WO2020091051A1 - 長繊維強化プロピレン系樹脂組成物および長繊維強化成形体 - Google Patents

長繊維強化プロピレン系樹脂組成物および長繊維強化成形体 Download PDF

Info

Publication number
WO2020091051A1
WO2020091051A1 PCT/JP2019/043049 JP2019043049W WO2020091051A1 WO 2020091051 A1 WO2020091051 A1 WO 2020091051A1 JP 2019043049 W JP2019043049 W JP 2019043049W WO 2020091051 A1 WO2020091051 A1 WO 2020091051A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
long fiber
mass
polymer
modified polypropylene
Prior art date
Application number
PCT/JP2019/043049
Other languages
English (en)
French (fr)
Inventor
晶子 小田原
ゆり恵 久米田
Original Assignee
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プライムポリマー filed Critical 株式会社プライムポリマー
Priority to US17/289,419 priority Critical patent/US20210347954A1/en
Priority to CN201980068353.6A priority patent/CN112888739B/zh
Priority to JP2020554984A priority patent/JP7198287B2/ja
Priority to EP19880664.8A priority patent/EP3875533A4/en
Publication of WO2020091051A1 publication Critical patent/WO2020091051A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a long fiber reinforced propylene resin composition and a long fiber reinforced molded product.
  • the fiber-reinforced resin molded product is lightweight and has excellent rigidity and heat resistance, it is used in various fields such as electric devices, automobiles, housing equipment, and medical instruments.
  • a molded body using a reinforcing fiber such as glass fiber and a thermoplastic resin such as polyamide or polypropylene is known.
  • Such a fiber-reinforced resin molded product is used in the automobile field for a member such as a fan shroud or a propeller fan in an engine room that is required to have high rigidity and heat resistance.
  • Patent Document 2 discloses a rear grip for a motorcycle, which is made of a composition containing a propylene-based polymer, glass fiber, a modified propylene polymer and an ethylene / ⁇ -random copolymer and has high strength and good appearance. ing.
  • Patent Document 3 discloses a long-fiber-reinforced thermoplastic resin particle (A) containing a thermoplastic resin produced using a metallocene catalyst, a modified polyolefin resin modified with an unsaturated carboxylic acid, and a reinforcing fiber, Disclosed is a long fiber reinforced particle blend comprising a polyolefin resin particle (B) for dilution, and by using this long fiber reinforced particle blend, the fiber opening property of the reinforcing fiber in the injection cylinder during injection molding is good, It is described that an injection-molded body can be obtained in which lumps are prevented from rising to the surface of the molded body.
  • the molded product obtained from the conventional fiber-reinforced propylene-based resin composition has an appearance defect such as white smear on the molded product surface due to the reinforcing fibers protruding to the surface of the molded product (hereinafter referred to as “white mist generation”). There is room for further improvement.
  • an object of the present invention is to provide a reinforced fiber molded product having an excellent appearance and also excellent mechanical properties, and to provide a composition suitable for producing such a reinforced fiber molded product.
  • the gist of the present invention is as follows.
  • P PP1 , P PP2 , P mPP and P PE are respectively the propylene polymer (A1), the propylene polymer (A2), the reinforcing fiber (B) and the modified polypropylene ( C) and the total amount of the ethylene polymer (D), of the propylene polymer (A1), the propylene polymer (A2), the modified polypropylene (C) or the ethylene polymer (D). It is a ratio (mass%). ]
  • MFR PP + mPP 10 ⁇ [(Log (MFR PP1 ) ⁇ PP PP1 + Log (MFR PP2 ) ⁇ PP PP2 + Log (MFR mPP ) ⁇ PP mPP ) / (PP PP1 + PP PP2 + PP mPP )]... (3)
  • MFR PP1 , MFR PP2 and MFR mPP are in accordance with ISO 1133-1 of the propylene polymer (A1), the propylene polymer (A2) or the modified polypropylene (C), respectively.
  • melt flow rate g / 10 minutes measured under the conditions of 230 ° C. and 2.16 kg load.
  • PP PP1 , PP PP2 and PP mPP are the propylene polymer (A1), the propylene polymer (A2), the reinforcing fiber (B), the modified polypropylene (C) and the ethylene polymer (D), respectively.
  • the long-fiber-reinforced molded product of the present invention is particularly excellent in appearance (that is, generation of white haze is suppressed) and mechanical properties are also excellent. Further, such a long fiber reinforced molded product can be formed from the long fiber reinforced propylene resin composition of the present invention.
  • the present invention will be described in more detail.
  • the long fiber reinforced propylene resin composition according to the present invention Long-fiber-reinforced resin pellets, and an ethylene-based polymer (D), and optionally a propylene-based polymer (A2),
  • the long fiber-reinforced resin pellet is characterized in that it is a pellet containing a propylene polymer (A1), a reinforcing fiber (B), and a modified polypropylene (C).
  • the propylene-based polymer (A1) is a polymer containing a structural unit derived from propylene as a main structural unit, and examples thereof include a propylene homopolymer, a propylene / ⁇ -olefin random copolymer, and a propylene-based block copolymer. Polymers may be mentioned.
  • propylene / ⁇ -olefin random copolymer examples include a random copolymer of propylene and at least one olefin selected from ethylene and ⁇ -olefins having 4 to 8 carbon atoms.
  • olefins examples include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene and 1-octene, Ethylene and 1-butene are preferable, and ethylene is particularly preferable.
  • the proportion of propylene-derived structural units in all the structural units in the random copolymer is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the propylene block copolymer is preferably composed of a propylene homopolymer part and a propylene / ⁇ -olefin random copolymer part.
  • the specific embodiment of the propylene / ⁇ -olefin random copolymer portion is the same as the specific embodiment of the propylene / ⁇ -olefin random copolymer.
  • the propylene-based block copolymer is insoluble in a component soluble in n-decane at 23 ° C (hereinafter also referred to as “decane-soluble portion”) and in n-decane at 23 ° C. (Hereinafter also referred to as “decane-insoluble portion”).
  • the content of the decane-soluble part is usually 5 to 30% by mass, preferably 5 to 25% by mass, more preferably 8 to 18% by mass, and the content of the decane-insoluble part is usually 70 to 95% by mass. %, Preferably 75 to 95% by mass, more preferably 82 to 92% by mass.
  • the propylene polymer (A1) contained in the long fiber reinforced resin pellets has a melt flow rate (according to ISO 1133-1, 230 ° C., 2.16 kg load) of preferably 20 g / 10 minutes or more, more preferably 30 g / It is 10 minutes or more, more preferably 40 g / 10 minutes or more, and the upper limit thereof may be, for example, 300 g / 10 minutes.
  • the composition of the present invention has fluidity suitable for injection molding.
  • Reinforcing fiber (B) examples include carbon fiber, nylon fiber, cellulose fiber, basalt fiber, and glass fiber, and among these, glass fiber is preferable.
  • glass fibers glass such as E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High strength glass) and alkali resistant glass are melt spun into filament fibers. I can list the things I did.
  • glass long fibers are usually used as the glass fibers.
  • a continuous glass fiber bundle is usually used as a raw material of long glass fibers, and this is commercially available as glass roving.
  • the average fiber diameter is usually 3 to 30 ⁇ m, preferably 13 to 20 ⁇ m, more preferably 16 to 18 ⁇ m, and the number of filaments to be bundled is usually 400 to 10,000, preferably 1,000 to 6,000. More preferably, it is 3,000 to 5,000.
  • the fiber length of the reinforcing fiber (B) in the long fiber reinforced resin pellet is usually 4 to 10 mm, preferably 5 to 8 mm, and the fiber diameter is usually 10 to 20 ⁇ m, preferably 13 to 18 ⁇ m.
  • the reinforcing fibers (B) are arranged substantially parallel to the longitudinal direction of the pellet, and the fiber length of the reinforcing fibers (B) is usually the particle length of the pellet (that is, the longitudinal direction of the pellet). Length) is substantially the same.
  • the content of the reinforcing fibers (B) in the long fiber reinforced resin pellets is preferably 40 to 70 mass%, more preferably 45 to 60 mass% with respect to 100 mass% of the long fiber reinforced resin pellets.
  • the content of the reinforcing fiber (B) is at least the lower limit value described above, the long fiber reinforced resin pellets can be produced with good productivity.
  • the content of the reinforcing fibers (B) is not more than the upper limit value, the fiber bundle of the reinforcing fibers (B) can be sufficiently impregnated with the resin.
  • Functional groups may be introduced on the surface of the reinforcing fiber (B) by various surface treatment methods such as electrolytic treatment or sizing agent treatment.
  • a sizing agent is preferably used for the surface treatment, and a sizing agent containing a coupling agent is particularly preferably used.
  • Examples of the sizing agent include those containing a coupling agent described in JP-A-2003-253563.
  • the coupling agent include silane coupling agents such as aminosilane and epoxysilane, and titanium coupling agents.
  • the sizing agent preferably contains a resin emulsion for easy handling.
  • the resin emulsion contained in the sizing agent include urethane-based, olefin-based, acrylic-based, nylon-based, butadiene-based, and epoxy-based ones, and among these, urethane-based or olefin-based ones are preferable.
  • the modified polypropylene (C) is obtained by acid-modifying polypropylene.
  • Examples of the modification method include conventionally known methods such as graft modification and copolymerization.
  • Examples of the polypropylene to be modified include the propylene polymer (A1).
  • Examples of the modifier used for modification include unsaturated carboxylic acids and their derivatives.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelic acid, and phthalic acid.
  • Examples of the derivative include acid anhydrides, esters, amides, imides, and metal salts. Specific examples include maleic anhydride, itaconic anhydride, citraconic anhydride, nadic acid anhydride, and phthalic anhydride.
  • Examples thereof include acid, methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, maleic acid monoethyl ester, acrylamide, maleic acid monoamide, maleimide, N-butyl maleimide, sodium acrylate and sodium methacrylate.
  • unsaturated dicarboxylic acids and their derivatives are preferable, and maleic anhydride and phthalic anhydride are more preferable.
  • the acid addition amount of the modified polypropylene (C), in other words, the ratio of the structure derived from the acid in the modified polypropylene (C) is preferably 0.1 to 14% by weight, more preferably 0.3 to 8% by weight. %.
  • the acid addition amount is determined by measuring the IR spectrum of the resin and determining the area of the peak at 1,670 cm -1 to 1,810 cm -1 .
  • the modification of polypropylene may be performed prior to the production of the long fiber reinforced resin pellets, or may be performed in the melt-kneading process during the production of the long fiber reinforced resin pellets.
  • a modifier or a volatile component derived therefrom hereinafter collectively referred to as a “volatile component”
  • the long fiber reinforced propylene resin composition is removed. Fogging may occur on the surface of the formed molded body. Therefore, it is preferable that the volatile component is small, and the content of the volatile component in the modified polypropylene (C) defined by the following formula is preferably 9000 ppm or less, more preferably 7000 ppm or less.
  • the amount of the volatile component can be reduced by, for example, vacuum drying the modified polypropylene (C).
  • modified polypropylene (C) from the viewpoint of improving the affinity between the reinforcing fiber (B) and the propylene-based polymer (A) and improving the strength or heat resistance of the molded article produced, anhydrous fatty acid-modified polypropylene is used.
  • Preferred is maleic anhydride modified polypropylene.
  • the amount of the modified polypropylene (C) in the long fiber reinforced resin pellets is preferably 1 to 5% by mass, more preferably 1.5 to 3.5% by mass, based on 100% by mass of the long fiber reinforced resin pellets. is there.
  • the amount of the modified polypropylene (C) is at least the above lower limit, the adhesiveness between the reinforcing fiber (B) and the resin component will be good.
  • the amount of the modified polypropylene (C) is not more than the above upper limit value, the molecular weight of the modified polypropylene (C) does not become too low, so that the strength of the molded product produced from the composition of the present invention is good.
  • the modified polypropylene (C) has a melt flow rate (according to ISO 1133-1, 230 ° C., 2.16 kg load) of preferably 50 g / 10 minutes or more, more preferably 80 g / 10 minutes or more, and its upper limit value. May be, for example, 1000 g / 10 minutes.
  • the melt flow rate of the modified polypropylene (C) is in this range, the long fiber reinforced propylene resin composition of the present invention has fluidity suitable for injection molding.
  • the long fiber reinforced resin pellet contains a propylene polymer (A1), a reinforcing fiber (B) and a modified polypropylene (C).
  • the shape of the long fiber reinforced resin pellet is usually columnar.
  • the particle length (length in the longitudinal direction) of the long fiber reinforced resin pellet is usually 4 to 10 mm, preferably 5 to 8 mm.
  • the molded product produced from the long fiber reinforced propylene resin composition of the present invention has excellent mechanical properties.
  • the particle length of the long fiber reinforced resin pellet is not more than the above upper limit value, the long fiber reinforced propylene resin composition of the present invention is excellent in moldability.
  • the reinforcing fibers (B) are usually arranged substantially parallel to the longitudinal direction of the pellet. Since the reinforcing fiber (B) in the long fiber reinforced resin pellet has a large aspect ratio, the molded product formed from the long fiber reinforced resin composition of the present invention containing the long fiber reinforced resin pellet has a high mechanical strength. Excellent in
  • the long fiber reinforced resin pellets can be produced by a known molding method such as a drawing method. Specifically, roving of reinforcing fibers (B) consisting of several thousand pieces is introduced into an impregnating die to obtain a propylene polymer ( It can be easily obtained by uniformly impregnating a filament obtained by melting A1) and the modified polypropylene (C) (hereinafter, also simply referred to as “molten resin”) and then cutting the filament to a required length.
  • molten resin modified polypropylene
  • the method for example, in the impregnating die provided at the tip of the extruder, while supplying the molten resin from the extruder, through a continuous glass fiber bundle, after impregnating the molten resin into this glass fiber bundle, The method is to pull out through a nozzle and pelletize to the required length.
  • the propylene polymer (A1), the unsaturated carboxylic acid or the anhydride thereof may be dry-blended with an organic peroxide, charged into a hopper of an extruder, and supplied while being simultaneously modified.
  • the method for impregnating the roving of the reinforcing fiber (B) with the molten resin is not particularly limited, and examples thereof include the method described in [0036] of International Publication 2010/137305.
  • an extruder having two or more feed parts may be used, the decomposer may be charged from the top feed, and another resin may be charged from the side feed.
  • the decomposer organic peroxide is preferable.
  • two or more extruders (extrusion section) may be used and at least one of them may be charged with the decomposing agent.
  • a resin, an unsaturated carboxylic acid or its derivative and a decomposing agent may be added to at least one place of the extruder.
  • the long fiber reinforced propylene resin composition of the present invention may optionally contain a propylene polymer (A2) in addition to the propylene polymer (A1) contained in the long fiber reinforced resin pellets.
  • the propylene-based polymer (A2) is a polymer containing a structural unit derived from propylene as a main structural unit, and examples thereof include a propylene homopolymer, a propylene / ⁇ -olefin random copolymer, and a propylene-based block copolymer. Polymers may be mentioned.
  • the details of the propylene / ⁇ -olefin random copolymer and the propylene block copolymer are as described in the section of the propylene polymer (A1).
  • the propylene polymer (A2) has a melt flow rate (according to ISO 1133-1, 230 ° C., 2.16 kg load) of preferably 10 to 300 g / 10 minutes, more preferably 20 to 250 g / 10 minutes, further preferably Is 20 to 200 g / 10 minutes.
  • the melt flow rate of the propylene-based polymer (A2) is in this range, the molded product formed from the long fiber reinforced propylene-based resin composition of the present invention has excellent mechanical properties.
  • Examples of the shape of the propylene-based polymer (A2) include powder and pellets.
  • the long fiber-reinforced propylene resin composition of the present invention contains an ethylene polymer (D).
  • the density of the ethylene polymer (D) (according to ISO1183) is 865 to 950 kg / m 3 , preferably 875 to 930 kg / m 3 , and more preferably 885 to 910 kg / m 3 .
  • the density of the ethylene-based polymer (D) is within the above range, generation of white haze is suppressed in the molded product of the present invention. The reason is not necessarily clear, but it is presumed that if the density is low, the transferability of the mold during injection molding will be good.
  • the density of the ethylene-based polymer (D) is more than 950 kg / m 3 , the generation of white haze may not be suppressed, and if it is less than 865 kg / m 3 , the molded product of the present invention may be less. The rigidity of is reduced.
  • the content is not more than the upper limit value, the long fiber-reinforced propylene resin composition of the present invention maintains good mechanical properties.
  • the melting point of the ethylene polymer (D) measured by DSC (differential scanning calorimetry) under the following conditions is 50 to 105 ° C, preferably 60 to 105 ° C, more preferably 70 to 105 ° C.
  • the melting point is within the above range, the mold transfer property upon injection molding is improved, and the occurrence of white smear is suppressed.
  • the melting point is higher than 105 ° C., it is difficult to suppress the occurrence of white mist, which is a problem, and if it is excessively lower than 50 ° C., the rigidity of the molded product of the present invention decreases.
  • the heat of fusion ( ⁇ Hm) measured by DSC (differential scanning calorimetry) measurement of the ethylene polymer (D) under the following conditions is 52 J / g or more, preferably 55 J / g or more.
  • the heat of fusion ( ⁇ Hm) measured by DSC (differential scanning calorimetry) measurement of the ethylene polymer (D) under the following conditions is 52 J / g or more, preferably 55 J / g or more.
  • the upper limit is not particularly limited, but is preferably 200 J / g or less, more preferably 125 J / g or less, and particularly preferably 100 J / g or less.
  • the molded product of the present invention has good mechanical properties and suppresses the occurrence of white haze. If the ( ⁇ Hm) of the ethylene polymer (D) is less than 52 J / g, the mechanical properties of the molded product, especially the flexural modulus will decrease. When the heat of fusion ( ⁇ Hm) of the ethylene polymer (D) is within the above range, the molded product of the present invention has good mechanical properties and suppresses the occurrence of white haze. If the ( ⁇ Hm) of the ethylene polymer (D) is less than 52 J / g, the mechanical properties of the molded product, especially the flexural modulus will decrease.
  • DSC measurement conditions As a measurement sample, a sheet having a thickness of 200 ⁇ m formed from pellets of an ethylene polymer at 210 ° C. is used. After using a differential scanning calorimeter (DSC8500 manufactured by Perkin Elmer Co., Ltd.), about 5 mg of a measurement sample was heated from 30 ° C. to 230 ° C. at a rate of 500 ° C./min in a nitrogen atmosphere and kept at 230 ° C. for 10 minutes. Cool from 230 ° C to 30 ° C at a rate of 10 ° C / min and hold at 30 ° C for 1 minute. Next, the measurement sample is heated to 230 ° C.
  • the temperature at which the endothermic peak is detected is the melting point, and the peak area is the heat of fusion ( ⁇ Hm).
  • the melting point is the temperature at which the highest temperature peak is detected.
  • Examples of the ethylene-based polymer (D) include ethylene homopolymers and ethylene / ⁇ -olefin copolymers.
  • the ethylene / ⁇ -olefin copolymer is, for example, a copolymer of ethylene and at least one ⁇ -olefin selected from ⁇ -olefins having 3 to 10 carbon atoms.
  • Preferred ⁇ -olefins are propylene, 1-butene, 1-hexene and 1-octene.
  • the ⁇ -olefin may be used alone or in combination of two or more.
  • the ethylene-based polymer (D) may be a modified ethylene-based polymer or an unmodified ethylene-based polymer.
  • Examples of the modification method include conventionally known methods such as graft modification and copolymerization.
  • the above-mentioned modified polypropylene production method can be referred to.
  • the melt flow rate (according to ISO 1133-1, 190 ° C., 2.16 kg load) of the ethylene polymer (D) is preferably 0.1 to 50 g / 10 minutes, more preferably 1 to 45 g / 10 minutes. Particularly preferably, it is 1 to 40 g / 10 minutes.
  • the melt flow rate is at least the above lower limit, deterioration of resin fluidity and poor dispersion during kneading are less likely to occur, and physical properties such as impact resistance of the molded product are less likely to decrease.
  • the molded product tends to have sufficient impact resistance.
  • Examples of the shape of the ethylene polymer (D) include powder and pellets.
  • the long fiber reinforced propylene resin composition of the present invention may contain carbon black (E).
  • the content of carbon black (E) is preferably 0.4 parts by mass or more, and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the long fiber reinforced resin pellets.
  • the content of carbon black (E) is within the above range, the reinforced fiber molding produced from the long fiber-reinforced propylene-based resin composition is suppressed in the occurrence of white haze and has excellent mechanical properties.
  • the content of carbon black (E) is preferably 100 parts by mass of the long fiber reinforced resin pellets.
  • Examples of carbon black (E) include furnace black, acetylene black, thermal black, and channel black.
  • ⁇ Other ingredients> In the long fiber-reinforced propylene resin composition of the present invention, in addition to the above components, if necessary, a heat stabilizer, an antistatic agent, a weather stabilizer, a light stabilizer, an antiaging agent, an antioxidant, copper. Additives such as a harm inhibitor, a fatty acid metal salt, a softening agent, a dispersant, a filler, a colorant, a pigment, a foaming agent and the like within a range that does not impair the effects of the present invention (for example, relative to 100 mass% of the composition. 5% by mass or less). These components may be masterbatched.
  • the long-fiber-reinforced propylene-based resin composition of the present invention includes the above-mentioned long-fiber-reinforced resin pellets, an ethylene-based polymer (D), and optionally a propylene-based polymer (A2), carbon black (E), Alternatively, it contains other components.
  • the long fiber reinforced propylene resin composition of the present invention preferably satisfies the following formula (1), more preferably the following formula (1a). 5 ⁇ P PP1 + P PP2 + P mPP ⁇ P PE ⁇ 60 (1) 15 ⁇ P PP1 + P PP2 + P mPP ⁇ P PE ⁇ 55 (1a) [In the formulas (1) and (1a), P PP1 , P PP2 , P mPP and P PE are respectively the propylene polymer (A1), the propylene polymer (A2), the reinforcing fiber (B), The propylene polymer (A1), the propylene polymer (A2), the modified polypropylene (C) or the ethylene polymer with respect to the total amount of the modified polypropylene (C) and the ethylene polymer (D).
  • the content of the reinforcing fiber (B) in the composition of the present invention is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, further preferably 20 to 40% by mass, relative to 100% by mass of the composition. Is.
  • the content of the reinforcing fiber (B) is within the above range, it is possible to produce a molded product in which generation of white smear is suppressed and which is excellent in mechanical strength.
  • the content of the modified polypropylene (C) in the composition of the present invention is preferably 0.5 to 5% by mass, more preferably 0.5 to 4% by mass, further preferably 1 with respect to 100% by mass of the composition. It is from 0.0 to 3.0% by mass.
  • a molded product having excellent mechanical properties can be manufactured with excellent processability by a molding method such as an injection molding method.
  • the content of the ethylene polymer (D) in the composition of the present invention is preferably 3 to 35% by mass, more preferably 5 to 35% by mass, still more preferably 8% with respect to 100% by mass of the composition. Is about 35% by mass.
  • the content of the ethylene polymer (D) is within the above range, it is possible to produce a molded product in which generation of white smear is suppressed and which is excellent in mechanical strength.
  • the content of the carbon black (E) in the composition of the present invention is preferably 0.3% by mass or more and more preferably 0.5% by mass or more based on 100% by mass of the composition.
  • the content of carbon black (E) is within the above range, it is possible to produce a molded product in which generation of white smear is suppressed and which is excellent in mechanical strength.
  • the content of carbon black (E) is preferably 1. It is 0 mass% or less.
  • the composition preferably satisfies the following formula (2), more preferably the following formula (2a), and further preferably the following formula (2b).
  • MFR PP + mPP is represented by the following Formula (3).
  • MFR PP + mPP 10 ⁇ [(Log (MFR PP1 ) ⁇ PP PP1 + Log (MFR PP2 ) ⁇ PP PP2 + Log (MFR mPP ) ⁇ PP mPP ) / (PP PP1 + PP PP2 + PP mPP )]... (3)
  • MFR PP1 , MFR PP2 and MFR mPP correspond to ISO 1133-1 of the propylene polymer (A1), the propylene polymer (A2) or the modified polypropylene (C), respectively. According to the melt flow rate (g / 10 minutes) measured under the conditions of 230 ° C. and 2.16 kg load.
  • PP PP1 , PP PP2 and PP mPP are the propylene polymer (A1), the propylene polymer (A2), the reinforcing fiber (B), the modified polypropylene (C) and the ethylene polymer (D), respectively. ) To the total amount (mass) of the propylene polymer (A1), the propylene polymer (A2) or the modified polypropylene (C) (%). )]
  • MFR PP + mPP is a polypropylene resin contained in the long fiber reinforced propylene resin composition of the present invention (that is, the propylene polymer (A1), the propylene polymer (A2) and the modified polypropylene (C)). ) It is an index of the melt flow rate as a whole, and when MFR PP + mPP is in this range, a molded product having excellent mechanical properties can be injection-molded from the composition with good processability.
  • the long-fiber-reinforced propylene-based resin composition of the present invention comprises a long-fiber-reinforced resin pellet, an ethylene-based polymer (D), a propylene-based polymer (A2) if necessary, and a carbon black (E) if necessary. ) And other components as required, for example, by dry blending.
  • the long fiber reinforced molding according to the present invention is composed of a composition containing a propylene polymer (A), a reinforcing fiber (B), a modified polypropylene (C), and an ethylene polymer (D).
  • the propylene-based polymer (A) usually comprises the propylene-based polymer (A1) and optionally the propylene-based polymer (A2).
  • the carbon black (E) may be contained in the composition, if necessary, and the above-mentioned other components may be contained in the composition, if necessary.
  • propylene-based polymer (A1), propylene-based polymer (A2), reinforcing fiber (B), modified polypropylene (C), ethylene-based polymer (D), carbon black (E) and other components are particularly Unless stated otherwise, it is as described above. Further, the content of each component in the composition and the technical significance thereof, unless otherwise specified, the content of each component in the long fiber reinforced propylene resin composition according to the present invention described above and its technical It has the same meaning.
  • the length of the reinforcing fiber (B) in the molded article of the present invention is usually different from the length of the reinforcing fiber (B) in the long fiber reinforced propylene resin composition of the present invention. This is because the reinforcing fiber (B) is broken and shortened during molding.
  • the length of the reinforcing fibers (B) in the long-fiber-reinforced molded product according to the present invention is determined by extracting a predetermined number (1000) of the reinforcing fibers (B) from the molded product and measuring each fiber length thereof.
  • the weight average fiber length calculated based on the following formula (4) is usually 0.5 to 5 mm, preferably 0.8 to 3 mm.
  • Weight average fiber length ⁇ (fiber length) 2 / ⁇ fiber length (4)
  • the long fiber reinforced molding according to the present invention preferably satisfies the following formula (1 ′), more preferably the following formula (1a ′). 5 ⁇ P PP + P mPP ⁇ P PE ⁇ 60 (1 ′) 15 ⁇ P PP + P mPP ⁇ P PE ⁇ 55 (1a ′) [In the formulas (1 ′) and (1a ′), P PP , P mPP and P PE are respectively the propylene polymer (A), the reinforcing fiber (B), the modified polypropylene (C) and the ethylene polymer.
  • the long fiber reinforced molded article according to the present invention is a resin composition containing a propylene polymer (A), a reinforcing fiber (B), a modified polypropylene (C), and an ethylene polymer (D), for example, the present invention described above.
  • the long fiber-reinforced propylene resin composition according to the above can be produced by molding.
  • the molding method known molding methods such as an injection molding method, an extrusion molding method, a hollow molding method, a compression molding method, an injection compression molding method, a gas injection injection molding or a foam injection molding can be applied without particular limitation.
  • the injection molding method, the compression molding method and the injection compression molding method are preferable, and the injection molding method is preferable from the viewpoint of producing a molded article having an excellent appearance (that is, generation of white smear is suppressed).
  • the molded product of the present invention can be suitably used in various fields such as automobile interior / exterior parts and home electric appliance parts. Examples of automobile interior / exterior parts include inner materials for back doors.
  • melt flow rate According to ISO 1133-1, the melt flow rate of the raw material resin was measured under the conditions shown in Table 1 under a load of 2.16 kg.
  • MFR PP + mPP MFR PP + mPP was calculated by the above-mentioned formula (3).
  • Measurement condition As a measuring device, DSC8500 manufactured by Perkin Elmer was used. About 5 mg of measurement sample was heated from 30 ° C to 230 ° C at a rate of 500 ° C / min in a nitrogen atmosphere, held at 230 ° C for 10 minutes, and then cooled from 230 ° C to 30 ° C at a rate of 10 ° C / min. And kept at 30 ° C. for 1 minute. Next, the measurement sample was heated to 230 ° C. at 10 ° C./minute, and the temperature at which the endothermic peak was detected in the endothermic curve was taken as the melting point and its area as the heat of fusion.
  • V mPP 10 6 ⁇ (M BF ⁇ M AF ) / M BF (Wherein, V mPP, M BF and M AF, respectively, volatiles content (ppm), the weight of the sample before drying, or the weight of the sample after drying.)
  • the specific manufacturing conditions are as follows.
  • Die Attached to the tip of a 50 m ⁇ extruder and linearly arranging four rods in the impregnation section.
  • ⁇ Fiber bundle Glass roving bundled with 4000 glass fibers with a diameter of 17 ⁇ m surface-treated with aminosilane (Nippon Electric Glass ( Co., Ltd., trade name: T-431N) -Preheating temperature: 200 ° C.
  • Comparative Example 1 A long-fiber-reinforced resin composition obtained by dry-blending 60 parts by mass of the long-fiber-reinforced resin pellet (hereinafter also referred to as “GFMB”) manufactured in Production Example 1, 40 parts by mass of PP2, and 1 part by mass of MB1. was prepared.
  • GFMB long-fiber-reinforced resin pellet
  • Example 1 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Comparative Example 1 except that 40 parts by mass of PP2 was changed to 20 parts by mass of PP2 and 20 parts by mass of PE1. The evaluation results are shown in Table 1.
  • Example 2 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that the amounts of PP2 and PE1 were changed to 30 parts by mass and 10 parts by mass, respectively. The evaluation results are shown in Table 1.
  • Example 3 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that the amounts of PP2 and PE1 were changed to 10 parts by mass and 30 parts by mass, respectively. The evaluation results are shown in Table 1.
  • Example 4 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that the amount of GFMB was changed to 80 parts by weight, the amount of PE1 was changed to 20 parts by weight, and PP2 was not used. The evaluation results are shown in Table 1.
  • Example 5 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that 20 parts by mass of PE1 was changed to 20 parts by mass of PE2. The evaluation results are shown in Table 1.
  • Example 6 A long fiber reinforced resin composition and a molded product thereof were manufactured in the same manner as in Example 1 except that 20 parts by mass of PE1 was changed to 20 parts by mass of PE3. The evaluation results are shown in Table 1.
  • Example 2 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that 20 parts by mass of PE1 was changed to 20 parts by mass of PE4. The evaluation results are shown in Table 1.
  • Example 3 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that 20 parts by mass of PE1 was changed to 20 parts by mass of EOR1. The evaluation results are shown in Table 1.
  • Example 5 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 1 except that 20 parts by mass of PE1 was changed to 20 parts by mass of EBR1. The evaluation results are shown in Table 1.
  • Example 7 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Comparative Example 6 except that the amount of MB2 was changed to 1.5 parts by mass. The evaluation results are shown in Table 1.
  • Example 8 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 7 except that the amount of MB2 was changed to 3 parts by mass. The evaluation results are shown in Table 1.
  • Example 9 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Comparative Example 7 except that 20 parts by mass of PP2 was changed to 5 parts by mass of PP2 and 15 parts by mass of PE1. The evaluation results are shown in Table 1.
  • Example 10 A long fiber reinforced resin composition and a molded product thereof were produced in the same manner as in Example 9 except that 2 parts by mass of MB3 was changed to 2 parts by mass of MB4. The evaluation results are shown in Table 1.
  • Example 11 A long fiber reinforced resin composition and a molded article thereof were produced in the same manner as in Example 9 except that 2 parts by mass of MB3 was changed to 3 parts by mass of MB5. The evaluation results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

[課題]外観に優れ、かつ機械的特性にも優れた強化繊維成形体の製造に適した組成物を提供すること。 [解決手段]長繊維強化樹脂ペレット、および密度が865~950kg/m3、融点が50~105℃、かつ融解熱が52J/g以上である、変性されていてもよいエチレン系重合体(D)、ならびに任意にプロピレン系重合体(A2)を含み、前記長繊維強化樹脂ペレットが、プロピレン系重合体(A1)、強化繊維(B)、および変性ポリプロピレン(C)を含むペレットである長繊維強化プロピレン系樹脂組成物。

Description

長繊維強化プロピレン系樹脂組成物および長繊維強化成形体
 本発明は長繊維強化プロピレン系樹脂組成物および長繊維強化成形体に関する。
 繊維強化樹脂成形体は軽量であり、かつ剛性および耐熱性に優れているので、電気機器、自動車、住宅設備、医療器具など多様な分野で利用されている。
 繊維強化樹脂成形体としては、例えば、ガラス繊維等の強化繊維と、ポリアミド、ポリプロピレン等の熱可塑性樹脂を用いた成形体が知られている。このような繊維強化樹脂成形体は、自動車分野において、エンジンルーム内のファンシュラウドやプロペラファン等の高剛性および耐熱性が要求される部材に利用されている。
 しかし、ガラス繊維等の強化繊維を用いた繊維強化プロピレン系樹脂組成物を成形した場合、得られる成形体表面には強化繊維の浮きによる凹凸が発生し外観が悪くなる。このような問題点に鑑み、特許文献1には、繊維強化プロピレン系樹脂組成物に用いられるプロピレン系重合体のコモノマー由来の構造単位の量と立体規則性との関係を調整することにより、成形体の耐熱性、機械的特性および成形体表面の外観をバランスよく向上させることが記載されている。この繊維強化プロピレン系樹脂組成物には、さらに酸変性ポリプロピレン、耐衝撃改良剤(エチレン系重合体など)などが含まれてもよい。
 また、特許文献2にはプロピレン系重合体、ガラス繊維、変性プロピレン重合体およびエチレン・α-ランダム共重合体を含む組成物からなる、高強度で外観が良好な自動二輪車用リアグリップが開示されている。
 特許文献3には、メタロセン触媒を用いて製造された熱可塑性樹脂、不飽和カルボン酸等で変性された変性ポリオレフィン樹脂および強化繊維を含有してなる長繊維強化熱可塑性樹脂粒子(A)と、希釈用ポリオレフィン樹脂粒子(B)とからなる長繊維強化粒子ブレンドが開示され、この長繊維強化粒子ブレンドを用いることにより、射出成形時に射出シリンダー内での強化繊維の開繊性が良好で、繊維塊の成形体表面への浮き出しを抑えた射出成形体が得られると記載されている。
国際公開第2017/195787号 国際公開第2015/002217号 特開2010-106262号公報
 しかしながら、従来の繊維強化プロピレン系樹脂組成物から得られた成形体には、成形体表面に浮き出た強化繊維により、成形体表面に白いモヤがかかったような外観不良(以下「白モヤの発生)とも記載する。)の改善の点で、さらなる改善の余地があった。
 したがって本発明は、外観に優れ、かつ機械的特性にも優れた強化繊維成形体を提供すること、およびこのような強化繊維成形体の製造に適した組成物を提供することを目的とする。
 本発明の要旨は以下のとおりである。
 [1]
 長繊維強化樹脂ペレット、および密度が865~950kg/m3、融点が50~105℃、かつ融解熱が52J/g以上である、変性されていてもよいエチレン系重合体(D)、ならびに任意にプロピレン系重合体(A2)を含み、
 前記長繊維強化樹脂ペレットが、プロピレン系重合体(A1)、強化繊維(B)、および変性ポリプロピレン(C)を含むペレットである長繊維強化プロピレン系樹脂組成物。
 [2]
 前記エチレン系重合体(D)の含有量が3~35質量%である前記[1]の長繊維強化プロピレン系樹脂組成物。
 [3]
 さらにカーボンブラック(E)を含有し、前記カーボンブラック(E)の含有量が、前記長繊維強化樹脂ペレット100質量部に対して0.4質量部以上である前記[1]または[2]の長繊維強化プロピレン系樹脂組成物。
 [4]
 下記式(1)を満たす前記[1]~[3]のいずれかの長繊維強化プロピレン系樹脂組成物。
   5≦PPP1+PPP2+PmPP-PPE≦60 …(1)
〔式(1)において、PPP1、PPP2、PmPPおよびPPEは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記変性ポリプロピレン(C)または前記エチレン系重合体(D)の割合(質量%)である。〕
 [5]
 下記式(2)を満たす前記[1]~[4]のいずれかの長繊維強化プロピレン系樹脂組成物。
   25≦MFRPP+mPP≦500 …(2)
〔式(2)において、MFRPP+mPPは、下記式(3)で表される。
   MFRPP+mPP
  =10^[(Log(MFRPP1)×PPPP1+Log(MFRPP2)×PPPP2+Log(MFRmPP)×PPmPP)/(PPPP1+PPPP2+PPmPP)] …(3)
(式(3)中、MFRPP1、MFRPP2およびMFRmPPは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)または前記変性ポリプロピレン(C)の、ISO 1133-1に準拠し、230℃、2.16kg荷重の条件下で測定されるメルトフローレート(g/10分)である。
 PPPP1、PPPP2およびPPmPPは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)または前記変性ポリプロピレン(C)の割合(質量%)である。)〕
 [6]
 前記変性ポリプロピレン(C)の原料に由来する揮発成分の含有量が、前記変性ポリプロピレン(C)の質量を基準として9000ppm以下である前記[1]~[5]のいずれかの長繊維強化プロピレン系樹脂組成物。
 [7]
 プロピレン系重合体(A)、
 強化繊維(B)
 変性ポリプロピレン(C)、および
 密度が865~950kg/m3、融点が50~105℃、かつ融解熱が52J/g以上である、変性されていてもよいエチレン系重合体(D)を含有する組成物からなる長繊維強化成形体。
 [8]
 前記組成物中の前記エチレン系重合体(D)の含有量が3~35質量%である前記[6]の長繊維強化成形体。
 [9]
 前記組成物がさらにカーボンブラック(E)を含有し、前記組成物中の前記カーボンブラック(E)の含有量が0.3質量%以上である前記[7]または[8]の長繊維強化成形体。
 [10]
 下記式(1´)を満たす前記[7]~[9]のいずれかの長繊維強化成形体。
   5≦PPP+PmPP-PPE≦60 …(1´)
〔式(1´)において、PPP、PmPPおよびPPEは、それぞれ前記組成物中の前記プロピレン系重合体(A)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A)、前記変性ポリプロピレン(C)または前記エチレン系重合体(D)の割合(質量%)である。〕
 [11]
 前記変性ポリプロピレン(C)の原料に由来する揮発成分の含有量が、前記変性ポリプロピレン(C)の質量を基準として9000ppm以下である前記[7]~[10]のいずれかの長繊維強化成形体。
 本発明の長繊維強化成形体は、外観に特に優れ(すなわち、白モヤの発生が抑制され)、かつ機械的特性にも優れている。また、このような長繊維強化成形体は、本発明の長繊維強化プロピレン系樹脂組成物から形成することができる。
ペレット製造装置の模式図である。
 本発明をさらに詳細に説明する。
        [長繊維強化プロピレン系樹脂組成物]
 本発明に係る長繊維強化プロピレン系樹脂組成物は、
 長繊維強化樹脂ペレット、およびエチレン系重合体(D)、ならびに任意にプロピレン系重合体(A2)を含み、
 前記長繊維強化樹脂ペレットが、プロピレン系重合体(A1)、強化繊維(B)、および変性ポリプロピレン(C)を含むペレットであることを特徴としている。
 <長繊維強化樹脂ペレット>
 《プロピレン系重合体(A1)》
 前記プロピレン系重合体(A1)は、プロピレン由来の構造単位を主たる構造単位として含む重合体であり、その例として、プロピレン単独重合体、プロピレン・α-オレフィンランダム共重合体、およびプロピレン系ブロック共重合体が挙げられる。
 前記プロピレン・α-オレフィンランダム共重合体としては、プロピレンとエチレンおよび炭素数4~8のα-オレフィンから選ばれる少なくとも1種のオレフィンとのランダム共重合体が挙げられる。前記α-オレフィンの例としては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテンおよび1-オクテンが挙げられ、好ましくはエチレンおよび1-ブテンが挙げられ、特に好ましくはエチレンが挙げられる。前記ランダム共重合体中の全構造単位に占めるプロピレン由来構造単位の割合は、好ましくは90モル%以上、より好ましくは95モル%以上である。
 前記プロピレン系ブロック共重合体は、好ましくはプロピレン単独重合体部分とプロピレン・α-オレフィンランダム共重合体部分とから構成される。プロピレン・α-オレフィンランダム共重合体部分の具体的な態様は、前記プロピレン・α-オレフィンランダム共重合体の具体的な態様と同様である。
 前記プロピレン系ブロック共重合体は、n-デカン溶剤分別した場合、23℃のn-デカンに可溶な成分(以下「デカン可溶部」とも記載する。)と23℃のn-デカンに不溶な成分(以下「デカン不溶部」とも記載する。)とに分別される。デカン可溶部の含有量は、通常は5~30質量%、好ましくは5~25質量%、より好ましくは8~18質量%であり、デカン不溶部の含有量は、通常は70~95質量%、好ましくは75~95質量%、より好ましくは82~92質量%である。
 長繊維強化樹脂ペレットに含まれるプロピレン系重合体(A1)のメルトフローレート(ISO 1133-1に準拠、230℃、2.16kg荷重)は、好ましくは20g/10分以上、より好ましくは30g/10分以上、さらに好ましくは40g/10分以上であり、その上限は、たとえば300g/10分であってもよい。長繊維強化樹脂ペレットに含まれるプロピレン系重合体(A1)のメルトフローレートがこの範囲にあると、本発明の組成物は射出成形に適した流動性を有する。
 《強化繊維(B)》
 前記強化繊維(B)としては、例えば、炭素繊維、ナイロン繊維、セルロース繊維、バサルト繊維、ガラス繊維が挙げられ、これらの中でもガラス繊維が好ましい。
 ガラス繊維としては、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)および耐アルカリガラスなどのガラスを溶融紡糸してフィラメント状の繊維にしたものを挙げることができる。
 本発明ではガラス繊維としては、通常、ガラス長繊維が使用される。ガラス長繊維の原料としては、通常、連続状ガラス繊維束が用いられ、これはガラスロービングとして市販されている。その平均繊維径は、通常3~30μm、好ましくは13~20μm、さらに好ましくは16~18μmであり、フィラメント集束本数は、通常400~10,000本、好ましくは1,000~6,000本、さらに好ましくは3,000~5,000本である。
 また、特開平6-114830号公報に記載されているように、複数の繊維束を束ねて使用することもできる。
 長繊維強化樹脂ペレット中の強化繊維(B)の繊維長は、通常4~10mm、好ましくは5~8mmであり、繊維径は、通常10~20μm、好ましくは13~18μmである。
 長繊維強化樹脂ペレット中で、強化繊維(B)はペレットの長手方向に略平行に配列しており、強化繊維(B)の繊維長は、通常、ペレットの粒子長(すなわち、ペレットの長手方向の長さ)と実質的に同一である。
 長繊維強化樹脂ペレット中の強化繊維(B)の含有量は、長繊維強化樹脂ペレット100質量%に対し、好ましくは40~70質量%、より好ましくは45~60質量%である。強化繊維(B)の含有量が前記下限値以上であると、良好な生産性で長繊維強化樹脂ペレットを製造することができる。強化繊維(B)の含有量が前記上限値以下であると、強化繊維(B)の繊維束に樹脂を充分に含浸させることができる。
 強化繊維(B)の表面には、電解処理または収束剤処理などの様々な表面処理方法で官能基が導入されていてもよい。表面処理には、収束剤を用いることが好ましく、カップリング剤を含む収束剤を用いることが特に好ましい。表面処理された強化繊維(B)を用いると、強化繊維(B)と樹脂成分との接着性が向上し、強度および外観の良好な成形体が得られる。
 収束剤の例としては、特開2003-253563号公報に記載されたカップリング剤を含むものが挙げられる。
 カップリング剤としては、たとえば、アミノシラン、エポキシシラン等のシラン系カップリング剤、およびチタン系カップリング剤が挙げられる。
 また、収束剤としては、カップリング剤の他に、取り扱いを容易にするために樹脂エマルジョンを含むものも好ましい。
 収束剤に含まれる樹脂エマルジョンとしては、たとえば、ウレタン系、オレフィン系、アクリル系、ナイロン系、ブタジエン系またはエポキシ系のものが挙げられ、これらのうち、ウレタン系またはオレフィン系のものが好ましい。
 《変性ポリプロピレン(C)》
 前記変性ポリプロピレン(C)は、ポリプロピレンを酸変性することにより得られる。その変性方法としては、従来公知の方法、例えばグラフト変性および共重合化が挙げられる。変性されるポリプロピレンとしては、前記プロピレン系重合体(A1)が挙げられる。
 変性に用いる変性剤としては、例えば、不飽和カルボン酸およびその誘導体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、マレイン酸、ナジック酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸、およびフタル酸が挙げられる。また、その誘導体の例としては、酸無水物、エステル、アミド、イミド、および金属塩等が挙げられ、具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ナジック酸、無水フタル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N-ブチルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウム等が挙げられる。これらの中でも、不飽和ジカルボン酸およびその誘導体が好ましく、無水マレイン酸および無水フタル酸がより好ましい。
 変性ポリプロピレン(C)の酸付加量、換言すると変性ポリプロピレン(C)中の前記酸に由来する構造の割合は、好ましくは0.1~14重量%であり、より好ましくは0.3~8重量%である。酸付加量は、樹脂のIRスペクトルを測定し、1,670cm-1~1,810cm-1のピークの面積から決定される。
 ポリプロピレンの変性は、長繊維強化樹脂ペレットの製造に先立って行ってもよく、長繊維強化樹脂ペレット製造の際の溶融混練過程において行ってもよい。
 変性ポリプロピレン(C)に、変性剤またはこれに由来する揮発性の成分(以下、これらをまとめて「揮発成分」とも記載する。)が残存していると、長繊維強化プロピレン系樹脂組成物から形成された成形体の表面に、曇りが発生する場合がある。このため、前記揮発成分が少ないことが好ましく、下記式で定義される、変性ポリプロピレン(C)中の揮発成分含有量は、好ましくは9000ppm以下、より好ましくは7000ppm以下である。揮発成分の量は、変性ポリプロピレン(C)を真空乾燥させることなどにより、低減させることができる。
 (揮発成分含有量の測定方法)
 試料(変性ポリプロピレン(C))を、その重量を測定した後、温度を240℃に設定したオーブンに入れ、その内部をコンプレッサーにより真空状態とし、60分間放置することにより、乾燥させる。乾燥後の試料の重量を測定し、下記式から揮発成分含量を算出する。
   VmPP=106×(MBF-MAF)/MBF
(式中、VmPP、MBFおよびMAFは、それぞれ、揮発成分含有量(ppm)、乾燥前の試料の重量、または乾燥後の試料の重量である。)
 変性ポリプロピレン(C)としては、強化繊維(B)とプロピレン系重合体(A)との親和性を改良し、製造される成形体の強度または耐熱性を向上させる観点から、無水脂肪酸変性ポリプロピレンが好ましく、特に無水マレイン酸変性ポリプロピレンが好ましい。
 長繊維強化樹脂ペレット中の変性ポリプロピレン(C)の量は、長繊維強化樹脂ペレット100質量%に対し、好ましくは1~5質量%であり、より好ましくは1.5~3.5質量%である。変性ポリプロピレン(C)の量が前記下限値以上であると、強化繊維(B)と樹脂成分との接着性が良好である。変性ポリプロピレン(C)の量が前記上限値以下であると、変性ポリプロピレン(C)の分子量が低くなり過ぎないことから、本発明の組成物から製造される成形体の強度が良好である。
 変性ポリプロピレン(C)のメルトフローレート(ISO 1133-1に準拠、230℃、2.16kg荷重。)は、好ましくは50g/10分以上、より好ましくは80g/10分以上であり、その上限値は、たとえば1000g/10分であってもよい。変性ポリプロピレン(C)のメルトフローレートがこの範囲にあると、本発明の長繊維強化プロピレン系樹脂組成物は、射出成形に適した流動性を有する。
 (長繊維強化樹脂ペレット)
 長繊維強化樹脂ペレットは、プロピレン系重合体(A1)、強化繊維(B)および変性ポリプロピレン(C)を含有する。
 長繊維強化樹脂ペレットの形状は、通常、柱状である。
 長繊維強化樹脂ペレットの粒子長(長手方向の長さ)は通常4~10mmであり、好ましくは5~8mmである。長繊維強化樹脂ペレットの粒子長が前記下限値以上であると、本発明の長繊維強化プロピレン系樹脂組成物から製造される成形体は機械的特性に優れる。また、長繊維強化樹脂ペレットの粒子長が前記上限値以下であると、本発明の長繊維強化プロピレン系樹脂組成物は成形性に優れる。
 長繊維強化樹脂ペレット中では、通常、強化繊維(B)がペレットの長手方向に略平行に配列している。
 長繊維強化樹脂ペレット中での強化繊維(B)のアスペクト比が大きいために、前記長繊維強化樹脂ペレットを含む本発明の長繊維強化プロピレン系樹脂組成物から形成された成形体は機械的強度に優れる。
 長繊維強化樹脂ペレットは、引き抜き法など、公知の成形方法で製造することができ、具体的には、数千本からなる強化繊維(B)のロービングを含浸ダイスに導き、プロピレン系重合体(A1)および変性ポリプロピレン(C)を溶融したもの(以下単に「溶融樹脂」ともいう。)をフィラメント間に均一に含浸させた後、必要な長さに切断することにより容易に得ることができる。
 この方法では、例えば、押出機先端に設けられた含浸ダイス中に、押出機より溶融樹脂を供給する一方、連続状ガラス繊維束を通過させ、このガラス繊維束に溶融樹脂を含浸させた後、ノズルを通して引き抜き、必要な長さにペレタイズする方法がとられる。
 また、プロピレン系重合体(A1)、不飽和カルボン酸またはその無水物を、有機過酸化物と共にドライブレンドして押出機のホッパーに投入し、変性を同時に行いながら供給する方法もとり得る。
 強化繊維(B)のロービングに溶融樹脂を含浸させるための方法としては、特に制限はなく、例えば国際公開2010/137305の[0036]に記載された方法が挙げられる。
 樹脂を溶融する過程において、フィード部を2つ以上有する押出機を使用し、トップフィードから分解剤を投入し、サイドフィードから別の樹脂を投入してもよい。分解剤としては、有機過酸化物が好ましい。また、2台以上の押出機(押出し部)を使用し、そのうち少なくとも1台に分解剤を投入してもよい。さらに、押出機の少なくとも1個所に樹脂、不飽和カルボン酸またはその誘導体ならびに分解剤を投入してもよい。
 <プロピレン系重合体(A2)>
 本発明の長繊維強化プロピレン系樹脂組成物は、前記長繊維強化樹脂ペレットに含まれるプロピレン系重合体(A1)とは別に、任意にプロピレン系重合体(A2)を含有してもよい。
 前記プロピレン系重合体(A2)は、プロピレン由来の構造単位を主たる構造単位として含む重合体であり、その例として、プロピレン単独重合体、プロピレン・α-オレフィンランダム共重合体、およびプロピレン系ブロック共重合体が挙げられる。
 前記プロピレン・α-オレフィンランダム共重合体、および前記プロピレン系ブロック共重合体の詳細は、上述のプロピレン系重合体(A1)の欄で説明したとおりである。
 プロピレン系重合体(A2)のメルトフローレート(ISO 1133-1に準拠、230℃、2.16kg荷重)は、好ましくは10~300g/10分、より好ましくは20~250g/10分、さらに好ましくは20~200g/10分である。プロピレン系重合体(A2)のメルトフローレートがこの範囲にあると、本発明の長繊維強化プロピレン系樹脂組成物から形成される成形体は、機械的特性に優れる。
 プロピレン系重合体(A2)の形状の例としては、粉末およびペレットが挙げられる。
 <エチレン系重合体(D)>
 本発明の長繊維強化プロピレン系樹脂組成物は、エチレン系重合体(D)を含有する。
 エチレン系重合体(D)の密度(ISO1183に準拠)は、865~950kg/m3、好ましくは875~930kg/m3、より好ましくは885~910kg/m3である。エチレン系重合体(D)の密度が上記範囲内にあると、本発明の成形体において白モヤの発生が抑制される。その理由は、必ずしも定かではないが、密度が低いと射出成形をした際の金型の転写性が良好になる為と推察される。一方、エチレン系重合体(D)の密度が950kg/m3よりも過大であると、白モヤの発生を抑制できないことがあり、865kg/m3よりも過小であると、本発明の成形体の剛性が低下する。上記含有量が上記上限値以下であると、本発明の長繊維強化プロピレン系樹脂組成物では、良好な機械的特性が維持される。
 エチレン系重合体(D)の、DSC(示差走査熱量分析)測定により下記条件で測定される融点は、50~105℃、好ましくは60~105℃、より好ましくは70~105℃である。融点が上記範囲内にあると射出成形した際の金型転写性があがり、白モヤの発生が抑制される。一方、融点が105℃よりも高いと課題である白モヤの発生が抑制されにくく、50℃よりも過度に低いと本発明の成形体の剛性が低下する。
 エチレン系重合体(D)のDSC(示差走査熱量分析)測定により下記条件で測定される融解熱(ΔHm)は、52J/g以上、好ましくは55J/g以上である。エチレン系重合体(D)のDSC(示差走査熱量分析)測定により下記条件で測定される融解熱(ΔHm)は、52J/g以上、好ましくは55J/g以上である。上限は特に限定されないが、好ましくは200J/g以下、さらに好ましくは125J/g以下、特に好ましくは100J/g以下である。エチレン系重合体(D)の融解熱(ΔHm)が上記範囲内にあると、本発明の成形体において機械的特性が良好であり、また白モヤの発生が抑制される。エチレン系重合体(D)の(ΔHm)が52J/gよりも過小であると、成形体の機械的特性、特に曲げ弾性率が低下する。エチレン系重合体(D)の融解熱(ΔHm)が上記範囲内にあると、本発明の成形体において機械的特性が良好であり、また白モヤの発生が抑制される。エチレン系重合体(D)の(ΔHm)が52J/gよりも過小であると、成形体の機械的特性、特に曲げ弾性率が低下する。
 (DSC測定条件)
 測定試料として、エチレン系重合体のペレットから210℃で成形した厚さ200μmのシートを用いる。
 示差走査熱量計(パーキンエルマー社製 DSC8500)を用いて、約5mgの測定試料を、窒素雰囲気下で500℃/分の速度で30℃から230℃に加熱し、230℃で10分間保持した後、10℃/分の速度で230℃から30℃まで冷却し、30℃で1分保持する。次いで、測定試料を10℃/分の速度で230℃まで加熱し、その際の吸熱曲線において、吸熱ピークが検出される温度を融点、そのピーク面積を融解熱(ΔHm)とする。複数のピークが検出される場合には、最も高温側のピークが検出される温度を融点とする。
 前記エチレン系重合体(D)としては、例えば、エチレン単独重合体、およびエチレン・α-オレフィン共重合体が挙げられる。エチレン・α-オレフィン共重合体は、例えば、エチレンと炭素原子数3~10のα-オレフィンから選ばれる1種以上のα-オレフィンとを共重合したものである。α-オレフィンとしては、プロピレン、1-ブテン、1-へキセン、および1-オクテンが好ましい。α-オレフィンは1種単独で用いてもよく、2種以上を併用してもよい。
 エチレン系重合体(D)は、変性されたエチレン系重合体であってもよく、変性されていないエチレン系重合体であってもよい。変性方法としては、従来公知の方法、例えばグラフト変性および共重合化が挙げられ、変性方法の詳細は、上述した変性ポリプロピレンの製造方法を参照することができる。
 エチレン系重合体(D)のメルトフローレート(ISO 1133-1に準拠、190℃、2.16kg荷重)は、好ましくは0.1~50g/10分、より好ましくは1~45g/10分、特に好ましくは1~40g/10分である。メルトフローレートが前記下限値以上であれば、樹脂流動性の低下や混練時の分散不良が起こりにくく、成形体の耐衝撃性等の物性が低下しにくい。一方、前記上限値以下であれば、成形体に十分な耐衝撃性が得られる傾向にある。
 エチレン系重合体(D)の形状の例としては、粉末およびペレットが挙げられる。
 <カーボンブラック(E)>
 本発明の長繊維強化プロピレン系樹脂組成物は、カーボンブラック(E)を含有してもよい。
 カーボンブラック(E)の含有量は、前記長繊維強化樹脂ペレット100質量部に対して好ましくは0.4質量部以上であり、より好ましくは0.5質量部以上である。カーボンブラック(E)の含有量が上記範囲にあると、長繊維強化プロピレン系樹脂組成物から製造される強化繊維成形体は、白モヤの発生が抑制され、かつ機械的特性にも優れる。また、カーボンブラックが強化繊維とプロピレン系重合体との界面接着を阻害することを抑制する観点からは、カーボンブラック(E)の含有量は、前記長繊維強化樹脂ペレット100質量部に対して好ましくは1.5質量部以下である。
 カーボンブラック(E)としては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラックが挙げられる。
 <その他の成分>
 本発明の長繊維強化プロピレン系樹脂組成物には、上記各成分以外に、必要に応じて、耐熱安定剤、帯電防止剤、耐候安定剤、耐光安定剤、老化防止剤、酸化防止剤、銅害防止剤、脂肪酸金属塩、軟化剤、分散剤、充填剤、着色剤、顔料、発泡剤などの添加剤が、本発明の効果を損なわない範囲で(たとえば、前記組成物100質量%に対し5質量%以下の割合で)配合されていてもよい。これらの成分はマスターバッチ化されていてもよい。
 (長繊維強化プロピレン系樹脂組成物)
 本発明の長繊維強化プロピレン系樹脂組成物は、上述した、長繊維強化樹脂ペレット、およびエチレン系重合体(D)、ならびに必要に応じてプロピレン系重合体(A2)、カーボンブラック(E)、またはその他の成分を含有する。
 本発明の長繊維強化プロピレン系樹脂組成物は、好ましくは下記式(1)を、より好ましくは下記式(1a)を満たす。
    5≦PPP1+PPP2+PmPP-PPE≦60 …(1)
   15≦PPP1+PPP2+PmPP-PPE≦55 …(1a)
〔式(1)および(1a)において、PPP1、PPP2、PmPPおよびPPEは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記変性ポリプロピレン(C)または前記エチレン系重合体(D)の割合(質量%)である。〕
 PPP1+PPP2+PmPP-PPEが前記範囲にあると、白モヤの発生が抑制され、かつ機械的特性に優れた成形体を製造することができる。
 本発明の組成物中の強化繊維(B)の含有量は、組成物100質量%に対し、好ましくは10~50質量%、より好ましくは15~45質量%、さらに好ましくは20~40質量%である。強化繊維(B)の含有量が上記範囲にあると、白モヤの発生が抑制され、かつ機械的強度に優れた成形体を製造することができる。
 本発明の組成物中の変性ポリプロピレン(C)の含有量は、組成物100質量%に対し、好ましくは0.5~5質量%、より好ましくは0.5~4質量%、さらに好ましくは1.0~3.0質量%である。変性ポリプロピレン(C)含有量がこの範囲にあると、機械的特性に優れた成形体を、射出成形法等の成形方法により優れた加工性で製造することができる。
 本発明の組成物中の前記エチレン系重合体(D)の含有量は、前記組成物100質量%に対し、好ましくは3~35質量%、より好ましくは5~35質量%、さらに好ましくは8~35質量%である。エチレン系重合体(D)の含有量が上記範囲にあると、白モヤの発生が抑制され、かつ機械的強度に優れた成形体を製造することができる。
 本発明の組成物中の前記カーボンブラック(E)の含有量は、前記組成物100質量%に対し、好ましくは0.3質量%以上、より好ましくは0.5質量%以上である。カーボンブラック(E)の含有量が上記範囲にあると、白モヤの発生が抑制され、かつ機械的強度に優れた成形体を製造することができる。また、カーボンブラックが強化繊維とプロピレン系重合体との界面接着を阻害することを抑制する観点からは、カーボンブラック(E)の含有量は、前記組成物100質量%に対し、好ましくは1.0質量%以下である。
 前記組成物は、好ましくは下記式(2)を、より好ましくは下記式(2a)を、さらに好ましくは下記式(2b)を満たす。
   25≦MFRPP+mPP≦500 …(2)
   50≦MFRPP+mPP≦400 …(2a)
   70≦MFRPP+mPP≦300 …(2b)
〔式(2)、(2a)および(2b)において、MFRPP+mPPは、下記式(3)で表される。
   MFRPP+mPP
  =10^[(Log(MFRPP1)×PPPP1+Log(MFRPP2)×PPPP2+Log(MFRmPP)×PPmPP)/(PPPP1+PPPP2+PPmPP)] …(3)
(式(3)中、MFRPP1、MFRPP2およびMFRmPPは、それぞれ前記前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)または前記変性ポリプロピレン(C)の、ISO 1133-1に準拠し、230℃、2.16kg荷重の条件下で測定されるメルトフローレート(g/10分)である。)
 PPPP1、PPPP2およびPPmPPは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量(質量)に対する、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)または前記変性ポリプロピレン(C)の質量の割合(%)である。)〕
 MFRPP+mPPは、本発明の長繊維強化プロピレン系樹脂組成物に含まれるポリプロピレン系樹脂(すなわち、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)および前記変性ポリプロピレン(C))全体としてのメルトフローレートの指標であり、MFRPP+mPPがこの範囲にあると、前記組成物から、機械的特性に優れた成形体を良好な加工性で射出成形することができる。
 (長繊維強化プロピレン系樹脂組成物の製造方法)
 本発明の長繊維強化プロピレン系樹脂組成物は、長繊維強化樹脂ペレットと、エチレン系重合体(D)と、必要に応じてプロピレン系重合体(A2)と、必要に応じてカーボンブラック(E)と、必要に応じてその他の成分とを混合することにより、例えばドライブレンドすることにより製造することができる。
            [長繊維強化成形体]
 本発明に係る長繊維強化成形体は、プロピレン系重合体(A)、強化繊維(B)、変性ポリプロピレン(C)、およびエチレン系重合体(D)を含有する組成物からなる。
 前記プロピレン系重合体(A)は、通常、前記プロピレン系重合体(A1)および任意に前記プロピレン系重合体(A2)からなる。
 前記組成物には、必要に応じて前記カーボンブラック(E)が含まれていてもよく、必要に応じて上述したその他の成分が含まれていてもよい。
 プロピレン系重合体(A1)、プロピレン系重合体(A2)、強化繊維(B)、変性ポリプロピレン(C)、エチレン系重合体(D)、カーボンブラック(E)、その他の成分の詳細は、特に断りのない限り上述のとおりである。また、前記組成物中の各成分の含有量およびその技術的意義も、特に断りのない限り、上述した本発明に係る長繊維強化プロピレン系樹脂組成物中の各成分の含有量およびその技術的意義と同様である。
 本発明の成形体の中での強化繊維(B)の長さは、通常、本発明の長繊維強化プロピレン系樹脂組成物の中での強化繊維(B)の長さとは異なる。これは、成形中に強化繊維(B)が折損して短くなるためである。本発明に係る長繊維強化成形体中での強化繊維(B)の長さは、成形体から所定本数(1000本)の強化繊維(B)を抽出し、それらの各繊維長を測定して下記式(4)に基づいて算出される重量平均繊維長で表すと、通常0.5~5mm、好ましくは0.8~3mmである。
   重量平均繊維長=Σ(繊維長)2/Σ繊維長 …(4)
 本発明に係る長繊維強化成形体は、好ましくは下記式(1´)を、より好ましくは下記式(1a´)を満たす。
    5≦PPP+PmPP-PPE≦60 …(1´)
   15≦PPP+PmPP-PPE≦55 …(1a´)
〔式(1´)および(1a´)において、PPP、PmPPおよびPPEは、それぞれ前記プロピレン系重合体(A)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A)、前記変性ポリプロピレン(C)、または前記エチレン系重合体(D)の割合(質量%)である。〕
 PPP+PmPP-PPEが前記範囲にあると、本発明に係る長繊維強化成形体は、白モヤの発生が抑制され、かつ機械的特性に優れる。
 本発明に係る長繊維強化成形体は、プロピレン系重合体(A)、強化繊維(B)、変性ポリプロピレン(C)、およびエチレン系重合体(D)を含む樹脂組成物、例えば上述した本発明に係る長繊維強化プロピレン系樹脂組成物を、成形することにより製造できる。
 成形方法としては、射出成形法、押出成形法、中空成形法、圧縮成形法、射出圧縮成形法、ガス注入射出成形又は発泡射出成形等の公知の成形法を特に制限なく適用でき、これらの中でも特に射出成形法、圧縮成形法及び射出圧縮成形法が好ましく、外観に優れた(すなわち、白モヤの発生が抑制された)成形体を製造する観点からは、射出成形法が好ましい。
 本発明の成形体は、自動車内外装部品、家電部品などの種々の分野に好適に用いることができる。自動車内外装部品の例としては、バックドアのインナー材が挙げられる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。
 (測定方法)
 各種物性の測定ないし評価方法は、以下のとおりである。
 [メルトフローレート]
 ISO 1133-1に準拠し、表1に記載の温度、2.16kg荷重の条件下で原料樹脂のメルトフローレートを測定した。
 [MFR PP+mPP
 前述した式(3)によりMFRPP+mPPを算出した。
 [融点、融解熱(ΔHm)]
 融点および融解熱は示差走査熱量計を用いて測定した。測定用のサンプルとしては、ペレット適量を210℃で作製した厚さ200μmのシートを用いた。
 《測定条件》
 測定装置として、パーキンエルマー社製DSC8500を使用した。
 約5mgの測定試料を、窒素雰囲気下で500℃/分の速度で30℃から230℃へ加熱し、230℃で10分間保持した後、10℃/分の速度で230℃から30℃まで冷却し、30℃で1分保持した。次いで、測定試料を10℃/分で230℃まで加熱し、その際の吸熱曲線において、吸熱ピークが検出される温度を融点、その面積を融解熱とした。
 [成形体の外観]
 実施例等で製造された成形体の外観を、以下の基準で評価した。
  ○:白モヤがほぼ見えない状態
  △:白モヤは見えるが、×に比べると見えにくい状態
  ×:白モヤが一目瞭然の状態
 [引張破壊応力]
 ISO 527に準拠して下記の条件で引張試験を行い、引張破壊応力を測定した。
 《測定条件》
  温度:23℃
  試験片形状:ISO-Atype多目的試験片
  試験速度:5mm/分
  つかみ具間距離:115mm
 [曲げ強さ、曲げ弾性率]
 ISO 178に準拠して、下記の条件で曲げ強さおよび曲げ弾性率を測定した。
 《測定条件》
  温度:23℃
  試験片形状:10mm(幅)×4mm(厚さ)×80mm(長さ)
  試験速度:5mm/分
  支点間距離:64mm
 [シャルピー衝撃強さ]
 ISO 179に準拠して、下記の条件でノッチ付きシャルピー衝撃強さを測定した。
 《測定条件》
  温度:23℃
  試験片形状:10mm(幅)×80mm(長さ)×4mm(厚さ)
  ノッチは機械加工である。
 [揮発性分含有量]
 試料として、4gの変性ポリプロピレンを用いた。
 試料を、その重量を測定した後、温度を240℃に設定したオーブンに入れ、その内部をコンプレッサーにより真空状態とし、60分間放置することにより、乾燥させた。乾燥後の試料の重量を測定し、下記式から揮発成分含量を算出した。
   VmPP=106×(MBF-MAF)/MBF
(式中、VmPP、MBFおよびMAFは、それぞれ、揮発成分含有量(ppm)、乾燥前の試料の重量、または乾燥後の試料の重量である。)
 (使用原料)
 実施例等で使用された原料は、以下のとおりである。
《プロピレン系重合体》
 プライムポリマー(株)製の下記物性を有するプロピレン単独重合体を使用した。
・PP1(プロピレン単独重合体(MFR(230℃、2.16kg荷重)=200g/10分)
・PP2(プロピレン単独重合体(MFR(230℃、2.16kg荷重)=30g/10分))
《変性ポリプロピレン》
・mPP1(Adivant製、商品名:POLYBOND3200(MFR(230℃、2.16kg荷重)=200g/10分))
《エチレン系重合体》
・PE1(プライムポリマー(株)製、商品名:SP0540、直鎖状低密度ポリエチレン(MFR(190℃、2.16kg荷重)=3.8g/10分、密度=903kg/m3、融点=91℃、融解熱=72J/g))
・PE2(プライムポリマー(株)製、商品名:SP9046、直鎖状低密度ポリエチレン(MFR(190℃、2.16kg荷重)=3.8g/10分、密度=890kg/m3、融点=86℃、融解熱=59J/g))
・PE3(プライムポリマー(株)製、商品名:SP0510、直鎖状低密度ポリエチレン(MFR(190℃、2.16kg荷重)=1.2g/10分、密度=903kg/m3、融点=91℃、融解熱=97J/g))
・PE4(プライムポリマー(株)製、商品名:SP2540、直鎖状低密度ポリエチレン(MFR(190℃、2.16kg荷重)=3.8g/10分、密度=925kg/m3、融点=107℃、融解熱=128J/g))
・EOR1(ダウ製、商品名:EG8100、MFR(190℃、2.16kg荷重)=1.0g/10分、密度=871kg/m3、融点=63℃、融解熱(ΔHm)=13J/g)
・EOR2(ダウ製、商品名:EG8402、MFR(190℃、2.16kg荷重)=30g/10分、密度=900kg/m3、融点=111℃、融解熱(ΔHm)=78J/g)
・EBR1(三井化学(株)製、商品名:A4090S、MFR(190℃、2.16kg荷重)=3.6g/10分、密度=893kg/m3、融点=80℃、融解熱(ΔHm)=47J/g)
《強化繊維》
・GF(アミノシランで表面処理された繊維径17μmのガラス繊維4000本束ねガラスロービング、日本電気硝子(株)製、商品名:T-431N)
《カーボンブラック(CB)のマスターバッチ(MB)》
・MB1(カーボンブラックを30質量%含むマスターバッチ、トーヨーカラー(株)製、商品名:PPM-01143)
・MB2(カーボンブラックを20質量%含むマスターバッチ)
・MB3(カーボンブラックを15質量%含むマスターバッチ)
・MB4(カーボンブラックを22.5質量%含むマスターバッチ)
・MB5(カーボンブラックを45質量%含むマスターバッチ)
 (繊維強化樹脂組成物の製造)
 [製造例1]
 強化繊維含有樹脂の製造
 図1に示すペレット製造装置を用いて長繊維強化樹脂ペレットを製造した。
 図1中、10はダイ、20はダイ10へ溶融樹脂を供給する押出機、30は繊維束Fのロール、40はダイ10に引き込まれる繊維束Fに一定の張力を与えるテンションロール群、50はダイ10から引き出された溶融樹脂含浸繊維束を冷却するための冷却手段、60は繊維束の引き出しロール、70は引き出された溶融樹脂含浸繊維束をカッ卜するペレタイザである。この装置では、3本のそれぞれ独立した繊維束Fに、溶融樹脂を同時に含浸させている。
 具体的な製造条件は、以下の通りである。・ダイ:50mφ押出機の先端に取り付け、含浸部に4本のロッドを直線状に配置・繊維束:アミノシランで表面処理された繊維径17μmのガラス繊維4000本束ねたガラスロービング(日本電気硝子(株)製、商品名:T-431N)・予熱温度:200℃・樹脂:プロピレン系重合体PP1と無水マレイン酸変性ポリプロピレンmPP1とを、PP1:mPP1=48:2の質量比で混合したもの・溶融温度:280℃・ロッド:四本6mm(直径)×3mm(長さ)
 上記条件下で、テンションロール群で繊維束の量を調整しつつダイ内に送り込み含浸を行い、その後、ダイから引き出して冷却し、ペレタイザで粒子長が8mm、強化繊維の長さが8mm、強化繊維の含有量が50質量%の長繊維強化樹脂ペレットを作製した。
 [比較例1]
 60質量部の製造例1で製造された長繊維強化樹脂ペレット(以下「GFMB」とも記載する。)、40質量部のPP2、および1質量部のMB1をドライブレンドして長繊維強化樹脂組成物を調製した。
 次に、この長繊維強化樹脂組成物から、射出成形機を用いて以下の条件で機械的特性評価用の各種試験片を製造し、評価した。
  射出成形機:NEX110、日精樹脂工業(株)製
  成形温度:240℃
  金型温度:40℃
 また、この長繊維強化樹脂組成物から、射出成形機を用いて以下の条件で平板状成形体を製造し、その外観を評価した。
  射出成形機:J110AD、(株)日本製鋼所製
  金型:140mm×140mm×3mm、フィルムゲート
  成形温度:250℃
  金型温度:45℃
 評価結果を表1に示す。
 [実施例1]
 40質量部のPP2を20質量部のPP2および20質量部のPE1に変更したこと以外は比較例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例2]
 PP2およびPE1の量をそれぞれ30質量部および10質量部に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例3]
 PP2およびPE1の量をそれぞれ10質量部および30質量部に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例4]
 GFMBの量を80重量部、PE1の量を20重量部に変更し、かつPP2を用いなかったこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例5]
 20質量部のPE1を20質量部のPE2に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例6]
 20質量部のPE1を20質量部のPE3に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [比較例2]
 20質量部のPE1を20質量部のPE4に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [比較例3]
 20質量部のPE1を20質量部のEOR1に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [比較例4]
 20質量部のPE1を20質量部のEOR2に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [比較例5]
 20質量部のPE1を20質量部のEBR1に変更したこと以外は実施例1と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例7]
 MB2の量を1.5質量部に変更したこと以外は比較例6と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例8]
 MB2の量を3質量部に変更したこと以外は実施例7と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [比較例6]
 80質量部のGFMB、20質量部のPP2、および2質量部のMB3をドライブレンドして長繊維強化樹脂組成物を調製した。評価結果を表1に示す。
 [実施例9]
 20質量部のPP2を5質量部のPP2および15質量部のPE1に変更したこと以外は比較例7と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例10]
 2質量部のMB3を2質量部のMB4に変更したこと以外は実施例9と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
 [実施例11]
 2質量部のMB3を3質量部のMB5に変更したこと以外は実施例9と同様にして、長繊維強化樹脂組成物およびその成形体を製造した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
10 ダイ
20 押出機
30 繊維束Fのロール
40 テンションロール群
50 冷却手段
60 引き出しロール
70 ペレタイザ

Claims (11)

  1.  長繊維強化樹脂ペレット、および密度が865~950kg/m3、融点が50~105℃、かつ融解熱が52J/g以上である、変性されていてもよいエチレン系重合体(D)、ならびに任意にプロピレン系重合体(A2)を含み、
     前記長繊維強化樹脂ペレットが、プロピレン系重合体(A1)、強化繊維(B)、および変性ポリプロピレン(C)を含むペレットである長繊維強化プロピレン系樹脂組成物。
  2.  前記エチレン系重合体(D)の含有量が3~35質量%である請求項1に記載の長繊維強化プロピレン系樹脂組成物。
  3.  さらにカーボンブラック(E)を含有し、前記カーボンブラック(E)の含有量が、前記長繊維強化樹脂ペレット100質量部に対して0.4質量部以上である請求項1または2に記載の長繊維強化プロピレン系樹脂組成物。
  4.  下記式(1)を満たす請求項1~3のいずれか一項に記載の長繊維強化プロピレン系樹脂組成物。
       5≦PPP1+PPP2+PmPP-PPE≦60 …(1)
    〔式(1)において、PPP1、PPP2、PmPPおよびPPEは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記変性ポリプロピレン(C)または前記エチレン系重合体(D)の割合(質量%)である。〕
  5.  下記式(2)を満たす請求項1~4のいずれか一項に記載の長繊維強化プロピレン系樹脂組成物。
       25≦MFRPP+mPP≦500 …(2)
    〔式(2)において、MFRPP+mPPは、下記式(3)で表される。
       MFRPP+mPP
      =10^[(Log(MFRPP1)×PPPP1+Log(MFRPP2)×PPPP2+Log(MFRmPP)×PPmPP)/(PPPP1+PPPP2+PPmPP)] …(3)
    (式(3)中、MFRPP1、MFRPP2およびMFRmPPは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)または前記変性ポリプロピレン(C)の、ISO 1133-1に準拠し、230℃、2.16kg荷重の条件下で測定されるメルトフローレート(g/10分)である。
     PPPP1、PPPP2およびPPmPPは、それぞれ前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A1)、前記プロピレン系重合体(A2)または前記変性ポリプロピレン(C)の割合(質量%)である。)〕
  6.  前記変性ポリプロピレン(C)の原料に由来する揮発成分の含有量が、前記変性ポリプロピレン(C)の質量を基準として9000ppm以下である請求項1~5のいずれか一項に記載の長繊維強化プロピレン系樹脂組成物。
  7.  プロピレン系重合体(A)、
     強化繊維(B)、
     変性ポリプロピレン(C)、および
     密度が865~950kg/m3、融点が50~105℃、かつ融解熱が52J/g以上である、変性されていてもよいエチレン系重合体(D)を含有する組成物からなる長繊維強化成形体。
  8.  前記組成物中の前記エチレン系重合体(D)の含有量が3~35質量%である請求項6に記載の長繊維強化成形体。
  9.  前記組成物がさらにカーボンブラック(E)を含有し、前記組成物中の前記カーボンブラック(E)の含有量が0.3質量%以上である請求項7または8に記載の長繊維強化成形体。
  10.  下記式(1´)を満たす請求項7~9のいずれか一項に記載の長繊維強化成形体。
       5≦PPP+PmPP-PPE≦60 …(1´)
    〔式(1´)において、PPP、PmPPおよびPPEは、それぞれ前記組成物中の前記プロピレン系重合体(A)、前記強化繊維(B)、前記変性ポリプロピレン(C)および前記エチレン系重合体(D)の合計量に対する、前記プロピレン系重合体(A)、前記変性ポリプロピレン(C)または前記エチレン系重合体(D)の割合(質量%)である。〕
  11.  前記変性ポリプロピレン(C)の原料に由来する揮発成分の含有量が、前記変性ポリプロピレン(C)の質量を基準として9000ppm以下である請求項7~10のいずれか一項に記載の長繊維強化成形体。
PCT/JP2019/043049 2018-11-02 2019-11-01 長繊維強化プロピレン系樹脂組成物および長繊維強化成形体 WO2020091051A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/289,419 US20210347954A1 (en) 2018-11-02 2019-11-01 Long fiber-reinforced propylene resin composition and long fiber-reinforced molded product
CN201980068353.6A CN112888739B (zh) 2018-11-02 2019-11-01 长纤维强化丙烯系树脂组合物和长纤维强化成型体
JP2020554984A JP7198287B2 (ja) 2018-11-02 2019-11-01 長繊維強化プロピレン系樹脂組成物および長繊維強化成形体
EP19880664.8A EP3875533A4 (en) 2018-11-02 2019-11-01 PROPYLENE BASED LONG FIBER REINFORCED RESIN COMPOSITION AND LONG FIBER REINFORCED MOLDING

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018207293 2018-11-02
JP2018-207293 2018-11-02
JP2019066856 2019-03-29
JP2019-066856 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020091051A1 true WO2020091051A1 (ja) 2020-05-07

Family

ID=70463809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043049 WO2020091051A1 (ja) 2018-11-02 2019-11-01 長繊維強化プロピレン系樹脂組成物および長繊維強化成形体

Country Status (5)

Country Link
US (1) US20210347954A1 (ja)
EP (1) EP3875533A4 (ja)
JP (1) JP7198287B2 (ja)
CN (1) CN112888739B (ja)
WO (1) WO2020091051A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181010A1 (ja) 2021-02-25 2022-09-01 株式会社プライムポリマー ガラス繊維強化プロピレン系樹脂組成物
WO2024018948A1 (ja) * 2022-07-20 2024-01-25 株式会社プライムポリマー ガラス長繊維強化プロピレン系樹脂組成物ペレットの製造方法および射出成形体の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183531A (ja) * 1989-12-14 1991-08-09 Idemitsu Petrochem Co Ltd 繊維強化樹脂成形材料の製造装置
JPH04298553A (ja) * 1991-03-27 1992-10-22 Idemitsu Petrochem Co Ltd ガラス繊維強化ポリオレフィン樹脂成形品およびその製造方法
JPH06114830A (ja) 1992-10-05 1994-04-26 Asahi Fiber Glass Co Ltd 連続ガラス繊維強化熱可塑性樹脂ペレットの製造方法
JPH11129246A (ja) * 1997-10-28 1999-05-18 Idemitsu Petrochem Co Ltd ガラス繊維強化熱可塑性樹脂ペレット
JP2000289023A (ja) * 1999-04-07 2000-10-17 Idemitsu Petrochem Co Ltd 無機繊維含有熱可塑性樹脂ペレット、該ペレットを用いた成形方法および成形品
JP2000344977A (ja) * 1999-03-29 2000-12-12 Dainichiseika Color & Chem Mfg Co Ltd 不織布調意匠用樹脂組成物
WO2001059009A1 (fr) * 2000-02-14 2001-08-16 Asahi Kasei Kabushiki Kaisha Article forme de resine thermoplastique presentant une rigidite et une resistance elevees
JP2003253563A (ja) 2001-12-27 2003-09-10 Asahi Fiber Glass Co Ltd ガラス繊維用集束剤、オレフィン樹脂強化用ガラス繊維、および繊維強化成形用オレフィン樹脂組成物の製造方法
WO2009116608A1 (ja) * 2008-03-21 2009-09-24 株式会社プライムポリマー 長繊維強化樹脂組成物及びその成形体
JP2010106262A (ja) 2008-09-30 2010-05-13 Mitsui Chemicals Inc 長繊維強化粒子ブレンドおよびその成形体
WO2010137305A1 (ja) 2009-05-29 2010-12-02 株式会社プライムポリマー 長繊維強化樹脂組成物及びその成形体
WO2015002217A1 (ja) 2013-07-05 2015-01-08 株式会社プライムポリマー プロピレン系重合体組成物からなる自動二輪車用リアグリップ
WO2017195787A1 (ja) 2016-05-10 2017-11-16 株式会社プライムポリマー 繊維強化ポリプロピレン系樹脂組成物およびその成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200600639B (en) * 2003-06-24 2007-03-28 Mitsui Chemicals Inc Polypropylene resin composition
WO2016076411A1 (ja) * 2014-11-13 2016-05-19 三井化学株式会社 炭素繊維強化樹脂組成物及びそれから得られる成形品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183531A (ja) * 1989-12-14 1991-08-09 Idemitsu Petrochem Co Ltd 繊維強化樹脂成形材料の製造装置
JPH04298553A (ja) * 1991-03-27 1992-10-22 Idemitsu Petrochem Co Ltd ガラス繊維強化ポリオレフィン樹脂成形品およびその製造方法
JPH06114830A (ja) 1992-10-05 1994-04-26 Asahi Fiber Glass Co Ltd 連続ガラス繊維強化熱可塑性樹脂ペレットの製造方法
JPH11129246A (ja) * 1997-10-28 1999-05-18 Idemitsu Petrochem Co Ltd ガラス繊維強化熱可塑性樹脂ペレット
JP2000344977A (ja) * 1999-03-29 2000-12-12 Dainichiseika Color & Chem Mfg Co Ltd 不織布調意匠用樹脂組成物
JP2000289023A (ja) * 1999-04-07 2000-10-17 Idemitsu Petrochem Co Ltd 無機繊維含有熱可塑性樹脂ペレット、該ペレットを用いた成形方法および成形品
WO2001059009A1 (fr) * 2000-02-14 2001-08-16 Asahi Kasei Kabushiki Kaisha Article forme de resine thermoplastique presentant une rigidite et une resistance elevees
JP2003253563A (ja) 2001-12-27 2003-09-10 Asahi Fiber Glass Co Ltd ガラス繊維用集束剤、オレフィン樹脂強化用ガラス繊維、および繊維強化成形用オレフィン樹脂組成物の製造方法
WO2009116608A1 (ja) * 2008-03-21 2009-09-24 株式会社プライムポリマー 長繊維強化樹脂組成物及びその成形体
JP2010106262A (ja) 2008-09-30 2010-05-13 Mitsui Chemicals Inc 長繊維強化粒子ブレンドおよびその成形体
WO2010137305A1 (ja) 2009-05-29 2010-12-02 株式会社プライムポリマー 長繊維強化樹脂組成物及びその成形体
WO2015002217A1 (ja) 2013-07-05 2015-01-08 株式会社プライムポリマー プロピレン系重合体組成物からなる自動二輪車用リアグリップ
WO2017195787A1 (ja) 2016-05-10 2017-11-16 株式会社プライムポリマー 繊維強化ポリプロピレン系樹脂組成物およびその成形体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAMADA, FUMIYUKI: "Melting of Crystalline Polymers", KOBUNSHI, vol. 16, no. 6, 1967, pages 694 - 706, XP009527477, DOI: 10.1295/kobunshi.16.694 *
See also references of EP3875533A4
SHINZO MATSUYAMA: "Special Feature: General Overview of Polyethylene Geomembranes", GEOSYNTHETIC TECHNICAL INFORMATION, vol. 12, no. 3, 30 November 1995 (1995-11-30), pages 32 - 37, XP009527530, ISSN: 1884-6637, DOI: 10.11504/jcigstechnical1995.12.3_32 *
YOSHIHIRO SATO: "About Differential Scanning Calorimetry (DSC)", AICHI INDUSTRIAL SCIENCE AND TECHNOLOGY CENTER NEWS, no. 115, 13 October 2011 (2011-10-13), JP, pages 5, XP009527531 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181010A1 (ja) 2021-02-25 2022-09-01 株式会社プライムポリマー ガラス繊維強化プロピレン系樹脂組成物
WO2024018948A1 (ja) * 2022-07-20 2024-01-25 株式会社プライムポリマー ガラス長繊維強化プロピレン系樹脂組成物ペレットの製造方法および射出成形体の製造方法

Also Published As

Publication number Publication date
EP3875533A1 (en) 2021-09-08
US20210347954A1 (en) 2021-11-11
JP7198287B2 (ja) 2022-12-28
EP3875533A4 (en) 2022-08-10
CN112888739B (zh) 2024-02-09
CN112888739A (zh) 2021-06-01
JPWO2020091051A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
US10336869B2 (en) Carbon fiber-reinforced resin composition and shaped product obtained therefrom
JP6070575B2 (ja) ペレット混合物、炭素繊維強化ポリプロピレン樹脂組成物、成形体及びペレット混合物の製造方法
WO2008056646A1 (fr) Composition de résine composite renforcée de fibres organiques et moulage de cette résine
WO2008078838A1 (ja) プロピレン系樹脂組成物及びそれからなる成形体
JPH06340784A (ja) プロピレン系耐熱樹脂成形材料及びその成形体
JP2001316534A (ja) 長繊維強化ポリプロピレン樹脂組成物および成形品
JP4606719B2 (ja) 黒系着色した繊維強化樹脂組成物
WO2020091051A1 (ja) 長繊維強化プロピレン系樹脂組成物および長繊維強化成形体
WO2008078839A1 (ja) プロピレン系樹脂組成物およびそれからなる成形体
JP5659363B2 (ja) ポリビニルアルコール繊維含有ポリオレフィン樹脂組成物およびその成形体
JP6797707B2 (ja) 繊維強化樹脂組成物からなる射出成形体の製造方法
JP4743593B2 (ja) 長繊維強化ポリプロピレン樹脂成形材料の製造方法
JP2002212364A (ja) 長繊維強化ポリプロピレン樹脂組成物
CN108026295B (zh) 附着有丙烯类树脂的纤维束
US20240141151A1 (en) Glass fiber-reinforced propylene-based resin composition
JP2018154795A (ja) 炭素繊維強化樹脂組成物及び成形体
JP6806964B1 (ja) 炭素繊維強化樹脂組成物
JP6715686B2 (ja) 繊維強化樹脂組成物及び射出発泡成形方法
JPH07309979A (ja) ガラス繊維強化ポリオレフィン樹脂組成物
JP4779300B2 (ja) 繊維−ポリプロピレン樹脂複合体とそのペレット、および繊維強化樹脂成形品
WO2023120464A1 (ja) ガラス繊維強化プロピレン系樹脂組成物
JP2005002202A (ja) 繊維強化樹脂組成物及びその成形品
JP6879763B2 (ja) 繊維強化樹脂組成物からなる射出成形体の製造方法
JPH11226948A (ja) 長繊維強化熱可塑性樹脂成形材料、長繊維強化熱可塑性樹脂成形品および成形品の製造方法
CN115335449A (zh) 纤维强化聚丙烯系树脂组合物及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019880664

Country of ref document: EP

Effective date: 20210602