WO2022047737A1 - 锂金属负极复合集流体及其制备方法、锂离子电池 - Google Patents

锂金属负极复合集流体及其制备方法、锂离子电池 Download PDF

Info

Publication number
WO2022047737A1
WO2022047737A1 PCT/CN2020/113535 CN2020113535W WO2022047737A1 WO 2022047737 A1 WO2022047737 A1 WO 2022047737A1 CN 2020113535 W CN2020113535 W CN 2020113535W WO 2022047737 A1 WO2022047737 A1 WO 2022047737A1
Authority
WO
WIPO (PCT)
Prior art keywords
diboride
current collector
lithium
negative electrode
layer
Prior art date
Application number
PCT/CN2020/113535
Other languages
English (en)
French (fr)
Inventor
蒋春磊
郑银银
石磊
唐永炳
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/113535 priority Critical patent/WO2022047737A1/zh
Publication of WO2022047737A1 publication Critical patent/WO2022047737A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a lithium metal negative electrode composite current collector, a preparation method of a lithium metal negative electrode composite current collector, and a lithium ion battery.
  • lithium-based materials are generally used as anode materials for commercial lithium-ion batteries, and the theoretical capacity is limited (372 mAh/g), which is difficult to meet the needs of the development of high-performance lithium-ion batteries. Therefore, the development of new anode materials with high capacity has become an important research direction for lithium-ion batteries. Due to its ultra-high specific capacity (3860 mAh/g) and extremely low redox potential (-3.045 V vs SHE), lithium metal anode is very promising as a high-capacity anode material.
  • lithium dendrites are easily formed, which not only leads to a rapid decrease in the performance of the battery, and shortens the battery life; , causing safety problems such as battery short circuit.
  • a lithium layered composite material is disclosed. By distributing the composite additive evenly on the surface of the metal lithium sheet, and pressing the composite additive into the metal lithium sheet by a rolling method, the composite additive and the metal sheet are folded. The composite of lithium sheets is rolled to obtain an additive-metal lithium composite sheet with a layered structure.
  • a double-layer structure composite negative electrode of lithium/modified graphene layer is disclosed, and the modified graphene is attached to the metal lithium sheet.
  • One of the purposes of the embodiments of the present application is to provide a lithium metal negative electrode composite current collector and a preparation method thereof, aiming to solve the problem that the existing lithium metal negative electrode is easy to form lithium dendrites on the surface of the current collector, and the current collector material The problem of poor wettability and low binding force.
  • a lithium metal negative electrode composite current collector comprising: a metal base layer and a transition metal boride layer disposed on at least one surface of the metal base layer.
  • the transition metal boride in the transition metal boride layer, is selected from transition metal diborides.
  • the transition metal boride includes: titanium diboride, zirconium diboride, hafnium diboride, vanadium diboride, niobium diboride, tantalum diboride, chromium diboride, diboride Molybdenum diboride, tungsten diboride, manganese diboride, technetium diboride, rhenium diboride, iron diboride, ruthenium diboride, osmium diboride, cobalt diboride, rhodium diboride, diboride At least one of iridium boride and cadmium diboride.
  • the thickness of the transition metal boride layer is 0.2 ⁇ m ⁇ 10 ⁇ m.
  • the metal material in the metal base layer, includes at least one of copper, iron, nickel, and titanium.
  • the thickness of the transition metal boride layer is 1 ⁇ m ⁇ 4 ⁇ m.
  • the metal base layer includes one of: copper, nickel, iron, titanium, iron-nickel alloy, iron-titanium-nickel alloy.
  • a method for preparing a lithium metal negative electrode composite current collector comprising the steps of:
  • a metal base layer is obtained, a transition metal boride layer is formed on at least one surface of the metal base layer, and a lithium metal negative electrode composite current collector is obtained.
  • the step of forming a transition metal boride layer on a surface of the metal base layer includes: depositing a transition metal boride on a surface of the metal base layer by chemical vapor deposition and/or physical vapor deposition.
  • the chemical vapor deposition conditions include: in an inert atmosphere with a temperature of 1000°C to 1500°C, a pressure of 1.0 ⁇ 10 -3 Pa to 3.0 ⁇ 10 -3 Pa, and a pulse voltage of 3000V to 3300V , and chemical vapor deposition of the transition metal boride is performed.
  • the conditions of the physical vapor deposition include: performing the physical vapor deposition of the transition metal boride under the conditions of a working pressure of 0.4Pa to 0.8Pa and a sputtering power of 1KW to 3KW.
  • a lithium ion battery including a lithium metal negative electrode, the lithium metal negative electrode comprising: a lithium metal layer and a composite current collector disposed on a surface of the lithium metal layer, the composite current collector comprising a metal base layer and a transition metal boride layer disposed between the metal base layer and the lithium metal layer.
  • the beneficial effects of the lithium metal negative electrode composite current collector are that: the transition metal boride layer can not only effectively improve the wettability and bonding force between the negative electrode lithium metal layer and the current collector, but also can form an atomic scale with lithium metal.
  • the lattice matching can guide the uniform deposition of lithium metal atoms on the surface of the current collector, inhibit the growth of lithium dendrites, and effectively improve the safety and stability of the battery.
  • the beneficial effect of the preparation method of the lithium metal negative electrode composite current collector provided by the embodiments of the present application is that: the transition metal boride is deposited on at least one surface of the metal base layer, and after the transition metal boride layer is formed, the lithium metal negative electrode composite current collector is obtained,
  • the preparation method is simple and convenient, and is suitable for industrialized large-scale production and application.
  • the beneficial effect of the lithium ion battery is that: since the negative electrode current collector adopts the above-mentioned composite current collector, a transition metal boride layer is arranged between the lithium metal layer and the metal base layer, so that the lithium metal layer and the composite current collector are formed.
  • the layers are tightly combined, and the transition metal boride layer can form an atomic-scale lattice match with lithium, which can effectively inhibit the growth of lithium dendrites.
  • FIG. 1 is a schematic structural diagram of a lithium metal negative electrode composite current collector provided in an embodiment of the present application
  • Fig. 2 is the X-ray diffraction pattern of the composite current collector provided in Example 1 of the present application;
  • FIG. 3 is a topography diagram of the current collector provided in Example 1 and Comparative Example 1 of the present application after depositing a lithium metal layer.
  • Example 4 is a topography diagram of the current collectors provided in Example 1 and Comparative Example 1 of the present application after the deposition/stripping electrochemical test of lithium metal.
  • first and second are only used for the convenience of description, and should not be understood as indicating or implying relative importance or implying indicating the number of technical features.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • the term “and/or” describes the relationship between related objects, indicating that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. where A and B can be singular or plural.
  • the size of the sequence numbers of the above processes does not imply the sequence of execution, some or all of the steps may be executed in parallel or sequentially, and the execution sequence of each process should be determined by its function and inherent logic , and should not constitute any limitation on the implementation process of the embodiments of the present invention.
  • a first aspect of an embodiment of the present application provides a lithium metal negative electrode composite current collector, comprising: a metal base layer and a transition metal boride layer disposed on at least one surface of the metal base layer.
  • the transition metal boride layer disposed on one surface of the metal base layer itself has high conductivity and will not affect the current collector characteristics of the base layer itself.
  • the transition metal boride layer introduced on the current collector metal base layer in this application not only has good interfacial wettability with lithium, but can effectively improve the wettability and bonding force between the negative electrode lithium metal layer and the current collector; and the transition metal boride layer It is a hexagonal structure, and its (001) crystal plane has a good lattice match with lithium metal, which can form an atomic-scale lattice match with lithium metal, thereby guiding the uniform deposition of lithium metal atoms on the surface of the current collector and inhibiting the growth of lithium dendrites. Effectively improve battery safety and stability.
  • the transition metal in the transition metal boride layer, is selected from: the first subgroup, the second subgroup, the third subgroup, the fourth subgroup, the fifth subgroup, the sixth subgroup of the periodic table of elements , at least one of the seventh subfamily and the eighth family. In further embodiments, in the transition metal boride layer, the transition metal boride is selected from transition metal diborides.
  • transition metal borides include: titanium diboride, zirconium diboride, hafnium diboride, vanadium diboride, niobium diboride, tantalum diboride, chromium diboride, diboride Molybdenum diboride, tungsten diboride, manganese diboride, technetium diboride, rhenium diboride, iron diboride, ruthenium diboride, osmium diboride, cobalt diboride, rhodium diboride, diboride At least one of iridium and cadmium diboride.
  • transition metal borides used in the examples of the present application all have high electrical conductivity, and will not affect the collecting effect of the current collector of the metal base layer on the current generated in the battery.
  • transition metal borides have good interfacial wetting properties with lithium metal, which can effectively improve the bonding force between lithium metal and metal base layer.
  • these transition metal borides can form atomic-scale lattice matching with lithium, guide the uniform deposition of lithium metal atoms on the surface of the current collector, and effectively inhibit the growth of lithium dendrites.
  • the thickness of the transition metal boride layer is 0.2 ⁇ m ⁇ 10 ⁇ m, which can effectively ensure the improvement of the interface wetting/bonding performance and the lithium dendrite inhibition effect of the transition metal boride layer. If the thickness of the transition metal boride layer is too thin, it will cause too many defects, easily lead to uneven deposition of lithium, and it is difficult to improve the bonding stability between the metal base layer and the lithium metal anode layer, and at the same time, it will inhibit the effect of lithium dendrites. Also not good, the lithium dendrite surface density increases.
  • the thickness of the transition metal boride layer is 1 ⁇ m to 4 ⁇ m, and the thickness of the transition metal boride layer can better improve the bonding stability between the metal base layer and the lithium metal negative electrode sheet, and at the same time, the lithium metal Dendrites have a better inhibitory effect.
  • the thickness of the transition metal boride layer may be 0.2 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m.
  • the metal material includes: at least one of copper, iron, nickel, and titanium, these metal base layers can not only play a better supporting role for the negative electrode lithium metal; and these metal materials
  • the prepared base layer does not react with lithium, has the functions of electronic conduction and ion insulation, has excellent collection effect on the current generated in the battery, and can collect the current generated in the battery and output it to the outside. In addition, it can prevent lithium ions from diffusing outward, make the negative electrode have better stability and safety performance, and improve the floating charge and stable cycling capabilities of high-energy density lithium metal negative electrode batteries.
  • the metal base layer includes one of copper, nickel, iron, titanium, iron-nickel alloy, and iron-titanium-nickel alloy.
  • the lithium metal negative electrode composite current collector includes: a metal base layer and a transition metal boride layer disposed on two opposite surfaces of the metal base layer.
  • the transition metal boride layers By disposing the transition metal boride layers on both sides of the metal base layer at the same time, the The prepared composite current collector is suitable for winding batteries, laminated batteries and other systems, and has more practical value.
  • the lithium metal negative electrode composite current collector provided in the embodiment of the present application can be prepared by the following method.
  • a second aspect of the embodiments of the present application provides a method for preparing a lithium metal negative electrode composite current collector, comprising the steps of:
  • a metal base layer is obtained, a transition metal boride layer is formed on at least one surface of the metal base layer, and a lithium metal negative electrode composite current collector is obtained.
  • the lithium metal negative electrode composite current collector In the preparation method of the lithium metal negative electrode composite current collector provided in the second aspect of the present application, after the transition metal boride layer is formed on at least one surface of the metal base layer, the lithium metal negative electrode composite current collector is obtained, and the preparation method is simple and suitable for large-scale industrialization. production and application.
  • the composite current collector When the composite current collector is applied to a lithium ion battery, the negative electrode lithium metal layer is arranged on the surface of the transition metal boride layer in the composite current collector.
  • the transition metal boride layer Through the intermediate transition metal boride layer, not only the wettability and bonding force between the lithium metal layer and the metal base current collector layer can be improved, but also the transition metal boride layer can form an atomic-scale lattice match with the lithium metal, making the lithium metal layer more Uniform deposition, thereby effectively inhibiting the growth of lithium dendrites.
  • the step of forming a transition metal boride layer on a surface of the metal base layer includes: using chemical vapor deposition and/or physical vapor deposition, depositing a transition metal boride on a surface of the metal base layer to form a transition metal boride Floor.
  • the method for depositing transition metal boride on the surface of the metal base layer in the embodiment of the present application can be flexibly selected according to the actual application situation, chemical vapor deposition or physical vapor deposition can be used, or a combination of the two deposition methods can be used to obtain the transition metal boride .
  • the chemical vapor deposition conditions include: in an inert atmosphere with a temperature of 1000°C to 1500°C, a pressure of 1.0 ⁇ 10 -3 Pa to 3.0 ⁇ 10 -3 Pa and a pulse voltage of 3000V to 3300V.
  • Chemical vapor deposition of transition metal borides The chemical vapor deposition conditions of the embodiments of the present application make the transition metal source and boron source and other raw materials react chemically on the metal base layer in gaseous form, and generate transition metal boride and deposit on the metal base layer to form a transition metal boride layer.
  • the formed film layer is dense, uniform in thickness, smooth in surface, and tightly combined with the metal base layer.
  • the conditions of the physical vapor deposition include: performing the physical vapor deposition of the transition metal boride under the conditions of a working pressure of 0.4Pa-0.8Pa and a sputtering power of 1KW-3KW.
  • the transition metal boride is directly used as the target material, and a dense and uniform transition metal boride layer is formed on the metal base layer by sputtering deposition under the physical vapor deposition conditions, and is closely combined with the metal base layer.
  • the preparation method of the lithium metal negative electrode composite current collector may also be as follows: depositing transition metal boride on two opposite surfaces of the metal base layer, forming transition metal boride layers on the two opposite surfaces of the metal base layer, and obtaining two opposite surfaces
  • the lithium metal negative electrode composite current collector with the transition metal boride layer deposited on it makes it more suitable for winding, lamination and other battery systems, and is more widely used.
  • the transition metal in the transition metal boride layer, is selected from: the first subgroup, the second subgroup, the third subgroup, the fourth subgroup, the fifth subgroup, the sixth subgroup of the periodic table of elements , at least one of the seventh subfamily and the eighth family. In some embodiments, in the transition metal boride layer, the transition metal boride is selected from transition metal diborides.
  • transition metal borides include: titanium diboride, zirconium diboride, hafnium diboride, vanadium diboride, niobium diboride, tantalum diboride, chromium diboride, diboride Molybdenum, Tungsten Diboride, Manganese Diboride, Technetium Diboride, Rhenium Diboride, Iron Diboride, Ruthenium Diboride, Osmium Diboride, Cobalt Diboride, Rhodium Diboride, Diboride At least one of iridium and cadmium diboride.
  • the thickness of the transition metal boride layer is 0.2 ⁇ m ⁇ 10 ⁇ m. In some embodiments, the thickness of the transition metal boride layer is 1 ⁇ m ⁇ 4 ⁇ m.
  • the metal material in the metal base layer, includes at least one of copper, iron, nickel, and titanium.
  • the metal base layer is selected from one of: copper, nickel, iron, titanium, iron-nickel alloy, iron-titanium-nickel alloy.
  • a third aspect of the embodiments of the present application provides a lithium ion battery, including a lithium metal negative electrode, the lithium metal negative electrode includes: a lithium metal layer and a composite current collector disposed on a surface of the lithium metal layer, the composite current collector includes a metal base layer and a composite current collector disposed on a surface of the lithium metal layer.
  • the lithium ion battery provided by the third aspect of the present application since the negative electrode current collector adopts the above-mentioned composite current collector, a transition metal boride layer is arranged between the lithium metal layer and the metal base layer, so that the lithium metal layer and the composite current collector layer are closely combined At the same time, the transition metal boride layer can form an atomic-scale lattice match with lithium, which can effectively inhibit the growth of lithium dendrites. Therefore, the lithium-ion battery provided by the embodiments of the present application has good safety and stability, and has a long service life, and has a broader application prospect.
  • the transition metal in the transition metal boride layer, is selected from: the first subgroup, the second subgroup, the third subgroup, the fourth subgroup, the fifth subgroup, the sixth subgroup of the periodic table of elements , at least one of the seventh subfamily and the eighth family. In some embodiments, in the transition metal boride layer, the transition metal boride is selected from transition metal diborides.
  • transition metal borides include: titanium diboride, zirconium diboride, hafnium diboride, vanadium diboride, niobium diboride, tantalum diboride, chromium diboride, diboride Molybdenum, Tungsten Diboride, Manganese Diboride, Technetium Diboride, Rhenium Diboride, Iron Diboride, Ruthenium Diboride, Osmium Diboride, Cobalt Diboride, Rhodium Diboride, Diboride At least one of iridium and cadmium diboride.
  • the thickness of the transition metal boride layer is 0.2 ⁇ m ⁇ 10 ⁇ m. In some embodiments, the thickness of the transition metal boride layer is 1 ⁇ m ⁇ 4 ⁇ m.
  • the metal material includes at least one of copper, iron, nickel, and titanium. In some embodiments, the metal base layer includes one of: copper, nickel, iron, titanium, iron-nickel alloy, iron-titanium-nickel alloy.
  • a lithium metal negative electrode composite current collector adopts titanium as a base metal substance, and uses titanium diboride as an infiltration layer, wherein the thickness of the titanium diboride infiltration layer is 3 ⁇ m.
  • the specific preparation process is as follows:
  • step 2 After step 2, turn off the titanium diboride target and take out the sample from the vacuum coating chamber to obtain the composite current collector.
  • a lithium metal negative electrode composite current collector using titanium as a base metal substance and titanium diboride as an infiltration layer, wherein the thickness of the titanium diboride infiltration layer is 3 ⁇ m, and the chemical vapor deposition method is used to prepare the titanium diboride infiltration layer. .
  • the specific preparation process is as follows:
  • the selected chemical reaction precursor system is TiCl 4 -BCl 3 -H 2 -Ar, in which the Ti source is to heat the TiCl 4 liquid in a 65 °C water bath to form TiCl 4 vapor, with argon as the carrier gas and together with other gases. It was transported into the CVD reaction chamber, and a titanium diboride film was deposited on the surface of the titanium foil for 5 h to obtain a composite current collector.
  • Embodiments 3-7 respectively provide a lithium metal negative electrode composite current collector based on a titanium diboride wetting layer. Except for the base layer materials used in Examples 3-7 and Example 1, the wetting layer, preparation steps and testing methods are different. All are the same; the base layers used are: copper, nickel, iron, iron-nickel alloy, iron-titanium-nickel alloy.
  • Embodiments 8-16 respectively provide a lithium metal negative electrode composite current collector based on titanium diboride infiltration layers of different thicknesses. , preparation steps and testing methods are the same; the thickness of titanium diboride infiltration layer are: 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m.
  • Embodiments 17-34 respectively provide a lithium metal negative electrode composite current collector based on different transition metal boride infiltration layers.
  • the difference between Embodiments 17-34 and Embodiment 1 is the type of transition metal infiltration layer, wherein the thickness of the infiltration layer, the base layer , preparation steps and testing methods are the same; the transition metal infiltration layers are respectively zirconium diboride, hafnium diboride, vanadium diboride, niobium diboride, tantalum diboride, chromium diboride, molybdenum diboride, Tungsten Diboride, Manganese Diboride, Technetium Diboride, Rhenium Diboride, Iron Diboride, Ruthenium Diboride, Osmium Diboride, Cobalt Diboride, Rhodium Diboride, Iridium Diboride, Cadmium diboride.
  • the present application has carried out the following performance tests on the lithium metal negative electrode composite current collectors prepared in Examples 1 to 34:
  • This application has carried out an X-ray diffraction test on the lithium metal negative electrode composite current collector prepared in Example 1.
  • the XRD pattern is shown in Figure 2 (the ordinate is the intensity), and 2 diffraction peaks appear, which are calibrated by the PDF card.
  • the deposited transition metal boride layer was determined to be titanium diboride.
  • the composite current collector with double-layer structure prepared in Example 1 and the ordinary titanium foil current collector without transition metal boride modification in Comparative Example 1 were immersed in molten lithium metal respectively, and formed on the surface of the current collector after drying. Lithium metal layer.
  • the test results are shown in Figure 3: Li metal formed a uniform Li metal layer on the surface of the composite current collector prepared in Example 1, showing good wettability and bonding strength (left a in Figure 3); In Comparative Example 1, the lithium metal layer formed on the surface of ordinary titanium foil has bubbling phenomenon, and the distribution of lithium metal is uneven, with poor wettability and low bonding strength (right b in Figure 3).
  • the composite current collectors prepared in Examples 1 and 2 and the titanium foil without transition metal boride in Comparative Example 1 were respectively subjected to the deposition/stripping electrochemical test of lithium metal.
  • an in-situ optical test device was used to assemble a half-cell with a lithium metal sheet as the counter electrode and ethylene carbonate (EC) and diethyl carbonate (DEC) with a volume ratio of 1:1 as the electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example base layer material Wetting layer material Lithium Dendritic Surface Density Percentage 1 titanium Titanium Diboride 1% 2 titanium Titanium Diboride 1.2% 3 copper Titanium Diboride 8% 4 nickel Titanium Diboride 9% 5 iron Titanium Diboride 3% 6 Iron-nickel alloy Titanium Diboride 4% 7 Iron-titanium-nickel alloy Titanium Diboride 6%
  • Example Titanium diboride layer thickness ( ⁇ m) Lithium Dendritic Surface Density Percentage 8 0.2 7% 9 0.5 5% 10 1 3% 11 2 1% 12 4 2% 13 5 4% 14 6 6% 15 8 8% 16 10 10%
  • the composite current collectors with different thicknesses of titanium diboride layers prepared in Examples 8 to 16 of the present application have a good effect of suppressing lithium dendrites with a thickness between 0.2 and 10 microns.
  • the areal density is less than 10%.
  • the thickness of the titanium diboride layer is 1-4 ⁇ m, there is a better effect of inhibiting lithium dendrites, and the density of lithium dendrites is lower than 3%.

Abstract

本申请公开一种锂金属负极复合集流体,包括:金属基底层和至少设置在所述金属基底层一表面的过渡金属硼化物层。本申请锂金属负极复合集流体,通过过渡金属硼化物层,不但可有效提高负极锂金属层与集流体的浸润性和结合力;而且能够与锂金属形成原子尺度的晶格匹配,从而引导锂金属原子在集流体表面均匀沉积,抑制锂枝晶生长,有效提高电池安全稳定性。

Description

锂金属负极复合集流体及其制备方法、锂离子电池 技术领域
本申请涉及电池技术领域,具体涉及一种锂金属负极复合集流体,以及一种锂金属负极复合集流体的制备方法,一种锂离子电池。
背景技术
随着科技的发展和人们生活水平的提高,对便携式电子设备和电动汽车的电池能量密度也有了更高的要求。目前商业化锂离子电池负极材料普遍采用石墨类材料,理论容量有限(372 mAh/g),难以满足高性能锂离子电池发展的需求。因此,开发具有高容量的新型负极材料成为锂离子电池的重要研究方向。锂金属负极由于超高的比容量(3860 mAh/g)以及极低的氧化还原电势(-3.045 V vs SHE),作为高容量负极材料极具发展前景。然而,锂金属在循环过程中,由于锂原子在集流体表面的非均匀沉积容易生成锂枝晶,不但会导致电池的性能快速降低,电池使用寿命缩短;而且生成的锂枝晶会刺穿隔膜,引发电池短路等安全问题。
为了解决锂金属负极容易在集流体表面生成锂枝晶的问题,研究人员提出了不同的锂枝晶抑制策略。在一些相关技术中,公开了一种锂的层状复合材料,通过将复合添加剂均匀分布在金属锂片的表面,并采用辊压法将复合添加剂压入金属锂片中,折叠复合添加剂和金属锂片的复合物,进行辊压,获得层状结构的添加剂-金属锂复合片。在另一些相关技术中,公开了锂/改性石墨烯层的双层结构复合负极,通过改性石墨烯与金属锂片相贴接。但是,目前仍存在锂金属与集流体材料浸润性差、结合力低的关键技术难题。
技术问题
本申请实施例的目的之一在于:提供一种锂金属负极复合集流体及其制备方法,旨在一定程度上解决现有锂金属负极容易在集流体表面形成锂枝晶,且与集流体材料浸润性差、结合力低的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种锂金属负极复合集流体,包括:金属基底层和至少设置在所述金属基底层一表面的过渡金属硼化物层。
在一个实施例中,所述过渡金属硼化物层中,过渡金属硼化物选自过渡金属二硼化物。
在一个实施例中,所述过渡金属硼化物包括:二硼化钛、二硼化锆、二硼化铪、二硼化钒、二硼化铌、二硼化钽、二硼化铬、二硼化钼、二硼化钨、二硼化锰、二硼化锝、二硼化铼、二硼化铁、二硼化钌、二硼化锇、二硼化钴、二硼化铑、二硼化铱、二硼化镉中的至少一种。
在一个实施例中,所述过渡金属硼化物层的厚度为0.2μm~10μm。
在一个实施例中,所述金属基底层中,金属材料包括:铜、铁、镍、钛中的至少一种。
在一个实施例中,所述过渡金属硼化物层的厚度为1μm~4μm。
在一个实施例中,所述金属基底层包括:铜、镍、铁、钛、铁-镍合金、铁-钛-镍合金中的一种。
第二方面,提供了一种锂金属负极复合集流体的制备方法,包括步骤:
获取金属基底层,至少在所述金属基底层一表面形成过渡金属硼化物层,得到锂金属负极复合集流体。
在一个实施例中,在所述金属基底层一表面形成过渡金属硼化物层的步骤包括:采用化学气相沉积和/或物理气相沉积,在所述金属基底层一表面沉积过渡金属硼化物。
在一个实施例中,所述化学气相沉积的条件包括:在温度为1000℃~1500℃,压强为1.0×10 -3Pa ~3.0×10 -3Pa,脉冲电压为3000V~3300V的惰性气氛下,进行所述过渡金属硼化物的化学气相沉积。
在一个实施例中,所述物理气相沉积的条件包括:在工作气压为0.4Pa~0.8Pa,溅射功率为1KW~3KW的条件下,进行所述过渡金属硼化物的物理气相沉积。
第三方面,提供一种锂离子电池,包括锂金属负极,所述锂金属负极包括:锂金属层和设置在所述锂金属层一表面的复合集流体,所述复合集流体包括金属基底层和设置在所述金属基底层与所述锂金属层之间的过渡金属硼化物层。
有益效果
本申请实施例提供的锂金属负极复合集流体的有益效果在于:通过过渡金属硼化物层,不但可有效提高负极锂金属层与集流体的浸润性和结合力;而且能够与锂金属形成原子尺度的晶格匹配,从而引导锂金属原子在集流体表面均匀沉积,抑制锂枝晶生长,有效提高电池安全稳定性。
本申请实施例提供的锂金属负极复合集流体的制备方法的有益效果在于:在金属基底层至少一表面沉积过渡金属硼化物,形成过渡金属硼化物层后,即得到锂金属负极复合集流体,制备方法简便,适用于工业化大规模生产和应用。
本申请实施例提供的锂离子电池的有益效果在于:由于负极集流体采用上述复合集流体,在锂金属层与金属基底层之间设置有过渡金属硼化物层,使得锂金属层与复合集流体层结合紧密,同时过渡金属硼化物层能够与锂形成原子尺度的晶格匹配,可有效抑制锂枝晶生长。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的锂金属负极复合集流体的结构示意图;
图2是本申请实施例1提供的复合集流体的X射线衍射图谱;
图3是本申请实施例1和对比例1提供的集流体沉积锂金属层后的形貌图。
图4是本申请实施例1和对比例1提供的集流体进行锂金属的沉积/剥离电化学测试后的形貌图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
如附图1所示,本申请实施例第一方面提供一种锂金属负极复合集流体,包括:金属基底层和至少设置在金属基底层一表面的过渡金属硼化物层。
本申请第一方面提供的锂金属负极复合集流体,设置在金属基底层一表面的过渡金属硼化物层本身具有较高的导电性,不会影响基底层本身的集流体特性。本申请在集流体金属基底层上引入的过渡金属硼化物层,不但与锂具有良好的界面润湿性能,可有效提高负极锂金属层与集流体的浸润性和结合力;而且过渡金属硼化物为六方结构,其(001)晶面与锂金属具有良好的晶格匹配,能够与锂金属形成原子尺度的晶格匹配,从而引导锂金属原子在集流体表面均匀沉积,抑制锂枝晶生长,有效提高电池安全稳定性。
在一些实施例中,过渡金属硼化物层中,过渡金属选自:元素周期表第一副族、第二副族、第三副族、第四副族、第五副族、第六副族、第七副族、第八族中的至少一种。在进一些实施例中,过渡金属硼化物层中,过渡金属硼化物选自过渡金属二硼化物。在一些具体实施例中,过渡金属硼化物包括:二硼化钛、二硼化锆、二硼化铪、二硼化钒、二硼化铌、二硼化钽、二硼化铬、二硼化钼、二硼化钨、二硼化锰、二硼化锝、二硼化铼、二硼化铁、二硼化钌、二硼化锇、二硼化钴、二硼化铑、二硼化铱、二硼化镉中的至少一种。本申请实施例采用的这些过渡金属硼化物,一方面,均具有较高的导电性,不会影响金属基底层集流体对电池内产生的电流的汇集作用。另一方面,过渡金属硼化物与锂金属具有良好的界面润湿性能,可有效改善锂金属与金属基底层结合力。再一方面,这些过渡金属硼化物能够与锂形成原子尺度的晶格匹配,引导锂金属原子在集流体表面均匀沉积,有效抑制锂枝晶的生长。
在一些实施例中,过渡金属硼化物层的厚度为0.2μm~10μm,该厚度可有效确保过渡金属硼化物层对界面浸润/结合性能、锂枝晶抑制效果的改善。若过渡金属硼化物层厚度过薄,则会造成缺陷过多,容易引起锂的不均匀沉积,难以提高金属基底层与锂金属负极层之间的结合稳定性,同时对锂枝晶的抑制效果也不佳,锂枝晶面密度增加。若过渡金属硼化物层厚度过厚,则增大了集流体的体积,降低了负极片的整体容量,从而影响离子电池整体电化学性能。在一些实施例中,过渡金属硼化物层的厚度为1μm~4μm,该厚度的过渡金属硼化物层,能够更好的改善金属基底层与锂金属负极片之间的结合稳定性,同时对锂枝晶有更好的抑制效果。在一些具体实施例中,过渡金属硼化物层的厚度可以是0.2μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或者10。
在一些实施例中,金属基底层中,金属材料包括:铜、铁、镍、钛中的至少一种,这些金属基底层不但能为负极锂金属起到较好的支撑作用;而且这些金属材料制成的基底层与锂不发生反应,具有电子导通、离子绝缘作用,对电池内产生的电流具有优异的汇集作用,能够汇集电池内产生的电流对外输出。并且,可阻止锂离子向外扩散,使负极有更好的稳定性和安全性能,提升高能量密度锂金属负极电池的浮充和稳定循环能力。在一些具体实施例中,金属基底层中包括:铜、镍、铁、钛、铁-镍合金、铁-钛-镍合金中的一种。
在一些实施例中,锂金属负极复合集流体包括:金属基底层和设置在金属基底层相对的两表面的过渡金属硼化物层,通过在金属基底层两侧同时设置过渡金属硼化物层,使制得的复合集流体适用于卷绕电池、叠片电池等体系,更具实用价值。
本申请实施例提供的锂金属负极复合集流体可通过以下方法制得。
本申请实施例第二方面提供一种锂金属负极复合集流体的制备方法,包括步骤:
获取金属基底层,至少在金属基底层一表面形成过渡金属硼化物层,得到锂金属负极复合集流体。
本申请第二方面提供的锂金属负极复合集流体的制备方法,在金属基底层至少一表面形成过渡金属硼化物层后,即得到锂金属负极复合集流体,制备方法简便,适用于工业化大规模生产和应用。该复合集流体应用于锂离子电池时,负极锂金属层设置在复合集流体中过渡金属硼化物层表面。通过中间过渡金属硼化物层,不但可提高锂金属层与金属基底集流体层的浸润性和结合力,而且过渡金属硼化物层能够与锂金属形成原子尺度的晶格匹配,使锂金属层更均匀的沉积,从而有效抑制锂枝晶生长。
在一些实施例中,在金属基底层一表面形成过渡金属硼化物层的步骤包括:采用化学气相沉积和/或物理气相沉积,在金属基底层一表面沉积过渡金属硼化物,形成过渡金属硼化物层。本申请实施例在金属基底层表面沉积过渡金属硼化物的方法可以根据实际应用情况灵活选择,可以采用化学气相沉积或者物理气相沉积,也可以通过两种沉积方法结合的方式,得到过渡金属硼化物。
在一些实施例中,化学气相沉积的条件包括:在温度为1000℃~1500℃,压强为1.0×10 -3Pa ~3.0×10 -3Pa,脉冲电压为3000V~3300V的惰性气氛下,进行过渡金属硼化物的化学气相沉积。本申请实施例化学气相沉积条件,使过渡金属源和硼源等原料物质以气态的形式在金属基底层上发生化学反应,并生成过渡金属硼化物沉积到金属基底层上形成过渡金属硼化物层,形成的膜层致密,厚度均一,表面平整,且与金属基底层结合紧密。
在一些实施例中,物理气相沉积的条件包括:在工作气压为0.4Pa~0.8Pa,溅射功率为1KW~3KW的条件下,进行过渡金属硼化物的物理气相沉积。本申请实施例直接以过渡金属硼化物为靶材,通过该物理气相沉积条件,在金属基底层上溅射沉积形成致密均一的过渡金属硼化物层,与金属基底层结合紧密。
在一些实施例中,锂金属负极复合集流体的制备方法还可以是:在金属基底层两相对表面沉积过渡金属硼化物,在金属基底层两相对表面形成过渡金属硼化物层,得到两相对表面均沉积有过渡金属硼化物层的锂金属负极复合集流体,使其更适用于卷绕、叠片等电池体系,应用更加广泛。
在一些实施例中,过渡金属硼化物层中,过渡金属选自:元素周期表第一副族、第二副族、第三副族、第四副族、第五副族、第六副族、第七副族、第八族中的至少一种。在一些实施例中,过渡金属硼化物层中,过渡金属硼化物选自过渡金属二硼化物。在一些实施例中,过渡金属硼化物包括:二硼化钛、二硼化锆、二硼化铪、二硼化钒、二硼化铌、二硼化钽、二硼化铬、二硼化钼、二硼化钨、二硼化锰、二硼化锝、二硼化铼、二硼化铁、二硼化钌、二硼化锇、二硼化钴、二硼化铑、二硼化铱、二硼化镉中的至少一种。
在一些实施例中,过渡金属硼化物层的厚度为0.2μm~10μm。在一些实施例中,过渡金属硼化物层的厚度为1μm~4μm。
在一些实施例中,金属基底层中,金属材料包括:铜、铁、镍、钛中的至少一种。
在一些实施例中,金属基底层选自:铜、镍、铁、钛、铁-镍合金、铁-钛-镍合金中的一种。
本申请上述实施例的优异效果在前文均有论述,在此不再赘述。
本申请实施例第三方面提供一种锂离子电池,包括锂金属负极,该锂金属负极包括:锂金属层和设置在锂金属层一表面的复合集流体,复合集流体包括金属基底层和设置在金属基底层与锂金属层之间的过渡金属硼化物层。
本申请第三方面提供的锂离子电池,由于负极集流体采用上述复合集流体,在锂金属层与金属基底层之间设置有过渡金属硼化物层,使得锂金属层与复合集流体层结合紧密,同时过渡金属硼化物层能够与锂形成原子尺度的晶格匹配,可有效抑制锂枝晶生长。因此,本申请实施例提供的锂离子电池安全稳定性好,使用寿命长,有更广阔的应用前景。
本申请实施例锂离子电池中,正极、隔膜、电解液等其他组成单元,可根据实际应用情况灵活选择,在此不做严格限定。
在一些实施例中,过渡金属硼化物层中,过渡金属选自:元素周期表第一副族、第二副族、第三副族、第四副族、第五副族、第六副族、第七副族、第八族中的至少一种。在一些实施例中,过渡金属硼化物层中,过渡金属硼化物选自过渡金属二硼化物。在一些实施例中,过渡金属硼化物包括:二硼化钛、二硼化锆、二硼化铪、二硼化钒、二硼化铌、二硼化钽、二硼化铬、二硼化钼、二硼化钨、二硼化锰、二硼化锝、二硼化铼、二硼化铁、二硼化钌、二硼化锇、二硼化钴、二硼化铑、二硼化铱、二硼化镉中的至少一种。
在一些实施例中,过渡金属硼化物层的厚度为0.2μm~10μm。在一些实施例中,过渡金属硼化物层的厚度为1μm~4μm。
在一些实施例中,金属基底层中,金属材料包括:铜、铁、镍、钛中的至少一种。在一些实施例中,金属基底层中包括:铜、镍、铁、钛、铁-镍合金、铁-钛-镍合金中的一种。
本申请上述实施例的优异效果在前文均有论述,在此不再赘述。
为使本申请上述实施细节和操作能清楚地被本领域技术人员理解,以及本申请实施例锂金属负极复合集流体及其制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种锂金属负极复合集流体,采用钛做为基底金属物质,以二硼化钛为浸润层,其中二硼化钛浸润层厚度为3 μm。具体的制备过程如下:
(1)以钛箔为基底层材料,首先采用辉光放电进行等离子体清洗,其中工作气压为0.6Pa,偏压为-80 V,清洗时间为30min;
(2)清洗结束后,以二硼化钛为溅射靶材进行溅射沉积,其中溅射功率为1KW、工作气压为0.6 Pa,控制膜层厚度约为3 μm;
(3)步骤2结束后,关闭二硼化钛靶,从真空镀膜腔室中取出样品,即可获得复合集流体。
实施例2
一种锂金属负极复合集流体,采用钛做为基底金属物质,以二硼化钛为浸润层,其中二硼化钛浸润层厚度为3 μm,采用化学气相沉积方法制作二硼化钛浸润层。具体的制备过程如下:
(1)以钛箔为基底层材料,首先将材料放入无水乙醇中进行超声波清洗,之后取出吹干并放入干燥箱中备用;
(2)分别打开机械泵与分子泵,当真空室压强降到2.0×10 -3 Pa时,打开加热器加热至100℃除去真空腔内的水蒸气,真空室内通入100 mL/min的氩气20 min,以便除去未被抽出的空气。用3300 V的脉冲偏压清洗试样表面20 min;
(3)清洗完成后,保持脉冲电压3100 V恒定不变。其选用的化学反应前驱体体系为TiCl 4-BCl 3-H 2-Ar, 其中Ti源是将TiCl 4液体在65℃水浴中加热形成TiCl 4蒸气, 由氩气作为载气并与其它气体一起输送进CVD反应室,在钛箔表面沉积二硼化钛薄膜5 h,获得复合集流体。
实施例3-7
实施例3-7分别提供一种基于二硼化钛浸润层的锂金属负极复合集流体,实施例3-7与实施例1除了采用的基底层材料不同外,浸润层、制备步骤及测试方法均相同;所采用的基底层分别为:铜、镍、铁、铁-镍合金、铁-钛-镍合金。
实施例8-16
实施例8-16分别提供一种基于不同厚度的二硼化钛浸润层的锂金属负极复合集流体,实施例8-16与实施例1不同的是二硼化钛浸润层厚度不同,基底层、制备步骤及测试方法均相同; 硼化钛浸润层厚度分别为:0.2 μm、0.5 μm、1 μm、2 μm、4 μm、5 μm、6 μm、8 μm、10 μm。
实施例17-34
实施例17-34分别提供一种基于不同过渡金属硼化物浸润层的锂金属负极复合集流体,实施例17-34与实施例1不同的是过渡金属浸润层类型,其中浸润层厚度、基底层、制备步骤和测试方法均相同;过渡金属浸润层分别为二硼化锆、二硼化铪、二硼化钒、二硼化铌、二硼化钽、二硼化铬、二硼化钼、二硼化钨、二硼化锰、二硼化锝、二硼化铼、二硼化铁、二硼化钌、二硼化锇、二硼化钴、二硼化铑、二硼化铱、二硼化镉。
对比例1
以未经过渡金属硼化物修饰的钛箔作为对比例1。
为了验证本申请实施例锂金属负极复合集流体及其制备方法的进步性,本申请对实施例1~34制备的锂金属负极复合集流体进行了如下性能测试:
1、本申请对实施例1制备的锂金属负极复合集流体进行了X射线衍射测试,其XRD图谱如附图2所示(纵坐标为强度),出现了2个衍射峰,通过PDF卡片标定可确定沉积的过渡金属硼化物层为二硼化钛。
2、本申请将实施例1制备的具有双层结构的复合集流体和对比例1未经过渡金属硼化物修饰的普通钛箔集流体,分别浸入熔融的锂金属,干燥后在集流体表面形成锂金属层。测试结果如附图3所示:锂金属在实施例1制备的复合集流体表面形成了均匀的锂金属层,表现出良好的浸润性和结合强度(图3左a);然而,锂金属在对比例1普通钛箔表面形成的锂金属层出现鼓泡现象,且锂金属分布不均匀,浸润性较差、结合强度低(图3右b)。
3、本申请对实施例1和2制备的复合集流体和对比例1不含过渡金属硼化物的钛箔,分别进行锂金属的沉积/剥离电化学测试。具体采用原位光学测试装置,以锂金属片为对电极,以体积比为1:1的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)为电解液组装半电池,在相同条件下进行充放电后,对两种不同的集流体表面形貌进行原位光学观察。测试结果如附图4所示:锂金属在本申请实施例1所制备的复合集流体表面实现了均匀沉积,锂枝晶面密度仅为1%(图4左a);而普通钛箔表面产生了大量锂枝晶(图4右b),经检测,其锂枝晶密积度达到70%。实施例2制备的复合集流体表面锂枝晶面密度经测试仅为1.2%,同样显示出良好的锂枝晶的抑制效果。由此可知,本申请实施例所制备的复合集流体具有良好的锂枝晶抑制效果,可有效提高电池体系的安全稳定性和使用寿命。
4、本申请对实施例1~7制备的不同金属基底层的复合集流体,分别进行锂金属的沉积/剥离电化学测试,通过原位光学观察,计算集流体层表面锂枝晶面密度,得到如下表1测试结果:
表1
实施例 基底层材料 浸润层材料 锂枝晶面密度百分比
1 二硼化钛 1%
2 二硼化钛 1.2%
3 二硼化钛 8%
4 二硼化钛 9%
5 二硼化钛 3%
6 铁-镍合金 二硼化钛 4%
7 铁-钛-镍合金 二硼化钛 6%
由上述测试结果可知,本申请实施例1~7在不同金属基底层上制备的复合集流体,均有较好的锂枝晶抑制效果,锂枝晶面密度低于6%。
5、本申请对实施例8~16制备的不同厚度的过渡金属硼化物(二硼化钛)的复合集流体,分别进行锂金属的沉积/剥离电化学测试,通过原位光学观察,计算集流体层表面锂枝晶面密度,得到如下表2测试结果:
表2
实施例 二硼化钛层厚度(μm) 锂枝晶面密度百分比
8 0.2 7%
9 0.5 5%
10 1 3%
11 2 1%
12 4 2%
13 5 4%
14 6 6%
15 8 8%
16 10 10%
由上述测试结果可知,本申请实施例8~16制备的不同厚度的二硼化钛层的复合集流体,厚度在0.2~10微米之间均具有较好的锂枝晶抑制效果,锂枝晶面密度低于10%。并且,当二硼化钛层厚度为1~4微米时有更优的锂枝晶锂枝晶抑制效果,锂枝晶面密度低于3%。
6、本申请对实施例17~34制备的不同过渡金属硼化物的复合集流体,分别进行锂金属的沉积/剥离电化学测试,通过原位光学观察,计算集流体层表面锂枝晶面密度,得到如下表3测试结果:
表3
实施例 过渡金属化合物 锂枝晶面密度百分比
17 二硼化锆 1%
18 二硼化铪 3%
19 二硼化钒 10%
20 二硼化铌 5%
21 二硼化钽 3%
22 二硼化铬 8%
23 二硼化钼 7%
24 二硼化钨 4%
25 二硼化锰 2%
26 二硼化锝 9%
27 二硼化铼 3%
28 二硼化铁 5%
29 二硼化钌 9%
30 二硼化锇 4%
31 二硼化钴 7%
32 二硼化铑 3%
33 二硼化铱 6%
34 二硼化镉 4%
由上述测试结果可知,本申请17~34制备的不同过渡金属硼化物的复合集流体,锂枝晶面密度均低于10%,均具有较好锂枝晶抑制效果。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种锂金属负极复合集流体,其特征在于,包括:金属基底层和至少设置在所述金属基底层一表面的过渡金属硼化物层。
  2. 如权利要求1所述的锂金属负极复合集流体,其特征在于,过渡金属硼化物层中,过渡金属选自:元素周期表第一副族、第二副族、第三副族、第四副族、第五副族、第六副族、第七副族、第八族中的至少一种。
  3. 如权利要求2所述的锂金属负极复合集流体,其特征在于,所述过渡金属硼化物层中,过渡金属硼化物选自过渡金属二硼化物。
  4. 如权利要求3所述的锂金属负极复合集流体,其特征在于,所述过渡金属硼化物包括:二硼化钛、二硼化锆、二硼化铪、二硼化钒、二硼化铌、二硼化钽、二硼化铬、二硼化钼、二硼化钨、二硼化锰、二硼化锝、二硼化铼、二硼化铁、二硼化钌、二硼化锇、二硼化钴、二硼化铑、二硼化铱、二硼化镉中的至少一种。
  5. 如权利要求1、3或4所述的锂金属负极复合集流体,其特征在于,所述过渡金属硼化物层的厚度为0.2μm~10μm。
  6. 如权利要求5所述的锂金属负极复合集流体,其特征在于,所述过渡金属硼化物层的厚度为1μm~4μm。
  7. 如权利要求1所述的锂金属负极复合集流体,其特征在于,所述金属基底层中,金属材料包括:铜、铁、镍、钛中的至少一种。
  8. 如权利要求7所述的锂金属负极复合集流体,其特征在于,所述金属基底层包括:铜、镍、铁、钛、铁-镍合金、铁-钛-镍合金中的一种。
  9. 一种锂金属负极复合集流体的制备方法,其特征在于,包括步骤:
    获取金属基底层,至少在所述金属基底层一表面形成过渡金属硼化物层,得到锂金属负极复合集流体。
  10. 如权利要求9所述的锂金属负极复合集流体的制备方法,其特征在于,在所述金属基底层一表面形成过渡金属硼化物层的步骤包括:采用化学气相沉积和/或物理气相沉积,在所述金属基底层一表面沉积过渡金属硼化物,形成所述过渡金属硼化物层。
  11. 如权利要求10所述的锂金属负极复合集流体的制备方法,其特征在于,所述化学气相沉积的条件包括:在温度为1000℃~1500℃,压强为1.0×10 -3Pa ~3.0×10 -3Pa,脉冲电压为3000V~3300V的惰性气氛下,进行所述过渡金属硼化物的化学气相沉积。
  12. 如权利要求10所述的锂金属负极复合集流体的制备方法,其特征在于,所述物理气相沉积的条件包括:在工作气压为0.4Pa~0.8Pa,溅射功率为1KW~3KW的条件下,进行所述过渡金属硼化物的物理气相沉积。
  13. 一种锂离子电池,其特征在于,包括锂金属负极,所述锂金属负极包括:锂金属层和设置在所述锂金属层一表面的复合集流体,所述复合集流体包括金属基底层和设置在所述金属基底层与所述锂金属层之间的过渡金属硼化物层。
PCT/CN2020/113535 2020-09-04 2020-09-04 锂金属负极复合集流体及其制备方法、锂离子电池 WO2022047737A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113535 WO2022047737A1 (zh) 2020-09-04 2020-09-04 锂金属负极复合集流体及其制备方法、锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113535 WO2022047737A1 (zh) 2020-09-04 2020-09-04 锂金属负极复合集流体及其制备方法、锂离子电池

Publications (1)

Publication Number Publication Date
WO2022047737A1 true WO2022047737A1 (zh) 2022-03-10

Family

ID=80492436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113535 WO2022047737A1 (zh) 2020-09-04 2020-09-04 锂金属负极复合集流体及其制备方法、锂离子电池

Country Status (1)

Country Link
WO (1) WO2022047737A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914454A (zh) * 2022-07-01 2022-08-16 北京理工大学重庆创新中心 一种高熵合金集流体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226963A (ja) * 2011-04-19 2012-11-15 Toyota Central R&D Labs Inc リチウム二次電池
CN104282877A (zh) * 2014-10-16 2015-01-14 东莞新能源科技有限公司 电极片及含有该电极片的锂离子电池
CN108777307A (zh) * 2017-12-29 2018-11-09 上海其鸿新材料科技有限公司 一种锂电池集流体导电涂层
CN112072118A (zh) * 2020-08-27 2020-12-11 深圳先进技术研究院 锂金属负极复合集流体及其制备方法、锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226963A (ja) * 2011-04-19 2012-11-15 Toyota Central R&D Labs Inc リチウム二次電池
CN104282877A (zh) * 2014-10-16 2015-01-14 东莞新能源科技有限公司 电极片及含有该电极片的锂离子电池
CN108777307A (zh) * 2017-12-29 2018-11-09 上海其鸿新材料科技有限公司 一种锂电池集流体导电涂层
CN208111572U (zh) * 2017-12-29 2018-11-16 上海其鸿新材料科技有限公司 一种多功能锂电池集流体
CN112072118A (zh) * 2020-08-27 2020-12-11 深圳先进技术研究院 锂金属负极复合集流体及其制备方法、锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914454A (zh) * 2022-07-01 2022-08-16 北京理工大学重庆创新中心 一种高熵合金集流体及其制备方法和应用
CN114914454B (zh) * 2022-07-01 2023-05-26 北京理工大学重庆创新中心 一种高熵合金集流体及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yao et al. Hybrid vertical graphene/lithium titanate–CNTs arrays for lithium ion storage with extraordinary performance
JP5306418B2 (ja) 銅被覆鋼箔、負極用電極及び電池
Liu et al. High-rate amorphous SnO 2 nanomembrane anodes for Li-ion batteries with a long cycling life
CN106159316A (zh) 一种锂离子电池正极用集流体及包含该集流体的电池
CN105226258B (zh) 一种锂离子电池负极复合薄膜材料及其制备方法
CN206040854U (zh) 一种锂离子电池正极用集流体、包含该集流体的电池及用于制备集流体的装置
CN108232320A (zh) 全固态薄膜锂离子电池的制备方法及全固态薄膜锂离子电池
TWI461555B (zh) 一種多層膜矽/石墨烯複合材料陽極結構
CN101271974A (zh) 锂离子二次电池的负极材料、负极极片及锂离子二次电池
KR20230028449A (ko) 리튬 이차 전지용 실리콘-탄소 복합 재료 및 이의 제조 방법
CN103144393B (zh) 一种三明治结构硅基薄膜材料及其制备方法和应用
Kim et al. Additive-free synthesis of Li 4 Ti 5 O 12 nanowire arrays on freestanding ultrathin graphite as a hybrid anode for flexible lithium ion batteries
JP2013026041A (ja) リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法
Jamaluddin et al. Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries
JP5726217B2 (ja) 銅被覆鋼箔、負極用電極及び電池
WO2019090805A1 (zh) 锂电池夹心式复合正极材料及其制备方法以及一种锂电池正极
CN112072118A (zh) 锂金属负极复合集流体及其制备方法、锂离子电池
CN103647047A (zh) 一种碳纳米管/SnO2同轴复合阵列锂离子电池负极材料
Dhara et al. Controlled 3D Carbon Nanotube Architecture Coated with MoOx Material by ALD Technique: A High Energy Density Lithium‐Ion Battery Electrode
WO2022047737A1 (zh) 锂金属负极复合集流体及其制备方法、锂离子电池
CN104282877B (zh) 电极片及含有该电极片的锂离子电池
CN110380056B (zh) 一种表面改性集流体、其制备方法及应用
CN113025980A (zh) 一种燃料电池双极板用耐腐蚀膜层及其制备方法
CN108899470B (zh) 一种Li-S电池正极片夹层结构的制备方法
CN108604681A (zh) 能量储存电极及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951981

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20951981

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/08/2023)