WO2020090801A1 - コイン形リチウム二次電池 - Google Patents
コイン形リチウム二次電池 Download PDFInfo
- Publication number
- WO2020090801A1 WO2020090801A1 PCT/JP2019/042327 JP2019042327W WO2020090801A1 WO 2020090801 A1 WO2020090801 A1 WO 2020090801A1 JP 2019042327 W JP2019042327 W JP 2019042327W WO 2020090801 A1 WO2020090801 A1 WO 2020090801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- coin
- negative electrode
- secondary battery
- lithium
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 115
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 55
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 55
- 239000002131 composite material Substances 0.000 claims abstract description 41
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 33
- 239000003792 electrolyte Substances 0.000 claims abstract description 16
- 238000005476 soldering Methods 0.000 claims abstract description 13
- 229910000679 solder Inorganic materials 0.000 claims description 42
- 239000000919 ceramic Substances 0.000 claims description 29
- 230000007423 decrease Effects 0.000 abstract 1
- 239000011164 primary particle Substances 0.000 description 57
- 239000002245 particle Substances 0.000 description 54
- 239000000843 powder Substances 0.000 description 50
- 239000010410 layer Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 35
- 238000010304 firing Methods 0.000 description 34
- 239000002994 raw material Substances 0.000 description 30
- 239000011148 porous material Substances 0.000 description 29
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 239000002002 slurry Substances 0.000 description 23
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 22
- 229910052799 carbon Inorganic materials 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 21
- 239000011230 binding agent Substances 0.000 description 17
- 238000001887 electron backscatter diffraction Methods 0.000 description 15
- 230000002093 peripheral effect Effects 0.000 description 15
- 239000010936 titanium Substances 0.000 description 15
- 239000000395 magnesium oxide Substances 0.000 description 14
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- 239000002612 dispersion medium Substances 0.000 description 7
- 238000007606 doctor blade method Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000004014 plasticizer Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000002482 conductive additive Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 150000002642 lithium compounds Chemical class 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 3
- 229910015118 LiMO Inorganic materials 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- 229910018871 CoO 2 Inorganic materials 0.000 description 2
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- CHZUADMGGDUUEF-UHFFFAOYSA-N [Mn](=O)(=O)([O-])[O-].[Co+2] Chemical compound [Mn](=O)(=O)([O-])[O-].[Co+2] CHZUADMGGDUUEF-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HAUKUGBTJXWQMF-UHFFFAOYSA-N lithium;propan-2-olate Chemical compound [Li+].CC(C)[O-] HAUKUGBTJXWQMF-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/109—Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a coin type lithium secondary battery for reflow soldering.
- Japanese Patent No. 4392189 discloses a coin type secondary battery for soldering by a reflow method, and a lithium-containing manganese oxide is used as a positive electrode active material.
- the concentration of the lithium salt contained in the electrolytic solution to 1.5 to 2.5 mol / l, the reaction between the electrolytic solution and the lithium-containing manganese oxide due to the solder reflow is suppressed, which is good. Excellent reflow heat resistance.
- Japanese Patent No. 5587052 discloses a positive electrode of a lithium secondary battery, and the positive electrode active material layer of the positive electrode has a thickness of 30 ⁇ m or more and a porosity of 3 to 30%.
- a lithium composite oxide sintered body plate having an open pore ratio of 70% or more is used.
- International Publication No. 2017/146088 discloses a lithium secondary battery including a solid electrolyte, and an oriented sintered body plate is used as a positive electrode.
- the oriented sintered body plate includes a plurality of primary particles composed of a lithium composite oxide such as lithium cobalt oxide (LiCoO 2 ), and the plurality of primary particles are larger than 0 ° and 30 ° with respect to the plate surface of the positive electrode. It is oriented at the following average orientation angles.
- Japanese Patent Laying-Open No. 2005-185337 discloses an all-solid-state battery using a lithium titanate (Li 4 Ti 5 O 12 ) sintered body for an electrode.
- the present invention is directed to a coin-type lithium secondary battery for soldering by a reflow method, and an object thereof is to realize a coin-type lithium secondary battery in which deterioration of performance due to solder reflow is suppressed.
- the coin-type lithium secondary battery according to the present invention includes a positive electrode containing a lithium composite oxide, a negative electrode, an electrolyte layer provided between the positive electrode and the negative electrode and containing an electrolytic solution, the positive electrode, the negative electrode, and And an exterior body having a closed space for containing the electrolyte layer.
- the ratio of lithium carbonate contained in the whole of the positive electrode and the negative electrode is 3.0 mass% or less.
- the ratio of lithium carbonate contained in the whole of the positive electrode and the negative electrode is 0.002% by mass or more.
- the negative electrode contains a lithium composite oxide.
- each of the positive electrode and the negative electrode is a sintered body.
- the electrolyte layer includes a ceramic separator, and the positive electrode, the ceramic separator, and the negative electrode are an integral sintered body.
- the coin-shaped lithium secondary battery has a thickness of 0.7 to 1.6 mm, and the coin-shaped lithium secondary battery has a diameter of 10 to 20 mm.
- the energy density of the coin-type lithium secondary battery before solder reflow is 35 to 200 mWh / cm 3 .
- the battery capacity of the coin-type lithium secondary battery after solder reflow is 65% or more of the battery capacity of the coin-type lithium secondary battery before solder reflow.
- FIG. 3 is a side view showing a circuit board assembly.
- FIG. 1 is a diagram showing a configuration of a coin-type lithium secondary battery 1 according to an embodiment of the present invention.
- the coin-type lithium secondary battery 1 (hereinafter, also simply referred to as “coin-type secondary battery 1”) includes a positive electrode 2, a negative electrode 3, an electrolyte layer 4, and an outer casing 5. As described later, the positive electrode 2 contains a lithium composite oxide.
- the electrolyte layer 4 is provided between the positive electrode 2 and the negative electrode 3 and contains the electrolytic solution 42.
- the exterior body 5 has a sealed space inside.
- the positive electrode 2, the negative electrode 3, and the electrolyte layer 4 are housed in the closed space.
- the coin type secondary battery 1 is for soldering by a reflow method, and is electrically connected and mounted on a wiring board by solder reflow.
- the positive electrode 2 containing the lithium composite oxide may contain lithium carbonate due to the reaction of lithium during production.
- the negative electrode 3 contains a lithium composite oxide, as described later.
- the ratio of lithium carbonate contained in the whole of the positive electrode 2 and the negative electrode 3 (hereinafter, simply referred to as “the ratio of lithium carbonate in the electrode”) is 3.0% by mass or less. ..
- the ratio of lithium carbonate in the electrode is obtained by dividing the mass of lithium carbonate contained in the entire positive electrode 2 and the negative electrode 3 by the total mass of the positive electrode 2 and the negative electrode 3.
- the ratio of lithium carbonate in the electrode is the value in the coin-type secondary battery 1 before the solder reflow as described above.
- the coin-type secondary battery 1 is heated to a high temperature (for example, 200 to 260 ° C.) for a predetermined time.
- a high temperature for example, 200 to 260 ° C.
- the battery performance will be deteriorated.
- the reaction between the lithium carbonate in the electrode and the electrolytic solution during the solder reflow has some influence on the electrode.
- One reason may be that gas is generated by the reaction between lithium carbonate and the electrolytic solution.
- the ratio of lithium carbonate in the electrode is 3.0% by mass or less, which is higher than that of the coin-type secondary battery 1 of the comparative example.
- the lithium content is low. This suppresses the reaction between the lithium carbonate and the electrolytic solution 42 or the like during solder reflow, and suppresses the deterioration of performance due to solder reflow.
- the battery capacity after solder reflow is 65% or more (typically 100% or less) of the battery capacity before solder reflow.
- the battery capacity after solder reflow is 75% or more of the battery capacity before solder reflow.
- the ratio of lithium carbonate in the electrode is preferably 2.5% by mass or less and 2.0% by mass or less in order to more reliably suppress the performance deterioration due to solder reflow. It is more preferable to be present, and it is further preferable to be 1.5% by mass or less.
- the positive electrode 2 is washed with water, that is, the lithium carbonate in the positive electrode 2 is dissolved and removed in water to reduce the ratio of lithium carbonate in the electrode. Is also possible.
- the ratio of lithium carbonate in the electrode can be further reduced by washing the positive electrode 2 with warm water.
- the warm water is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher.
- the ratio of lithium carbonate in the electrode is likely to be further increased, but like the positive electrode 2, the ratio of lithium in the raw material of the negative electrode 3 is reduced, and / or the negative electrode 3 It is possible to reduce the ratio of lithium carbonate in the electrode by washing the water with water.
- the ratio of lithium carbonate in the electrode can be measured by the following method, for example. First, the particles obtained by crushing the positive electrode 2 and the negative electrode 3 are suspended in water and allowed to stand for a predetermined time, and then the supernatant liquid is extracted. The supernatant liquid contains lithium carbonate dissolved from the positive electrode 2 and the negative electrode 3. Subsequently, the mass of lithium carbonate contained in the supernatant is measured by subjecting the supernatant to ICP (Inductively Coupled Plasma) analysis. Then, the mass of lithium carbonate is divided by the total mass of the positive electrode 2 and the negative electrode 3 measured in advance to obtain the ratio of lithium carbonate in the electrode.
- ICP Inductively Coupled Plasma
- the ratio of lithium carbonate in the electrode when the ratio of lithium carbonate in the electrode is excessively small, deterioration in performance due to solder reflow may not be sufficiently suppressed. Although the reason for this is not clear, it is considered that one factor is that the electrode active material itself easily reacts with the electrolytic solution or the like because the lithium carbonate hardly exists on the surface of the electrode, and the electrode deteriorates.
- the ratio of lithium carbonate in the electrode is preferably 0.002 mass% or more, and 0 It is more preferably 0.003 mass% or more. In the coin-type secondary battery 1, the ratio of lithium carbonate in the electrodes may be 0.10 mass% or more.
- the thickness of the coin-type secondary battery 1 (the distance between the outer surface of the flat plate portion 511 of the positive electrode can 51 and the outer surface of the flat plate portion 521 of the negative electrode can 52 described later) is, for example, 0.7 to 1.6 mm. ..
- the upper limit of the thickness of the coin-type secondary battery 1 is preferably 1.4 mm, more preferably 1. It is 2 mm.
- the lower limit of the thickness of the coin-type secondary battery 1 is preferably 0.8 mm, more preferably 0. It is 9 mm.
- the diameter of the coin-type secondary battery 1 (the diameter of the flat plate portion 511 of the positive electrode can 51 described later) is, for example, 10 to 20 mm.
- the upper limit of the diameter of the coin-type secondary battery 1 is preferably 18 mm, and more preferably 16 mm.
- the lower limit of the diameter of the coin-shaped secondary battery 1 is preferably 10.5 mm, more preferably 11 mm.
- a lithium composite oxide sintered body plate is used as the positive electrode 2 and a titanium-containing sintered body plate is used as the negative electrode 3.
- a coin-type lithium secondary battery that has excellent heat resistance that enables soldering by the reflow method, is small and thin, has high capacity and high output, and can be charged with a constant voltage (CV) is realized.
- the energy density of the coin-type secondary battery 1 before solder reflow is preferably 35 mWh / cm 3 or more.
- the lower limit value of the energy density is more preferably 40 mWh / cm 3 , and further preferably 50 mWh / cm 3 .
- the upper limit of the energy density of the coin-type secondary battery 1 is not particularly limited, but is 200 mWh / cm 3 , for example.
- the positive electrode 2 is, for example, a plate-shaped sintered body. That the positive electrode 2 is a sintered body means that the positive electrode 2 does not contain a binder or a conductive additive. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the positive electrode 2 is a sintered body, the heat resistance of the positive electrode 2 against solder reflow can be ensured. Further, since the positive electrode 2 does not contain a binder, deterioration of the positive electrode 2 due to the electrolytic solution 42 is also suppressed.
- the positive electrode 2 is preferably porous, that is, it contains pores.
- the positive electrode 2 contains a lithium composite oxide, and the preferred positive electrode 2 is a lithium composite oxide sintered body plate. It is particularly preferable that the lithium composite oxide is lithium cobalt oxide (typically LiCoO 2 and hereinafter abbreviated as “LCO”).
- LCO lithium cobalt oxide
- Various lithium complex oxide sintered body plates or LCO sintered body plates are known, and are disclosed in, for example, the above-mentioned Document 2 (Japanese Patent No. 5587052) and the above-mentioned Document 3 (International Publication No. 2017/146088). Things can be used. In the following description, it is assumed that the positive electrode 2 is a lithium composite oxide sintered body plate, but the positive electrode 2 may be other than the sintered body depending on the design of the coin-type secondary battery 1.
- the positive electrode 2 is a powder dispersion type positive electrode (so-called coated electrode) produced by applying and drying a positive electrode active material containing a lithium composite oxide, a positive electrode mixture containing a conductive additive, a binder and the like. ..
- the lithium composite oxide sintered body plate includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles have an average orientation of more than 0 ° and 30 ° or less with respect to the plate surface of the positive electrode. It is preferably an oriented positive electrode plate that is oriented at an angle.
- FIG. 2 is a diagram showing an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate
- FIG. 3 is an electron backscatter diffraction (EBSD: Electron Backscatter Diffraction) in a cross section perpendicular to the plate surface of the oriented positive electrode plate.
- EBSD Electron Backscatter Diffraction
- FIG. 4 is a diagram showing a histogram showing the distribution of orientation angles of the primary particles 21 in the EBSD image of FIG. 3 on an area basis.
- discontinuity of crystal orientation can be observed.
- the orientation angle of each primary particle 21 is shown by the shade of color, and the darker the color, the smaller the orientation angle.
- the orientation angle is an inclination angle formed by the (003) plane of each primary particle 21 with respect to the plate surface direction. 2 and 3, pores are shown in black inside the oriented positive electrode plate.
- the oriented positive electrode plate is an oriented sintered body composed of a plurality of primary particles 21 bonded to each other.
- Each primary particle 21 is mainly plate-shaped, but may be formed in a rectangular parallelepiped shape, a cubic shape, a spherical shape, or the like.
- the cross-sectional shape of each primary particle 21 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complicated shape other than these.
- Each primary particle 21 is composed of a lithium composite oxide.
- the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one kind of transition metal, and M is typically one or more kinds of Co, Ni and Mn. Is included).
- the lithium composite oxide has a layered rock salt structure.
- the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer in between, that is, a transition metal ion layer and a lithium single layer are alternately provided via oxide ions.
- lithium composite oxides include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (nickel / lithium manganate).
- Li x NiCoO 2 (nickel / lithium cobalt oxide), Li x CoNiMnO 2 (cobalt / nickel / lithium manganate), Li x CoMnO 2 (lithium / cobalt manganate), and the like, particularly preferably Li x CoO 2 (Lithium cobaltate, typically LiCoO 2 ).
- the lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi and W may be contained in one or more kinds of elements. Further, these elements may be uniformly present in the positive electrode or may be unevenly distributed on the surface.
- the average value of the orientation angle of each primary particle 21, that is, the average orientation angle is larger than 0 ° and 30 ° or less.
- the average orientation angle of the primary particles 21 is obtained by the following method. First, in an EBSD image obtained by observing a 95 ⁇ m ⁇ 125 ⁇ m rectangular area at a magnification of 1000 as shown in FIG. 3, three horizontal lines that divide the oriented positive electrode plate into four equal parts in the thickness direction and the oriented positive electrode plate Draw three vertical lines that divide the surface into four equal parts. Next, the average orientation angle of the primary particles 21 is obtained by arithmetically averaging the orientation angles of all the primary particles 21 intersecting at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 21 is preferably 30 ° or less, and more preferably 25 ° or less from the viewpoint of further improving the rate characteristics. The average orientation angle of the primary particles 21 is preferably 2 ° or more, and more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
- the orientation angle of each primary particle 21 may be widely distributed from 0 ° to 90 °, but most of them are distributed in a region larger than 0 ° and 30 ° or less.
- the orientation angle of the primary particles 21 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate is larger than 0 °. , 30 ° or less, the total area of the primary particles 21 (hereinafter referred to as “low-angle primary particles”) is included in the cross section of the primary particles 21 (specifically, 30 primary particles used for calculating the average orientation angle).
- the total area of the particles 21) is preferably 70% or more, more preferably 80% or more. As a result, the proportion of the primary particles 21 having high mutual adhesiveness can be increased, so that the rate characteristics can be further improved. Further, the total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 21 used for calculating the average orientation angle. .. Further, the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 21 used for calculating the average orientation angle. ..
- each primary particle 21 is mainly plate-shaped, as shown in FIGS. 2 and 3, the cross section of each primary particle 21 extends in a predetermined direction, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 21 having an aspect ratio of 4 or more among the primary particles 21 included in the analyzed cross section is the primary area included in the cross section.
- the total area of the particles 21 (specifically, 30 primary particles 21 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more.
- the aspect ratio of the primary particles 21 is a value obtained by dividing the maximum Feret diameter of the primary particles 21 by the minimum Feret diameter.
- the maximum Feret diameter is the maximum distance between the straight lines when the primary particle 21 is sandwiched by two parallel straight lines on the EBSD image when the cross-section is observed.
- the minimum Feret diameter is the minimum distance between the straight lines when the primary particle 21 is sandwiched by two parallel straight lines on the EBSD image.
- the average particle diameter of the plurality of primary particles constituting the oriented sintered body is 0.5 ⁇ m or more.
- the average particle size of the 30 primary particles 21 used for calculating the average orientation angle is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and further preferably 1.0 ⁇ m or more. Is.
- the average particle size of the primary particles 21 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 21.
- the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 21 on the EBSD image.
- the porosity is preferably 20 to 60%, more preferably 25 to 55%, further preferably 30 to 50%, particularly preferably 30 to 45%.
- the mutual adhesion between the primary particles 21 can be further improved, so that the rate characteristic can be further improved.
- the porosity of the sintered body is calculated by polishing the cross section of the positive electrode plate by CP (Cross Section Polisher) polishing, and then observing the SEM image at 1000 magnifications, and binarizing the obtained SEM image.
- the average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
- the average equivalent circle diameter of pores is a value obtained by arithmetically averaging the equivalent circle diameters of 10 pores on the EBSD image.
- the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
- the pores formed inside the oriented sintered body may be open pores connected to the outside of the positive electrode 2, but it is preferable that they do not penetrate the positive electrode 2.
- Each pore may be a closed pore.
- the average pore diameter is preferably 0.1 to 10.0 ⁇ m, more preferably 0.2 to 5.0 ⁇ m, and further preferably 0.3. ⁇ 3.0 ⁇ m. Within the above range, it is possible to suppress the occurrence of stress concentration locally in large pores and to easily release the stress uniformly in the sintered body.
- the thickness of the positive electrode 2 is preferably 60 to 450 ⁇ m, more preferably 70 to 350 ⁇ m, and further preferably 90 to 300 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the coin-type secondary battery 1, and the battery characteristics are deteriorated due to repeated charging and discharging (in particular, the resistance value is increased). Can be suppressed.
- the negative electrode 3 is, for example, a plate-shaped sintered body.
- the negative electrode 3 being a sintered body means that the negative electrode 3 does not contain a binder or a conductive additive. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the negative electrode 3 is a sintered body, the heat resistance of the negative electrode 3 against solder reflow can be ensured. In addition, since the negative electrode 3 does not contain a binder and the packing density of the negative electrode active material (LTO or Nb 2 TiO 7 described later) is high, high capacity and good charge / discharge efficiency can be obtained.
- the negative electrode 3 is preferably porous, that is, it contains pores.
- a preferable negative electrode 3 is a titanium-containing sintered body plate.
- the titanium-containing sintered body plate preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter, referred to as “LTO”) or niobium titanium composite oxide Nb 2 TiO 7 , and more preferably contains LTO.
- LTO lithium titanate Li 4 Ti 5 O 12
- Nb 2 TiO 7 niobium titanium composite oxide
- LTO is typically known to have a spinel structure, but other structures can be adopted during charge / discharge.
- the reaction proceeds in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charge and discharge. Therefore, the LTO is not limited to the spinel structure.
- the LTO sintered body plate can be manufactured, for example, according to the method described in Document 4 (JP-A-2005-185337).
- the negative electrode 3 may include a lithium composite oxide other than LTO.
- the negative electrode 3 is described as a titanium-containing sintered body plate, but the negative electrode 3 may be another type of electrode depending on the design of the coin-type secondary battery 1.
- Another example of the negative electrode 3 is a powder dispersion type negative electrode (so-called coated electrode) produced by applying and drying a negative electrode mixture containing a negative electrode active material, a conductive additive, a binder and the like.
- the titanium-containing sintered body plate has a structure in which a plurality of (that is, a large number of) primary particles are bonded. Therefore, these primary particles are preferably composed of LTO or Nb 2 TiO 7 .
- the thickness of the negative electrode 3 is preferably 70 to 500 ⁇ m, preferably 85 to 400 ⁇ m, and more preferably 95 to 350 ⁇ m.
- the thickness of the negative electrode 3 can be obtained, for example, by measuring the distance between the plate surfaces that are observed substantially in parallel when the cross section of the negative electrode 3 is observed with a SEM (scanning electron microscope).
- the primary particle diameter which is the average particle diameter of the plurality of primary particles constituting the negative electrode 3, is preferably 1.2 ⁇ m or less, more preferably 0.02 to 1.2 ⁇ m, and further preferably 0.05 to 0.7 ⁇ m. Within such a range, lithium ion conductivity and electronic conductivity are easily compatible with each other, which contributes to improvement of rate performance.
- the negative electrode 3 preferably contains pores.
- the electrolyte solution can be made to penetrate into the negative electrode 3 when incorporated in a battery, and as a result, lithium ion conductivity can be improved. This is because there are two types of conduction of lithium ions in the negative electrode 3, that is, conduction through the constituent particles of the negative electrode 3 and conduction through the electrolytic solution in the pores, and conduction through the electrolytic solution in the pores is overwhelming. Because it is faster.
- the porosity of the negative electrode 3 is preferably 20 to 60%, more preferably 30 to 55%, further preferably 35 to 50%. Within such a range, lithium ion conductivity and electronic conductivity are easily compatible with each other, which contributes to improvement of rate performance.
- the average pore diameter of the negative electrode 3 is, for example, 0.08 to 5.0 ⁇ m, preferably 0.1 to 3.0 ⁇ m, and more preferably 0.12 to 1.5 ⁇ m. Within such a range, lithium ion conductivity and electronic conductivity are easily compatible with each other, which contributes to improvement of rate performance.
- the electrolyte layer 4 includes the separator 41 and the electrolytic solution 42 described above.
- the separator 41 is provided between the positive electrode 2 and the negative electrode 3.
- the separator 41 is porous, and the electrolytic solution 42 is mainly impregnated in the separator 41.
- the electrolytic solution 42 is also impregnated in the positive electrode 2 and the negative electrode 3.
- the thickness of the separator 41 is preferably 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m, and further preferably 10 to 30 ⁇ m.
- the porosity of the separator 41 is preferably 30 to 90%, more preferably 40 to 80%.
- the separator 41 is made of a material that does not contain lithium.
- the separator 41 is preferably a cellulose or ceramic separator.
- Cellulose separators are advantageous in that they are inexpensive and have excellent heat resistance.
- a cellulose separator is not only excellent in heat resistance itself, but is also an electrolyte component having excellent heat resistance, ⁇ -butyrolactone (GBL). ) Is also excellent in wettability. Therefore, when the electrolytic solution containing GBL is used, the electrolytic solution can be sufficiently permeated into the separator (without being repelled).
- the ceramic separator (hereinafter, also referred to as “ceramic separator”) has not only excellent heat resistance but also the advantage that it can be manufactured together with the positive electrode 2 and the negative electrode 3 as one integral sintered body. is there.
- the ceramic constituting the separator is preferably at least one selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , AlN and cordierite, and more preferably MgO. , Al 2 O 3 and ZrO 2 .
- the ceramic separator may contain a glass component from the viewpoint of improving the adhesiveness between the positive electrode 2 and the negative electrode 3.
- the ratio of the mass of the glass component to the total mass of the ceramic separator is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and further preferably 0.5 to 30% by mass.
- the addition of the glass component to the ceramic separator is preferably performed by adding glass frit to the raw material powder of the ceramic separator. Depending on the adhesiveness between the ceramic separator and the positive electrode 2 and the negative electrode 3, the ceramic separator may not contain a glass component.
- a set of the positive electrode 2, the separator 41 and the negative electrode 3 is referred to as an “electrode unit”, and the positive electrode 2, the separator 41 (for example, a separator made of cellulose or ceramic) and the negative electrode 3 which are individually manufactured are stacked.
- the relative positions of the positive electrode 2 and the negative electrode 3 may shift.
- the battery performance (for example, battery capacity) of the coin-type secondary battery 1 will be lower than expected.
- a green sheet having a three-layer structure which is the positive electrode 2, the ceramic separator 41, and the negative electrode 3, is punched into a predetermined shape and then fired, so that the positive electrode 2, the ceramic separator 41, and the negative electrode 3 are integrated into a sintered body.
- the configured electrode unit hereinafter, referred to as “integrated electrode unit”
- the relative displacement between the positive electrode 2 and the negative electrode 3 can be suppressed. As a result, it is possible to achieve high battery performance as expected (that is, close to theoretical capacity).
- the area of the region where the positive electrode 2 and the negative electrode 3 overlap is S pn
- the area of the region where the positive electrode 2 protrudes from the negative electrode 3 is S p
- the region where the negative electrode 3 protrudes from the positive electrode 2 is As the area S n
- the area shift rate obtained by [(S p + S n ) / S pn ] ⁇ 100 is preferably less than 1%, more preferably less than 0.5%.
- the positive electrode 2, the ceramic separator 41 and the negative electrode 3 are joined by sintering, so that the relative displacement between the positive electrode 2 and the negative electrode 3 does not occur afterwards. Further, it becomes possible to suppress the waviness or warpage of the positive electrode 2 and the negative electrode 3.
- the electrolytic solution 42 is not particularly limited, and a commercially available electrolytic solution for a lithium battery such as a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent may be used.
- a commercially available electrolytic solution for a lithium battery such as a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent may be used.
- an electrolytic solution having excellent heat resistance is preferable, and such an electrolytic solution preferably contains lithium borofluoride (LiBF 4 ) in a non-aqueous solvent.
- the preferred non-aqueous solvent is at least one selected from the group consisting of ⁇ -butyrolactone (GBL), ethylene carbonate (EC) and propylene carbonate (PC), and more preferably a mixed solvent consisting of EC and GBL.
- GBL ⁇ -butyrolactone
- the volume ratio of EC: GBL in the EC and / or GBL-containing non-aqueous solvent is preferably 0: 1 to 1: 1 (GBL ratio 50 to 100% by volume), more preferably 0: 1 to 1: 1.5 (GBL ratio 60 to 100% by volume), more preferably 0: 1 to 1: 2 (GBL ratio 66.6 to 100% by volume), and particularly preferably 0: 1 to 1: 3 (GBL ratio). 75 to 100% by volume).
- Lithium borofluoride to be dissolved in the nonaqueous solvent LiBF 4
- Lithium borofluoride to be dissolved in the nonaqueous solvent LiBF 4
- LiBF 4 Lithium borofluoride to be dissolved in the nonaqueous solvent
- the LiBF 4 concentration in the electrolytic solution 42 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, further preferably 0.7 to 1.7 mol / L, and particularly preferably It is 0.8 to 1.5 mol / L.
- the electrolytic solution 42 may further contain vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinyl ethylene carbonate (VEC) as an additive. Both VC and FEC have excellent heat resistance. Therefore, by including such an additive in the electrolytic solution 42, an SEI film having excellent heat resistance can be formed on the surface of the negative electrode 3.
- VC vinylene carbonate
- FEC fluoroethylene carbonate
- VEC vinyl ethylene carbonate
- the outer casing 5 of FIG. 1 typically includes a positive electrode can 51, a negative electrode can 52, and a gasket 53.
- the positive electrode can 51 includes a flat plate portion 511 and a peripheral wall portion 512.
- the flat plate portion 511 has a disc shape.
- the peripheral wall portion 512 projects from the outer peripheral edge of the flat plate portion 511.
- the positive electrode can 51 is a container that houses the positive electrode 2.
- the negative electrode can 52 includes a flat plate portion 521 and a peripheral wall portion 522.
- the flat plate portion 521 has a disc shape.
- the peripheral wall portion 522 projects from the outer peripheral edge of the flat plate portion 521.
- the negative electrode can 52 is a container that houses the negative electrode 3.
- the negative electrode can 52 is arranged with respect to the positive electrode can 51 so that the negative electrode 3 faces the positive electrode 2 with the separator 41 interposed therebetween.
- the positive electrode can 51 and the negative electrode can 52 are made of metal.
- the positive electrode can 51 and the negative electrode can 52 are formed by pressing (drawing) a metal plate such as stainless steel or aluminum.
- the peripheral wall portion 512 of the positive electrode can 51 is arranged outside the peripheral wall portion 522 of the negative electrode can 52.
- the gasket 53 is an insulating member, and is an annular member provided between the peripheral wall portion 512 and the peripheral wall portion 522.
- the positive electrode can 51 is fixed to the negative electrode can 52 via the gasket 53 by plastically deforming the peripheral wall part 512 arranged outside, that is, by caulking the peripheral wall part 512. Thereby, the closed space is formed.
- the peripheral wall portion 522 of the negative electrode can 52 may be arranged outside the peripheral wall portion 512 of the positive electrode can 51.
- the gasket 53 is preferably filled also between the inner peripheral wall portion 522 and the positive electrode 2 or the like.
- the gasket 53 is made of an insulating resin such as polypropylene, polytetrafluoroethylene, polyphenylene sulfide, perfluoroalkoxyalkane, polychlorotrifluoroethylene, or the like. Among them, polyphenylene sulfide and perfluoroalkoxy alkane, which have excellent heat resistance, are preferable.
- the gasket 53 may be a member made of another insulating material.
- the plate thickness of each of the positive electrode can 51 and the negative electrode can 52 is, for example, 0.075 to 0.25 mm. As described above, by reducing the plate thickness of the positive electrode can 51 and the negative electrode can 52, it is possible to secure a certain thickness in the positive electrode 2 and the negative electrode 3 in the thin coin-type secondary battery 1, and to improve the battery capacity. Can be easily increased. Further, in the coin-type secondary battery 1 in which the ratio of lithium carbonate in the electrode is small, it is possible to suppress the reaction between the lithium carbonate and the electrolytic solution or the like during the solder reflow to suppress the generation of gas, and thus the plate thickness. It is possible to employ the positive electrode can 51 and the negative electrode can 52 having a small value.
- the coin-type secondary battery 1 preferably further includes a positive electrode current collector 62 and / or a negative electrode current collector 63.
- the positive electrode collector 62 and the negative electrode collector 63 are not particularly limited, but are preferably metal foil such as copper foil or aluminum foil.
- the positive electrode current collector 62 is preferably arranged between the positive electrode 2 and the positive electrode can 51, and the negative electrode current collector 63 is preferably arranged between the negative electrode 3 and the negative electrode can 52. Further, it is preferable that a positive electrode side carbon layer 621 is provided between the positive electrode 2 and the positive electrode current collector 62 from the viewpoint of reducing contact resistance.
- both the positive electrode side carbon layer 621 and the negative electrode side carbon layer 631 are preferably made of conductive carbon, and may be formed, for example, by applying a conductive carbon paste by screen printing or the like.
- metal or carbon may be formed on the electrode current collecting surface by sputtering. Examples of metal species include Au, Pt, and Al.
- the preferred positive electrode 2 that is, the lithium composite oxide sintered body plate may be produced by any method, but in one example, (a) preparation of a lithium composite oxide-containing green sheet, (b) optional production Excess lithium source-containing green sheet is produced, and (c) the green sheet is laminated and fired.
- a raw material powder composed of a lithium composite oxide is prepared.
- This powder preferably contains synthesized plate-like particles (for example, LiCoO 2 plate-like particles) having a composition of LiMO 2 (M is as described above).
- the volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m.
- the method for producing LiCoO 2 plate-like particles can be performed as follows. First, a Co 3 O 4 raw material powder and a Li 2 CO 3 raw material powder are mixed and fired (500 to 900 ° C., 1 to 20 hours) to synthesize a LiCoO 2 powder.
- the obtained LiCoO 2 powder is pulverized with a pot mill to a volume-based D50 particle size of 0.2 ⁇ m to 10 ⁇ m, whereby plate-like LiCoO 2 particles capable of conducting lithium ions in parallel with the plate surface are obtained.
- Such LiCoO 2 particles can be produced by a method in which a green sheet using a LiCoO 2 powder slurry is grown and then crushed, a flux method, hydrothermal synthesis, single crystal growth using a melt, a sol-gel method, or the like. It can also be obtained by a method of synthesizing crystal like crystals.
- the obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. Be to cleave by crushing the LiCoO 2 particles, it can be produced LiCoO 2 plate-like particles.
- the above plate-like particles may be used alone as a raw material powder, or a mixed powder of the above plate-like powder and another raw material powder (for example, Co 3 O 4 particles) may be used as a raw material powder.
- the plate-like powder functions as template particles for imparting orientation
- the other raw material powder functions as matrix particles that can grow along the template particles.
- the volume-based D50 particle diameter of the Co 3 O 4 raw material powder is not particularly limited and may be, for example, 0.1 to 1.0 ⁇ m, but LiCoO 2 template particles It is preferably smaller than the volume-based D50 particle size of.
- the matrix particles can also be obtained by heat treating a Co (OH) 2 raw material at 500 ° C. to 800 ° C. for 1 to 10 hours.
- Co (OH) 2 particles or LiCoO 2 particles may be used as the matrix particles.
- the raw material powder is composed of 100% LiCoO 2 template particles or when LiCoO 2 particles are used as matrix particles, a large-sized (eg 90 mm ⁇ 90 mm square) and flat LiCoO 2 sintered body plate is obtained by firing. be able to.
- the mechanism is not clear, but since LiCoO 2 is not synthesized during the firing process, it is expected that the volume change during firing is unlikely to occur or that local unevenness is unlikely to occur.
- the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
- a lithium compound other than LiMO 2 for example, lithium carbonate
- the obtained slurry is shaped into a sheet to obtain a lithium composite oxide-containing green sheet.
- the green sheet thus obtained is an independent sheet-shaped molded body.
- An independent sheet refers to a sheet that can be handled as a single body independently of other supports (including thin pieces having an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (which cannot be separated or is difficult to separate).
- the sheet molding is preferably performed using a molding method capable of applying a shearing force to the plate-like particles (eg template particles) in the raw material powder. By doing so, the average inclination angle of the primary particles can be made larger than 0 ° and not larger than 30 ° with respect to the plate surface.
- the doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-like particles.
- the thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
- an excess lithium source-containing green sheet is prepared separately from the lithium composite oxide-containing green sheet.
- This excess lithium source is preferably a lithium compound other than LiMO 2 such that components other than Li disappear by firing. Lithium carbonate is mentioned as a preferable example of such a lithium compound (excess lithium source).
- the excess lithium source is preferably in powder form, and the volume-based D50 particle size of the excess lithium source powder is preferably 0.1 to 20 ⁇ m, more preferably 0.3 to 10 ⁇ m.
- the lithium source powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
- the obtained slurry is shaped into a sheet to obtain an excess lithium source-containing green sheet.
- the green sheet thus obtained is also an independent sheet-shaped molded body.
- the sheet can be formed by various known methods, but the doctor blade method is preferable.
- the thickness of the excess lithium source-containing green sheet is preferably such that the molar ratio (Li / Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet is 0.1 or more. It is preferable to set the thickness so that it can be set to 0.1 to 1.1.
- a lithium composite oxide-containing green sheet for example, LiCoO 2 green sheet
- an excess lithium source-containing green sheet for example, Li 2 CO 3 green sheet
- the upper and lower setters are made of ceramics, preferably zirconia or magnesia. If the setter is made of magnesia, the pores tend to be small.
- the upper setter may have a porous structure, a honeycomb structure, or a dense structure. If the upper setter is dense, the sintered plate tends to have smaller pores, and the number of pores tends to increase.
- the excess lithium source-containing green sheet preferably has a molar ratio of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet (Li / Co ratio) of 0. It is preferable to cut into a size of 1 or more, more preferably 0.1 to 1.1 before use.
- the green sheet When a lithium composite oxide-containing green sheet (eg, LiCoO 2 green sheet) is placed on the lower setter, the green sheet may be degreased if desired, and then calcined at 600 to 850 ° C. for 1 to 10 hours. .. In this case, the excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) and the upper setter may be sequentially placed on the obtained calcined plate.
- a lithium composite oxide-containing green sheet eg, LiCoO 2 green sheet
- the excess lithium source-containing green sheet for example, Li 2 CO 3 green sheet
- the upper setter may be sequentially placed on the obtained calcined plate.
- the green sheet and / or the calcined plate are sandwiched between setters, and after degreasing as desired, heat-treated (calcined) at a calcining temperature in an intermediate temperature range (for example, 700 to 1000 ° C.) to obtain a lithium composite oxide.
- a sintered body plate is obtained. This firing step may be performed twice or once. When firing is performed in two steps, the first firing temperature is preferably lower than the second firing temperature.
- the sintered plate thus obtained is also in the form of an independent sheet.
- the preferable negative electrode 3, that is, the titanium-containing sintered body plate may be manufactured by any method.
- the LTO sintered body plate is preferably manufactured through (a) preparation of the LTO-containing green sheet and (b) firing of the LTO-containing green sheet.
- LTO powder composed of lithium titanate Li 4 Ti 5 O 12
- the volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m. If the particle size of the raw material powder is large, the pores tend to be large.
- pulverization processing for example, pot mill crushing, bead mill crushing, jet mill crushing, etc.
- the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
- a lithium compound other than LTO eg, lithium carbonate
- the slurry is defoamed by stirring under reduced pressure and the viscosity is adjusted to 4000 to 10,000 cP.
- the obtained slurry is shaped into a sheet to obtain an LTO-containing green sheet.
- the green sheet thus obtained is an independent sheet-shaped molded body.
- An independent sheet (sometimes referred to as a "free-standing film”) refers to a sheet that can be handled as a single body independently of other supports (including thin pieces having an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (which cannot be separated or is difficult to separate).
- the sheet can be formed by various known methods, but the doctor blade method is preferable.
- the thickness of the LTO-containing green sheet may be appropriately set so as to be the desired thickness described above after firing.
- (B) Firing of LTO-containing green sheet Place the LTO-containing green sheet on the setter.
- the setter is made of ceramics, preferably zirconia or magnesia.
- the setter is preferably embossed.
- the green sheet thus placed on the setter is put in the sheath.
- the sheath is also made of ceramics, preferably alumina.
- firing is performed to obtain an LTO sintered body plate. This firing is preferably carried out at 600 to 900 ° C. for 0.1 to 50 hours, more preferably 700 to 800 ° C. for 0.3 to 20 hours.
- the sintered plate thus obtained is also in the form of an independent sheet.
- the temperature rising rate during firing is preferably 100 to 1000 ° C./h, more preferably 100 to 600 ° C./h.
- this heating rate is preferably adopted in the temperature rising process of 300 ° C. to 800 ° C., more preferably 400 ° C. to 800 ° C.
- the LTO sintered body plate can be preferably manufactured as described above. In this preferred manufacturing method, it is effective to 1) adjust the particle size distribution of the LTO powder, and / or 2) change the temperature rising rate during firing, and these are the properties of the LTO sintered plate. It is considered to contribute to the realization.
- the three-layer integrated electrode unit (integrated sintered body) of the positive electrode 2, the ceramic separator 41, and the negative electrode 3 may be manufactured by any method, but (1) each of the three layers is preferable. A corresponding green sheet is produced, and (2) these green sheets are laminated, and then pressure-bonded and fired to manufacture.
- the production of the negative electrode green sheet is the same as, for example, “(a) Production of LTO-containing green sheet” in the above-mentioned “method for producing negative electrode in assembled electrode unit”.
- the negative electrode green sheet may be manufactured by other methods, and may be other than the LTO-containing green sheet.
- the separator green sheet can be prepared as follows. First, at least one ceramic powder selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , AlN and cordierite is prepared. A glass frit may be added to this ceramic powder.
- the volume-based D50 particle size of the raw material powder is preferably 0.05 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. If the particle size of the raw material powder is large, the pores tend to be large. Further, when the raw material particle size is large, pulverization processing (for example, pot mill crushing, bead mill crushing, jet mill crushing, etc.) may be performed so as to obtain a desired particle size.
- the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. It is desirable to add no pore former to the slurry. It is preferable that the slurry is defoamed by stirring under reduced pressure and the viscosity is adjusted to 4000 to 10,000 cP.
- the obtained slurry is shaped into a sheet to obtain a separator green sheet.
- the sheet can be formed by various known methods, but the doctor blade method is preferable.
- the thickness of the separator green sheet may be appropriately set so as to be the desired thickness as described above after firing.
- the positive electrode green sheet, the separator green sheet and the negative electrode green sheet are sequentially stacked, and the obtained laminated body is pressed to press the green sheets together.
- the pressing may be carried out by a known method and is not particularly limited, but it is preferably carried out by CIP (cold isotropic pressure pressing method).
- the preferable pressing pressure is 10 to 5000 kgf / cm 2 , and more preferably 50 to 3000 kgf / cm 2 . It is preferable that the green sheet laminated body thus pressure-bonded is punched into a desired shape (for example, coin shape) and size with a punching die.
- the displacement between the positive electrode 2 and the negative electrode 3 can be eliminated.
- the end surface of the positive electrode 2 and the end surface of the negative electrode 3 are aligned, so that the capacity of the battery can be maximized.
- the setter is made of ceramics, preferably zirconia or magnesia.
- the setter is preferably embossed.
- the green sheet thus placed on the setter is put in the sheath.
- the sheath is also made of ceramics, preferably alumina. Then, in this state, if desired, it is degreased and then fired to obtain an integrated electrode unit. Degreasing is preferably performed by holding at 300 to 600 ° C. for 0.5 to 20 hours.
- the firing is preferably performed at 650 to 900 ° C. for 0.01 to 20 hours, more preferably 700 to 850 ° C. for 0.5 to 10 hours.
- the rate of temperature increase during firing is preferably 50 to 1500 ° C./h, more preferably 200 to 1300 ° C./h.
- this heating rate is preferably adopted in the temperature rising process of 600 to 900 ° C., and more preferably in the temperature rising process of 600 to 800 ° C.
- an integrated electrode unit having a three-layer structure of the positive electrode 2, the ceramic separator 41, and the negative electrode 3 is obtained.
- the punching process is not performed at the stage of the green sheet laminate described above, a shift between the positive electrode 2 and the negative electrode 3 may occur in the final type integrated electrode unit.
- the end surface of the positive electrode 2 and the end surface of the negative electrode 3 are aligned, so that the capacity of the battery can be maximized.
- FIG. 5 is a side view showing a circuit board assembly 8 including the coin-type secondary battery 1.
- the circuit board assembly 8 further includes a wiring board 81, a wireless communication device 82, and other electronic components 83.
- the wiring board 81 is a so-called printed wiring board and has conductive wiring on the upper surface. The wiring may be provided inside or on the lower surface of the wiring board 81.
- FIG. 5 shows one wiring board 81, the wiring board 81 may have a structure in which a plurality of partial wiring boards are assembled.
- the coin-type secondary battery 1 is fixed on the wiring board 81 with the negative electrode can 52 facing the wiring board 81.
- the lead 191 is electrically connected to the positive electrode can 51 in advance
- the lead 192 is electrically connected to the negative electrode can 52.
- the ends of the leads 191, 192 farthest from the coin-type secondary battery 1 are connected to the wiring of the wiring board 81 by solder 811. Connection between the leads 191 and 192 and the wiring is performed by soldering by a reflow method. In other words, the coin-type secondary battery 1 is electrically connected to the wiring board 81 by solder reflow.
- the coin-type secondary battery 1 may be fixed on the wiring board 81 with the positive electrode can 51 facing the wiring board 81.
- the wireless communication device 82 is an electric circuit module including an antenna and a communication circuit.
- the terminals of the wireless communication device 82 are connected to the wiring of the wiring board 81 by soldering.
- the connection between the terminals of the wireless communication device 82 and the wiring is performed by soldering by the reflow method.
- the wireless communication device 82 is electrically connected to the wiring board 81 by solder reflow.
- the wireless communication device 82 is a device that communicates by radio waves.
- the wireless communication device 82 may be a device dedicated to transmission or may be a device capable of transmission / reception.
- the other electronic components 83 mounted on the wiring board 81 appropriately include a circuit that generates a signal to be transmitted, a circuit that processes a received signal, a sensor, various measuring devices, a terminal to which a signal from the outside is input, and the like. Be done.
- Circuit board assembly 8 is preferably utilized as part of an IoT device.
- IoT is an abbreviation for Internet of Things, and “IoT device” means any device connected to the Internet and exhibiting a specific function.
- the process of mounting the coin-type secondary battery in the socket has been performed.
- the coin-type secondary battery 1 is mounted on the wiring board 81 by solder reflow, so that the mounting process can be simplified.
- "attached after solder reflow” does not include connection of external wiring to the circuit board.
- all the electronic components connected to the wiring of the wiring board 81 and the wiring are electrically connected by solder reflow. Such processing can be realized by mounting the coin-type secondary battery 1 on the wiring board 81 by solder reflow.
- Example 1 (1) Preparation of Positive Electrode First, Co 3 O 4 powder (manufactured by Shodo Chemical Co., Ltd.) and Li 2 CO 3 powder (Honjo Chemical Co., Ltd.) were weighed so that the Li / Co molar ratio was 1.01. After mixing for 5 hours, the obtained powder was crushed and crushed in a pot mill so that the volume-based D50 was 0.4 ⁇ m to obtain a powder composed of LCO plate-like particles.
- the LCO slurry was prepared by stirring the resulting mixture under reduced pressure to defoam and adjusting the viscosity to 4000 cP. The viscosity was measured by Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet. The thickness of the LCO green sheet after drying was 240 ⁇ m.
- LCO green sheet peeled from PET film was cut into 50 mm square with a cutter and placed in the center of a magnesia setter (dimension 90 mm square, height 1 mm) as a lower setter.
- a porous magnesia setter as an upper setter was placed on the LCO sheet.
- the LCO sheet was sandwiched between setters and placed in a 120 mm square alumina sheath (manufactured by Nikkato Co., Ltd.). At this time, the alumina sheath was not hermetically sealed, and a 0.5 mm gap was left to cover the lid.
- the obtained laminate was heated to 600 ° C.
- an LCO sintered body plate having a thickness of 220 ⁇ m was obtained.
- the LCO sintered body plate was cut into a circular shape having a diameter of 10 mm by a laser processing machine to obtain a positive electrode plate.
- the LTO slurry was prepared by stirring the obtained negative electrode raw material mixture under reduced pressure for defoaming and adjusting the viscosity to 4000 cP.
- the viscosity was measured by Brookfield LVT viscometer.
- the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
- the thickness of the LTO green sheet after drying was set to a value such that the thickness after firing was 250 ⁇ m.
- the obtained green sheet was cut into a 25 mm square with a cutter knife and placed on an embossed zirconia setter.
- the green sheet on the setter was put in an alumina sheath and held at 500 ° C. for 5 hours, then heated at a heating rate of 1000 ° C./h and baked at 800 ° C. for 10 minutes.
- the obtained LTO sintered body plate was cut into a circular shape having a diameter of 10.2 mm by a laser processing machine to obtain a negative electrode plate.
- a coin-type secondary battery 1 as schematically shown in FIG. 1 was produced as follows.
- LiBF 4 was dissolved in an organic solvent in which ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) were mixed at a volume ratio of 1: 3 so as to have a concentration of 1.5 mol / L. Liquid was used. Since the coin-type secondary battery of Example 1 employs the assembly-type electrode unit, it is described as “assembly-type” in the “Type of electrode unit” column in Table 1.
- Example 2> Preparation of MgO green sheet (separator green sheet) Magnesium carbonate powder (Kamijima Chemical Industry Co., Ltd.) was heat-treated at 900 ° C. for 5 hours to obtain MgO powder.
- a slurry was prepared by stirring the obtained raw material mixture under reduced pressure for defoaming and adjusting the viscosity to 4000 cP. The viscosity was measured by Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method to form a separator green sheet. The thickness of the separator green sheet was set to 25 ⁇ m after firing.
- a plasticizer DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Kasei Co., Ltd.
- a dispersant product name: Leodol SP-O30, manufactured by Kao Co., Ltd.
- the LCO green sheet (positive electrode green sheet) of Example 1, the MgO green sheet (separator green sheet) and the LTO green sheet of Example 1 (negative electrode green sheet) were sequentially laminated, and the obtained lamination was obtained.
- the body was pressed at 200 kgf / cm 2 by CIP (cold isotropic pressure pressing method) to press-bond the green sheets together.
- the laminated body thus pressure-bonded was punched with a punching die into a disc shape having a diameter of 10 mm.
- the obtained disc-shaped laminate was degreased at 600 ° C. for 5 hours, then heated to 800 ° C. at 1000 ° C./h, held for 10 minutes, baked, and then cooled.
- one integrated sintered body plate including three layers of the positive electrode layer (LCO sintered body layer), the ceramic separator (MgO separator) and the negative electrode layer (LTO sintered body layer) was obtained.
- Preparation of the coin-type secondary battery is the same as in the first embodiment. That is, between the positive electrode can and the negative electrode can, the positive electrode current collector, the carbon layer, the integrally sintered body plate, the carbon layer and the negative electrode current collector are laminated in this order from the positive electrode can to the negative electrode can. After containing and filling the electrolytic solution, the positive electrode can and the negative electrode can were caulked and sealed. Since the coin-type secondary battery of Example 2 employs the integral electrode unit, it is described as “integral type” in the column of “Type of electrode unit” in Table 1. The coin-type secondary battery of Example 2 was evaluated in the same manner as the coin-type secondary battery of Example 1.
- the monolithic sintered body plate was crushed, and the mass of lithium carbonate was measured from the obtained suspension of particles to determine the mass of lithium carbonate.
- the ratio of lithium carbonate in the electrode was obtained by dividing by the mass of the positive electrode layer and the negative electrode layer in the integrated sintered body plate.
- Example 3 in the production of the positive electrode according to the above (1) in Example 2, the Li / Co molar ratio was set to 1.06.
- firing of the integrated electrode unit (disc-shaped laminate) in the above (6) in Example 2 was performed at 800 ° C. for 3 hours, and the integrated electrode unit after firing was immersed in water at 25 ° C. Then, it was washed after 1 hour with water.
- firing of the integrated electrode unit in the above (6) in Example 2 was performed at 900 ° C. for 3 hours, the integrated electrode unit after firing was immersed in warm water of 60 ° C., and hot water extracted after 12 hours. It was washed.
- Examples 3 to 5 were the same as Example 2.
- the coin-type secondary batteries of Examples 3 to 5 were evaluated in the same manner as the coin-type secondary battery of Example 1.
- Comparative Example 1 the Li / Co molar ratio was set to 1.15 in the production of the positive electrode according to the above (1) in Example 2. Except for the above, Comparative Example 1 was the same as Example 2. The coin-type secondary battery of Comparative Example 1 was evaluated in the same manner as the coin-type secondary battery of Example 1.
- the capacity ratio before and after the reflow test was 60% or more, while the ratio of lithium carbonate in the electrode was 5.
- the capacity ratio before and after the reflow test was 20%. Therefore, if the ratio of lithium carbonate in the electrode is 3.0% by mass or less, it is considered possible to suppress the deterioration of performance due to solder reflow. It can be said that the ratio of lithium carbonate in the electrode is preferably 2.5% by mass or less in order to more reliably suppress the deterioration of the performance due to the solder reflow.
- Example 5 in which the ratio of lithium carbonate in the electrode was 0.001% by mass, the capacity ratio before and after the reflow test was 60%, and the ratio of lithium carbonate in the electrode was 0.003% by mass. It became lower than 4. Therefore, in order to suppress deterioration in performance due to solder reflow due to an excessively small ratio of lithium carbonate in the electrode, the ratio of lithium carbonate in the electrode is preferably 0.002 mass% or more. , 0.003 mass% or more is more preferable.
- the coin-type lithium secondary battery 1 for soldering by the reflow method is particularly suitable for use in an IoT device, but may of course be used for other purposes.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
リフロー方式によるはんだ付け用のコイン形リチウム二次電池(1)は、リチウム複合酸化物を含む正極(2)と、負極(3)と、正極(2)と負極(3)との間に設けられるとともに電解液(42)を含む電解質層(4)と、正極(2)、負極(3)および電解質層(4)を収容する密閉空間を有する外装体(5)とを備える。正極(2)および負極(3)の全体に対して含まれる炭酸リチウムの比率が、3.0質量%以下である。これにより、はんだリフローによる性能の低下が抑制されたコイン形リチウム二次電池(1)を実現することができる。
Description
本発明は、リフロー方式によるはんだ付け用のコイン形リチウム二次電池に関する。
[関連出願の参照]
本願は、2018年10月30日に出願された日本国特許出願JP2018-204397からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
[関連出願の参照]
本願は、2018年10月30日に出願された日本国特許出願JP2018-204397からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
従来、様々なコイン形二次電池が利用されている。例えば、特許第4392189号公報(文献1)では、リフロー方式によるはんだ付け用のコイン型二次電池が開示されており、正極活物質としてリチウム含有マンガン酸化物が用いられる。当該コイン型二次電池では、電解液に含まれるリチウム塩濃度を1.5~2.5mol/lとすることにより、はんだリフローによる電解液とリチウム含有マンガン酸化物との反応を抑制し、良好なリフロー耐熱性が得られる。
なお、特許第5587052号公報(文献2)では、リチウム二次電池の正極が開示されており、当該正極の正極活物質層として、厚さが30μm以上であり、空隙率が3~30%であり、開気孔比率が70%以上であるリチウム複合酸化物焼結体板が利用される。また、国際公開第2017/146088号(文献3)では、固体電解質を備えるリチウム二次電池が開示されており、配向焼結体板が正極として利用される。配向焼結体板は、コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極の板面に対して0°より大きく、30°以下である平均配向角度で配向している。特開2015-185337号公報(文献4)には、電極にチタン酸リチウム(Li4Ti5O12)焼結体を用いた全固体電池が開示されている。
既述のように、文献1では、電解液に含まれるリチウム塩濃度を所定範囲内に調整することにより、はんだリフローの熱による電解液と正極活物質との反応が抑制される。しかしながら、リフロー方式によるはんだ付け用のコイン形リチウム二次電池では、はんだリフローによる性能の低下が他の要因により生じることがある。
本発明は、リフロー方式によるはんだ付け用のコイン形リチウム二次電池に向けられており、はんだリフローによる性能の低下が抑制されたコイン形リチウム二次電池を実現することを目的としている。
本発明に係るコイン形リチウム二次電池は、リチウム複合酸化物を含む正極と、負極と、前記正極と前記負極との間に設けられるとともに電解液を含む電解質層と、前記正極、前記負極および前記電解質層を収容する密閉空間を有する外装体とを備える。前記正極および前記負極の全体に対して含まれる炭酸リチウムの比率が、3.0質量%以下である。
本発明によれば、はんだリフローによる性能の低下が抑制されたコイン形リチウム二次電池を実現することができる。
本発明の一の好ましい形態では、前記正極および前記負極の全体に対して含まれる炭酸リチウムの比率が、0.002質量%以上である。
本発明の他の好ましい形態では、前記負極が、リチウム複合酸化物を含む。
本発明の他の好ましい形態では、前記正極および前記負極のそれぞれが、焼結体である。
本発明の他の好ましい形態では、前記電解質層が、セラミックセパレータを含み、前記正極、前記セラミックセパレータおよび前記負極が一体的な焼結体である。
本発明の他の好ましい形態では、前記コイン形リチウム二次電池の厚さが0.7~1.6mmであり、前記コイン形リチウム二次電池の直径が10~20mmである。
本発明の他の好ましい形態では、はんだリフロー前における前記コイン形リチウム二次電池のエネルギー密度が、35~200mWh/cm3である。
本発明の他の好ましい形態では、はんだリフロー後における前記コイン形リチウム二次電池の電池容量が、はんだリフロー前における前記コイン形リチウム二次電池の電池容量の65%以上である。
上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
<コイン形リチウム二次電池>
図1は、本発明の一の実施の形態に係るコイン形リチウム二次電池1の構成を示す図である。コイン形リチウム二次電池1(以下、単に「コイン形二次電池1」ともいう。)は、正極2と、負極3と、電解質層4と、外装体5とを備える。後述するように、正極2は、リチウム複合酸化物を含む。電解質層4は、正極2と負極3との間に設けられ、電解液42を含む。外装体5は、内部に密閉空間を有する。正極2、負極3および電解質層4は、当該密閉空間に収容される。コイン形二次電池1は、リフロー方式によるはんだ付け用であり、はんだリフローにより配線基板に電気的に接続されて実装される。
図1は、本発明の一の実施の形態に係るコイン形リチウム二次電池1の構成を示す図である。コイン形リチウム二次電池1(以下、単に「コイン形二次電池1」ともいう。)は、正極2と、負極3と、電解質層4と、外装体5とを備える。後述するように、正極2は、リチウム複合酸化物を含む。電解質層4は、正極2と負極3との間に設けられ、電解液42を含む。外装体5は、内部に密閉空間を有する。正極2、負極3および電解質層4は、当該密閉空間に収容される。コイン形二次電池1は、リフロー方式によるはんだ付け用であり、はんだリフローにより配線基板に電気的に接続されて実装される。
リチウム複合酸化物を含む正極2では、製造途上におけるリチウムの反応等により炭酸リチウムが含まれることがある。後述するように、負極3がリチウム複合酸化物を含む場合も同様である。コイン形二次電池1では、正極2および負極3の全体に対して含まれる炭酸リチウムの比率(以下、単に「電極中の炭酸リチウムの比率」という。)が、3.0質量%以下である。電極中の炭酸リチウムの比率は、正極2および負極3の全体に対して含まれる炭酸リチウムの質量を、正極2および負極3の全体の質量で除することにより得られる。電極中の炭酸リチウムの比率は、既述のはんだリフロー前のコイン形二次電池1における値である。
ところで、はんだリフローの際には、コイン形二次電池1が所定時間の間、高温(例えば、200~260℃)に加熱される。このとき、電極中の炭酸リチウムの比率が5.0質量%である比較例のコイン形二次電池では、電池性能が低下してしまう。はんだリフローによる性能の低下の理由は明確ではないが、はんだリフローの際における電極中の炭酸リチウムと電解液等との反応が、電極に何らかの影響を与えることが一因として考えられる。炭酸リチウムと電解液等とが反応して、ガスが発生することが一因である可能性もある。
これに対し、図1のコイン形二次電池1では、電極中の炭酸リチウムの比率が3.0質量%以下であり、上記比較例のコイン形二次電池1に比べて、電極中の炭酸リチウムの比率が小さい。これにより、はんだリフローの際における炭酸リチウムと電解液42等との反応が抑制され、はんだリフローによる性能の低下を抑制することが実現される。例えば、コイン形二次電池1では、はんだリフロー後における電池容量が、はんだリフロー前における電池容量の65%以上(典型的には、100%以下)である。好ましくは、はんだリフロー後における電池容量が、はんだリフロー前における電池容量の75%以上である。コイン形二次電池1において、はんだリフローによる性能の低下をより確実に抑制するには、電極中の炭酸リチウムの比率が2.5質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。
電極中の炭酸リチウムの比率を小さくするには、リチウム複合酸化物を含む正極2の作製において、原料におけるリチウムの比率を小さくすることが有効である。また、コイン形二次電池1を組み立てる前に、正極2を水で洗浄する、すなわち、正極2中の炭酸リチウムを水に溶かして除去することにより、電極中の炭酸リチウムの比率を小さくすることも可能である。この場合、温水で正極2を洗浄することにより、電極中の炭酸リチウムの比率をさらに小さくすることが可能である。温水は、例えば40℃以上であり、好ましくは50℃以上であり、より好ましくは60℃以上である。負極3がリチウム複合酸化物を含む場合、電極中の炭酸リチウムの比率がさらに大きくなりやすくなるが、正極2と同様に、負極3の原料におけるリチウムの比率を小さくする、または/および、負極3を水で洗浄することにより、電極中の炭酸リチウムの比率を小さくすることが可能となる。
電極中の炭酸リチウムの比率は、例えば、以下の手法で測定することが可能である。まず、正極2および負極3を粉砕した粒子を水に懸濁させ、所定時間静置した後、上澄み液が抽出される。上澄み液には、正極2および負極3から溶け出した炭酸リチウムが含まれる。続いて、上澄み液をICP(Inductively Coupled Plasma)分析することにより、上澄み液に含まれる炭酸リチウムの質量が測定される。そして、炭酸リチウムの質量を、予め測定した正極2および負極3の合計質量で除することにより、電極中の炭酸リチウムの比率が求められる。
コイン形二次電池1では、電極中の炭酸リチウムの比率が過度に小さい場合に、はんだリフローによる性能の低下が十分に抑制されない場合がある。この理由は明確ではないが、電極の表面に炭酸リチウムがほとんど存在しないため、電極の活物質自体が電解液等と反応しやすくなり、電極が劣化することが一因として考えられる。電極中の炭酸リチウムの比率が過度に小さいことに起因した、はんだリフローによる性能の低下を抑制するには、電極中の炭酸リチウムの比率が、0.002質量%以上であることが好ましく、0.003質量%以上であることがより好ましい。コイン形二次電池1では、電極中の炭酸リチウムの比率を0.10質量%以上としてもよい。
コイン形二次電池1の厚さ(後述する正極缶51の平板部511の外面と、負極缶52の平板部521の外面との間の距離)は、例えば0.7~1.6mmである。コイン形二次電池1を実装した、後述の回路基板アセンブリの薄型化を図るには、コイン形二次電池1の厚さの上限値は、好ましくは1.4mmであり、より好ましくは1.2mmである。正極2および負極3においてある程度の厚さを確保して電池容量を大きくするという観点では、コイン形二次電池1の厚さの下限値は、好ましくは0.8mmであり、より好ましくは0.9mmである。
コイン形二次電池1の直径(後述の正極缶51の平板部511の直径)は、例えば10~20mmである。コイン形二次電池1を実装した回路基板アセンブリの小型化を図るには、コイン形二次電池1の直径の上限値は、好ましくは18mmであり、より好ましくは16mmである。正極2および負極3においてある程度のサイズを確保して電池容量を大きくするという観点では、コイン形二次電池1の直径の下限値は、好ましくは10.5mmであり、より好ましくは11mmである。
後述するように、好ましいコイン形二次電池1では、正極2としてリチウム複合酸化物焼結体板が用いられ、負極3としてチタン含有焼結体板が用いられる。これにより、リフロー方式によるはんだ付けを可能とする優れた耐熱性を有し、小型薄型でありながら高容量かつ高出力であり、しかも定電圧(CV)充電可能なコイン形リチウム二次電池が実現される。はんだリフロー前におけるコイン形二次電池1のエネルギー密度は、35mWh/cm3以上であることが好ましい。当該エネルギー密度の下限値は、より好ましくは40mWh/cm3であり、さらに好ましくは50mWh/cm3である。コイン形二次電池1のエネルギー密度の上限値は、特に限定されないが、例えば200mWh/cm3である。
正極2は、例えば、板状の焼結体である。正極2が焼結体であるということは、正極2がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失または焼失するからである。正極2が焼結体であることにより、はんだリフローに対して正極2の耐熱性を確保することができる。また、正極2がバインダーを含まないことにより、電解液42による正極2の劣化も抑制される。正極2は、多孔質である、すなわち、気孔を含むことが好ましい。
既述のように、正極2はリチウム複合酸化物を含み、好ましい正極2は、リチウム複合酸化物焼結体板である。リチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO2であり、以下、「LCO」と略称する。)であることが特に好ましい。様々なリチウム複合酸化物焼結体板またはLCO焼結体板が知られており、例えば上記文献2(特許第5587052号公報)や上記文献3(国際公開第2017/146088号)に開示されるものを使用することができる。以下の説明では、正極2がリチウム複合酸化物焼結体板であるものとして説明するが、コイン形二次電池1の設計によっては、正極2は、焼結体以外であってもよい。他の正極2の一例は、リチウム複合酸化物を含む正極活物質、導電助剤およびバインダー等を含む正極合剤を塗布および乾燥させて作製した粉末分散型の正極(いわゆる塗工電極)である。
上記リチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極の板面に対して0°より大きく、30°以下である平均配向角度で配向している、配向正極板であることが好ましい。
図2は、配向正極板の板面に垂直な断面SEM像の一例を示す図であり、図3は、配向正極板の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す図である。図4は、図3のEBSD像における一次粒子21の配向角度の分布を面積基準で示すヒストグラムを示す図である。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子21の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子21の(003)面が板面方向に対して成す傾斜角度である。なお、図2および図3において、配向正極板の内部で黒表示されている箇所は気孔である。
配向正極板は、互いに結合された複数の一次粒子21で構成された配向焼結体である。各一次粒子21は、主に板状であるが、直方体状、立方体状および球状等に形成されたものが含まれていてもよい。各一次粒子21の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、または、これら以外の複雑形状であってもよい。
各一次粒子21はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LixMO2(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、NiおよびMnの1種以上を含む。)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO2型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LixCoO2(コバルト酸リチウム)、LixNiO2(ニッケル酸リチウム)、LixMnO2(マンガン酸リチウム)、LixNiMnO2(ニッケル・マンガン酸リチウム)、LixNiCoO2(ニッケル・コバルト酸リチウム)、LixCoNiMnO2(コバルト・ニッケル・マンガン酸リチウム)、LixCoMnO2(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLixCoO2(コバルト酸リチウム、典型的にはLiCoO2)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、BiおよびWから選択される1種以上の元素が含まれていてもよい。また、これらの元素は、正極内に均一に存在しても良いし、表面に偏在して存在しても良い。表面に存在する場合は、均一に覆っても良いし、島状に存在しても良い。表面に存在する場合は、電解液との反応を抑制する働きが期待される。この場合、特に好ましくは、Zr、Mg、Ti、Alである。
図3および図4に示されるように、各一次粒子21の配向角度の平均値、すなわち平均配向角度は0°より大きく、30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子21が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子21と当該一次粒子21の長手方向両側に隣接する他の一次粒子21との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、リチウムイオンの出入りに際して、配向正極板では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。また、後述するように、正極2、セパレータ41および負極3が一体的な焼結体として形成される場合には、上記のように膨張収縮が厚み方向に優勢となるため、配向正極板とセパレータとの接合界面でのせん断応力が発生しにくくなり、当該界面での良好な結合を維持しやすくなる。
一次粒子21の平均配向角度は、以下の手法によって得られる。まず、図3に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極板を厚み方向に四等分する3本の横線と、配向正極板を板面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子21すべての配向角度を算術平均することによって、一次粒子21の平均配向角度を得る。一次粒子21の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子21の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
図4に示されるように、各一次粒子21の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°より大きく、30°以下である領域に分布していることが好ましい。すなわち、配向正極板を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子21のうち配向正極板の板面に対する配向角度が0°より大きく、30°以下である一次粒子21(以下、「低角一次粒子」という。)の合計面積が、断面に含まれる一次粒子21(具体的には平均配向角度の算出に用いた30個の一次粒子21)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子21の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子21の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子21の総面積に対して15%以上であることがより好ましい。
各一次粒子21は、主に板状であるため、図2および図3に示されるように、各一次粒子21の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子21のうちアスペクト比が4以上である一次粒子21の合計面積が、断面に含まれる一次粒子21(具体的には平均配向角度の算出に用いた30個の一次粒子21)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、一次粒子21同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子21のアスペクト比は、一次粒子21の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子21を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子21を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
配向焼結体を構成する複数の一次粒子の平均粒径が0.5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子21の平均粒径が、0.5μm以上であることが好ましく、より好ましくは0.7μm以上、さらに好ましくは1.0μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子21同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子21の平均粒径は、各一次粒子21の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子21と同じ面積を有する円の直径のことである。
正極2(例えば、リチウム複合酸化物焼結体板)では、気孔率が20~60%であるのが好ましく、より好ましくは25~55%、さらに好ましくは30~50%、特に好ましくは30~45%である。気孔による応力開放効果および高容量化が期待できるとともに、配向焼結体の場合、一次粒子21同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極板の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子21同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、正極2の外部につながる開気孔であってもよいが、正極2を貫通していないことが好ましい。なお、各気孔は閉気孔であってもよい。
正極2(例えば、リチウム複合酸化物焼結体板)では、平均気孔径は0.1~10.0μmであるのが好ましく、より好ましくは0.2~5.0μm、さらに好ましくは0.3~3.0μmである。上記範囲内であると、大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。
正極2の厚さは60~450μmであるのが好ましく、より好ましくは70~350μm、さらに好ましくは90~300μmである。このような範囲内であると、単位面積当りの活物質容量を高めてコイン形二次電池1のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。
負極3は、例えば、板状の焼結体である。負極3が焼結体であるということは、負極3がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失または焼失するからである。負極3が焼結体であることにより、はんだリフローに対して負極3の耐熱性を確保することができる。また、負極3にバインダーが含まれず、負極活物質(後述のLTOまたはNb2TiO7等)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。負極3は、多孔質である、すなわち、気孔を含むことが好ましい。
好ましい負極3は、チタン含有焼結体板である。チタン含有焼結体板は、チタン酸リチウムLi4Ti5O12(以下、「LTO」という。)またはニオブチタン複合酸化物Nb2TiO7を含むのが好ましく、より好ましくはLTOを含む。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLi4Ti5O12(スピネル構造)とLi7Ti5O12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。LTO焼結体板は、例えば上記文献4(特開2015-185337号公報)に記載される方法に従って製造することができる。負極3は、LTO以外のリチウム複合酸化物を含んでもよい。以下の説明では、負極3がチタン含有焼結体板であるものとして説明するが、コイン形二次電池1の設計によっては、負極3は、他の種類の電極であってもよい。他の負極3の一例は、負極活物質、導電助剤およびバインダー等を含む負極合剤を塗布および乾燥させて作製した粉末分散型の負極(いわゆる塗工電極)である。
上記チタン含有焼結体板は、複数の(すなわち多数の)一次粒子が結合した構造を有している。したがって、これらの一次粒子がLTOまたはNb2TiO7で構成されるのが好ましい。
負極3の厚さは、70~500μmが好ましく、好ましくは85~400μm、より好ましくは95~350μmである。LTO焼結体板が厚いほど、高容量および高エネルギー密度の電池を実現しやすくなる。負極3の厚さは、例えば、負極3の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。
負極3を構成する複数の一次粒子の平均粒径である一次粒径は1.2μm以下が好ましく、より好ましくは0.02~1.2μm、さらに好ましくは0.05~0.7μmである。このような範囲内であるとリチウムイオン伝導性および電子伝導性を両立しやすく、レート性能の向上に寄与する。
負極3は気孔を含んでいるのが好ましい。負極3が気孔、特に開気孔を含むことで、電池に組み込まれた場合に、電解液を負極3の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、負極3内におけるリチウムイオンの伝導は、負極3の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
負極3の気孔率は20~60%が好ましく、より好ましくは30~55%、さらに好ましくは35~50%である。このような範囲内であるとリチウムイオン伝導性および電子伝導性を両立しやすく、レート性能の向上に寄与する。
負極3の平均気孔径は、例えば0.08~5.0μmであり、好ましくは0.1~3.0μm、より好ましくは0.12~1.5μmである。このような範囲内であるとリチウムイオン伝導性および電子伝導性を両立しやすく、レート性能の向上に寄与する。
図1のコイン形二次電池1では、電解質層4が、セパレータ41と、既述の電解液42とを備える。セパレータ41は、正極2と負極3との間に設けられる。セパレータ41は、多孔質であり、電解液42は、主としてセパレータ41に含浸される。正極2および負極3が多孔質である場合には、電解液42が正極2および負極3にも含浸される。セパレータ41の厚さは3~50μmであるのが好ましく、より好ましくは5~40μm、さらに好ましくは10~30μmである。セパレータ41の気孔率は30~90%が好ましく、より好ましくは40~80%である。
セパレータ41は、原則としてリチウムを含まない材料により形成される。セパレータ41は、セルロース製またはセラミック製のセパレータであるのが好ましい。セルロース製のセパレータは安価でかつ耐熱性に優れる点で有利である。また、セルロース製のセパレータは、広く用いられている、耐熱性に劣るポリオレフィン製セパレータとは異なり、それ自体の耐熱性に優れるだけでなく、耐熱性に優れる電解液成分であるγ-ブチロラクトン(GBL)に対する濡れ性にも優れる。したがって、GBLを含む電解液を用いる場合に、電解液をセパレータに(弾かせることなく)十分に浸透させることができる。
一方、セラミック製のセパレータ(以下、「セラミックセパレータ」ともいう。)は、耐熱性に優れるのは勿論のこと、正極2および負極3と一緒に全体として1つの一体焼結体として製造できる利点がある。セラミックセパレータの場合、セパレータを構成するセラミックはMgO、Al2O3、ZrO2、SiC、Si3N4、AlNおよびコーディエライトから選択される少なくとも1種であるのが好ましく、より好ましくはMgO、Al2O3およびZrO2から選択される少なくとも1種である。上記一体焼結体を製造する場合に、正極2および負極3との接着性向上の観点から、セラミックセパレータがガラス成分を含有してもよい。セラミックセパレータの全体質量に対するガラス成分の質量の比率は、0.1~50質量%が好ましく、より好ましくは0.5~40質量%、さらに好ましくは0.5~30質量%である。セラミックセパレータへのガラス成分の添加は、セラミックセパレータの原料粉末にガラスフリットを添加することにより行われるのが好ましい。セラミックセパレータと正極2および負極3との接着性によっては、セラミックセパレータがガラス成分を含有しなくてもよい。
ところで、正極2、セパレータ41および負極3の集合を「電極ユニット」として、個別に作製された正極2、セパレータ41(例えば、セルロース製またはセラミック製のセパレータ)および負極3を重ね合わせることにより構成される電極ユニット(以下、「組立型電極ユニット」という。)では、正極2と負極3との相対的な位置がずれることがある。この場合、コイン形二次電池1の電池性能(例えば、電池容量)が想定よりも低くなってしまう。
一方、正極2、セラミックセパレータ41および負極3となる3層構成のグリーンシートを所定の形状に打ち抜き、その後、焼成することにより、正極2、セラミックセパレータ41および負極3が一体的な焼結体として構成される電極ユニット(以下、「一体型電極ユニット」という。)では、正極2と負極3との相対的な位置ずれを抑制することができる。その結果、想定通りの(すなわち理論容量に近い)高い電池性能を実現することが可能となる。積層方向に沿って見た場合に、正極2と負極3とが重なり合う領域の面積をSpn、正極2が負極3からはみ出した領域の面積をSp、負極3が正極2からはみ出した領域を面積Snとして、[(Sp+Sn)/Spn]×100により求められる面積ずれ率は、1%未満であるのが好ましく、より好ましくは0.5%未満である。上記焼結体では、正極2、セラミックセパレータ41および負極3が焼結により結合しており、正極2と負極3との相対的な位置ずれが事後的に発生することもない。また、正極2および負極3のうねり、または、反りを抑制することも可能となる。
電解液42は特に限定されず、有機溶媒等の非水溶媒中にリチウム塩を溶解させた液等、リチウム電池用の市販の電解液を使用すればよい。特に、耐熱性に優れた電解液が好ましく、そのような電解液は、非水溶媒中にホウフッ化リチウム(LiBF4)を含むものが好ましい。この場合、好ましい非水溶媒は、γ-ブチロラクトン(GBL)、エチレンカーボネート(EC)およびプロピレンカーボネート(PC)からなる群から選択される少なくとも1種であり、より好ましくはECおよびGBLからなる混合溶媒、PCからなる単独溶媒、PCおよびGBLからなる混合溶媒、または、GBLからなる単独溶媒であり、特に好ましくはECおよびGBLからなる混合溶媒、または、GBLからなる単独溶媒である。非水溶媒はγ-ブチロラクトン(GBL)を含むことで沸点が上昇し、耐熱性の大幅な向上をもたらす。かかる観点から、ECおよび/またはGBL含有非水溶媒におけるEC:GBLの体積比は0:1~1:1(GBL比率50~100体積%)であるのが好ましく、より好ましくは0:1~1:1.5(GBL比率60~100体積%)、さらに好ましくは0:1~1:2(GBL比率66.6~100体積%)、特に好ましくは0:1~1:3(GBL比率75~100体積%)である。非水溶媒中に溶解されるホウフッ化リチウム(LiBF4)は分解温度の高い電解質であり、これもまた耐熱性の大幅な向上をもたらす。電解液42におけるLiBF4濃度は0.5~2mol/Lであるのが好ましく、より好ましくは0.6~1.9mol/L、さらに好ましくは0.7~1.7mol/L、特に好ましくは0.8~1.5mol/Lである。
電解液42は添加剤としてビニレンカーボネート(VC)および/またはフルオロエチレンカーボネート(FEC)および/またはビニルエチレンカーボネート(VEC)をさらに含むものであってもよい。VCおよびFECはいずれも耐熱性に優れる。したがって、かかる添加剤を電解液42が含むことで、耐熱性に優れたSEI膜を負極3表面に形成させることができる。
図1の外装体5は、典型的には、正極缶51と、負極缶52と、ガスケット53とを備える。正極缶51は、平板部511と、周壁部512とを備える。平板部511は、円板状である。周壁部512は、平板部511の外周縁から突出する。正極缶51は、正極2を収容する容器である。負極缶52は、平板部521と、周壁部522とを備える。平板部521は、円板状である。周壁部522は、平板部521の外周縁から突出する。負極缶52は、負極3を収容する容器である。コイン形二次電池1では、負極3がセパレータ41を挟んで正極2と対向するように、負極缶52が正極缶51に対して配置される。正極缶51および負極缶52は、金属製である。例えば、正極缶51および負極缶52は、ステンレス鋼、アルミニウム等の金属板をプレス加工(絞り加工)することにより形成される。
図1のコイン形二次電池1では、正極缶51の周壁部512が、負極缶52の周壁部522の外側に配置される。ガスケット53は、絶縁性であり、周壁部512と周壁部522との間に設けられる環状部材である。外側に配置された周壁部512を塑性変形させる、すなわち、周壁部512をかしめることにより、正極缶51がガスケット53を介して負極缶52に対して固定される。これにより、上記密閉空間が形成される。コイン形二次電池1では、負極缶52の周壁部522が、正極缶51の周壁部512の外側に配置されてもよい。ガスケット53は、内側の周壁部522と正極2等との間にも充填されることが好ましい。ガスケット53は、例えばポリプロピレン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、パーフルオロアルコキシアルカン、ポリクロロトリフルオロエチレン等の絶縁樹脂製である。中でも耐熱性に優れるポリフェニレンサルファイド、パーフルオロアルコキシアルカンが好ましい。ガスケット53は、他の絶縁材料により形成される部材であってもよい。
正極缶51および負極缶52のそれぞれの板厚は、例えば0.075~0.25mmである。このように、正極缶51および負極缶52の板厚を小さくすることにより、薄型のコイン形二次電池1において、正極2および負極3における、ある程度の厚さを確保することができ、電池容量を大きくすることが容易に可能となる。また、電極中の炭酸リチウムの比率が小さいコイン形二次電池1では、はんだリフローの際に、炭酸リチウムと電解液等とが反応して、ガスが発生することが抑制されるため、板厚が小さい正極缶51および負極缶52を採用することが可能となる。
コイン形二次電池1は、正極集電体62および/または負極集電体63をさらに備えているのが好ましい。正極集電体62および負極集電体63は特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。正極集電体62は正極2と正極缶51との間に配置されるのが好ましく、負極集電体63は負極3と負極缶52との間に配置されるのが好ましい。また、正極2と正極集電体62との間には接触抵抗低減の観点から正極側カーボン層621が設けられるのが好ましい。同様に、負極3と負極集電体63との間には接触抵抗低減の観点から負極側カーボン層631が設けられるのが好ましい。正極側カーボン層621および負極側カーボン層631はいずれも導電性カーボンで構成されるのが好ましく、例えば導電性カーボンペーストをスクリーン印刷等により塗布することにより形成すればよい。その他の手法として、金属やカーボンを電極集電面にスパッタにて形成してもよい。金属種として、Au、Pt、Alなどが一例として挙げられる。
<組立型電極ユニットにおける正極の製造方法>
好ましい正極2、すなわちリチウム複合酸化物焼結体板はいかなる方法で製造されたものであってもよいが、一例では、(a)リチウム複合酸化物含有グリーンシートの作製、(b)所望により行われる過剰リチウム源含有グリーンシートの作製、並びに(c)グリーンシートの積層および焼成を経て製造される。
好ましい正極2、すなわちリチウム複合酸化物焼結体板はいかなる方法で製造されたものであってもよいが、一例では、(a)リチウム複合酸化物含有グリーンシートの作製、(b)所望により行われる過剰リチウム源含有グリーンシートの作製、並びに(c)グリーンシートの積層および焼成を経て製造される。
(a)リチウム複合酸化物含有グリーンシートの作製
まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMO2なる組成(Mは前述したとおりである。)の合成済みの板状粒子(例えばLiCoO2板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO2板状粒子の作製方法は次のようにして行うことができる。まず、Co3O4原料粉末とLi2CO3原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO2粉末を合成する。得られたLiCoO2粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO2粒子が得られる。このようなLiCoO2粒子は、LiCoO2粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法等、板状結晶を合成する手法によっても得ることができる。得られたLiCoO2粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO2粒子を解砕によって劈開させることで、LiCoO2板状粒子を作製することができる。
まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMO2なる組成(Mは前述したとおりである。)の合成済みの板状粒子(例えばLiCoO2板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO2板状粒子の作製方法は次のようにして行うことができる。まず、Co3O4原料粉末とLi2CO3原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO2粉末を合成する。得られたLiCoO2粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO2粒子が得られる。このようなLiCoO2粒子は、LiCoO2粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法等、板状結晶を合成する手法によっても得ることができる。得られたLiCoO2粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO2粒子を解砕によって劈開させることで、LiCoO2板状粒子を作製することができる。
上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo3O4粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo3O4粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0~3:97に混合した粉末を原料粉末とするのが好ましい。Co3O4原料粉末をマトリックス粒子として用いる場合、Co3O4原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoO2テンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)2原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Co3O4のほか、Co(OH)2粒子を用いてもよいし、LiCoO2粒子を用いてもよい。
原料粉末がLiCoO2テンプレート粒子100%で構成される場合、または、マトリックス粒子としてLiCoO2粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO2焼結体板を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoO2への合成が行われないため、焼成時の体積変化が生じにくい、または、局所的なムラが生じにくいことが予想される。
原料粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO2以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角を板面に対して0°より大きく、30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(b)過剰リチウム源含有グリーンシートの作製(任意工程)
所望により、上記リチウム複合酸化物含有グリーンシートとは別に、過剰リチウム源含有グリーンシートを作製する。この過剰リチウム源は、Li以外の成分が焼成により消失するようなLiMO2以外のリチウム化合物であるのが好ましい。そのようなリチウム化合物(過剰リチウム源)の好ましい例としては炭酸リチウムが挙げられる。過剰リチウム源は粉末状であるのが好ましく、過剰リチウム源粉末の体積基準D50粒径は0.1~20μmが好ましく、より好ましくは0.3~10μmである。そして、リチウム源粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。得られたスラリーを減圧下で撹拌して脱泡するとともに、粘度を1000~20000cPに調整するのが好ましい。得られたスラリーをシート状に成形して過剰リチウム源含有グリーンシートを得る。こうして得られるグリーンシートもまた独立したシート状の成形体である。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。過剰リチウム源含有グリーンシートの厚さは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1とすることができるような厚さに設定するのが好ましい。
所望により、上記リチウム複合酸化物含有グリーンシートとは別に、過剰リチウム源含有グリーンシートを作製する。この過剰リチウム源は、Li以外の成分が焼成により消失するようなLiMO2以外のリチウム化合物であるのが好ましい。そのようなリチウム化合物(過剰リチウム源)の好ましい例としては炭酸リチウムが挙げられる。過剰リチウム源は粉末状であるのが好ましく、過剰リチウム源粉末の体積基準D50粒径は0.1~20μmが好ましく、より好ましくは0.3~10μmである。そして、リチウム源粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。得られたスラリーを減圧下で撹拌して脱泡するとともに、粘度を1000~20000cPに調整するのが好ましい。得られたスラリーをシート状に成形して過剰リチウム源含有グリーンシートを得る。こうして得られるグリーンシートもまた独立したシート状の成形体である。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。過剰リチウム源含有グリーンシートの厚さは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1とすることができるような厚さに設定するのが好ましい。
(c)グリーンシートの積層および焼成
下部セッターに、リチウム複合酸化物含有グリーンシート(例えばLiCoO2グリーンシート)、および、所望により過剰リチウム源含有グリーンシート(例えばLi2CO3グリーンシート)を順に載置し、その上に上部セッターを載置する。上部セッターおよび下部セッターはセラミックス製であり、好ましくはジルコニアまたはマグネシア製である。セッターがマグネシア製であると気孔が小さくなる傾向がある。上部セッターは多孔質構造やハニカム構造のものであってもよいし、緻密質構造であってもよい。上部セッターが緻密質であると焼結体板において気孔が小さくなり、気孔の数が多くなる傾向がある。必要に応じて、過剰リチウム源含有グリーンシートは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1となるようなサイズに切り出して用いられるのが好ましい。
下部セッターに、リチウム複合酸化物含有グリーンシート(例えばLiCoO2グリーンシート)、および、所望により過剰リチウム源含有グリーンシート(例えばLi2CO3グリーンシート)を順に載置し、その上に上部セッターを載置する。上部セッターおよび下部セッターはセラミックス製であり、好ましくはジルコニアまたはマグネシア製である。セッターがマグネシア製であると気孔が小さくなる傾向がある。上部セッターは多孔質構造やハニカム構造のものであってもよいし、緻密質構造であってもよい。上部セッターが緻密質であると焼結体板において気孔が小さくなり、気孔の数が多くなる傾向がある。必要に応じて、過剰リチウム源含有グリーンシートは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1となるようなサイズに切り出して用いられるのが好ましい。
下部セッターにリチウム複合酸化物含有グリーンシート(例えばLiCoO2グリーンシート)を載置した段階で、このグリーンシートを、所望により脱脂した後、600~850℃で1~10時間仮焼してもよい。この場合、得られた仮焼板の上に過剰リチウム源含有グリーンシート(例えばLi2CO3グリーンシート)および上部セッターを順に載置すればよい。
そして、上記グリーンシートおよび/または仮焼板をセッターで挟んだ状態で、所望により脱脂した後、中温域の焼成温度(例えば700~1000℃)で熱処理(焼成)することで、リチウム複合酸化物焼結体板が得られる。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。こうして得られる焼結体板もまた独立したシート状である。
<組立型電極ユニットにおける負極の製造方法>
好ましい負極3、すなわちチタン含有焼結体板はいかなる方法で製造されたものであってもよい。例えば、LTO焼結体板は、(a)LTO含有グリーンシートの作製および(b)LTO含有グリーンシートの焼成を経て製造されるのが好ましい。
好ましい負極3、すなわちチタン含有焼結体板はいかなる方法で製造されたものであってもよい。例えば、LTO焼結体板は、(a)LTO含有グリーンシートの作製および(b)LTO含有グリーンシートの焼成を経て製造されるのが好ましい。
(a)LTO含有グリーンシートの作製
まず、チタン酸リチウムLi4Ti5O12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LTO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
まず、チタン酸リチウムLi4Ti5O12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LTO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(b)LTO含有グリーンシートの焼成
セッターにLTO含有グリーンシート載置する。セッターはセラミックス製であり、好ましくはジルコニア製またはマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、LTO焼結体板が得られる。この焼成は600~900℃で0.1~50時間行うのが好ましく、より好ましくは700~800℃で0.3~20時間である。こうして得られる焼結体板もまた独立したシート状である。焼成時の昇温速度は100~1000℃/hが好ましく、より好ましくは100~600℃/hである。特に、この昇温速度は、300℃~800℃の昇温過程で採用されるのが好ましく、より好ましくは400℃~800℃の昇温過程で採用される。
セッターにLTO含有グリーンシート載置する。セッターはセラミックス製であり、好ましくはジルコニア製またはマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、LTO焼結体板が得られる。この焼成は600~900℃で0.1~50時間行うのが好ましく、より好ましくは700~800℃で0.3~20時間である。こうして得られる焼結体板もまた独立したシート状である。焼成時の昇温速度は100~1000℃/hが好ましく、より好ましくは100~600℃/hである。特に、この昇温速度は、300℃~800℃の昇温過程で採用されるのが好ましく、より好ましくは400℃~800℃の昇温過程で採用される。
(c)まとめ
上述のようにしてLTO焼結体板を好ましく製造することができる。この好ましい製造方法においては、1)LTO粉末の粒度分布を調整する、および/または、2)焼成時の昇温速度を変えるのが効果的であり、これらがLTO焼結体板の諸特性の実現に寄与するものと考えられる。
上述のようにしてLTO焼結体板を好ましく製造することができる。この好ましい製造方法においては、1)LTO粉末の粒度分布を調整する、および/または、2)焼成時の昇温速度を変えるのが効果的であり、これらがLTO焼結体板の諸特性の実現に寄与するものと考えられる。
<一体型電極ユニットの製造方法>
正極2、セラミックセパレータ41および負極3の3層構成の一体型電極ユニット(一体焼結体)はいかなる方法で製造されたものであってもよいが、好ましくは、(1)3層の各々に対応するグリーンシートを作製し、(2)これらのグリーンシートを積層して圧着および焼成を施すことにより製造される。
正極2、セラミックセパレータ41および負極3の3層構成の一体型電極ユニット(一体焼結体)はいかなる方法で製造されたものであってもよいが、好ましくは、(1)3層の各々に対応するグリーンシートを作製し、(2)これらのグリーンシートを積層して圧着および焼成を施すことにより製造される。
(1)各種グリーンシートの作製
(1a)正極グリーンシートの作製
正極グリーンシートの作製は、例えば、上述の「組立型電極ユニットにおける正極の製造方法」における「(a)リチウム複合酸化物含有グリーンシートの作製」と同じである。もちろん、正極グリーンシートは他の手法により製造されてもよい。
(1a)正極グリーンシートの作製
正極グリーンシートの作製は、例えば、上述の「組立型電極ユニットにおける正極の製造方法」における「(a)リチウム複合酸化物含有グリーンシートの作製」と同じである。もちろん、正極グリーンシートは他の手法により製造されてもよい。
(1b)負極グリーンシートの作製
負極グリーンシートの作製は、例えば、上述の「組立型電極ユニットにおける負極の製造方法」における「(a)LTO含有グリーンシートの作製」と同じである。もちろん、負極グリーンシートは他の手法により製造されてもよく、LTO含有グリーンシート以外であってもよい。
負極グリーンシートの作製は、例えば、上述の「組立型電極ユニットにおける負極の製造方法」における「(a)LTO含有グリーンシートの作製」と同じである。もちろん、負極グリーンシートは他の手法により製造されてもよく、LTO含有グリーンシート以外であってもよい。
(1c)セパレータグリーンシートの作製
セパレータグリーンシートの作製は以下のように行うことができる。まず、MgO、Al2O3、ZrO2、SiC、Si3N4、AlNおよびコーディエライトから選択される少なくとも1種のセラミック粉末を用意する。このセラミック粉末にはガラスフリットを添加させてもよい。原料粉末の体積基準D50粒径は0.05~20μmが好ましく、より好ましくは0.1~10μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してセパレータグリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。セパレータグリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
セパレータグリーンシートの作製は以下のように行うことができる。まず、MgO、Al2O3、ZrO2、SiC、Si3N4、AlNおよびコーディエライトから選択される少なくとも1種のセラミック粉末を用意する。このセラミック粉末にはガラスフリットを添加させてもよい。原料粉末の体積基準D50粒径は0.05~20μmが好ましく、より好ましくは0.1~10μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒および各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してセパレータグリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。セパレータグリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(2)グリーンシートの積層、圧着および焼成
次いで、正極グリーンシート、セパレータグリーンシートおよび負極グリーンシートを順に積み重ね、得られた積層体をプレスしてグリーンシート同士を圧着する。プレスは公知の手法により行えばよく特に限定されないが、CIP(冷間等方圧加圧法)により行われるのが好ましい。好ましいプレス圧は10~5000kgf/cm2であり、より好ましくは50~3000kgf/cm2である。こうして圧着されたグリーンシート積層体を打ち抜き型で所望の形状(例えばコイン形)およびサイズに打ち抜くのが好ましい。こうすることで、最終形態の一体型電極ユニットにおいて、正極2および負極3間のずれをなくすことができる。その結果、正極2の端面と負極3の端面が揃うため、電池の容量を最大化できる。
次いで、正極グリーンシート、セパレータグリーンシートおよび負極グリーンシートを順に積み重ね、得られた積層体をプレスしてグリーンシート同士を圧着する。プレスは公知の手法により行えばよく特に限定されないが、CIP(冷間等方圧加圧法)により行われるのが好ましい。好ましいプレス圧は10~5000kgf/cm2であり、より好ましくは50~3000kgf/cm2である。こうして圧着されたグリーンシート積層体を打ち抜き型で所望の形状(例えばコイン形)およびサイズに打ち抜くのが好ましい。こうすることで、最終形態の一体型電極ユニットにおいて、正極2および負極3間のずれをなくすことができる。その結果、正極2の端面と負極3の端面が揃うため、電池の容量を最大化できる。
得られたグリーンシート積層体をセッターに載置する。セッターはセラミックス製であり、好ましくはジルコニア製またはマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、一体型電極ユニットが得られる。脱脂は300~600℃で0.5~20時間保持することにより行われるのが好ましい。また、焼成は650~900℃で0.01~20時間行うのが好ましく、より好ましくは700~850℃で0.5~10時間である。焼成時の昇温速度は50~1500℃/hが好ましく、より好ましくは200~1300℃/hである。特に、この昇温速度は、600~900℃の昇温過程で採用されるのが好ましく、より好ましくは600~800℃の昇温過程で採用される。こうして、正極2、セラミックセパレータ41および負極3の3層構成の一体型電極ユニットが得られる。なお、前述したグリーンシート積層体の段階で打ち抜き処理を施していない場合、最終形態の一体型電極ユニットにおいては正極2および負極3間のずれが発生しうる。この場合は、一体型電極ユニットの端面を、レーザ加工、切削、研磨等の手法により仕上げ加工して、上記ずれを最小化するのが好ましい。その結果、正極2の端面と負極3の端面が揃うため、電池の容量を最大化できる。
<回路基板アセンブリ>
図5は、上記コイン形二次電池1を含む回路基板アセンブリ8を示す側面図である。回路基板アセンブリ8は、配線基板81と、無線通信デバイス82と、他の電子部品83とをさらに含む。配線基板81は、いわゆるプリント配線基板であり、上面に導電性の配線を有する。配線は、配線基板81の内部や下面に設けられてもよい。図5では、1枚の配線基板81を示しているが、配線基板81は、複数の部分的な配線基板が組み立てられた構造を有してもよい。
図5は、上記コイン形二次電池1を含む回路基板アセンブリ8を示す側面図である。回路基板アセンブリ8は、配線基板81と、無線通信デバイス82と、他の電子部品83とをさらに含む。配線基板81は、いわゆるプリント配線基板であり、上面に導電性の配線を有する。配線は、配線基板81の内部や下面に設けられてもよい。図5では、1枚の配線基板81を示しているが、配線基板81は、複数の部分的な配線基板が組み立てられた構造を有してもよい。
コイン形二次電池1は、負極缶52が配線基板81に対向する姿勢で配線基板81上に固定される。コイン形二次電池1には、予め正極缶51にリード191が電気的に接続されており、負極缶52にリード192が電気的に接続されている。リード191,192のコイン形二次電池1から最も離れた端部は、配線基板81の配線にはんだ811により接続される。リード191,192と配線との接続は、リフロー方式によるはんだ付けにより行われる。換言すれば、コイン形二次電池1は、はんだリフローにより配線基板81に電気的に接続される。コイン形二次電池1は、正極缶51が配線基板81に対向する姿勢で配線基板81上に固定されてもよい。
無線通信デバイス82は、アンテナや通信回路を含む電気回路モジュールである。無線通信デバイス82の端子は、配線基板81の配線とはんだにより接続される。無線通信デバイス82の端子と配線との接続は、リフロー方式によるはんだ付けにより行われる。換言すれば、無線通信デバイス82は、はんだリフローにより配線基板81に電気的に接続される。無線通信デバイス82は、電波にて通信を行うデバイスである。無線通信デバイス82は、送信専用のデバイスであってもよく、送受信が可能なデバイスであってもよい。
配線基板81に実装された他の電子部品83には、送信する信号を生成する回路、受信した信号を処理する回路、センサ、各種測定デバイス、外部からの信号が入力される端子等が適宜含まれる。
回路基板アセンブリ8は、好ましくは、IoTデバイスの一部として利用される。「IoT」とは物のインターネット(Internet of Things)の略であり、「IoTデバイス」とはインターネットに接続されて特定の機能を呈するあらゆるデバイスを意味する。
従来、ソケットをはんだリフローにて配線基板上に実装した後、コイン形二次電池をソケットに装着する工程が行われてきた。回路基板アセンブリ8では、コイン形二次電池1は、はんだリフローにて配線基板81に実装されるため、実装工程を簡素化することができる。好ましくは、配線基板81上には、はんだリフロー後に装着された電子部品は存在しない。これにより、はんだリフロー後における回路基板アセンブリ8の取り扱いが簡素化される。ここで、「はんだリフロー後に装着された」には、外部配線の回路基板への接続は含まれないものとする。さらに好ましくは、配線基板81上において、配線基板81の配線に接続される全ての電子部品と配線との電気的接続が、はんだリフローにより行われる。このような処理は、コイン形二次電池1をはんだリフローにより配線基板81上に実装することにより実現可能となる。
<実施例>
次に、実施例について述べる。ここでは、表1中に示す実施例1~5、並びに、比較例1のコイン形二次電池を作製し、評価した。以下の説明において、LiCoO2を「LCO」と略称し、Li4Ti5O12を「LTO」と略称するものとする。
次に、実施例について述べる。ここでは、表1中に示す実施例1~5、並びに、比較例1のコイン形二次電池を作製し、評価した。以下の説明において、LiCoO2を「LCO」と略称し、Li4Ti5O12を「LTO」と略称するものとする。
<実施例1>
(1)正極の作製
まず、Li/Coのモル比が1.01となるように秤量されたCo3O4粉末(正同化学工業株式会社製)とLi2CO3粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕および解砕してLCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。乾燥後のLCOグリーンシートの厚さは、240μmであった。
(1)正極の作製
まず、Li/Coのモル比が1.01となるように秤量されたCo3O4粉末(正同化学工業株式会社製)とLi2CO3粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕および解砕してLCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。乾燥後のLCOグリーンシートの厚さは、240μmであった。
PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOシートの上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記LCOシートをセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで1000℃/hで昇温して10分間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうして厚さ220μmのLCO焼結体板を得た。LCO焼結体板を、レーザー加工機で直径10mmの円形状に切断して、正極板を得た。
(2)負極の作製
まず、LTO粉末(石原産業株式会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが250μmとなるような値とした。
まず、LTO粉末(石原産業株式会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが250μmとなるような値とした。
得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されたジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度1000℃/hにて昇温し、800℃で10分間焼成を行なった。得られたLTO焼結体板を、レーザー加工機で直径10.2mmの円形状に切断して、負極板を得た。
(3)コイン形二次電池の作製
図1に模式的に示されるようなコイン形二次電池1を以下のとおり作製した。
図1に模式的に示されるようなコイン形二次電池1を以下のとおり作製した。
(3a)負極板と負極集電体の導電性カーボンペーストによる接着
アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に収まるように上記(2)で作製した負極板を載置し、60℃で30分間真空乾燥させることで、負極板と負極集電体とがカーボン層を介して接合された負極構造体を作製した。なお、カーボン層の厚さは10μmとした。
アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に収まるように上記(2)で作製した負極板を載置し、60℃で30分間真空乾燥させることで、負極板と負極集電体とがカーボン層を介して接合された負極構造体を作製した。なお、カーボン層の厚さは10μmとした。
(3b)カーボン層付き正極集電体の準備
アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面にカーボン層が形成された正極集電体を作製した。なお、カーボン層の厚さは5μmとした。
アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面にカーボン層が形成された正極集電体を作製した。なお、カーボン層の厚さは5μmとした。
(3c)コイン形二次電池の組立
電池ケース(外装体)を構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、カーボン層、LCO正極板、セルロースセパレータ、LTO負極板、カーボン層および負極集電体がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12mm、厚さ1.0mmのコインセル形のリチウム二次電池(コイン形二次電池1)を作製した。このとき、電解液としては、エチレンカーボネート(EC)およびγ-ブチロラクトン(GBL)を1:3の体積比で混合した有機溶媒に、LiBF4を1.5mol/Lの濃度となるように溶解させた液を用いた。実施例1のコイン形二次電池では、組立型電極ユニットを採用したため、表1中の「電極ユニットの種類」の欄に「組立型」と記している。
電池ケース(外装体)を構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、カーボン層、LCO正極板、セルロースセパレータ、LTO負極板、カーボン層および負極集電体がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12mm、厚さ1.0mmのコインセル形のリチウム二次電池(コイン形二次電池1)を作製した。このとき、電解液としては、エチレンカーボネート(EC)およびγ-ブチロラクトン(GBL)を1:3の体積比で混合した有機溶媒に、LiBF4を1.5mol/Lの濃度となるように溶解させた液を用いた。実施例1のコイン形二次電池では、組立型電極ユニットを採用したため、表1中の「電極ユニットの種類」の欄に「組立型」と記している。
(4)評価
(4a)電極中の炭酸リチウムの比率の測定
実施例1で製造した正極板および負極板から、コイン形二次電池の正極および負極と同じ質量比で、測定用の材料片を併せて0.5g取り出し、粉砕して混合した。得られた粒子を水50mLに懸濁させ、10分間攪拌した後、懸濁液を1時間静置した。その後、上澄み液を抽出してICP分析することにより、上澄み液に含まれる炭酸リチウムの質量を測定した。炭酸リチウムの質量を、正極板および負極板の材料片の合計質量0.5gで除することにより得た値を、表1中に「電極中の炭酸リチウムの比率」として示している。
(4a)電極中の炭酸リチウムの比率の測定
実施例1で製造した正極板および負極板から、コイン形二次電池の正極および負極と同じ質量比で、測定用の材料片を併せて0.5g取り出し、粉砕して混合した。得られた粒子を水50mLに懸濁させ、10分間攪拌した後、懸濁液を1時間静置した。その後、上澄み液を抽出してICP分析することにより、上澄み液に含まれる炭酸リチウムの質量を測定した。炭酸リチウムの質量を、正極板および負極板の材料片の合計質量0.5gで除することにより得た値を、表1中に「電極中の炭酸リチウムの比率」として示している。
(4b)リフロー試験前後の容量比率の測定
コイン形二次電池の電池容量を以下の手順で測定した。すなわち、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量の測定を行い、得られた初期容量を初期電池容量として採用した。また、リフロー試験後にも同様の測定を実施し、リフロー試験後の電池容量を測定した。リフロー試験後の電池容量を初期電池容量で除することで、表1に示す「リフロー試験前後の容量比率」を算出した。ここで、リフロー試験では、リフロー装置(アントム株式会社製UNI-5016F)を用い、260℃で30秒間の加熱を行った。
コイン形二次電池の電池容量を以下の手順で測定した。すなわち、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量の測定を行い、得られた初期容量を初期電池容量として採用した。また、リフロー試験後にも同様の測定を実施し、リフロー試験後の電池容量を測定した。リフロー試験後の電池容量を初期電池容量で除することで、表1に示す「リフロー試験前後の容量比率」を算出した。ここで、リフロー試験では、リフロー装置(アントム株式会社製UNI-5016F)を用い、260℃で30秒間の加熱を行った。
<実施例2>
(5)MgOグリーンシート(セパレータグリーンシート)の作製
炭酸マグネシウム粉末(神島化学工業株式会社製)を900℃で5時間熱処理してMgO粉末を得た。得られたMgO粉末とガラスフリット(日本フリット株式会社製、CK0199)を重量比4:1で混合した。得られた混合粉末(体積基準D50粒径0.4μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、セパレータグリーンシートを形成した。セパレータグリーンシートの厚さは、焼成後の厚さが25μmになるようにした。
(5)MgOグリーンシート(セパレータグリーンシート)の作製
炭酸マグネシウム粉末(神島化学工業株式会社製)を900℃で5時間熱処理してMgO粉末を得た。得られたMgO粉末とガラスフリット(日本フリット株式会社製、CK0199)を重量比4:1で混合した。得られた混合粉末(体積基準D50粒径0.4μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、セパレータグリーンシートを形成した。セパレータグリーンシートの厚さは、焼成後の厚さが25μmになるようにした。
(6)積層、圧着および焼成
実施例1のLCOグリーンシート(正極グリーンシート)、MgOグリーンシート(セパレータグリーンシート)および実施例1のLTOグリーンシート(負極グリーンシート)を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cm2でプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで800℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、正極層(LCO焼結体層)、セラミックセパレータ(MgOセパレータ)および負極層(LTO焼結体層)の3層を含む1つの一体焼結体板を得た。
実施例1のLCOグリーンシート(正極グリーンシート)、MgOグリーンシート(セパレータグリーンシート)および実施例1のLTOグリーンシート(負極グリーンシート)を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cm2でプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで800℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、正極層(LCO焼結体層)、セラミックセパレータ(MgOセパレータ)および負極層(LTO焼結体層)の3層を含む1つの一体焼結体板を得た。
コイン形二次電池の作製は、実施例1と同様である。すなわち、正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、カーボン層、一体焼結体板、カーボン層および負極集電体がこの順に積層されるように収容し、電解液を充填した後に、正極缶と負極缶をかしめることによって封止した。実施例2のコイン形二次電池では、一体型電極ユニットを採用したため、表1中の「電極ユニットの種類」の欄に「一体型」と記している。実施例2のコイン形二次電池に対して、実施例1のコイン形二次電池と同様の評価を行った。このとき、上記(4a)における電極中の炭酸リチウムの比率の測定では、一体焼結体板を粉砕し、得られた粒子の懸濁液から炭酸リチウムの質量を測定し、炭酸リチウムの質量を、一体焼結体板における正極層および負極層の質量で除することにより、電極中の炭酸リチウムの比率を得た。
<実施例3~5>
実施例3では、実施例2における上記(1)に準じた正極の作製において、Li/Coのモル比を1.06とした。実施例4では、実施例2における上記(6)での一体型電極ユニット(円板状積層体)の焼成を800℃で3時間行い、焼成後の一体型電極ユニットを25℃の水に浸漬し、1時間後に取り出す水洗浄を行った。実施例5では、実施例2における上記(6)での一体型電極ユニットの焼成を900℃で3時間行い、焼成後の一体型電極ユニットを60℃の温水に浸漬し、12時間後に取り出す温水洗浄を行った。上記以外については、実施例3~5は、実施例2と同様とした。実施例3~5のコイン形二次電池に対して、実施例1のコイン形二次電池と同様の評価を行った。
実施例3では、実施例2における上記(1)に準じた正極の作製において、Li/Coのモル比を1.06とした。実施例4では、実施例2における上記(6)での一体型電極ユニット(円板状積層体)の焼成を800℃で3時間行い、焼成後の一体型電極ユニットを25℃の水に浸漬し、1時間後に取り出す水洗浄を行った。実施例5では、実施例2における上記(6)での一体型電極ユニットの焼成を900℃で3時間行い、焼成後の一体型電極ユニットを60℃の温水に浸漬し、12時間後に取り出す温水洗浄を行った。上記以外については、実施例3~5は、実施例2と同様とした。実施例3~5のコイン形二次電池に対して、実施例1のコイン形二次電池と同様の評価を行った。
<比較例1>
比較例1では、実施例2における上記(1)に準じた正極の作製において、Li/Coのモル比を1.15とした。上記以外については、比較例1は、実施例2と同様とした。比較例1のコイン形二次電池に対して、実施例1のコイン形二次電池と同様の評価を行った。
比較例1では、実施例2における上記(1)に準じた正極の作製において、Li/Coのモル比を1.15とした。上記以外については、比較例1は、実施例2と同様とした。比較例1のコイン形二次電池に対して、実施例1のコイン形二次電池と同様の評価を行った。
電極中の炭酸リチウムの比率が2.5質量%以下である実施例1~5では、リフロー試験前後の容量比率が60%以上であったのに対し、電極中の炭酸リチウムの比率が5.0質量%である比較例1では、リフロー試験前後の容量比率が20%となった。したがって、電極中の炭酸リチウムの比率が3.0質量%以下であれば、はんだリフローによる性能の低下を抑制することが可能であると考えられる。はんだリフローによる性能の低下をより確実に抑制するには、電極中の炭酸リチウムの比率が2.5質量%以下であることが好ましいといえる。
また、電極中の炭酸リチウムの比率が0.001質量%である実施例5では、リフロー試験前後の容量比率が60%となり、電極中の炭酸リチウムの比率が0.003質量%である実施例4に比べて低くなった。したがって、電極中の炭酸リチウムの比率が過度に小さいことに起因した、はんだリフローによる性能の低下を抑制するには、電極中の炭酸リチウムの比率が、0.002質量%以上であることが好ましく、0.003質量%以上であることがより好ましいといえる。
上記コイン形二次電池1では様々な変形が可能である。
リフロー方式によるはんだ付け用の上記コイン形リチウム二次電池1は、IoTデバイスでの利用に特に適しているが、もちろん、他の用途に利用されてもよい。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
1 コイン形リチウム二次電池
2 正極
3 負極
4 電解質層
5 外装体
41 セパレータ
42 電解液
2 正極
3 負極
4 電解質層
5 外装体
41 セパレータ
42 電解液
Claims (8)
- リフロー方式によるはんだ付け用のコイン形リチウム二次電池であって、
リチウム複合酸化物を含む正極と、
負極と、
前記正極と前記負極との間に設けられるとともに電解液を含む電解質層と、
前記正極、前記負極および前記電解質層を収容する密閉空間を有する外装体と、
を備え、
前記正極および前記負極の全体に対して含まれる炭酸リチウムの比率が、3.0質量%以下である。 - 請求項1に記載のコイン形リチウム二次電池であって、
前記正極および前記負極の全体に対して含まれる炭酸リチウムの比率が、0.002質量%以上である。 - 請求項1または2に記載のコイン形リチウム二次電池であって、
前記負極が、リチウム複合酸化物を含む。 - 請求項1ないし3のいずれか1つに記載のコイン形リチウム二次電池であって、
前記正極および前記負極のそれぞれが、焼結体である。 - 請求項1ないし4のいずれか1つに記載のコイン形リチウム二次電池であって、
前記電解質層が、セラミックセパレータを含み、
前記正極、前記セラミックセパレータおよび前記負極が一体的な焼結体である。 - 請求項1ないし5のいずれか1つに記載のコイン形リチウム二次電池であって、
前記コイン形リチウム二次電池の厚さが0.7~1.6mmであり、前記コイン形リチウム二次電池の直径が10~20mmである。 - 請求項1ないし6のいずれか1つに記載のコイン形リチウム二次電池であって、
はんだリフロー前における前記コイン形リチウム二次電池のエネルギー密度が、35~200mWh/cm3である。 - 請求項1ないし7のいずれか1つに記載のコイン形リチウム二次電池であって、
はんだリフロー後における前記コイン形リチウム二次電池の電池容量が、はんだリフロー前における前記コイン形リチウム二次電池の電池容量の65%以上である。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19878558.6A EP3876308A4 (en) | 2018-10-30 | 2019-10-29 | COIN-SHAPED LITHIUM SECONDARY BATTERY |
JP2020553929A JP7161545B2 (ja) | 2018-10-30 | 2019-10-29 | コイン形リチウム二次電池 |
CN201980053248.5A CN112889163B (zh) | 2018-10-30 | 2019-10-29 | 纽扣型锂二次电池 |
US17/203,950 US12119501B2 (en) | 2018-10-30 | 2021-03-17 | Coin-type lithium secondary cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-204397 | 2018-10-30 | ||
JP2018204397 | 2018-10-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/203,950 Continuation US12119501B2 (en) | 2018-10-30 | 2021-03-17 | Coin-type lithium secondary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090801A1 true WO2020090801A1 (ja) | 2020-05-07 |
Family
ID=70463181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/042327 WO2020090801A1 (ja) | 2018-10-30 | 2019-10-29 | コイン形リチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12119501B2 (ja) |
EP (1) | EP3876308A4 (ja) |
JP (1) | JP7161545B2 (ja) |
CN (1) | CN112889163B (ja) |
WO (1) | WO2020090801A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164217A (ja) * | 1998-11-27 | 2000-06-16 | Kyocera Corp | リチウム電池 |
JP2004083388A (ja) * | 2002-02-21 | 2004-03-18 | Tosoh Corp | リチウムマンガン複合酸化物顆粒二次粒子及びその製造方法並びにその用途 |
JP2005317266A (ja) * | 2004-04-27 | 2005-11-10 | Sanyo Electric Co Ltd | 非水電解質電池の製造方法 |
JP4392189B2 (ja) | 2003-04-25 | 2009-12-24 | セイコーインスツル株式会社 | リフローハンダ付け用コイン型非水電解質二次電池 |
JP5587052B2 (ja) | 2010-06-23 | 2014-09-10 | 日本碍子株式会社 | リチウム二次電池の正極及びリチウム二次電池 |
JP2015185337A (ja) | 2014-03-24 | 2015-10-22 | 日本碍子株式会社 | 全固体電池 |
JP2015220101A (ja) * | 2014-05-19 | 2015-12-07 | Tdk株式会社 | 蓄電装置 |
WO2017146088A1 (ja) | 2016-02-24 | 2017-08-31 | 日本碍子株式会社 | 板状リチウム複合酸化物 |
JP2018204397A (ja) | 2017-06-09 | 2018-12-27 | 清水建設株式会社 | 木−鋼ハイブリッド構造およびその構築方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002117841A (ja) | 2000-02-01 | 2002-04-19 | Seiko Instruments Inc | 非水電解質二次電池 |
JP2002075317A (ja) * | 2000-08-25 | 2002-03-15 | Sanyo Electric Co Ltd | 電池用高分子材料、電池用セパレータ、電池用絶縁パッキング及びリチウム電池 |
AU2003211395A1 (en) | 2002-02-21 | 2003-09-09 | Tosoh Corporation | Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof |
JP4144335B2 (ja) * | 2002-11-19 | 2008-09-03 | ソニー株式会社 | 負極およびそれを用いた二次電池 |
JP4439200B2 (ja) | 2003-04-25 | 2010-03-24 | 三洋電機株式会社 | リチウム二次電池の製造方法 |
KR20100137530A (ko) * | 2008-03-25 | 2010-12-30 | 에이일이삼 시스템즈 인코포레이티드 | 고에너지 고출력 전극 및 배터리 |
US8603196B2 (en) * | 2008-08-04 | 2013-12-10 | Panasonic Corporation | Lithium secondary battery manufacturing method comprising forming lithium metal layer and lithium secondary battery |
JP5418626B2 (ja) * | 2012-04-05 | 2014-02-19 | ソニー株式会社 | リチウムイオン電池の正極の製造方法およびリチウムイオン電池の製造方法 |
JP6549565B2 (ja) * | 2014-05-29 | 2019-07-24 | 住友化学株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
EP3157089A4 (en) * | 2014-06-10 | 2017-10-25 | Hitachi Chemical Co., Ltd. | Lithium ion secondary cell |
KR102486526B1 (ko) * | 2015-09-10 | 2023-01-09 | 에스케이온 주식회사 | 리튬 이차 전지 |
JP6906523B2 (ja) * | 2016-08-02 | 2021-07-21 | 日本碍子株式会社 | 全固体リチウム電池の使用方法 |
JP6805940B2 (ja) * | 2017-04-03 | 2020-12-23 | トヨタ自動車株式会社 | リチウムイオン二次電池およびその製造方法 |
TWI818019B (zh) | 2018-05-17 | 2023-10-11 | 日商日本碍子股份有限公司 | 硬幣型鋰二次電池及物聯網器件 |
-
2019
- 2019-10-29 CN CN201980053248.5A patent/CN112889163B/zh active Active
- 2019-10-29 EP EP19878558.6A patent/EP3876308A4/en active Pending
- 2019-10-29 JP JP2020553929A patent/JP7161545B2/ja active Active
- 2019-10-29 WO PCT/JP2019/042327 patent/WO2020090801A1/ja unknown
-
2021
- 2021-03-17 US US17/203,950 patent/US12119501B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164217A (ja) * | 1998-11-27 | 2000-06-16 | Kyocera Corp | リチウム電池 |
JP2004083388A (ja) * | 2002-02-21 | 2004-03-18 | Tosoh Corp | リチウムマンガン複合酸化物顆粒二次粒子及びその製造方法並びにその用途 |
JP4392189B2 (ja) | 2003-04-25 | 2009-12-24 | セイコーインスツル株式会社 | リフローハンダ付け用コイン型非水電解質二次電池 |
JP2005317266A (ja) * | 2004-04-27 | 2005-11-10 | Sanyo Electric Co Ltd | 非水電解質電池の製造方法 |
JP5587052B2 (ja) | 2010-06-23 | 2014-09-10 | 日本碍子株式会社 | リチウム二次電池の正極及びリチウム二次電池 |
JP2015185337A (ja) | 2014-03-24 | 2015-10-22 | 日本碍子株式会社 | 全固体電池 |
JP2015220101A (ja) * | 2014-05-19 | 2015-12-07 | Tdk株式会社 | 蓄電装置 |
WO2017146088A1 (ja) | 2016-02-24 | 2017-08-31 | 日本碍子株式会社 | 板状リチウム複合酸化物 |
JP2018204397A (ja) | 2017-06-09 | 2018-12-27 | 清水建設株式会社 | 木−鋼ハイブリッド構造およびその構築方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3876308A4 |
Also Published As
Publication number | Publication date |
---|---|
CN112889163A (zh) | 2021-06-01 |
US12119501B2 (en) | 2024-10-15 |
JP7161545B2 (ja) | 2022-10-26 |
EP3876308A4 (en) | 2022-08-03 |
JPWO2020090801A1 (ja) | 2021-09-02 |
US20210203025A1 (en) | 2021-07-01 |
CN112889163B (zh) | 2024-09-20 |
EP3876308A1 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12034145B2 (en) | Lithium secondary battery | |
WO2020090802A1 (ja) | コイン形二次電池 | |
JP7079714B2 (ja) | コイン形二次電池 | |
WO2019221146A1 (ja) | リチウム二次電池 | |
JPWO2019221139A1 (ja) | コイン形リチウム二次電池及びIoTデバイス | |
WO2019221142A1 (ja) | リチウム二次電池 | |
WO2019221141A1 (ja) | コイン形リチウム二次電池及びIoTデバイス | |
WO2020090803A1 (ja) | 回路基板アセンブリ | |
JP6966639B2 (ja) | リチウム二次電池 | |
WO2019221145A1 (ja) | リチウム二次電池 | |
WO2019221144A1 (ja) | リチウム二次電池 | |
WO2020090801A1 (ja) | コイン形リチウム二次電池 | |
WO2020090800A1 (ja) | コイン形二次電池 | |
WO2023042801A1 (ja) | 回路基板アセンブリの製造方法 | |
WO2023042802A1 (ja) | 回路基板アセンブリの製造方法 | |
WO2022208982A1 (ja) | コイン形リチウムイオン二次電池 | |
WO2020217749A1 (ja) | リチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19878558 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553929 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019878558 Country of ref document: EP Effective date: 20210531 |