WO2020088142A1 - 量子点层的制备方法、量子点层、量子点彩膜、彩膜基板、显示面板和显示装置 - Google Patents

量子点层的制备方法、量子点层、量子点彩膜、彩膜基板、显示面板和显示装置 Download PDF

Info

Publication number
WO2020088142A1
WO2020088142A1 PCT/CN2019/106941 CN2019106941W WO2020088142A1 WO 2020088142 A1 WO2020088142 A1 WO 2020088142A1 CN 2019106941 W CN2019106941 W CN 2019106941W WO 2020088142 A1 WO2020088142 A1 WO 2020088142A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
quantum dot
area
transparent
Prior art date
Application number
PCT/CN2019/106941
Other languages
English (en)
French (fr)
Inventor
尤娟娟
孙力
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/650,912 priority Critical patent/US20210222065A1/en
Publication of WO2020088142A1 publication Critical patent/WO2020088142A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • G03F7/0955Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer one of the photosensitive systems comprising a non-macromolecular photopolymerisable compound having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a method for preparing a quantum dot layer, a quantum dot layer, a quantum dot color film, a method, a color film substrate, a display panel, and a display device.
  • Quantum dot materials have received a lot of attention and research due to the narrower half-width of the spectrum and the higher purity of the emitted light color, which can improve the color gamut of display products.
  • the main application of quantum dot technology is to use quantum dot color film in a color film substrate and realize display with a backlight source.
  • a method for preparing a quantum dot layer including: performing a liquid repellent treatment on a first designated area on a first transparent layer, the first transparent layer including a plurality of pixels Area corresponding to the area, each pixel area includes a first sub-pixel area and an area other than the first sub-pixel area, the first designated area corresponds to an area other than the first sub-pixel area; A lyophilic first quantum dot solution is prepared on the first transparent layer, so as to form a first quantum dot sub-layer in a region corresponding to the first sub-pixel region that has not been subjected to lyophobic treatment.
  • the area other than the first sub-pixel area includes the second sub-pixel area.
  • the preparation method further includes: after forming the first color film sublayer, forming a second transparent layer; performing liquid repellent treatment on the second designated area on the second transparent layer, the second designated area being A region other than the second sub-pixel region corresponds; prepare a lyophilic second quantum dot solution on the second transparent layer so as to form in a region corresponding to the second sub-pixel region that has not been subjected to lyophobic treatment The second quantum dot sublayer.
  • the area other than the first sub-pixel area further includes a third sub-pixel area, and the second sub-pixel area is located between the first sub-pixel area and the third sub-pixel area.
  • the CFx plasma is used for the lyophobic treatment.
  • the preparation method further includes: after forming the first quantum dot sublayer and before forming the second transparent layer, performing a lyophilic treatment on the first transparent layer.
  • a mask plate is used for the liquid repellent treatment.
  • the first transparent layer and the second transparent layer have the same material, including a photoresist material.
  • O 2 plasma or N 2 plasma is used for the lyophilic treatment.
  • the preparation method further includes: forming the first transparent layer on a base substrate.
  • the CFx plasma is used for the lyophobic treatment.
  • O 2 plasma or N 2 plasma is used for the lyophilic treatment.
  • the first quantum dot solution and the second quantum dot solution are applied by inkjet printing, spin coating, or screen printing.
  • the first quantum dot solution includes a first alcohol ether solvent, a first water-soluble ligand, and a plurality of first quantum dots
  • the second quantum dot solution includes a second alcohol ether solvent, The second water-soluble ligand and the plurality of second quantum dots.
  • the first quantum dot and the second quantum dot have different sizes but the same material, including CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgTe, GaN, GaAs, InP, InAs At least one of them.
  • the photoresist material includes at least one of polymethyl methacrylate, polyester, and epoxy resin.
  • a quantum dot layer including: a first transparent layer including regions corresponding to a plurality of pixel regions, each pixel region including a first sub-pixel region and An area other than a sub-pixel area; a first liquid-repellent layer, the first liquid-repellent layer being located on the upper surface of the first designated area of the first transparent layer, the first designated area and the first sub-region Corresponding to the area outside the pixel area, the first liquid-repellent layer includes elements constituting the first transparent layer; a first quantum dot sub-layer, which is located on the first transparent layer and corresponds to the first sub-pixel area Area.
  • the area other than the first sub-pixel area includes a second sub-pixel area
  • the quantum dot layer further includes: a second transparent layer covering the first quantum dot sub-layer and the first liquid-repellent Layer; a second liquid-repellent layer, the second liquid-repellent layer is located on the upper surface of the second designated area of the second transparent layer, the second designated area corresponds to the area other than the second sub-pixel area
  • the second liquid-repellent layer includes elements constituting the second transparent layer; a second quantum dot sublayer is located on the second transparent layer and corresponds to the second subpixel region.
  • the area other than the first sub-pixel area further includes a third sub-pixel area, and the second sub-pixel area is located between the first sub-pixel area and the third sub-pixel area.
  • the first liquid-repellent layer is a surface fluorinated layer of the first transparent layer; and / or the second liquid-repellent layer is a surface fluorinated layer of the second transparent layer.
  • a quantum dot color film including: a first color film layer located in a first sub-pixel region, including a first color film sub-layer and located on the first color film sub A first transparent sublayer on the upper and lower sides of the layer; a second color film layer located in the second sub-pixel area, including a second color film sublayer, and a first color film layer located between the second color film sublayer and the base substrate Two transparent sublayers; a third color film layer located in the third subpixel area, including a third transparent sublayer; wherein, the second subpixel area is located in the first subpixel area and the third subpixel area between.
  • the first transparent sublayer, the second transparent sublayer, and the third transparent sublayer have the same material, including a photoresist material.
  • the first color film layer further includes a liquid-repellent layer located on a side of the first transparent sublayer further away from the base substrate and away from the first color film sublayer.
  • the third color film layer further includes a liquid-repellent layer on a side of the third transparent sublayer away from the base substrate.
  • a color filter substrate including the quantum dot color filter according to any one of the foregoing embodiments.
  • a display panel including the aforementioned color filter substrate.
  • a display device including the aforementioned display panel.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a quantum dot layer according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart illustrating a method of manufacturing a quantum dot layer according to another embodiment of the present disclosure
  • 3A is a cross-sectional view illustrating the first transparent layer after being formed according to an embodiment of the present disclosure
  • 3B is a cross-sectional view showing the first liquid-repellent treatment according to an embodiment of the present disclosure
  • 3C is a cross-sectional view illustrating the formation of a first quantum dot sublayer according to an embodiment of the present disclosure
  • FIG. 4A is a cross-sectional view after forming a second transparent layer according to an embodiment of the present disclosure
  • 4B is a cross-sectional view illustrating the second liquid repellent treatment according to an embodiment of the present disclosure
  • 4C is a cross-sectional view illustrating the formation of a second quantum dot sublayer according to an embodiment of the present disclosure
  • 4D is a cross-sectional view showing a color filter substrate according to an embodiment of the present disclosure.
  • 4E is a cross-sectional view illustrating a display panel according to an embodiment of the present disclosure.
  • first”, “second” and similar words used in this disclosure do not indicate any order, quantity or importance, but are only used to distinguish different parts. Similar words such as “include” mean that the elements before the word cover the elements listed after the word, and do not exclude the possibility of covering other elements. “Up”, “down”, “left”, “right”, etc. are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • the patterning of the quantum dot layer is achieved by printing or photolithography.
  • the accuracy of the printing process is limited, and it is difficult to realize a high-resolution display panel.
  • the photolithography process is to incorporate quantum dots into the photoresist material and form a pattern by exposure and development, or to form a pattern by etching with a photoresist mask. Since quantum dot materials are relatively sensitive, acidic or alkaline solutions need to be used in the lithography process, which is easy to quench the quantum dots.
  • the present disclosure proposes a technical solution for patterning the quantum dot layer, which can improve the quality of the quantum dot color film.
  • a method for preparing a quantum dot layer including: performing a liquid repellent treatment on a first designated area on a first transparent layer, the first transparent layer including areas corresponding to a plurality of pixel regions , Each pixel area includes a first sub-pixel area and an area other than the first sub-pixel area, the first designated area corresponds to an area other than the first sub-pixel area; in the first transparent A lyophilic first quantum dot solution is prepared on the layer, so as to form a first quantum dot sublayer in a region corresponding to the first subpixel region that has not been subjected to lyophobic treatment.
  • the preparation method further includes: forming the first transparent layer on the base substrate.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a quantum dot layer according to an embodiment of the present disclosure.
  • the preparation method of the quantum dot color film shown in FIG. 1 includes steps S1-S3.
  • 3A to 3C are cross-sectional views illustrating structures obtained at various stages according to the method of FIG. 1. The following describes the cross-sectional views of the structure obtained at various stages of the method according to some embodiments of the present disclosure shown in FIGS. 3A to 3C with reference to the flowchart shown in FIG. 1.
  • step S1 a first transparent layer 110 is formed on the base substrate 100.
  • the base substrate 100 includes regions corresponding to a plurality of pixel regions.
  • Each pixel area includes a plurality of sub-pixel areas, such as a first sub-pixel area and an area other than the first sub-pixel area.
  • the area other than the first sub-pixel area includes the second sub-pixel area.
  • the area other than the first sub-pixel area may further include a third sub-pixel area.
  • a light-shielding layer such as a black matrix, may also be provided between each sub-pixel area.
  • FIG. 3A shows that each pixel area includes a first sub-pixel area, a second sub-pixel area, and a third sub-pixel area. As shown in FIG. 3A, the second sub-pixel area is located between the first sub-pixel area 101 and the third sub-pixel area.
  • the first transparent layer 110 covers the substrate 100 and also includes regions corresponding to the plurality of pixel regions.
  • corresponding to the pixel area may be understood as at least partially overlapping with the projection of the pixel area on the substrate plane.
  • FIG. 3A shows a situation where the projections completely overlap.
  • the first transparent layer is formed on the substrate through a solution preparation process, such as inkjet printing, spin coating, or screen printing, combined with a drying process.
  • the material of the base substrate may be glass.
  • the material of the first transparent layer may be a photoresist material, for example, selected from polymethyl methacrylate, polyester, epoxy resin, or any combination thereof.
  • the first transparent layer may not be formed on a separate base substrate.
  • the first transparent layer may be a part of the light source structure.
  • step S2 the first designated area on the first transparent layer 110 is subjected to liquid repellent treatment.
  • the first designated area corresponds to an area other than the first sub-pixel area.
  • a region on the first transparent layer 110 corresponding to the second sub-pixel region and the third sub-pixel region may be subjected to liquid repellent treatment.
  • FIG. 3B shows a cross-sectional view after the first liquid repellent treatment according to an embodiment of the present disclosure.
  • the first designated area on the first transparent layer 110 is subjected to liquid repellent treatment using a mask.
  • the opening of the mask in this embodiment can be enlarged to the area of two sub-pixels, which can reduce the process difficulty.
  • a specified area on the first transparent layer may be subjected to liquid repellent treatment using CFx plasma so that the upper surface of the specified area has liquid repellency.
  • the first liquid-repellent layer 110S is formed on the upper surface of the first designated area on the first transparent layer, as shown in FIG. 3B.
  • the first liquid-repellent layer is a surface fluorinated layer of the first transparent layer, and the material may be fluorinated polymethyl methacrylate, fluorinated polyester, fluorinated epoxy resin, or any combination thereof.
  • step S3 a lyophilic first quantum dot solution is prepared on the first transparent layer 110, so that the first quantum dot sub-layer 210 is formed in a region corresponding to the first sub-pixel region that has not been subjected to lyophobic treatment.
  • 3C shows a cross-sectional view after forming a first quantum dot sublayer according to an embodiment of the present disclosure.
  • the preparation of the quantum dot solution can be achieved by a solution preparation process such as inkjet printing, spin coating, or screen printing. Since the upper surface of the first designated area of the first transparent layer 110 is lyophobic, that is, due to the presence of the first lyophobic layer 110S, the coated lyophilic first quantum dot solution will flow to the non-lyophobic treatment The upper surface of the area (ie, the area corresponding to the first sub-pixel area).
  • the first quantum dot solution includes an alcohol ether solvent, a water-soluble ligand, and a plurality of first quantum dots.
  • water-soluble quantum dots can be dispersed in organic ketones to prevent quantum dot agglomeration.
  • the alcohol ether solvent can be selected from ethylene glycol methyl ether, ethylene glycol ether, ethylene glycol propyl ether, ethylene glycol butyl ether, propylene glycol methyl ether, propylene glycol ether, propylene glycol n-propyl ether, propylene glycol isopropyl ether, propylene glycol n-butyl Ether, propylene glycol tert-butyl ether, diethylene glycol ether, diethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol ether, diethylene glycol diethyl ether, diethylene glycol butyl ether, diethyl ether Glycol dibutyl ether, diethylene glycol hexyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether, dipropylene glyco
  • the group carried by the water-soluble ligand may be selected from: carboxylic acid group, amine group, thiol group, phosphonic acid group, or any combination thereof.
  • the quantum dot material can be modified with water-soluble ligands using mercapto silicone polymer to obtain water-soluble quantum dots.
  • the material of the first quantum dot is a red quantum dot material. In other embodiments, the material of the first quantum dot is a green quantum dot material.
  • the quantum dot material may be selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgTe, GaN, GaAs, InP, InAs, or any combination thereof.
  • the quantum dots of different colors can be illuminated by adjusting the size of the quantum dots.
  • the emission wavelength of quantum dots can be red-shifted from 510nm to 660nm, that is, it can realize the quantum dots of different colors from green light to red light.
  • the first quantum dot sub-layer 210 is formed.
  • the first quantum dot solution may be baked for 0.5-2 hours at 50-100 ° C.
  • a red quantum dot sub-layer can be formed by the method of FIG.
  • the area corresponding to the blue sub-pixel area and the red sub-pixel area on the first transparent layer may also be subjected to liquid repellent treatment, so that only the areas that are not subjected to liquid repellent treatment (ie, the corresponding areas of the green sub-pixel area ) Form a green quantum dot sublayer.
  • FIG. 2 is a flowchart illustrating a method of preparing a color film sublayer according to another embodiment of the present disclosure. The difference between FIG. 2 and FIG. 1 is that steps S4-S6 are also included. Only the differences will be described below, and the similarities will not be repeated.
  • FIGS. 4A to 4C are cross-sectional views showing structures obtained at various stages according to the method of FIG. 2.
  • the cross-sectional views of the structure obtained at various stages of the method according to some embodiments of the present disclosure shown in FIGS. 4A to 4C are described below with reference to the flowchart shown in FIG. 2.
  • step S4 after the first quantum dot sublayer 210 is formed, the second transparent layer 120 is formed.
  • FIG. 4A shows a cross-sectional view after forming a second transparent layer according to one embodiment of the present disclosure.
  • the second transparent layer 120 covers the first transparent layer 110 and the first quantum dot sub-layer 210.
  • the second transparent layer 120 may use the same material as the first transparent layer 110, and may be formed using the same process. That is, the material of the second transparent layer may also be a photoresist material, for example, selected from polymethyl methacrylate, polyester, epoxy resin, or any combination thereof.
  • the second transparent layer may also be formed by a solution preparation process such as inkjet printing, spin coating, or screen printing, combined with a drying process.
  • the thickness of the second transparent layer can be selected according to actual needs, for example, it can be greater than the first transparent layer. In the case where the second transparent layer is thick, due to the fluidity of the solution, the surface of the second transparent layer can be made flat, thereby eliminating the planarization process and simplifying the process.
  • the first transparent layer 110 may be subjected to a lyophilic treatment to avoid the influence of the previous lyophobic treatment.
  • the first transparent layer 110 may be lyophilized with O 2 plasma or N 2 plasma.
  • Such lyophilic treatment can change the properties of the first lyophobic layer 110S on the upper surface of the first transparent layer 110 to restore lyophilicity, but hardly affect the first quantum dot sub-layer 210.
  • the first transparent layer shown in FIG. 4A no longer includes the first liquid-repellent layer 110S shown in FIG. 3B in the first designated area.
  • step S5 the second designated area on the second transparent layer 120 is subjected to liquid repellent treatment.
  • the second designated area corresponds to an area other than the second sub-pixel area.
  • the second designated area on the second transparent layer 120 that is, the area corresponding to the third sub-pixel area and the first sub-pixel area
  • FIG. 4B illustrates a cross-sectional view after a second liquid repellent treatment according to some embodiments of the present disclosure.
  • the second transparent layer 120 may be subjected to liquid repellent treatment in the same process as the first transparent layer 110. That is, the second designated area on the second transparent layer may be subjected to liquid repellent treatment using CFx plasma so that the upper surface of the second designated area has liquid repellency.
  • a second liquid-repellent layer 120S is formed on the upper surface of the second designated area on the second transparent layer, as shown in FIG. 4B.
  • the second designated area on the second transparent layer 120 may also be subjected to liquid repellent treatment using a mask. In this way, the same mask can be used for two lyophobic treatments, which can simplify the process and reduce costs.
  • step S6 a lyophilic second quantum dot solution is coated on the second transparent layer 120, so that the second quantum dot sub-layer 220 is formed in a region corresponding to the second sub-pixel region that has not been subjected to lyophobic treatment.
  • 4C shows a cross-sectional view after forming a second quantum dot sublayer according to one embodiment of the present disclosure.
  • the second quantum dot sub-layer 220 may be formed using a process similar to the first quantum dot sub-layer 210. That is, the second quantum dot sub-layer 220 may also be formed by a solution preparation process such as inkjet printing, spin coating, or screen printing, combined with a drying process. Similar to the first quantum dot solution, the second quantum dot solution includes an alcohol ether solvent, a water-soluble ligand, and a plurality of second quantum dots. Furthermore, the stabilizing effect of organic ketones on quantum dots can also be used to disperse quantum dots in organic ketones to prevent quantum dot agglomeration.
  • the second quantum dot solution and the first quantum dot solution use the same alcohol ether solvent, water-soluble ligand, and use quantum dots of the same material. That is, the second quantum dot solution differs from the first quantum dot solution only in the size of the quantum dots, so that the formed second quantum dot sub-layer 220 and the first quantum dot sub-layer 210 have different properties and emit different colors of light.
  • the second quantum dot solution may also use different alcohol ether solvents, different water-soluble ligands, or different quantum dot materials than the first quantum dot solution.
  • the red quantum dots can be sequentially formed by the method of FIG. 2 Layer and green quantum dot sublayer.
  • the green quantum dot sublayer may be formed first and then the red quantum dot sublayer.
  • the order of forming the red quantum dot sublayer and the green quantum dot sublayer is not limited to the order described in the embodiments of the present disclosure.
  • a color film substrate including a quantum dot color film formed according to any of the foregoing preparation methods.
  • the quantum dot color film includes: a first color film layer located in the first sub-pixel region, a second color film layer located in the second sub-pixel region, and a third color film layer located in the third sub-pixel region .
  • the structure of each color film layer according to an embodiment of the present disclosure will be described below with reference to FIG. 4D.
  • 4D is a cross-sectional view illustrating a color filter substrate according to an embodiment of the present disclosure.
  • the first color film layer includes a first color film sublayer 210 and first transparent sublayers located on both sides of the first color film sublayer 210.
  • the first transparent sublayers 111 and 121 above and below the first color film sublayer 210 are part of the first transparent layer 110 and the second transparent layer 120, respectively.
  • the second color filter layer includes a second color filter sublayer 220 and a second transparent sublayer between the second color filter sublayer 210 and the base substrate 100.
  • the second transparent sublayer may be two layers 112 and 122, which are part of the first transparent layer 110 and the second transparent layer 120, respectively.
  • the third color film layer includes a third transparent sublayer.
  • the third transparent sublayer may include two layers 113 and 123, which are part of the first transparent layer 110 and the second transparent layer 120, respectively.
  • the first color filter layer further includes a liquid-repellent layer located on a side of the first transparent sub-layer further away from the base substrate and away from the first color filter sub-layer 210. As shown in FIG. 4D, the liquid-repellent layer of the first color film layer is a part of the second liquid-repellent layer 120S and is located above the first transparent sub-layer 121.
  • the third color film layer further includes a liquid-repellent layer on the side of the third transparent sub-layer away from the base substrate 100. As shown in FIG. 4C, the liquid-repellent layer of the third color film layer is also a part of the second liquid-repellent layer 120S, and is located above the third transparent sub-layer 123.
  • the color filter substrate further includes an encapsulation layer 140.
  • the material of the encapsulation layer 140 is, for example, an inorganic film material such as silicon nitride and silicon oxide.
  • the color film substrate is used in combination with the backlight to realize color display.
  • a display panel including the aforementioned color filter substrate.
  • the display panel includes: a color filter substrate and a blue backlight, wherein the color filter substrate includes a transparent layer, a red color filter layer, and a green color filter layer.
  • the display panel may be, for example, a liquid crystal display panel.
  • the blue backlight source may be a blue LED light source or a blue OLED light source.
  • the color filter substrate may further include another color filter layer 130, as shown in FIG. 4D.
  • the color film layer 130 may include a color film 131 (for example, a red color film) corresponding to the first sub-pixel area, or may further include a color film corresponding to the second sub-pixel area Color film 132 (for example, a green color film).
  • the color film layer 130 includes a flat layer 133 at a position corresponding to the blue sub-pixel region.
  • the red color film and the green color film can absorb the unconverted blue light when the light conversion of the quantum dot color film to the blue light source is incomplete. It should be understood that when the light conversion of the quantum dot color film to the blue light source is complete, the color film substrate no longer requires an additional color film layer.
  • the display panel includes a color filter substrate and a blue backlight portion.
  • the color film substrate includes a base substrate 100, a quantum dot color film CF, and an encapsulation layer 140.
  • the structure of the quantum dot color film CF is similar to FIG. 4C or FIG. 4D, and includes the first quantum dot color film 210 and the second quantum dot color film 220, the first transparent layer 110 and the second transparent layer 120, and the like.
  • the blue backlight part includes a base substrate 200, an organic light emitting diode OLED, a cathode 170 and an anode 180 on both sides of the OLED.
  • the material of the cathode 170 is a thin metal, for example, Mg: Ag.
  • the anode 180 includes a plurality of electrodes separated by a pixel defining layer PDL.
  • the material of the anode 180 is, for example, indium tin oxide (ITO).
  • the material of the pixel defining layer is, for example, an acrylic material or an epoxy-based material.
  • the blue backlight part further includes thin film transistors TFT for controlling OLEDs corresponding to the respective sub-pixels.
  • the blue backlight part also includes an encapsulation layer 160.
  • the encapsulation layer 160 is, for example, an organic / inorganic multilayer overlapping film.
  • the inorganic material is, for example, silicon oxide or silicon nitride.
  • the organic material is, for example, an acrylic material or an epoxy-based material.
  • the blue backlight portion further includes an auxiliary electrode 190 between the base substrate 200 and the TFT.
  • the display panel further includes a circular polarizer 150 between the encapsulation layer 140 of the color filter substrate and the encapsulation layer 160 of the blue backlight portion.
  • the display device including the aforementioned display panel.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

一种量子点层的制备方法、量子点彩膜、彩膜基板、显示面板和显示装置。量子点层的制备方法包括:对第一透明层(110)上的第一指定区域进行疏液处理,第一透明层(110)包括与多个像素区对应的区域,每个像素区包括第一子像素区和除第一子像素区以外的区域,第一指定区域与除第一子像素区以外的区域对应;在第一透明层上制备亲液的第一量子点溶液,以便在与第一子像素区对应的、未经疏液处理的区域形成第一量子点子层(210)。

Description

量子点层的制备方法、量子点层、量子点彩膜、彩膜基板、显示面板和显示装置
相关申请的交叉引用
本申请是以CN申请号为201811266320.6,申请日为2018年10月29日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及显示技术领域,特别涉及量子点层的制备方法、量子点层、量子点彩膜、法、彩膜基板、显示面板和显示装置。
背景技术
随着显示技术的快速发展,人们对显示产品的性能要求越来越高。量子点材料由于较窄的光谱半峰宽,发出的光色纯度较高,可提升显示产品的色域,因此受到广泛的关注和研究。
目前,量子点技术的主要应用为在彩膜基板中使用量子点彩膜,搭配背光源实现显示。
发明内容
根据本公开实施例的第一方面,提供了一种量子点层的制备方法,包括:对第一透明层上的第一指定区域进行疏液处理,所述第一透明层包括与多个像素区对应的区域,每个像素区包括第一子像素区和除所述第一子像素区以外的区域,所述第一指定区域与除所述第一子像素区以外的区域对应;在所述第一透明层上制备亲液的第一量子点溶液,以便在与所述第一子像素区对应的、未经疏液处理的区域形成第一量子点子层。
在一些实施例中,除第一子像素区以外的区域包括第二子像素区。所述制备方法还包括:在形成所述第一彩膜子层后,形成第二透明层;对所述第二透明层上的第二指定区域进行疏液处理,所述第二指定区域与除第二子像素区以外的区域对应;在所述第二透明层上制备亲液的第二量子点溶液,以便在与所述第二子像素区对应的、未经疏液处理的区域形成第二量子点子层。
在一些实施例中,除第一子像素区以外的区域还包括第三子像素区,所述第二子像素区位于所述第一子像素区和所述第三子像素区之间。
在一些实施例中,利用CFx等离子体进行疏液处理。
在一些实施例中,所述制备方法还包括:在形成所述第一量子点子层后、形成所述第二透明层之前,对所述第一透明层进行亲液处理。
在一些实施例中,利用掩膜板进行疏液处理。
在一些实施例中,所述第一透明层和第二透明层的材料相同,包括光阻材料。
在一些实施例中,利用O 2等离子体或N 2等离子体进行亲液处理。
在一些实施例中,所述制备方法还包括:在衬底基板上形成所述第一透明层。
在一些实施例中,利用CFx等离子体进行疏液处理。
在一些实施例中,利用O 2等离子体或N 2等离子体进行亲液处理。
在一些实施例中,通过喷墨打印、旋涂或丝网印刷,涂布所述第一量子点溶液和所述第二量子点溶液。
在一些实施例中,所述第一量子点溶液包括第一醇醚类溶剂、第一水溶性配体和多个第一量子点,所述第二量子点溶液包括第二醇醚类溶剂、第二水溶性配体和多个第二量子点。
在一些实施例中,所述第一量子点和所述第二量子点的尺寸不同但材料相同,包括CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgTe、GaN、GaAs、InP、InAs中的至少一种。
在一些实施例中,所述光阻材料包括聚甲基丙烯酸甲酯、聚酯、环氧树酯中的至少一种。
根据本公开实施例的第二方面,提供了一种量子点层,包括:第一透明层,包括与多个像素区对应的区域,每个像素区包括第一子像素区和除所述第一子像素区以外的区域;第一疏液层,所述第一疏液层位于所述第一透明层的第一指定区域的上表面,所述第一指定区域与除所述第一子像素区以外的区域对应,所述第一疏液层包括构成所述第一透明层的元素;第一量子点子层,位于所述第一透明层上的、与所述第一子像素区对应的区域。
在一些实施例中,除第一子像素区以外的区域包括第二子像素区,所述量子点层还包括:第二透明层,覆盖所述第一量子点子层和所述第一疏液层;第二疏液层,所述第二疏液层位于所述第二透明层的第二指定区域的上表面,所述第二指定区域与除 第二子像素区以外的区域对应,所述第二疏液层包括构成所述第二透明层的元素;第二量子点子层,位于所述第二透明层上的、与所述第二子像素区对应的区域。
在一些实施例中,除第一子像素区以外的区域还包括第三子像素区,所述第二子像素区位于所述第一子像素区和所述第三子像素区之间。
在一些实施例中,所述第一疏液层是所述第一透明层的表面氟化层;和/或所述第二疏液层是所述第二透明层的表面氟化层。
根据本公开实施例的第三方面,提供了一种量子点彩膜,包括:位于第一子像素区的第一彩膜层,包括第一彩膜子层和位于所述第一彩膜子层上下两侧的第一透明子层;位于第二子像素区的第二彩膜层,包括第二彩膜子层、以及位于所述第二彩膜子层和衬底基板之间的第二透明子层;位于第三子像素区的第三彩膜层,包括第三透明子层;其中,所述第二子像素区位于所述第一子像素区和所述第三子像素区之间。
在一些实施例中,所述第一透明子层、所述第二透明子层和所述第三透明子层的材料相同,包括光阻材料。所述第一彩膜层还包括位于更远离所述衬底基板的第一透明子层的、远离所述第一彩膜子层一侧的疏液层。所述第三彩膜层还包括位于所述第三透明子层远离所述衬底基板一侧的疏液层。
根据本公开实施例的第四方面,提供了一种彩膜基板,包括根据前述任一实施例所述的量子点彩膜。
根据本公开实施例的第五方面,提供了一种包括前述彩膜基板的显示面板。
根据本公开实施例的第六方面,提供了一种包括前述显示面板的显示装置。
通过以下参照附图对本公开的实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是示出根据本公开一个实施例的量子点层的制备方法的流程图;
图2是示出根据本公开另一个实施例的量子点层的制备方法的流程图;
图3A是示出根据本公开一个实施例在形成第一透明层后的截面图;
图3B是示出根据本公开一个实施例在第一次疏液处理后的截面图;
图3C是示出根据本公开一个实施例在形成第一量子点子层后的截面图;
图4A是示出根据本公开一个实施例在形成第二透明层后的截面图;
图4B是示出根据本公开一个实施例在第二次疏液处理后的截面图;
图4C是示出根据本公开一个实施例在形成第二量子点子层后的截面图;
图4D是示出根据本公开一个实施例的彩膜基板的截面图;
图4E是示出根据本公开一个实施例的显示面板的截面图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种实施例。对实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置应被解释为仅仅是示意性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定元件位于第一元件和第二元件之间时,在该特定元件与第一元件或第二元件之间可以存在居间元件,也可以不存在居间元件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在量子点层的相关制备工艺中,量子点层的图案化通过打印或者光刻来实现。打印工艺的精度有限,较难实现高分辨率的显示面板。光刻工艺是将量子点掺入到光阻 材料中,通过曝光显影形成图案,或者通过光阻掩膜刻蚀形成图案。由于量子点材料比较敏感,在光刻工艺中需要使用酸性或者碱性的溶液,易使量子点发生猝灭。
本公开提出一种量子点层图案化的技术方案,能够提高量子点彩膜的质量。
根据本公开一些实施例,提供一种量子点层的制备方法,包括:对第一透明层上的第一指定区域进行疏液处理,所述第一透明层包括与多个像素区对应的区域,每个像素区包括第一子像素区和除所述第一子像素区以外的区域,所述第一指定区域与除所述第一子像素区以外的区域对应;在所述第一透明层上制备亲液的第一量子点溶液,以便在与所述第一子像素区对应的、未经疏液处理的区域形成第一量子点子层。
在一些实施例中,制备方法还包括:在衬底基板上形成所述第一透明层。
图1是示出根据本公开一个实施例的量子点层的制备方法的流程图。图1所示的量子点彩膜的制备方法包括步骤S1-S3。
图3A至图3C是示出根据图1的方法在各个阶段得到的结构的截面图。下面参考图1所示出的流程图描述图3A至图3C所示的根据本公开一些实施例的方法在各个阶段得到的结构的截面图。
在步骤S1,在衬底基板100上形成第一透明层110。
图3A示出根据本公开一个实施例在形成第一透明层后的截面图。如图3A所示,衬底基板100包括与多个像素区对应的区域。每个像素区包括多个子像素区,例如第一子像素区和除第一子像素区之外的区域。在一些实施例中,除第一子像素区以外的区域包括第二子像素区。除第一子像素区以外的区域还可以包括第三子像素区。在每个像素区中,各个子像素区之间还可以设置遮光层,例如黑矩阵。
图3A示出每个像素区包括第一子像素区、第二子像素区和第三子像素区。如图3A所示,第二子像素区位于第一子像素区101和第三子像素区之间。第一透明层110覆盖基板100,也包括与多个像素区对应的区域。
本文中,“与像素区对应”可以理解为:与像素区在基板平面上的投影至少部分重叠。图3A示出投影完全重叠的情形。
在一些实施例中,在基板上通过溶液制备工艺,例如喷墨打印、旋涂或丝网印刷,结合干燥工艺来形成第一透明层。衬底基板的材料可以选择玻璃。第一透明层的材料可以是光阻材料,例如选自聚甲基丙烯酸甲酯、聚酯、环氧树酯、或其任意组合。
应当理解,第一透明层也可以不形成在单独的衬底基板上,例如,第一透明层可以是光源结构的一部分。
在步骤S2,对第一透明层110上的第一指定区域进行疏液处理。第一指定区域与除第一子像素区以外的区域对应。例如,可以对第一透明层110上、与第二子像素区和第三子像素区对应的区域进行疏液处理。
图3B示出根据本公开一个实施例在第一次疏液处理后的截面图。
在一些实施例中,利用掩膜板对第一透明层110上的第一指定区域进行疏液处理。与相关技术中的图案化工艺相比,本实施例中掩膜的开孔可放大到两个子像素的面积,这样可以降低工艺难度。
作为示例,可以利用CFx等离子体对第一透明层上的指定区域进行疏液处理,使得指定区域的上表面具有疏液性。例如,在第一透明层上的第一指定区域的上表面形成第一疏液层110S,如图3B所示。第一疏液层是第一透明层的表面氟化层,材料可以是氟化聚甲基丙烯酸甲酯、氟化聚酯、氟化环氧树酯、或其任意组合。
在步骤S3,在第一透明层110上制备亲液的第一量子点溶液,以便在与第一子像素区对应的、未经疏液处理的区域形成第一量子点子层210。
图3C示出根据本公开一个实施例在形成第一量子点子层后的截面图。。
作为示例,制备量子点溶液可以通过喷墨打印、旋涂或丝网印刷等溶液制备工艺来实现。由于第一透明层110的第一指定区域的上表面具有疏液性,即由于第一疏液层110S的存在,涂布的亲液的第一量子点溶液将流动到未经疏液处理的区域(即,与第一子像素区对应的区域)上表面。
在一些实施例中,第一量子点溶液包括醇醚类溶剂、水溶性配体和多个第一量子点。另外,在量子点溶液的制备工艺中,可以将水溶性的量子点分散在有机酮中,以防止量子点团聚。
醇醚类溶剂可以选自乙二醇甲醚、乙二醇乙醚、乙二醇丙醚、乙二醇丁醚、丙二醇甲醚、丙二醇乙醚、丙二醇正丙醚、丙二醇异丙醚、丙二醇正丁醚、丙二醇叔丁醚、二乙二醇醚、二乙二醇甲醚、二乙二醇二甲醚、二乙二醇乙醚、二乙二醇二乙醚、二乙二醇丁醚、二乙二醇二丁醚、二乙二醇己醚、二丙二醇甲醚、二丙二醇二甲醚、二丙二醇单乙醚、二丙二醇二乙醚、二丙二醇丁醚、三乙二醇乙醚、三丙二醇甲醚、三丙二醇丁醚、或其任意组合。
水溶性配体所带基团可以选自:羧酸基团、胺基团、硫醇基团、膦酸基团、或其任意组合。可以利用巯基有机硅聚合物将量子点材料修饰上水溶性配体,得到水溶性的量子点。
在一些实施例中,第一量子点的材料为红色量子点材料。在另一些实施例中,第一量子点的材料为绿色量子点材料。量子点材料可以选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgTe、GaN、GaAs、InP、InAs、或其任意组合。可以通过调节量子点的尺寸,来实现不同颜色的量子点发光。以CdTe量子点为例,当粒径从2.5nm变化到4.0nm时,量子点的发射波长可以从510nm红移到660nm,即能够实现从绿光到红光的不同颜色的量子点发光。
作为示例,流动到与第一子像素区对应的区域上表面的第一量子点溶液经过干燥处理后,形成第一量子点子层210。在一些实施例中,可以在50-100℃条件下,对第一量子点溶液进行烘烤处理0.5-2小时。
以第一子像素区、第二子像素区和第三子像素区分别对应红色子像素区、绿色子像素区和蓝色子像素区为例,通过图1的方法可以形成红色量子点子层。
具体地,通过对第一透明层上、与绿色子像素区和蓝色子像素区对应的区域进行疏液处理,使得仅在未经疏液处理的区域(即红色子像素区的对应区域)形成红色量子点子层。
应当理解,也可以对第一透明层上、与蓝色子像素区和红色子像素区对应的区域进行疏液处理,使得仅在未经疏液处理的区域(即绿色子像素区的对应区域)形成绿色量子点子层。
图2是示出根据本公开另一个实施例的彩膜子层的制备方法的流程图。图2与图1的不同之处在于,还包括步骤S4-S6。下面将仅描述不同之处,相同之处不再赘述。
图4A至图4C是示出根据图2的方法在各个阶段得到的结构的截面图。下面参考图2所示出的流程图描述图4A至图4C所示的根据本公开一些实施例的方法在各个阶段得到的结构的截面图。
在步骤S4,在形成第一量子点子层210后,形成第二透明层120。
图4A示出根据本公开一个实施例在形成第二透明层后的截面图。如图4A所示,第二透明层120覆盖第一透明层110和第一量子点子层210。
第二透明层120可以采用与第一透明层110相同的材料,并且可以采用相同的工艺形成。即,第二透明层的材料也可以是光阻材料,例如选自聚甲基丙烯酸甲酯、聚酯、环氧树酯、或其任意组合。第二透明层也可以采用例如喷墨打印、旋涂或丝网印刷的溶液制备工艺,结合干燥工艺来形成。
第二透明层的厚度可以根据实际需要来选择,例如可以大于第一透明层。在第二 透明层较厚的情形下,由于溶液的流动性,可以使得第二透明层的表面较平坦,从而省去平坦化工艺,简化流程。
在一些实施例中,在形成第二透明层120之前,可以对第一透明层110进行亲液处理,以避免之前的疏液处理的影响。例如,可以利用O 2等离子体或N 2等离子体对第一透明层110进行亲液处理。这样的亲液处理可以改变第一透明层110的上表面的第一疏液层110S的性质,使其恢复亲液性,但对第一量子点子层210几乎不产生影响。例如,图4A所示的第一透明层在第一指定区域不再包括图3B所示的第一疏液层110S。
在步骤S5,对第二透明层120上的第二指定区域进行疏液处理。第二指定区域与除第二子像素区以外的区域对应。例如,可以对第二透明层120上的第二指定区域(即与第三子像素区和第一子像素区对应的区域)进行疏液处理。
图4B示出根据本公开一些实施例在第二次疏液处理后的截面图。
可以采用与第一透明层110相同的工艺对第二透明层120进行疏液处理。即,也可以利用CFx等离子体对第二透明层上的第二指定区域进行疏液处理,使得第二指定区域的上表面具有疏液性。例如,在第二透明层上的第二指定区域的上表面形成第二疏液层120S,如图4B所示。
在一些实施例中,也可以利用掩膜板对第二透明层120上的第二指定区域进行疏液处理。这样,两次疏液处理可使用同一张掩膜板,从而可以简化工艺、降低成本。
在步骤S6,在第二透明层120上涂布亲液的第二量子点溶液,以便在与第二子像素区对应的、未经疏液处理的区域形成第二量子点子层220。
图4C示出根据本公开一个实施例在形成第二量子点子层后的截面图。
第二量子点子层220可以采用与第一量子点子层210相似的工艺形成。即,第二量子点子层220也可以采用例如喷墨打印、旋涂或丝网印刷的溶液制备工艺,结合干燥工艺来形成。与第一量子点溶液类似,第二量子点溶液包括醇醚类溶剂、水溶性配体和多个第二量子点。并且,也可以利用有机酮对量子点的稳定作用,将量子点分散在有机酮中,以防止量子点团聚。
在一些实施例中,第二量子点溶液与第一量子点溶液使用相同的醇醚类溶剂、水溶性配体,并且使用同种材料的量子点。即第二量子点溶液与第一量子点溶液的区别仅在于量子点的尺寸不同,使形成的第二量子点子层220与第一量子点子层210的性能不同,发射不同颜色的光。
应当理解,第二量子点溶液也可以与第一量子点溶液使用不同的醇醚类溶剂,不同的水溶性配体,或不同的量子点材料。
仍以第一子像素区、第二子像素区和第三子像素区分别对应红色子像素区、绿色子像素区和蓝色子像素区为例,通过图2的方法可以依次形成红色量子点子层和绿色量子点子层。
具体地,首先,通过对第一透明层上与绿色子像素区和蓝色子像素区对应的区域进行疏液处理,使得仅在未经疏液处理的区域(即红色子像素区的对应区域)形成红色量子点子层;然后,通过对第二透明层上与蓝色子像素区和红色子像素区对应的区域进行疏液处理,使得仅在未经疏液处理的区域(即绿色子像素区的对应区域)形成绿色量子点子层。
应当理解,也可以先形成绿色量子点子层再形成红色量子点子层。形成红色量子点子层和绿色量子点子层的先后顺序不限于本公开实施例描述的顺序。
在上述实施例中,通过透明层疏液区域的设置,不需要光刻工艺即可实现不同量子点子层的图案化。量子点的发光不会因接触到光刻工艺中的酸性或者碱性溶剂而发生猝灭,由此可以显著改善形成的量子点层的质量。
根据本公开实施例,还提供了一种彩膜基板,包括根据前述任一制备方法形成的量子点彩膜。
在一些实施例中,量子点彩膜包括:位于第一子像素区的第一彩膜层、位于第二子像素区的第二彩膜层和位于第三子像素区的第三彩膜层。下面结合图4D描述根据本公开一个实施例各个彩膜层的结构。图4D是示出根据本公开一个实施例的彩膜基板的截面图。
如图4D所示,第一彩膜层包括第一彩膜子层210和位于第一彩膜子层210两侧的第一透明子层。在第一彩膜子层210上、下的第一透明子层111、121分别是第一透明层110和第二透明层120的一部分。
第二彩膜层包括第二彩膜子层220、位于第二彩膜子层210和衬底基板100之间的第二透明子层。第二透明子层可以为两层112和122,分别是第一透明层110和第二透明层120的一部分。
第三彩膜层包括第三透明子层。第三透明子层可以包括两层113和123,分别是第一透明层110和第二透明层120的一部分。
在一些实施例中,第一彩膜层还包括位于更远离衬底基板的第一透明子层的、远 离第一彩膜子层210一侧的疏液层。如图4D所示,第一彩膜层的疏液层是第二疏液层120S的一部分,位于第一透明子层121上方。
在另一些实施例中,第三彩膜层还包括位于第三透明子层远离衬底基板100一侧的疏液层。如图4C所示,第三彩膜层的疏液层也是第二疏液层120S的一部分,位于第三透明子层123上方。
在一些实施例中,如图4D所示,彩膜基板还包括封装层140。封装层140的材料例如为氮化硅、氧化硅等无机膜材料。
彩膜基板与背光源结合使用,可以实现彩色显示。根据本公开实施例,还提供了一种包括前述彩膜基板的显示面板。在一些实施例中,显示面板包括:彩膜基板和蓝色背光源,其中彩膜基板包括透明层、红色彩膜层和绿色彩膜层。显示面板可以是例如液晶显示面板。蓝色背光源可以为蓝色LED光源或者蓝色OLED光源。
在一些实施例中,彩膜基板还可以包括另外的彩膜层130,如图4D所示。根据量子点彩膜对蓝色光源的光转换效率,彩膜层130可以包括与第一子像素区对应的彩膜131(例如为红色彩膜),也可以还包括与第二子像素区对应的彩膜132(例如为绿色彩膜)。在与蓝色子像素区对应的位置,彩膜层130包括平坦层133。红色彩膜和绿色彩膜能够在量子点彩膜对蓝色光源的光转换不完全时,把未转换的蓝光吸收掉。应当理解,当量子点彩膜对蓝色光源的光转换完全时,彩膜基板不再需要额外的彩膜层。
图4E示出根据本公开一个实施例的显示面板的截面图。如前所述,显示面板包括彩膜基板和蓝色背光源部分。
如图4E所示,彩膜基板包括衬底基板100、量子点彩膜CF和封装层140。量子点彩膜CF的结构类似图4C或图4D,包括第一量子点彩膜210和第二量子点彩膜220、第一透明层110和第二透明层120等。
如图4E所示,蓝色背光源部分包括衬底基板200、有机发光二极管OLED、OLED两侧的阴极170和阳极180。阴极170的材料为薄金属,例如为Mg:Ag。阳极180包括通过像素界定层PDL隔开的多个电极。阳极180的材料例如为氧化铟锡(ITO)。像素界定层的材料例如为亚克力系材料、或环氧树脂类材料。蓝色背光源部分还包括分别用于控制各个子像素对应的OLED的薄膜晶体管TFT。蓝色背光源部分还包括封装层160。封装层160例如为有机/无机多层交叠的薄膜。无机材料例如为氧化硅、氮化硅。有机材料例如为亚克力系材料、或环氧树脂类材料。在一些实施例中,蓝色背光源部分在衬底基板200与TFT之间还包括辅助电极190。
如图4E所示,显示面板在彩膜基板的封装层140与蓝色背光源部分的封装层160之间还包括圆偏振片150。
根据本公开实施例,提供了一种包括前述显示面板的显示装置。在一些实施例中,显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
至此,已经详细描述了本公开的各种实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (20)

  1. 一种量子点层的制备方法,包括:
    对第一透明层上的第一指定区域进行疏液处理,所述第一透明层包括与多个像素区对应的区域,每个像素区包括第一子像素区和除所述第一子像素区以外的区域,所述第一指定区域与除所述第一子像素区以外的区域对应;
    在所述第一透明层上制备亲液的第一量子点溶液,以便在与所述第一子像素区对应的、未经疏液处理的区域形成第一量子点子层。
  2. 根据权利要求1所述的制备方法,其中,除第一子像素区以外的区域包括第二子像素区;
    所述制备方法还包括:
    在形成所述第一彩膜子层后,形成第二透明层;
    对所述第二透明层上的第二指定区域进行疏液处理,所述第二指定区域与除第二子像素区以外的区域对应;
    在所述第二透明层上制备亲液的第二量子点溶液,以便在与所述第二子像素区对应的、未经疏液处理的区域形成第二量子点子层。
  3. 根据权利要求2所述的制备方法,其中,除第一子像素区以外的区域还包括第三子像素区,所述第二子像素区位于所述第一子像素区和所述第三子像素区之间。
  4. 根据权利要求1或2所述的制备方法,其中,利用CFx等离子体进行疏液处理。
  5. 根据权利要求2所述的制备方法,还包括:
    在形成所述第一量子点子层后、形成所述第二透明层之前,对所述第一透明层进行亲液处理。
  6. 根据权利要求1或2所述的制备方法,其中,利用掩膜板进行疏液处理。
  7. 根据权利要求2所述的制备方法,其中,所述第一透明层和第二透明层的材料相同,包括光阻材料。
  8. 根据权利要求5所述的制备方法,其中,利用O 2等离子体或N 2等离子体进行亲液处理。
  9. 根据权利要求2所述的制备方法,其中,所述第一量子点溶液包括第一醇醚类溶剂、第一水溶性配体和多个第一量子点,所述第二量子点溶液包括第二醇醚类溶剂、第二水溶性配体和多个第二量子点。
  10. 根据权利要求9所述的制备方法,其中,所述第一量子点和所述第二量子点的尺寸不同但材料相同,包括CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgTe、GaN、GaAs、InP、InAs中的至少一种。
  11. 根据权利要求7所述的制备方法,其中,所述光阻材料包括聚甲基丙烯酸甲酯、聚酯、环氧树酯中的至少一种。
  12. 一种量子点层,包括:
    第一透明层,包括与多个像素区对应的区域,每个像素区包括第一子像素区和除所述第一子像素区以外的区域;
    第一疏液层,所述第一疏液层位于所述第一透明层的第一指定区域的上表面,所述第一指定区域与除所述第一子像素区以外的区域对应,所述第一疏液层包括构成所述第一透明层的元素;
    第一量子点子层,位于所述第一透明层上的、与所述第一子像素区对应的区域。
  13. 根据权利要求12所述的量子点层,其中,除第一子像素区以外的区域包括第二子像素区,所述量子点层还包括:
    第二透明层,覆盖所述第一量子点子层和所述第一疏液层;
    第二疏液层,所述第二疏液层位于所述第二透明层的第二指定区域的上表面,所述第二指定区域与除第二子像素区以外的区域对应,所述第二疏液层包括构成所述第 二透明层的元素;
    第二量子点子层,位于所述第二透明层上的、与所述第二子像素区对应的区域。
  14. 根据权利要求13所述的量子点层,其中,除第一子像素区以外的区域还包括第三子像素区,所述第二子像素区位于所述第一子像素区和所述第三子像素区之间。
  15. 根据权利要求13所述的量子点层,其中:
    所述第一疏液层是所述第一透明层的表面氟化层;和/或
    所述第二疏液层是所述第二透明层的表面氟化层。
  16. 一种量子点彩膜,包括:
    位于第一子像素区的第一彩膜层,包括第一彩膜子层和位于所述第一彩膜子层上下两侧的第一透明子层;
    位于第二子像素区的第二彩膜层,包括第二彩膜子层、以及位于所述第二彩膜子层和衬底基板之间的第二透明子层;
    位于第三子像素区的第三彩膜层,包括第三透明子层;
    其中,所述第二子像素区位于所述第一子像素区和所述第三子像素区之间。
  17. 根据权利要求16所述的量子点彩膜,其中:
    所述第一透明子层、所述第二透明子层和所述第三透明子层的材料相同,包括光阻材料;
    所述第一彩膜层还包括位于更远离所述衬底基板的第一透明子层的、远离所述第一彩膜子层一侧的疏液层;
    所述第三彩膜层还包括位于所述第三透明子层的、远离所述衬底基板一侧的疏液层。
  18. 一种彩膜基板,包括根据权利要求16至17中任一项所述的量子点彩膜。
  19. 一种显示面板,包括根据权利要求18所述的彩膜基板。
  20. 一种显示装置,包括根据权利要求19所述的显示面板。
PCT/CN2019/106941 2018-10-29 2019-09-20 量子点层的制备方法、量子点层、量子点彩膜、彩膜基板、显示面板和显示装置 WO2020088142A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/650,912 US20210222065A1 (en) 2018-10-29 2019-09-20 Quantum Dot Layer and Manufacturing Method Thereof, Quantum Dot Color Filter, Color Filter Substrate, Display Panel, and Display Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811266320.6A CN109239967B (zh) 2018-10-29 2018-10-29 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置
CN201811266320.6 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020088142A1 true WO2020088142A1 (zh) 2020-05-07

Family

ID=65078762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106941 WO2020088142A1 (zh) 2018-10-29 2019-09-20 量子点层的制备方法、量子点层、量子点彩膜、彩膜基板、显示面板和显示装置

Country Status (3)

Country Link
US (1) US20210222065A1 (zh)
CN (1) CN109239967B (zh)
WO (1) WO2020088142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023511637A (ja) * 2020-12-25 2023-03-22 深▲セン▼▲撲▼浪▲創▼新科技有限公司 量子ドット表示パネル及びその製造方法、表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239967B (zh) * 2018-10-29 2020-08-25 京东方科技集团股份有限公司 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置
CN109786431B (zh) * 2019-02-25 2021-10-22 京东方科技集团股份有限公司 显示基板及其制备方法、和显示装置
CN111403443B (zh) * 2020-03-23 2023-07-04 京东方科技集团股份有限公司 显示背板及其制作方法、显示装置
KR20210122406A (ko) * 2020-03-31 2021-10-12 삼성디스플레이 주식회사 표시패널 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242442A (zh) * 2015-10-08 2016-01-13 深圳市华星光电技术有限公司 量子点彩膜的制备方法
CN105259694A (zh) * 2015-11-13 2016-01-20 深圳市华星光电技术有限公司 彩色滤光片的制作方法及彩色滤光片
CN106158916A (zh) * 2016-08-26 2016-11-23 纳晶科技股份有限公司 量子点膜、其制作方法及显示器件
CN107248523A (zh) * 2017-07-31 2017-10-13 深圳市华星光电技术有限公司 像素界定层及其制造方法
US20180003870A1 (en) * 2014-09-30 2018-01-04 Hon Hai Precision Industry Co., Ltd. Color conversion film, display panel using color conversion film and method for manufacturing color conversion film
CN109239967A (zh) * 2018-10-29 2019-01-18 京东方科技集团股份有限公司 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258252A (ja) * 2003-02-25 2004-09-16 Sharp Corp カラーフィルタ基板およびその製造方法、並びに製造装置
JP2007178532A (ja) * 2005-12-27 2007-07-12 Seiko Epson Corp カラーフィルタ基板の製造方法および液晶表示装置の製造方法
KR101586673B1 (ko) * 2006-12-22 2016-01-20 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
JP2009087781A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子およびその製造方法
WO2011148791A1 (ja) * 2010-05-24 2011-12-01 株式会社 村田製作所 発光素子、及び発光素子の製造方法、並びに表示装置
CN107113937B (zh) * 2014-10-24 2020-01-03 Agc株式会社 分隔壁及其制法、分隔壁的修复方法、经修复的分隔壁、光学元件
US10943781B2 (en) * 2016-08-26 2021-03-09 Najing Technology Corporation Limited Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
CN106707610A (zh) * 2017-03-28 2017-05-24 青岛海信电器股份有限公司 量子点彩色滤光片及制备方法、液晶面板、液晶显示设备
CN110874978B (zh) * 2018-08-31 2021-12-10 成都辰显光电有限公司 光转换基板及显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180003870A1 (en) * 2014-09-30 2018-01-04 Hon Hai Precision Industry Co., Ltd. Color conversion film, display panel using color conversion film and method for manufacturing color conversion film
CN105242442A (zh) * 2015-10-08 2016-01-13 深圳市华星光电技术有限公司 量子点彩膜的制备方法
CN105259694A (zh) * 2015-11-13 2016-01-20 深圳市华星光电技术有限公司 彩色滤光片的制作方法及彩色滤光片
CN106158916A (zh) * 2016-08-26 2016-11-23 纳晶科技股份有限公司 量子点膜、其制作方法及显示器件
CN107248523A (zh) * 2017-07-31 2017-10-13 深圳市华星光电技术有限公司 像素界定层及其制造方法
CN109239967A (zh) * 2018-10-29 2019-01-18 京东方科技集团股份有限公司 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023511637A (ja) * 2020-12-25 2023-03-22 深▲セン▼▲撲▼浪▲創▼新科技有限公司 量子ドット表示パネル及びその製造方法、表示装置
US11971166B2 (en) 2020-12-25 2024-04-30 Shenzhen Planck Innovation Technology Co., Ltd Quantum dot display panel, preparation method thereof and display device

Also Published As

Publication number Publication date
CN109239967B (zh) 2020-08-25
CN109239967A (zh) 2019-01-18
US20210222065A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2020088142A1 (zh) 量子点层的制备方法、量子点层、量子点彩膜、彩膜基板、显示面板和显示装置
KR101945514B1 (ko) 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
Bae et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit
WO2020001061A1 (zh) 显示基板及制造方法、显示装置
US11502274B2 (en) Display substrate and preparation method thereof, and display apparatus
WO2018120362A1 (zh) Oled基板及其制作方法
JP2008270061A (ja) 表示装置
US11647660B2 (en) Color filter substrate and fabricating method thereof
KR20180101302A (ko) 유기발광 디스플레이 소자 및 그 제조방법
US11974366B2 (en) Display device
US11387285B2 (en) Display substrate and manufacturing method thereof including depositing different quantum dot solutions wettable to different material layers
US11348978B2 (en) Display panel and method for manufacturing the same, and display device
WO2019214378A1 (zh) 显示基板、其制造方法和显示装置
Qi et al. Monolithically integrated high-resolution full-color GaN-on-Si micro-LED microdisplay
KR20180014334A (ko) 유기발광 디스플레이 소자 및 그 제조방법
US20100237362A1 (en) Display device and production method thereof
US10503064B2 (en) Method for manufacturing color filter substrate
CN113517321A (zh) 一种显示面板、显示装置以及制作方法
CN113224109A (zh) 显示装置
JP2013152853A (ja) 表示装置
CN111682124B (zh) 显示基板及其制备方法、显示面板
US11346986B2 (en) Method of manufacturing color filter and color filter
CN113013207B (zh) 一种显示基板及其制备方法、显示装置
WO2023123113A1 (zh) 显示基板、显示装置及显示基板的制备方法
CN215342612U (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879121

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19879121

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19879121

Country of ref document: EP

Kind code of ref document: A1