进行电晕处理,基膜的厚度为12μm,然后将卷筒基膜置入真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10 -2Pa,利用蒸发 源附近的通氧结构通入压缩氧气,通气量为4000sccm和3500sccm。蒸发源蒸镀原料为金属铝丝或铝锭,纯度≥99.9%,走卷速度设置为350m/min,送丝量设置为300mm/min,蒸发的铝原子与氧气反应并在移动的薄膜上形成一层Al 2O 3氧化层,即粘结层,该层厚度约10nm。
S2.将S1得到的表面有粘结层的膜置入含有等离子装置的单面或双面往返蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到2×10 -2Pa,在进入蒸发区前,先通过等离子设备电离氩气对粘结层表面进行清洁,氩气量为600sccm。
然后进入蒸镀区,在粘接层与蒸发源之间设置水冷挡板,使得水冷挡板遮挡住粘接层的与第二功能段对应的表面。本实施例中的水冷挡板设有供蒸汽穿过的多个通孔,多个通孔的排设密度均匀设置。采用蒸发的方式对纯度≥99.9%的铝进行加热,走卷速度设置为380m/min,送丝量设置为900mm/min,铝在蒸发机构中持续熔化、蒸发,在粘结层表面形成厚度不一致的镀铝层,即铝金属镀层,该铝金属镀层厚度约60-65nm。
S3.将S2得到的镀铝膜置入含有等离子装置的单面或双面往返蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到2×10 -2Pa,在进入蒸发区前,先通过等离子设备电离氩气和氧气对镀铝膜表面进行清洁和氧化,其中氩气为600sccm,氧气量400sccm,镀铝金属层表面生成较致密的一层Al 2O 3氧化层,即加固层,该加固层厚度约为4nm。
然后进入蒸镀区,在粘接层与蒸发源之间设置上述水冷挡板,采用蒸发的方式对纯度≥99.9%的铝进行加热,调整好放卷速度、收卷速度和蒸发量,铝在蒸发机构中持续熔化、蒸发,在粘结层表面形成一层镀铝层。
依据设备单双面成型的设计,重复该步骤30次,得到金属层和加固层交替叠层设置的导流层,且导流层的最外层为铝层。
S4.将S3得到的镀铝膜置入含有等离子装置的单面或双面蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10 -3-5×10 -2Pa,不开蒸发源,利用等离子设备电离氩气和氧气对镀铝膜表面进行清洁和氧化,生成较致密的一层Al 2O 3氧化层,即抗氧化层,该氧化层厚度约4nm。
通过上述步骤得到不等厚的正极集流体,由于水冷挡板的通孔均匀设置,因此得到的铝层的厚度变化一致。该正极集流体的结构与实施例1的正极集流体相同,但厚度不同。
实施例4
本实施例提供了一种正极集流体及其制备方法,与实施例3的不同之处仅在于:
S2中在粘接层与蒸发源之间设置水冷挡板,使得水冷挡板遮挡住粘接层的与第二功能段对应的表面。本实施例中的水冷挡板设有供蒸汽穿过的多个通孔,多个通孔的排设密度根据设置逐渐减小。在粘接层蒸镀金属铝的过程中,由于水冷挡板的通孔排设密度不同, 使得形成的铝层的厚度不一致,且得到厚度逐渐变化的铝层。
本实施例得到的不等厚的正极集流体,该正极集流体的结构如图6,与实施例2的正极集流体结构相同,但具体厚度不同。
实施例5
本实施例提供了一种正极集流体及其制备方法,与实施例3的不同之处仅在于:本实施例采用的基膜的厚度为6μm。
本实施例采用的基膜的厚度相比实施例3减小,使得正极集流体的力学性能有所变化。
实施例6
本实施例提供了一种正极集流体及其制备方法,与实施例3的不同之处仅在于:
S1.首先对需要镀膜的基膜表面进行电晕处理,基膜的厚度为12μm,然后将卷筒基膜置入真空镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到5×10 -2Pa,采用电子枪加速电子轰击碰撞蒸镀氧化铝原料,纯度≥99.9%,走卷速度设置为350m/min,原料吸热气化,在移动的基膜表面形成一层镀层,即粘结层,该层厚度约10nm。
实施例7
本实施例提供了一种正极集流体及其制备方法,与实施例3的不同之处仅在于:
S4.将S3得到的镀铝膜置入高温臭氧反应装置内,调整反应温度和臭氧含量,在镀铝膜表面形成较致密的一层Al 2O 3氧化层,即保护层,该氧化层厚度约4nm。
对比例1
本实施例提供了一种正极集流体及其制备方法,与实施例1的不同之处仅在于:
S2和S3中不涂覆全氟聚醚油,经过蒸镀得到的铝层厚度均一。本实施例得到的正极集流体为等厚结构。
对比例2
本对比例提供了一种普通正极集流体。
试验例1
采用方阻仪以及天平分别对实施例1-7、对比例1-2提供的正极集流体的第一功能段和第二功能段进行导电性能测试,方法包括:
方阻仪测试:
1.取整幅宽样品使用四针方阻测试仪从边部开始测试,横向(TD)方向测整幅宽方阻。
2.方阻仪探针需于膜面垂直,并按压到底,待显示数值稳定并记录。
3.同样方法测试纵向(MD)方向三排并记录数据。
天平导电性能测试:
1.取整幅宽样品,将A4垫板置于膜下展平表面,使用旋转切割刀旋切割,取TD方向 平均等分位置10个样品。
2.先校准天平,查看天平水平是否处于中间平衡位置,显示重量归零。
3.将样品置于天平平台上,待天平显示数值稳定后记录。
4.测试出产品质量后计算厚度:(成品质量-原膜质量)/样品密度/样品面积100。
5.导电性能计算:厚度(nm)*方阻(mΩ)。
采用高铁拉力机进行力学性能测试:
1.取整幅宽样品TD、MD方向各取,宽15mm、长200mm的条样。
2.拉力机初始距离设置50mm,测试速度50mm/min;使用拉力机夹具将条样平整夹紧样品两端进行测试。
3.使用此方法测试TD、MD样品并记录。
检测结果如下表:
表1第一功能段性能检测结果
Figure PCTCN2020142528-appb-000001
表2第二功能段性能检测结果
Figure PCTCN2020142528-appb-000002
Figure PCTCN2020142528-appb-000003
由表1和表2可知,与对比例1和对比例2相比,本公开实施例1-4、实施例6-7提供的正极集流体具有较好的电性能和力学性能。实施例5由于基膜较薄,影响其正极集流体的力学性能。本公开实施例1-4、实施例6-7提供的正极集流体分为两个功能段,第一功能段的方阻为40-50mΩ,电阻率为3.5-4.5×10 -8Ω·m。横向拉伸强度约为185-220MPa,纵向拉伸强度约为190-230MPa。实施例1-4、实施例6-7的第二功能段的方阻为75-80mΩ,电阻率为3.5-6.0×10 -8Ω·m,横向拉伸强度约为210-230MPa,纵向拉伸强度约为190-260MPa,横向断裂延伸率约为94%-110%,纵向断裂延伸率约为95-130%,正极集流体的达因值为56左右。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的正极集流体及其制备方法和正极片、电芯以及电池,其通过对正极集流体中第一功能层和第二功能层的改进,通过增加涂覆段与极耳段连接处的功能层的厚度,提高涂覆区与极耳区连接处的导电性和导流能力,提高正极集流体的综合过流能力。可以制备形成正极片、电芯和电池,在锂离子电池领域得到应用,提升锂离子电池的性能,具有非常广阔的工业应用前景。

Claims (17)

  1. 一种正极集流体,其特征在于,包括:基膜和设置在所述基膜表面上的功能层,所述基膜具有相背设置的第一表面和第二表面,所述第一表面设有第一功能层,所述第二表面设有第二功能层;
    所述第一功能层包括依次叠层设置的粘接层、导流层以及保护层,所述粘接层设置于所述第一表面;
    所述第一功能层在平行于所述第一表面的方向上划分有第一功能段和第二功能段,所述第一功能段的厚度大于所述第二功能段的厚度;
    所述第一功能段包括第一涂覆段和极耳段,所述第一涂覆段的表面用于涂覆材料,所述极耳段的表面用于与极耳连接,所述第一涂覆段设置于所述极耳段与所述第二功能段之间。
  2. 根据权利要求1所述的正极集流体,其特征在于,所述第一功能段的厚度与所述第二功能段的厚度的比值为(5-25):(1-15);
    可选地,所述第一功能段的厚度为500nm-2500nm,所述第二功能段的厚度为100nm-1500nm。
  3. 根据权利要求1所述的正极集流体,其特征在于,所述第一涂覆段的表面在平行于所述第一表面的方向上的尺寸为0.5nm-25nm。
  4. 根据权利要求1-3任一项所述的正极集流体,其特征在于,所述第二功能段包括第二涂覆段和第三涂覆段,所述第二涂覆段设置于所述第一涂覆段和所述第三涂覆段之间,从靠近所述第一涂覆段的一端至靠近所述第三涂覆段的一端,所述第二涂覆段的厚度逐渐减小。
  5. 根据权利要求4所述的正极集流体,其特征在于,所述第二涂覆段的表面为平面或曲面;
    可选地,所述第二涂覆段的表面和所述第三涂覆段的表面均为平面,所述第二涂覆段的表面与所述第三涂覆段的表面形成夹角,且所述夹角为1-50度。
  6. 根据权利要求1-5中任一项所述的正极集流体,其特征在于,所述导流层包括交替叠层设置的金属层和加固层,所述金属层的厚度为20-1500nm,层数为2-50层;可选地,所述加固层的厚度为2-50nm,层数为1-49层。
  7. 根据权利要求6所述的正极集流体,其特征在于,所述基膜的厚度为1.2μm-12μm,所述粘接层的厚度为2-50nm,所述保护层的厚度为2-50nm。
  8. 根据权利要求1-7中任一项所述的正极集流体,其特征在于,所述第二功能层 的结构与所述第一功能层的结构相同,所述第二功能层与所述第一功能层相对所述基膜对称设置。
  9. 根据权利要求6所述的正极集流体,其特征在于,所述金属层为铝层,所述加固层为非金属层,所述加固层的成分为AlOx,其中,1≤x≤1.5;可选地,所述保护层为非金属层,所述保护层的成分为AlOx,其中,1≤x≤1.5。
  10. 一种如权利要求1-9任一项所述的正极集流体的制备方法,其特征在于,包括:在所述基膜的第一表面和第二表面上形成所述粘接层,在所述粘接层上形成所述导流层,在所述导流层上形成所述保护层。
  11. 根据权利要求10所述的正极集流体的制备方法,其特征在于,所述导流层包括交替叠层设置的金属层和加固层,且所述导流层厚度不一致,所述导流层的形成步骤包括:
    步骤一:在所述粘接层的与所述第二功能段对应的表面上涂覆全氟聚醚油,然后在所述粘接层的表面镀铝;
    可选地,所述第二功能段包括第二涂覆段和第三涂覆段,所述第二涂覆段设置于所述第一功能段和所述第三涂覆段之间;在所述粘接层的与所述第一涂覆段和所述第二功能段对应的表面上涂覆全氟聚醚油形成涂层,使所述涂层的厚度由所述粘接层的与所述第一涂覆段对应的表面向所述第二功能段对应的表面逐渐变小;
    步骤二:在上一步骤得到的铝层上形成加固层;
    步骤三:在上一步骤得到的所述加固层上继续镀铝形成铝层,得到厚度不一致的导流层;
    可选地,重复步骤二和步骤三,以形成交替叠层设置的所述加固层和所述铝层,直至所述导流层的厚度达到预定值。
  12. 根据权利要求10所述的正极集流体的制备方法,其特征在于,所述导流层包括交替叠层设置的金属层和加固层,且所述导流层厚度不一致,所述导流层的形成步骤包括:
    步骤一:在所述粘接层的与所述第二功能段对应的表面和蒸发源之间设置水冷挡板,所述水冷挡板设有供蒸汽穿过的多个通孔,所述多个通孔的排设密度沿所述第一功能段至所述第二功能段的方向逐渐减小,采用蒸镀法在所述粘接层的表面镀铝;
    步骤二:在上一步骤得到的铝层上形成加固层;
    步骤三:采用步骤一的蒸镀法在上一步骤得到的所述加固层上形成铝层,得到厚度不一致的导流层;
    可选地,重复步骤二和步骤三,以形成交替叠层设置的所述加固层和所述铝层, 直至所述导流层的厚度达到预定值。
  13. 根据权利要求11或12所述的正极集流体的制备方法,其特征在于,在所述铝层上形成所述加固层的步骤包括:
    将最外层为铝层的镀铝膜放置于湿度小于50%的环境中静置46-50h,使所述铝层上形成所述加固层;
    或采用等离子设备电离氩气和氧气对所述铝层表面进行清洁和氧化,使所述铝层上形成所述加固层。
  14. 一种正极片,其特征在于,包括活性物质和权利要求1-9任一项所述的正极集流体或权利要求10-13中任一项所述制备方法制备得到的正极集流体,所述活性物质位于所述第一涂覆段以及所述第二功能段的表面。
  15. 一种电芯,其特征在于,包括负极片、隔膜层、外壳以及如权利要求14所述的正极片,所述负极片、所述隔膜层以及所述正极片设置于所述外壳内。
  16. 一种电池,其特征在于,包括壳体、如权利要求15所述的电芯、绝缘件以及顶盖组件,所述电芯收容于所述壳体的内部,所述绝缘件设置于所述电芯与所述壳体之间,所述顶盖组件盖设于所述壳体,且通过极耳与所述电芯连接。
  17. 权利要求1-9任一项所述的正极集流体或权利要求10-13中任一项所述制备方法制备得到的正极集流体在制备锂离子电池中的应用。
PCT/CN2020/142528 2020-01-03 2020-12-31 正极集流体及其制备方法和正极片、电芯以及电池 WO2021136536A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/856,996 US11831022B2 (en) 2020-01-03 2022-07-03 Positive current collector and preparation method thereof, positive electrode sheet, cell and battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010009329.X 2020-01-03
CN202010009329.XA CN113991121A (zh) 2020-01-03 2020-01-03 正极集流体及其制备方法和正极片、电芯以及电池
CN202020013752.2U CN211088396U (zh) 2020-01-03 2020-01-03 正极集流体、正极片及电池
CN202020013752.2 2020-01-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/856,996 Continuation US11831022B2 (en) 2020-01-03 2022-07-03 Positive current collector and preparation method thereof, positive electrode sheet, cell and battery

Publications (1)

Publication Number Publication Date
WO2021136536A1 true WO2021136536A1 (zh) 2021-07-08

Family

ID=76686546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142528 WO2021136536A1 (zh) 2020-01-03 2020-12-31 正极集流体及其制备方法和正极片、电芯以及电池

Country Status (2)

Country Link
US (1) US11831022B2 (zh)
WO (1) WO2021136536A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082286A (zh) * 2009-11-30 2011-06-01 三星Sdi株式会社 二次电池及其制造方法
US20130065124A1 (en) * 2008-09-29 2013-03-14 Hideaki Morishima Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
CN108736016A (zh) * 2018-08-01 2018-11-02 力信(江苏)能源科技有限责任公司 集流体及使用其制备的正极极片、电芯
CN208433464U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN109873161A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种电池
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
CN211088396U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 正极集流体、正极片及电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130065124A1 (en) * 2008-09-29 2013-03-14 Hideaki Morishima Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
CN102082286A (zh) * 2009-11-30 2011-06-01 三星Sdi株式会社 二次电池及其制造方法
CN109873161A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种电池
CN208433464U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN108736016A (zh) * 2018-08-01 2018-11-02 力信(江苏)能源科技有限责任公司 集流体及使用其制备的正极极片、电芯
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
CN211088396U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 正极集流体、正极片及电池

Also Published As

Publication number Publication date
US20220344667A1 (en) 2022-10-27
US11831022B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
CN211088397U (zh) 一种二次电池及其极片
JP6796114B2 (ja) 集電体、その極シート及び電気化学デバイス
US11177479B2 (en) Current collector, electrode plate including the same and electrochemical device
CN107369810B (zh) 一种负极集流体、其制备方法及其应用
US6933077B2 (en) Current collector for polymer electrochemical cells and electrochemical generators thereof
CN211088396U (zh) 正极集流体、正极片及电池
US10770731B2 (en) Positive electrode current collector and preparation method and use thereof
KR20150126920A (ko) 리튬 이온 배터리에 대한 스프레이 코팅 프로세스를 위한 전극 표면 거칠기 제어
WO2023123423A1 (zh) 包含多孔pvdf系树脂涂层的锂电池隔膜及其制备方法
CN114597418A (zh) 复合集流体及其制备方法、锂离子电池和车辆
WO2021136536A1 (zh) 正极集流体及其制备方法和正极片、电芯以及电池
CN212257552U (zh) 导电膜及极片
WO2022000308A1 (zh) 一种双极性集流体、电化学装置及电子装置
CN109881152B (zh) 一种多层结构的导电膜及制备工艺
US20220336819A1 (en) Secondary battery, electrode sheet thereof, and preparation method for electrode sheet
WO2021208542A1 (zh) 导电膜及极片
CN216145647U (zh) 一种正极集流体、正极极片及二次电池
CN113991121A (zh) 正极集流体及其制备方法和正极片、电芯以及电池
WO2022047737A1 (zh) 锂金属负极复合集流体及其制备方法、锂离子电池
CN114023972A (zh) 导电膜及极片
WO2022001968A1 (zh) 集流体及其制备工艺、极片及其制备工艺及锂电池
CN116435523B (zh) 一种复合集流体及其制备方法、电极片及电池
CN117154102A (zh) 复合集流体及其制备方法和应用
WO2021190101A1 (zh) 导电膜及其制备工艺、极片和电池
JP7448867B2 (ja) 電池外装体用フッ素樹脂フィルム、電池外装体及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909820

Country of ref document: EP

Kind code of ref document: A1