WO2020090791A1 - スポットサイズ変換器の作製方法およびスポットサイズ変換器 - Google Patents

スポットサイズ変換器の作製方法およびスポットサイズ変換器 Download PDF

Info

Publication number
WO2020090791A1
WO2020090791A1 PCT/JP2019/042301 JP2019042301W WO2020090791A1 WO 2020090791 A1 WO2020090791 A1 WO 2020090791A1 JP 2019042301 W JP2019042301 W JP 2019042301W WO 2020090791 A1 WO2020090791 A1 WO 2020090791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
core
etching
core layer
Prior art date
Application number
PCT/JP2019/042301
Other languages
English (en)
French (fr)
Inventor
悠太 上田
伸浩 布谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/283,831 priority Critical patent/US20210389523A1/en
Publication of WO2020090791A1 publication Critical patent/WO2020090791A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers

Definitions

  • the present invention relates to a method for manufacturing an optical device, and more particularly to a method for manufacturing a spot-size converter (SSC) capable of controlling the spread of the electromagnetic field distribution of light in an optical waveguide.
  • SSC spot-size converter
  • an optical device represented by a semiconductor laser or the like has an optical circuit configured by an optical waveguide structure.
  • the mode electromagnetic field distribution of light propagating through the optical waveguide that is, the mode distribution is determined by the material forming the optical waveguide and the structure of the waveguide.
  • the spread of the mode distribution may be referred to as the spot size, and in many cases, the smaller spot size is preferable. For example, if the spot size is small, that is, if the power density of the light guided in the waveguide is high, the interaction between the light and the waveguide material becomes strong, so that it is necessary to reduce the power consumption of the optical control device such as a laser or a modulator.
  • a waveguide with a small spot size is important.
  • the minimum bending radius of the bending waveguide which often becomes a factor of limiting the device size, is generally smaller when light is strongly confined in the waveguide, so a waveguide with a small spot size is often preferable. ..
  • small spot size can be a problem.
  • One of them is the problem of coupling with the external optical system at the input / output end face of the optical device.
  • the spot size is small, the spread angle of the light emitted from the device to the free space becomes large due to the Fourier transform.
  • the spread angle of the light distribution in free space that is, the far-field pattern (FFP) spread angle
  • FFP far-field pattern
  • a lens used when forming an optical coupling from an optical device to other components such as an optical fiber.
  • the aperture that is, the size of the lens
  • the lens size is often a limiting factor in reducing the overall size of the optical module.
  • the spot size is small in the waveguide in the device and large in the end face of the waveguide.
  • the structure is SSC.
  • Non-Patent Document 1 is a report on SSC in a laser device made of a compound semiconductor, and an SSC is formed by thinly growing only a core material of a waveguide end face using a semiconductor regrowth technique.
  • Non-Patent Document 1 The method using the thin film forming technology as seen in Non-Patent Document 1 has an advantage that the core layer thickness can be realized with layer forming accuracy (nm order).
  • layer forming accuracy nm order.
  • the present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a method of manufacturing a spot-size converter (SSC) that can be realized by a simple manufacturing method. is there.
  • SSC spot-size converter
  • a method for manufacturing a spot size converter described in an embodiment is a method for manufacturing a laminated substrate in which a core layer and two or more material film layers are sequentially laminated on a substrate, A plurality of mask patterns having successively smaller openings are sequentially formed on the two or more material film layers, and the two or more material film layers are sequentially etched from the outermost layer according to each of the plurality of mask patterns.
  • a method for manufacturing a spot size converter described in another embodiment is a laminated substrate in which a core layer and a gradient layer having physical properties having different component ratios in the thickness direction of the substrate are sequentially laminated on a substrate.
  • a first mask pattern is formed on the physical property gradient layer side, the physical property gradient layer is wet-etched according to the first mask pattern, and the lower side of the first mask pattern is the thickness of the substrate.
  • a pattern is formed on the material gradient material layer side, and dry etching is performed according to the mask pattern for the core in the thickness direction of the substrate.
  • a core layer etching step for forming a core layer having an oblique and faces.
  • FIG. 3 is a diagram showing a configuration of a laminated body 10 having a step-forming multilayer film 20. It is a figure which shows the state which laminated
  • FIG. 6 is a diagram showing the laminated body 11 in which the physical property gradient layer 21 is etched by the mask 50.
  • FIG. 1 It is a figure which shows the laminated body 11 by which the core layer 2 was etched by another mask 50. It is a figure explaining the manufacturing method of the spot size converter of 3rd Embodiment. It is a figure explaining the manufacturing method of the spot size converter of 3rd Embodiment. It is a figure explaining the manufacturing method of the spot size converter of the modification of 3rd Embodiment. It is a figure explaining the manufacturing method of the spot size converter of the modification of 3rd Embodiment. It is a figure explaining the manufacturing method of the spot size converter of the modification of 3rd Embodiment. It is a figure explaining the manufacturing method of the spot size converter of the modification of 3rd Embodiment. It is a figure explaining the manufacturing method of the spot size converter of the modification of 3rd Embodiment.
  • the manufacturing method of the spot-size converter (SSC) described in the present embodiment is performed on a laminated substrate in which a core layer and two or more material film layers are sequentially laminated on a substrate.
  • a plurality of mask patterns having successively smaller openings are sequentially formed on the two or more material film layers, and the two or more material film layers are sequentially etched from the outermost layer according to each of the plurality of mask patterns.
  • the SSC can be manufactured with the same processing accuracy as the thin film forming accuracy, and in a process that does not require the stabilization of other special processing conditions.
  • a laminated substrate having a physical property gradient layer having physical properties having different component ratios in the thickness direction of the substrate instead of the two or more material film layers.
  • a first mask pattern is formed on the laminated substrate on the side of the physical property gradient layer, and the physical property gradient layer is wet-etched according to the first mask pattern to obtain the first mask.
  • the lower side of the pattern is formed so as to have a surface inclined in the thickness direction of the substrate, and thereafter, the opening is overlapped with the pattern formed by the contour of the wet-etched region of the physical property gradient material layer and has a larger area.
  • a manufacturing method including a layer etching step may be adopted.
  • 1 to 9 are views for explaining each step of the manufacturing method of the spot size converter according to the first embodiment.
  • 1 to 9 (a) is a plan view of the laminated body 10 as viewed from the side opposite to the substrate 1, (b) is an end view of a cross section taken along line yy ', and (c) is shown. It is an end view of the cross section at xx ′.
  • the SSC formed by using the stacked body 10 having the stepped multilayer film 20 on the core layer 2 is made of an InP-based material.
  • a multiple quantum well (multi-quantum well) made of InAlGaAs / InAlAs III-V element-based material with a photoluminescence wavelength of 1400 nm is formed as a core layer 2 on a substrate 1 made of InP. : MQW) is formed, and a multilayer film 20 having a total thickness of 300 nm including two kinds of material layers of a layer 3 made of InP and a layer 4 made of InGaAsP each having a thickness of 150 nm is laminated as the stepped multilayer film 20.
  • the laminated body 10 is configured.
  • the core layer 2 had a thickness of 500 nm.
  • the laminated body 10 may be made of any material, such as Si or glass, as long as the waveguide can be formed by etching, in addition to the InP-based material.
  • An opening mask pattern as shown in FIG. 2 is formed on this laminated body 10 using an appropriate photolithography process, and sulfuric acid / hydrogen peroxide solution is applied to the laminated body 10 having the mask pattern shown in FIG.
  • a wet etching step is performed using a so-called piranha solution in which pure water is mixed in an appropriate distribution (first etching step).
  • This piranha solution is an etching solution formulated so that InGaAsP, which is the constituent material of the uppermost layer 4, can be removed, but InP, which is the constituent material of the layer 3 below it, cannot be removed.
  • the InGaAsP of the uppermost layer 4 of the stacked body 10 is etched by the piranha solution, while the InP of the layer 3 thereunder is not etched by the piranha solution, so that the stacked body 10 has the shape shown in FIG. become.
  • the photolithography process is performed again to form the opening mask shown in FIG. 4, and the laminated body 10 having the opening mask shown in FIG. 4 is subjected to a wet etching process using a mixed solution of hydrochloric acid and phosphoric acid (second etching process).
  • This etching solution is a composition that can remove the InP layer 3, but not InAlGaAs / InAlAs, that is, the core layer 2.
  • the InP layer 3 located right above the core layer 2 is etched, but the core layer 2 is not etched, and the laminated body 10 has the shape shown in FIG.
  • An aperture mask pattern shown in FIG. 6 is formed again on the thus obtained laminate 10 of FIG. 5 by an appropriate photolithography process, and the laminate 10 having the aperture mask pattern shown in FIG.
  • An etching step is performed by a dry etching apparatus having a working action on any of the InGaAsP layer 4, the InP layer 3, and the MQW2 layer made of InAlGaAs / InAlAs (third etching step).
  • This dry etching is realized by chlorine-based plasma, for example.
  • the core layer 2 is processed into a step-like shape as shown in FIG. 7, reflecting the step-like opening pattern of the stepped multilayer film 20 shown in FIG.
  • the InP material is formed as the cladding material 5 on the surface of the laminated body 10 on which the core layer 2 is processed in a stepwise manner by using the semiconductor growth technique.
  • the waveguide structure 30 including the core layer 2 having a stepwise changed thickness is obtained in the laminated body 10 by forming as shown in FIG. 9 by an appropriate photolithography process and a semiconductor etching process.
  • the waveguide structure 30 is cut at the position of the broken line at the boundary between the region covered with the InGaAsP layer 4 and the region where the core (MQW) layer 2 is exposed to form a waveguide end face, this portion Since the core layer 2 is thin compared to the thickness of the original core layer 2, the spot size of the light guided here is different from the spot size of the light guided in the original core layer 2. Is expected.
  • the etching rate for each material in the above-described dry etching process is fixed if the dry etching conditions are fixed, while the thickness and type of the stepped multilayer film 20 are fixed. Also, it is possible to control with high precision by a thin film forming technique (epitaxial growth technique in this embodiment). Therefore, the change in the thickness of the core layer 2 is almost determined by the accuracy of the thin film forming technique.
  • FIG. 10 is a diagram showing the calculation result of the full width at half maximum of FFP (far-field pattern) emitted from the end surface of the SSC obtained by the manufacturing method of the present embodiment.
  • Light having a wavelength of 1550 nm was used for the calculation.
  • the waveguide structure 30 (see FIG. 9) used in this calculation was manufactured by the above process under a plurality of conditions in which the width was fixed at 3 ⁇ m and the thickness of the core layer 2 (see FIG. 9) at the end face of the SSC was different. SSC was used.
  • the vertical FFP angle of the substrate 1 becomes smaller. That is, it can be seen that the spread of the light emitted from the obtained SSC becomes smaller.
  • the core layer 2 at the SSC end face looks like a perfect circle as an FFP at about 150 nm.
  • the SSC manufactured by the manufacturing method of the present embodiment can have a thin core layer on the SSC end face and functions sufficiently as the SSC.
  • a high-performance SSC can be manufactured by a simple manufacturing procedure of the SSC, the improvement of the coupling loss of the optical device in general can be achieved, and it can contribute to the further spread of the optical communication.
  • the constituent materials of the uppermost layer 4 and the underlying layer 3 of the stacked body 10 are InGaAsP and InP, respectively, and InGaAsP can be removed as the etching solution used in the first etching step.
  • the piranha solution is formulated so that it cannot be removed, it is not limited to this.
  • the uppermost layer 4 and the layer 3 thereunder are made of different materials, and have different actions with respect to these materials (the material forming one of the two layers 3 and 4 is removed, but the other layer is It can be realized in the same manner as this embodiment by using an etching solution (without removing the constituent material). (Second embodiment)
  • FIGS. 11 to 13 are diagrams for explaining each step of the manufacturing method of the spot size converter according to the second embodiment.
  • the core layer 2 is processed into a step shape, but if these steps are large, it causes scattering loss for the guided light. Therefore, in the manufacturing method of the present embodiment, the physical property values are continuously changed instead of the laminated body 10 having the stepped multilayer film 20 which is made of two kinds of materials, InP and InGaAsP, in the first embodiment.
  • the laminated body 11 having the physical property gradient layer 21 is adopted.
  • the manufacturing method of the second embodiment only the parts different from the manufacturing method of the first embodiment will be described.
  • the manufacturing method of the second embodiment in place of the step difference multilayer film 20 composed of two kinds of materials, InP and InGaAsP, in the manufacturing method of the first embodiment, as shown in FIG.
  • the laminated body 11 provided with the physical property gradient layer 21 whose value changes continuously is used.
  • the physical property gradient layer 21 has physical property values determined from the components of the film material inclined with respect to the vertical direction of the substrate 1. That is, in the graded material layer 21, the GaAs component is increased so as to be substrate-matched with InP as the distance from the substrate 1 increases, starting from a portion having almost only the InP component (corresponding to the decrease in the band gap of InGaAsP). Yes, it is composed of a material that will eventually become InGaAs.
  • Such a layer structure is a structure adopted as a GRIN layer (grated reflex index layer) in a semiconductor laser.
  • the piranha solution used in the first etching step of the first embodiment has almost no etching action on InP, but has an etching action on InGaAsP, so that the GaAs component increases its etching. It is known to increase speed.
  • the opening mask 50 As shown in FIG. 12, after forming the opening mask 50 having an appropriate pattern, when the laminate 11 including the physical property gradient layer 21 is dipped in a piranha solution, the physical property gradient layer 21 is wet-etched. Due to the inclination of the physical property value, the etching direction changes so that the component in the direction parallel to the substrate becomes larger than the component in the direction perpendicular to the substrate, and the physical property gradient layer 21 is formed as shown in (b) and (c) of FIG. As described above, the mask pattern is processed into a shape having an inclined surface that is partly below the mask pattern.
  • a mask pattern is formed along the contour of the wet-etched region of the physical property gradient layer 21, and the physical property gradient layer 21 and the core layer 2 are collectively formed as in the first embodiment.
  • the core layer 2 is processed so as to have a continuous inclined surface, as shown in FIG.
  • a clad layer is deposited, and then the waveguide is processed to obtain an SSC in which the core layer 2 has an inclined structure. If necessary, by cleaving along the xx 'section or the yy' section, it is possible to have an inclined structure inclined in one direction as in the first embodiment.
  • the mask pattern has a rectangular shape in the horizontal direction of the substrate, but in the present embodiment, the mask pattern is in the horizontal direction of the substrate. Instead of a rectangular shape, one having a shape (not shown) inclined in the horizontal direction of the substrate is used. Others may be the same as the manufacturing method of the first embodiment or the same as the manufacturing method of the second embodiment. Regarding the manufacturing method of the third embodiment, only parts different from the manufacturing method of the first embodiment and the manufacturing method of the second embodiment will be described.
  • the mask pattern 50 (see FIGS. 3 and 5) used in the first etching step and the second etching step of the first embodiment is not rectangular in the horizontal direction of the substrate 1 but is inclined in the horizontal direction of the substrate 1.
  • the stepped multilayer film 20 can be formed to have a shape inclined in the horizontal direction of the substrate 1.
  • an opening pattern having a contour that obliquely intersects the waveguide direction of light is used to form the stepped multilayer film 20 of the stacked body 10.
  • the core layer 2 is thinned by dry etching using a rectangular mask 50 as shown in FIG.
  • the core layer 2 is further processed with a certain width left.
  • Inp can be grown as a clad layer (not shown) so as to fill the core layer 2 to manufacture an SSC having a so-called buried type waveguide.
  • the core layer 2 and the core layer 2 have a refractive index. Since the light is reflected at a certain angle with the optical axis as shown in FIG. 19 because it is covered with a clad layer made of InP, which is close to the optical axis, unnecessary optical input to other optical components including the SSC. Can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

簡易な作製方法で実現できるスポットサイズ変換器(spot-size converter: SSC)の作製方法を提供すること。基板1上にコア層2と2層以上の材料膜層3、4とが順次積層された積層基板10に対して、前記2層以上の材料膜層3、4側に、順次開口部が小さくなる複数のマスクパターン50を順次形成し、該複数のマスクパターン50のそれぞれに従って前記2層以上の材料膜層3、4を最外層から順次エッチングして、前記2層以上の材料膜層3、4を階段状にエッチングする材料膜エッチング工程と、前記順次開口部が小さくなる複数のマスクパターン50の全てのマスクパターン50の開口部とも重なるとともにその面積が最も大きい開口部を有するコア用のマスクパターン50を前記2層以上の材料膜層3、4側に形成し、該コア用のマスクパターン50に従って、ドライエッチングして、前記基板の厚さ方向において段差を有するコア層2を形成するコア層エッチング工程とを含む、スポットサイズ変換器の作製方法。

Description

スポットサイズ変換器の作製方法およびスポットサイズ変換器
 本発明は光デバイスの作製方法に関し、より詳しくは光導波路における光の電磁界分布の広がりを制御できるスポットサイズ変換器(spot-size converter: SSC)の作製方法に関する。
 半導体レーザ等に代表される光デバイスは、多くの場合において、光導波路構造により光の回路が構成される。光導波路を伝搬する光のモード電磁界分布、すなわちモード分布は、光導波路を構成する材料と導波路の構造によって決定される。モード分布の広がりをスポットサイズと呼ぶ場合があり、多くの場合はスポットサイズが小さい方が好ましい。例えば、スポットサイズが小さい、すなわち導波路を導波する光の電力密度が高いと、光と導波路材料の相互作用が強くなるため、レーザや変調器といった光制御デバイスの低消費電力化にはスポットサイズの小さな導波路が重要である。
 また、しばしばデバイスサイズの制限要因となる曲げ導波路の曲げ半径の最小値も、一般に光が導波路に強く閉じこもっている状態の方が小さくなるため、スポットサイズが小さな導波路が好ましい場合が多い。
 しかしながら、逆に、小さいスポットサイズが問題となる場合もある。その一つが光デバイスの入出力端面における、外部光学系との結合の問題である。スポットサイズが小さいと、フーリエ変換の関係からデバイスから自由空間へ出射した光の広がり角は大きくなる。自由空間での光の分布の広がり角、すなわち遠視野象(far-field pattern: FFP)の広がり角が大きいと光デバイスから光ファイバなどの他の部品との光学結合を形成する際に用いるレンズの口径、すなわちレンズのサイズが大きくなるといった問題がある。レンズのサイズはしばしば光モジュール全体のサイズの小型化への制限要因となる。
 また、スポットサイズが小さいと、そもそもレンズで外部との光学結合を形成するためのレンズ実装工程において、実装トレランスが小さくなってしまうという問題もある。
 上記は光デバイスからの光の出射の場合だが、一般に受動素子から成る光学系は相反性があるため、光デバイスへ光を入射する際も同様の問題が生じる。
 従って、スポットサイズはデバイス内の導波路においては小さく、導波路端面においては大きい方が好ましい。外部との光学結合以外にも、大きなスポットサイズにより光デバイス上にて実現できる機能もあり、それらの機能の実現のために、同一の光デバイスにおいて、そのデバイスの特定の箇所においてスポットサイズを変換する構造がSSCである。
 光導波路内にSSCを形成する手法の代表例として、光を導波させるコア層を局所的に変化させる手法がある。例えば非特許文献1は化合物半導体によるレーザ素子におけるSSCについての報告であり、半導体の再成長技術を用いて、導波路端面のコア材料のみ薄く成長することでSSCを形成している。
Yasumasa Suzaki, Ryuzu Iga, Kenji Kishi, Yoshihiro Kawaguchi, Shin-ichi Matsumoto, Minoru Okamoto, and Mitsuo Yamamoto "Temperature- and Polarization-Insensitive Responsivity of a 1.3μm Optical Transceiver Diode with an Integrated Spot-Size Converter",  IEEE J. Quantum Electron., vol. 34, no. 4, pp. 686-690, 1998.
 非特許文献1にみられるような、薄膜形成技術を用いる手法は、コア層厚を層形成精度(nmオーダー)で実現できる利点がある。ただし、薄膜形成により立体的な構造を作るには、その形成条件の安定化や、薄膜形成前に特殊なウェハ処理が必要(非特許文献1のような選択成長マスクを用いる手法はウェハ上に誘電体パターンを形成する必要がある)など、一般的に工程コストを上げてしまうという問題がある。
 本発明は、上記従来の問題に鑑みなされたものであって、本発明の課題は、簡易な作製方法で実現できるスポットサイズ変換器(spot-size converter: SSC)の作製方法を提供することにある。
 上記の課題を解決するために、一実施形態に記載されたスポットサイズ変換器の作製方法は、基板上にコア層と2層以上の材料膜層とが順次積層された積層基板に対して、前記2層以上の材料膜層側に、順次開口部が小さくなる複数のマスクパターンを順次形成し、該複数のマスクパターンのそれぞれに従って前記2層以上の材料膜層を最外層から順次エッチングして、前記2層以上の材料膜層を階段状にエッチングする材料膜エッチング工程と、前記順次開口部が小さくなる複数のマスクパターンの全てのマスクパターンの開口部とも重なるとともにその面積が最も大きい開口部を有するコア用のマスクパターンを前記2層以上の材料膜層側に形成し、該コア用のマスクパターンに従って、ドライエッチングして、前記基板の厚さ方向において段差を有するコア層を形成するコア層エッチング工程とを含む。
 他の実施形態に記載されたスポットサイズ変換器の作製方法は、基板上に、コア層と該基板の厚さ方向において成分比が異なる物性を有する物性傾斜層とが順次積層された積層基板に対して、前記物性傾斜層側に第1のマスクパターンを形成し、該第1のマスクパターンに従って、前記物性傾斜層をウェットエッチングして、前記第1のマスクパターンの下側が前記基板の厚さ方向において傾斜した面を有するように形成する物性傾斜層エッチング工程と、前記物性傾斜層のエッチングされた領域の輪郭によって形成されるパターンと重なるとともにその面積がより大きい開口部を有するコア用のマスクパターンを前記物性傾斜材料層側に形成し、該コア用のマスクパターンに従って、ドライエッチングして、前記基板の厚さ方向において傾斜した面を有するコア層を形成するコア層エッチング工程とを含む。
段差用多層膜20を有する積層体10の構成を示す図である。 積層体10に矩形のマスクパターンを呈するマスク50を積層した状態を示す図である。 第1のエッチング工程によりエッチングされた積層体10を示す図である。 第2のエッチング工程に用いるマスク50を形成した積層体10を示す図である。 第2のエッチング工程によりエッチングされた積層体10を示す図である。 第3のエッチング工程に用いるマスク50を形成した積層体10を示す図である。 第3のエッチング工程によりエッチングされた積層体10を示す図である。 コア層2側の表面にクラッド材料を成長させた積層体10を示す図である。 階段状に厚さが変化したコア層2を含む導波路構造30を有する積層体10を示す図である。 第1の実施形態の作製方法により得られるSSCの端面から出射されるFFP(far-field pattern:遠視野象)の半値全幅の角度の計算結果を示す図である。 物性傾斜層21を有する積層体11の構成を示す図である。 マスク50により物性傾斜層21がエッチングされた積層体11を示す図である。 別のマスク50によりコア層2がエッチングされた積層体11を示す図である。 第3の実施形態のスポットサイズ変換器の作製方法を説明する図である。 第3の実施形態のスポットサイズ変換器の作製方法を説明する図である。 第3の実施形態の変形例のスポットサイズ変換器の作製方法を説明する図である。 第3の実施形態の変形例のスポットサイズ変換器の作製方法を説明する図である。 第3の実施形態の変形例のスポットサイズ変換器の作製方法を説明する図である。 第3の実施形態の変形例のスポットサイズ変換器の作製方法を説明する図である。
 以下、本発明の実施の形態について、詳細に説明する。
 本実施の形態に記載されたスポットサイズ変換器(spot-size converter: SSC)の作製方法は、基板上にコア層と2層以上の材料膜層とが順次積層された積層基板に対して、前記2層以上の材料膜層側に、順次開口部が小さくなる複数のマスクパターンを順次形成し、該複数のマスクパターンのそれぞれに従って前記2層以上の材料膜層を最外層から順次エッチングして、前記2層以上の材料膜層を階段状にエッチングする材料膜エッチング工程と、前記順次開口部が小さくなる複数のマスクパターンの全てのマスクパターンの開口部とも重なるとともにその面積が最も大きい開口部を有するコア用のマスクパターンを前記2層以上の材料膜層側に形成し、該コア用のマスクパターンに従って、ドライエッチングして、前記基板の厚さ方向において段差を有するコア層を形成するコア層エッチング工程とを含んでいる。
 この作製方法によれば、薄膜形成の精度と同じ加工精度にて、かつその他の特殊な加工条件の安定化の営みは必要のない工程にてSSCを作製できる。
 さらに、上記作製方法において、2層以上の材料膜層に代えて、基板の厚さ方向において成分比が異なる物性を有する物性傾斜層を有する積層基板を用いても可能である。具体的には、この積層基板に対して、前記物性傾斜層側に第1のマスクパターンを形成し、該第1のマスクパターンに従って、前記物性傾斜層をウェットエッチングして、前記第1のマスクパターンの下側が前記基板の厚さ方向において傾斜した面を有するように形成し、その後、前記物性傾斜材料層のウエットエッチングされた領域の輪郭によって形成されるパターンと重なるとともにその面積がより大きい開口部を有するコア用のマスクパターンを前記物性傾斜材料層側に形成し、該コア用のマスクパターンに従って、ドライエッチングして、前記基板の厚さ方向において傾斜した面を有するコア層を形成するコア層エッチング工程とを含む作製方法を採用してもよい。
(第1の実施形態)
 図1から図9は、第1の実施形態にかかるスポットサイズ変換器の作製方法の各工程を説明する図である。なお、図1から9において、(a)は積層体10の基板1とは反対側から見た平面図であり、(b)はy-y’における断面の端面図であり、(c)はx-x’における断面の端面図である。第1の実施形態では、コア層2上に段差用多層膜20を持つ積層体10を用いて形成されたSSCをInP系材料により作製する。
 まず、図1に示すように、InPからなる基板1上に、コア層2としてフォトルミネッセンス波長が1400 nmのInAlGaAs/InAlAsのIII-V元系材料から形成された多重量子井戸(multi-quantum well: MQW)を形成し、さらに段差用多層膜20として、厚さがそれぞれ150 nmのInPからなる層3とInGaAsPからなる層4の二種類の材料層からなる合計300 nmの多層膜20を積層して積層体10を構成する。なお、コア層2の厚さは500nmとした。
 この積層体10は、InP系材料の他にも、Siやガラスなど、導波路がエッチングにより形成できる材料ならばどのような材料で構成しても構わない。
 この積層体10に対して適当なフォトリソグラフィー工程を用いて、図2に示すような開口マスクパターンを形成し、図2に示すマスクパターンを持つ積層体10に対して、硫酸・過酸化水素水・純水を適当な配分で混合した、いわゆるピラニア溶液によるウェットエッチング工程を施す(第1のエッチング工程)。このピラニア溶液は、最上層4の構成材料であるInGaAsPを除去可能であるが、その下の層3の構成材料であるInPは除去できないように配合されたエッチング溶液である。
 第1のエッチング工程によって、積層体10の最上層4のInGaAsPはピラニア溶液によりエッチングされる一方で、その下の層3のInPはピラニア溶液によりエッチングされないので、積層体10は図3に示す形状になる。
 再びフォトリソグラフィー工程により、図4に示す開口マスクを形成し、図4の開口マスクを持つ積層体10に対して塩酸・リン酸の混合溶液によるウェットエッチング工程を施す(第2のエッチング工程)。このエッチング溶液は、InP層3を除去可能であるが、InAlGaAs/InAlAs、すなわちコア層2を除去できないように配合されたものである。
 第2のエッチング工程によって、コア層2の直上に位置するInP層3がエッチングされる一方でコア層2はエッチングされずに積層体10は図5に示す形状となる。
 こうして得られた図5の積層体10に対して、更に再び適当なフォトリソグラフィー工程にて図6に示す開口マスクパターンを形成し、図6に示す開口マスクパターンを持つ積層体10に対して、InGaAsP層4やInP層3やInAlGaAs/InAlAsからなるMQW2の何れの層に対しても加工作用のある、ドライエッチング装置により、エッチング工程を実施する(第3のエッチング工程)。このドライエッチングは、例えば、塩素系のプラズマにより実現される。
 第3のエッチング工程によって、図6にて示した段差用多層膜20の階段状開口パターンを反映して、コア層2は、図7に示すように、階段状に加工される。
 その後、図8に示すように、積層体10のコア層2が階段状に加工された面において、InP材料をクラッド材料5として半導体成長技術を用いて形成させる。
 そして、適当なフォトリソグラフィー工程と半導体エッチング工程により、図9に示すように形成することにより、積層体10に、階段状に厚さが変化したコア層2を含む導波路構造30が得られる。
 導波路構造30を図9に示すようにInGaAsP層4で覆われた領域とコア(MQW)層2が露出した領域との境界の破線の位置で切断して導波路端面とすれば、この箇所のコア層2は元のコア層2の厚さと比較して薄くなっているので、ここを導波する光のスポットサイズは元のコア層2を導波する光のスポットサイズと異なっていることが予想される。
 この実施例で得られた導波路構造30は、上述のドライエッチング加工における各材料に対するエッチング速度等は、ドライエッチング条件が固定されれば固定される一方で、段差用多層膜20の厚さや種類も薄膜形成技術(本実施例ではエピタキシャル成長技術)により高精度に制御できる点にある。従って、コア層2の厚さの変化は、ほとんど薄膜形成技術の精度で決定されることになる。
 ここで、本実施形態の作製方法に従って作製したSSCのFFPの計算結果について検討する。図10は本実施形態の作製方法により得られるSSCの端面から出射されるFFP(far-field pattern:遠視野象)の半値全幅の角度の計算結果を示す図である。計算には1550nmの波長の光を用いた。この計算に用いた導波路構造30(図9参照)は、幅は3μmで固定し、SSCの端面でのコア層2(図9参照)の厚さが異なる複数の条件で上記工程により作製したSSCを用いた。
 図10によれば、SSC端面でのMQWコア層2(図9参照)の厚さが500 nmより薄膜化されていくにしたがって基板1の垂直方向のFFP角度は小さくなることが判る。すなわち、得られたSSCから出射される光の広がりが小さくなっていくことが分かる。基板1の水平方向のFFPと合わせて考えると、SSC端面でのコア層2が150 nm程度でFFPとして真円に見えることになる。
 したがって、本実施形態の作製方法によって作製したSSCは、SSC端面でのコア層を薄膜化することが可能であり、SSCとして十分に機能することが分かる。
 本実施形態のSSCの作製方法によれば、SSCを簡便な作製手順により高性能なSSCを作製でき、光デバイス一般の結合損失の改善が達成され、光通信の一層の普及に寄与できる。
 本実施形態では、積層体10の最上層4とその下の層3との構成材料をそれぞれInGaAsPとInPとし、第1のエッチング工程で使用するエッチング液をInGaAsPを除去可能であるが、InPは除去できないように配合されたピラニア溶液としていたが、これに限定されない。最上層4とその下の層3とを異なる材料で構成し、これらの材料に対して作用が異なる(2つの層3、4のうち一方の層を構成する材料を除去するが他方の層を構成する材料は除去しない)エッチング溶液を用いることによって本実施形態と同様に実現可能である。
(第2の実施形態)
 図11から図13は、第2の実施形態にかかるスポットサイズ変換器の作製方法の各工程を説明する図である。第1の実施形態ではコア層2が階段状に加工されているが、これらの段差が大きいと、導波する光にとっては散乱損失の原因となることになる。そこで本実施形態の作製方法では、第1の実施形態においてInPとInGaAsPの二種類の材料により構成されていた段差用多層膜20を有する積層体10の代わりに、物性値が連続的に変化する物性傾斜層21を有する積層体11を採用する。第2の実施形態の作製方法については、第1の実施形態の作製方法と異なる部分のみ説明する。
 第2の実施形態の作製方法では、第1の実施形態の作製方法においてInPとInGaAsPの二種類の材料により構成されていた段差用多層膜20の代わりに、図11に示すように、物性値が連続的に変化する物性傾斜層21を設けた積層体11を用いる。
 物性傾斜層21は、膜材料の成分から決定される物性値が基板1の垂直方向に対して傾斜している。すなわち、物性傾斜層21は、ほぼInP成分のみの部分から開始して、基板1から離れるに従いInPと基板整合する様にGaAs成分を増やしていき(InGaAsPのバンドギャップが小さくなっていることに相当する)最終的にInGaAsとなるような材料で構成される。このような層構造は半導体レーザにおけるGRIN層(grated refractive index層)などで採られる構造である。
 第1の実施形態の第1のエッチング工程で用いたピラニア溶液は、InPに対してエッチング作用がほとんどないが、InGaAsP に対してはエッチング作用があるので、GaAsの成分が増えていくとそのエッチング速度が速くなることが知られている。
 図12に示すように、適当なパターンの開口マスク50を形成した後に、物性傾斜層21を含む積層体11をピラニア溶液に浸すと、物性傾斜層21がウェットエッチングされる。物性値の傾斜により、エッチング方向が基板に垂直な方向の成分よりも基板に平行な方向の成分が大きくなるように変化し、物性傾斜層21は、図12の(b)、(c)のようにマスクパターンの下側に一部入り込んだ傾斜面をもった形状に加工される。
 さらに、図13に示すように、物性傾斜層21のウェットエッチングされた領域の輪郭に沿ってマスクパターンを形成し、第1の実施形態と同様に物性傾斜層21とコア層2を一括してドライエッチングを施すと、図13に示すように、コア層2が連続的な傾斜面を持つように加工される。
 その後は、第1の実施形態と同様に必要に応じてクラッド層を堆積させた上で、導波路を加工すればコア層2が傾斜構造を持つSSCが得られる。なお、必要に応じてx-x’断面またはy-y’断面に沿ってへき開することによって、第1の実施形態と同様に一方向に傾斜した傾斜構造を有するようにすることもできる。
(第3の実施形態)
 図14から図19は、第3の実施形態にかかるスポットサイズ変換器の作製方法の各工程を説明する図である。第1の実施形態の作製方法および第2の実施形態の作製方法のいずれにおいても、マスクパターンは基板の水平方向において矩形形状であったが、本実施形態では、マスクパターンを基板の水平方向において矩形形状とするのではなく、基板の水平方向において傾斜した形状(不図示)を有するものを用いる。その他は、第1の実施形態の作製方法と同様にしてもよいし、第2の実施形態の作製方法と同様にしてもよい。第3の実施形態の作製方法について、第1の実施形態の作製方法および第2の実施形態の作製方法と異なる部分のみ説明する。
 第1の実施形態の第1のエッチング工程および第2のエッチング工程において用いるマスクパターン50(図3、図5参照)を、基板1の水平方向において矩形形状ではなく、基板1の水平方向において傾斜した形状を有するものとすることによって、図14に示すように、段差用多層膜20を基板1の水平方向において傾斜した形状を有するように形成することができる。
 さらに図14に示すように形成された段差用多層膜20を有する積層体10に対して、矩形形状のマスクパターン50を用いてドライエッチングすると、図15に示すように、コア層2は基板1の水平方向において傾斜した形状を有する形状となる。したがって、このコア層2を導波する光は導波路の構造が連続的に変化する様に感じられるため、過剰損失の低減に寄与できる。
(第3の実施形態の変形例)
 また、第3の実施形態の作製方法により作製されたコア層2の段差部における光の反射の抑制にも効果がある。光の反射は例えば、導波路構造30を持つ光デバイスが半導体レーザに集積されていた場合などでは、十分に除去する必要がある。
 本実施形態では、基板1の水平方向において傾斜した形状の一形態として、光の導波方向に対して斜めに交わる輪郭を有する開口パターンを用いて、積層体10の段差用多層膜20を図16に示す形状にエッチングし、さらに、図17に示すように矩形形状のマスク50を用いてドライエッチングによりコア層2を薄膜化する。さらに、図18に示すように、コア層2のみが残るように段差用多層膜20を除去した上で、コア層2を一定の幅を残して更に加工する。
 そして、コア層2を埋め込むようにクラッド層(不図示)としてInpを成長させ、いわゆる埋め込み型の導波路を有するSSCを作製することができる。
 本実施形態の作製方法により作製されたSSCのコア層2を導波する光の一部のパワーは、導波路の不連続点を感じて反射するものの、コア層2がコア層2と屈折率の近いInPで構成されるクラッド層で覆われているため、図19に示すように、光が光軸と一定の角度をもって反射されるため、SSCを含む他の光学部品への不要な光入力を軽減できる。
 1  基板
 2  コア層
 3  InP層
 4  InGaAsP層
 10 積層体
 11 積層体
 20 段差用多層膜
 21 物性傾斜層
 30 導波路構造
 50 マスクパターン

Claims (6)

  1.  基板上にコア層と2層以上の材料膜層とが順次積層された積層基板に対して、前記2層以上の材料膜層側に、順次開口部が小さくなる複数のマスクパターンを順次形成し、該複数のマスクパターンのそれぞれに従って前記2層以上の材料膜層を最外層から順次エッチングして、前記2層以上の材料膜層を階段状にエッチングする材料膜エッチング工程と、
     前記順次開口部が小さくなる複数のマスクパターンの全てのマスクパターンの開口部とも重なるとともにその面積が最も大きい開口部を有するコア用のマスクパターンを前記2層以上の材料膜層側に形成し、該コア用のマスクパターンに従って、ドライエッチングして、前記基板の厚さ方向において段差を有するコア層を形成するコア層エッチング工程とを含むことを特徴とする、スポットサイズ変換器の作製方法。
  2.  基板上に、コア層と該基板の厚さ方向において成分比が異なる物性を有する物性傾斜層とが順次積層された積層基板に対して、前記物性傾斜層側に第1のマスクパターンを形成し、該第1のマスクパターンに従って、前記物性傾斜層をウェットエッチングして、前記第1のマスクパターンの下側が前記基板の厚さ方向において傾斜した面を有するように形成する物性傾斜層エッチング工程と、
     前記物性傾斜層のエッチングされた領域の輪郭によって形成されるパターンと重なるとともにその面積がより大きい開口部を有するコア用のマスクパターンを前記物性傾斜層側に形成し、該コア用のマスクパターンに従って、ドライエッチングして、前記基板の厚さ方向において傾斜した面を有するコア層を形成するコア層エッチング工程とを含むことを特徴とする、スポットサイズ変換器の作製方法。
  3.  前記複数のマスクパターンは、前記基板の水平方向において傾斜した面を有することを特徴とする請求項1に記載のスポットサイズ変換器の作製方法。
  4.  前記第1のマスクパターンは、前記基板の水平方向において傾斜した面を有することを特徴とする請求項2に記載のスポットサイズ変換器の作製方法。
  5.  前記コア層の上に、クラッド材料を堆積し、前記積層基板を前記基板の平面方向に所定の幅において、前記基板上の各層を前記基板の厚さ方向に除去することにより導波路を形成する導波路形成工程をさらに含むことを特徴とする、請求項1から4のいずれか1項に記載されたスポットサイズ変換器の作製方法。
  6.  基板上にコア層とクラッド層とが順次積層されたスポットサイズ変換器であって、前記コア層は、基板の水平方向において、光の導波方向に対して傾斜する面を有することを特徴とするスポットサイズ変換器。
PCT/JP2019/042301 2018-11-01 2019-10-29 スポットサイズ変換器の作製方法およびスポットサイズ変換器 WO2020090791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/283,831 US20210389523A1 (en) 2018-11-01 2019-10-29 Manufacturing Method of Spot-Size Converter and Spot-Size Converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206766 2018-11-01
JP2018206766A JP7135739B2 (ja) 2018-11-01 2018-11-01 スポットサイズ変換器の作製方法およびスポットサイズ変換器

Publications (1)

Publication Number Publication Date
WO2020090791A1 true WO2020090791A1 (ja) 2020-05-07

Family

ID=70462067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042301 WO2020090791A1 (ja) 2018-11-01 2019-10-29 スポットサイズ変換器の作製方法およびスポットサイズ変換器

Country Status (3)

Country Link
US (1) US20210389523A1 (ja)
JP (1) JP7135739B2 (ja)
WO (1) WO2020090791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112966391A (zh) * 2021-03-24 2021-06-15 浙江大学 一种基于傅里叶解析扩散角的功率模块热阻抗建模方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853775B2 (en) * 2002-05-25 2005-02-08 Bookham Technology, Plc Semiconductor optical waveguide device
JP2010054943A (ja) * 2008-08-29 2010-03-11 Oki Electric Ind Co Ltd スポットサイズ変換器
JP2011018870A (ja) * 2009-06-10 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> 半導体表面におけるパターンの作製方法
JP2016200676A (ja) * 2015-04-08 2016-12-01 日本電信電話株式会社 光導波路の作製方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224132A (ja) * 1983-06-03 1984-12-17 Nippon Denso Co Ltd 半導体装置の製造方法
JPH0563216A (ja) * 1991-09-03 1993-03-12 Ricoh Co Ltd 導波路型受光素子及びその作製方法
US6330378B1 (en) * 2000-05-12 2001-12-11 The Trustees Of Princeton University Photonic integrated detector having a plurality of asymmetric waveguides
JP2003273065A (ja) 2002-03-15 2003-09-26 Seiko Epson Corp 半導体装置の製造方法
KR100471382B1 (ko) * 2002-12-24 2005-03-10 한국전자통신연구원 확산 현상을 이용한 수직 테이퍼 형성방법
WO2012042708A1 (ja) * 2010-09-28 2012-04-05 日本電気株式会社 光導波路構造及び光導波路デバイス
JP5870549B2 (ja) 2011-08-25 2016-03-01 セイコーエプソン株式会社 傾斜構造体及び分光センサーの製造方法
JP5145469B2 (ja) 2012-02-24 2013-02-20 日本航空電子工業株式会社 光導波路素子及びその作製方法
US9274282B2 (en) * 2013-08-23 2016-03-01 Cisco Technology, Inc. Coupling light from an external source to a waveguide using a multi-step converter
JP5773552B2 (ja) * 2013-09-20 2015-09-02 沖電気工業株式会社 光素子の製造方法及び光素子
US10615172B2 (en) * 2018-05-11 2020-04-07 Sandisk Technologies Llc Three-dimensional memory device having double-width staircase regions and methods of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853775B2 (en) * 2002-05-25 2005-02-08 Bookham Technology, Plc Semiconductor optical waveguide device
JP2010054943A (ja) * 2008-08-29 2010-03-11 Oki Electric Ind Co Ltd スポットサイズ変換器
JP2011018870A (ja) * 2009-06-10 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> 半導体表面におけるパターンの作製方法
JP2016200676A (ja) * 2015-04-08 2016-12-01 日本電信電話株式会社 光導波路の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112966391A (zh) * 2021-03-24 2021-06-15 浙江大学 一种基于傅里叶解析扩散角的功率模块热阻抗建模方法

Also Published As

Publication number Publication date
JP2020071428A (ja) 2020-05-07
JP7135739B2 (ja) 2022-09-13
US20210389523A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US5237639A (en) Optical waveguide formed of compound semiconductor materials and process of fabricating the optical waveguide
JP5897414B2 (ja) 光デバイスの製造方法
JP6490705B2 (ja) 半導体光集積素子およびその製造方法
JP2002510869A (ja) 選択エリアエピタキシーで製造された縦型光学キャビティー
CN115241731A (zh) 具有光束形状和光束方向修改的激光器
JP2012227332A (ja) リッジ型半導体レーザ及びその製造方法
JP6513626B2 (ja) フォトニック結晶内蔵基板およびその製造方法、並びに面発光量子カスケードレーザ
JPH05249331A (ja) 導波路形ビームスポット変換素子およびその製造方法
JP2016111263A (ja) 半導体光集積素子、半導体光集積素子の製造方法及び光モジュール
WO2020090791A1 (ja) スポットサイズ変換器の作製方法およびスポットサイズ変換器
WO2005022223A1 (ja) 導波路型光デバイスおよびその製造方法
JP6339965B2 (ja) 光導波路の作製方法
US6084901A (en) Semiconductor laser device
JP2006091880A (ja) アクティブ構造体に接続する低寄生容量の突合せ接合型パッシブ導波路装置及び方法
JP2017187690A (ja) 光素子、光モジュール及び光伝送システム
US20150185582A1 (en) Mask design and method of fabricating a mode converter optical semiconductor device
JP3449698B2 (ja) フォトニック結晶構造及び作製法
JPH05142435A (ja) 導波路形ビーム変換素子およびその製造方法
US10725241B2 (en) Asymmetrical spot-size converter and method of manufacturing spot-size converter
CN110011182B (zh) 光子晶体内置基板及其制造方法、以及面发光量子级联激光器
JP2003255164A (ja) 光結合素子及び光デバイス
JP5530229B2 (ja) 半導体発光素子およびそれを用いた光パルス試験器
US20240176073A1 (en) Semiconductor structure and method of manufacture
JPH10142434A (ja) 光合波素子
WO2023047130A1 (en) Etched-facet photonic devices with improved anti-reflection coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880198

Country of ref document: EP

Kind code of ref document: A1