WO2019214378A1 - 显示基板、其制造方法和显示装置 - Google Patents

显示基板、其制造方法和显示装置 Download PDF

Info

Publication number
WO2019214378A1
WO2019214378A1 PCT/CN2019/081463 CN2019081463W WO2019214378A1 WO 2019214378 A1 WO2019214378 A1 WO 2019214378A1 CN 2019081463 W CN2019081463 W CN 2019081463W WO 2019214378 A1 WO2019214378 A1 WO 2019214378A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel
electroluminescent
display substrate
color
Prior art date
Application number
PCT/CN2019/081463
Other languages
English (en)
French (fr)
Inventor
王灿
张粲
陈小川
玄明花
岳晗
杨明
丛宁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19800317.0A priority Critical patent/EP3792977A4/en
Priority to JP2020534873A priority patent/JP2021520599A/ja
Priority to US16/604,768 priority patent/US11404486B2/en
Publication of WO2019214378A1 publication Critical patent/WO2019214378A1/zh
Priority to US17/664,801 priority patent/US20220285454A1/en
Priority to US17/664,809 priority patent/US20220285455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present application relates to the field of display technology, and in particular to a display substrate, a method of manufacturing the same, and a display device.
  • OLED Organic Light-Emitting Diode
  • An OLED display substrate generally includes a substrate substrate and a plurality of OLEDs disposed on the substrate. Further, a color resist layer is further disposed on a side of the plurality of OLEDs away from the substrate. Illustratively, such multiple OLEDs are capable of emitting white light.
  • the color resist layer includes a plurality of color resist blocks in one-to-one correspondence with the plurality of OLEDs.
  • the plurality of color block blocks include a red color block, a green color block, and a blue color block. Each color block only allows light of a specified wavelength of incident white light to pass through. For example, the red color block only allows red light to pass through, the green color block only allows green light to pass through, and the blue color block only allows blue light to pass through, thereby causing the OLED display substrate to emit colored light.
  • the color purity of the color light emitted from the OLED display substrate is low, resulting in poor display performance of the OLED display substrate.
  • a display substrate includes: a substrate substrate, a plurality of pixel structures on the substrate substrate, and a color resist layer on a side of the plurality of pixel structures away from the substrate substrate.
  • the color resist layer includes a plurality of color resist blocks, each of the color resist blocks corresponding to one or more of the plurality of pixel structures, and by the plurality of pixel structures The light emitted by each pixel structure has the same color as its corresponding color block.
  • each pixel structure comprises a plurality of electroluminescent structures in series.
  • each of the pixel structures includes a first luminescent layer, a second luminescent layer, a first electrical connection layer, and a third luminescent layer disposed on the substrate substrate in sequence.
  • the plurality of electroluminescent structures comprise a first electroluminescent structure and a second electroluminescent structure.
  • the first electroluminescent structure includes the first luminescent layer and the second luminescent layer
  • the second electroluminescent structure includes the third luminescent layer
  • the first electroluminescent structure and The second electroluminescent structures are connected in series by the first electrical connection layer.
  • the first luminescent layer comprises a red luminescent layer
  • the second luminescent layer comprises a green luminescent layer
  • the third luminescent layer comprises a blue luminescent layer.
  • each of the pixel structures includes a first luminescent layer, a second electrical connection layer, a second luminescent layer, a first electrical connection layer, and a third luminescent layer disposed on the substrate substrate in sequence.
  • the plurality of electroluminescent structures comprise a first electroluminescent structure, a second electroluminescent structure, and a third electroluminescent structure.
  • the first electroluminescent structure includes the first luminescent layer
  • the second electroluminescent structure includes the second luminescent layer
  • the third electroluminescent structure includes the third luminescent layer.
  • the first electroluminescent structure and the second electroluminescent structure are connected in series by the second electrical connection layer, and the second electroluminescent structure and the third electroluminescent structure pass the An electrical connection layer is connected in series.
  • each of the color resist blocks corresponds to a corresponding one of the plurality of pixel structures
  • each of the pixel units further includes a first electrode and a second electrode, wherein the first electrode, the plurality of electroluminescent structures, and the second electrode are sequentially disposed on the base substrate.
  • the first electrode includes a reflective conductive layer
  • the second electrode includes a transflective layer, and a wavelength of light emitted by the pixel structure and the reflective conductive layer and the transflective layer The distance between them is positively related.
  • the first electrode further includes a first transparent conductive layer, an insulating layer and a second transparent conductive layer, wherein the first transparent conductive layer, the reflective conductive layer, the insulating layer, and the first Two transparent conductive layers are sequentially disposed on the base substrate.
  • the second transparent conductive layer is electrically connected to the reflective conductive layer through a via hole in the insulating layer, and a wavelength of light emitted by the pixel structure and a thickness of the insulating layer in the first electrode Positive correlation.
  • the first electrode further includes a first transparent conductive layer and a second transparent conductive layer, wherein the first transparent conductive layer, the reflective conductive layer and the second transparent conductive layer are sequentially disposed in the On the substrate substrate, and the wavelength of light emitted by the pixel structure is positively correlated with the thickness of the second transparent conductive layer in the first electrode.
  • each pixel structure further includes a functional film layer between the first electrode and the second electrode, wherein the functional film layer includes an electron injection layer, an electron transport layer, a hole injection layer, and At least one of the hole transport layers, and the wavelength of light emitted by the pixel structure is positively correlated with the thickness of the functional film layer in the pixel structure.
  • the functional film layer includes an electron injection layer, an electron transport layer, a hole injection layer, and At least one of the hole transport layers, and the wavelength of light emitted by the pixel structure is positively correlated with the thickness of the functional film layer in the pixel structure.
  • a distance between the reflective conductive layer and the transflective layer Where k is a coefficient being positive integer, ⁇ is the wavelength of light emitted by the pixel structure, and n is the average refraction of the medium between the reflective conductive layer and the transflective layer Rate, and ⁇ is the angle of reflection of light emitted by the pixel structure on the reflective conductive layer.
  • the plurality of pixel structures comprise a first pixel structure for emitting light of a first color, a second pixel structure for emitting light of a second color, and a third pixel structure for emitting light of a third color.
  • the coefficient k is the same in the first pixel structure, in the second pixel structure, and in the third pixel structure.
  • the plurality of pixel structures comprise a first pixel structure for emitting light of a first color, a second pixel structure for emitting light of a second color, and a third pixel structure for emitting light of a third color.
  • the coefficient k in the first pixel structure and the second pixel structure are the same, but smaller than the coefficient k in the third pixel structure (smaller by one).
  • a method of manufacturing a display substrate includes the steps of: providing a substrate; forming a plurality of pixel structures on the substrate; and forming a color resist layer on a side of the plurality of pixel structures away from the substrate.
  • the color resist layer includes a plurality of color resist blocks, each of the color resist blocks corresponding to one or more of the plurality of pixel structures, and light emitted by each of the plurality of pixel structures has The same color as its corresponding color block.
  • the step of forming a plurality of pixel structures on the base substrate comprises: sequentially forming a first electroluminescent structure, a first electrical connection layer, and a second on the substrate substrate for each pixel structure An electroluminescent structure, wherein the first electroluminescent structure comprises a first luminescent layer and a second luminescent layer, the second electroluminescent structure comprises a third luminescent layer, and the first electroluminescent structure and The second electroluminescent structures are connected in series by the first electrical connection layer.
  • the first luminescent layer comprises a red luminescent layer
  • the second luminescent layer comprises a green luminescent layer
  • the third luminescent layer comprises a blue luminescent layer.
  • the step of forming a plurality of pixel structures on the substrate substrate comprises: sequentially forming a first electroluminescent structure, a second electrical connection layer, and a second on the substrate substrate for each pixel structure An electroluminescent structure, a first electrical connection layer, and a third electroluminescent structure, wherein the first electroluminescent structure comprises a first emissive layer, the second electroluminescent structure comprises a second emissive layer, The third electroluminescent structure includes a third luminescent layer, the first electroluminescent structure and the second electroluminescent structure are connected in series by the second electrical connection layer, and the second electroluminescent structure and The third electroluminescent structures are connected in series by the first electrical connection layer.
  • a display device wherein the display device comprises the display substrate described in any of the above embodiments.
  • FIG. 1 is a schematic structural view of a display substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a display substrate according to an embodiment of the present disclosure
  • Figure 3 is a graph showing the relationship between the intensity of light emitted from the display substrate shown in Figure 2 and the wavelength;
  • FIG. 4 is a color gamut diagram of light emitted from the display substrate shown in FIG. 2;
  • FIG. 5 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • Figure 6 is a graph showing the relationship between the intensity of light emitted from the display substrate shown in Figure 5 and the wavelength;
  • Figure 7 is a color gamut diagram of light emitted from the display substrate shown in Figure 5;
  • FIG. 8 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural view of a display substrate according to the related art.
  • FIG. 12 is a flow chart of a method of manufacturing a display substrate in accordance with an embodiment of the present disclosure
  • FIG. 13 is a flowchart of a method of manufacturing a display substrate according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural view of a display substrate during a manufacturing process according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural view of a display substrate during a manufacturing process according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural view of a display substrate during a manufacturing process according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural view of a display substrate during a manufacturing process according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural view of a display substrate during a manufacturing process according to an embodiment of the present disclosure
  • FIG. 19 is a schematic structural view of a display substrate during a manufacturing process in accordance with an embodiment of the present disclosure.
  • the display device has the characteristics of fast response, full curing, and self-illumination, and has been widely used.
  • the display device can be applied to the field of flexible display, transparent display, and microdisplay.
  • the application of the display device in the field of microdisplay may include: an augmented reality (AR) display, a head-mounted display, a stereoscopic display mirror, a glasses-type display, and the like.
  • AR augmented reality
  • display devices are generally required to have higher color purity, brightness (eg, brightness greater than 1500 nits), and color gamut.
  • Embodiments of the present disclosure provide a display substrate and a display device including the display substrate. The display substrate can be applied not only to the field of microdisplay but also to other display fields. In this regard, embodiments of the present disclosure are not limited.
  • FIG. 1 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • the display substrate 0 may include a base substrate 01.
  • a plurality of pixel structures 02 are disposed on the substrate substrate 01, and a color resist layer 03 is further disposed on a side of the plurality of pixel structures 02 away from the substrate substrate 01.
  • the color resist layer 03 includes a plurality of color resist blocks 031 which are disposed in a pair with the plurality of pixel structures 02.
  • Each of the plurality of pixel structures 02 emits light of one color.
  • the color of the light emitted by the pixel structure 02 is the same as the color of the corresponding color block 031.
  • each color block 031 corresponds to one color. This means that the color block 031 only allows light of its corresponding color to pass through, and light transmission with its non-corresponding color is prohibited.
  • the color of the color block 031 is also the color of the light corresponding to the color block.
  • a display substrate including a plurality of pixel structures and a color resist layer, and each of the pixel structures is configured to emit the same color as a color resist block disposed corresponding thereto Light. Therefore, among the light emitted by the pixel structure, the light that can pass through the color block blocks occupies a larger portion, so that the color purity of the display substrate is higher and the display effect of the display substrate is improved.
  • the base substrate may be made of silicon.
  • the base substrate may alternatively be made of other materials such as glass.
  • embodiments of the present disclosure are not particularly limited.
  • the pixel structure 02 in the display substrate 0 can also be designed as a microcavity OLED. That is, the pixel structure 02 may include a first electrode, a plurality of electroluminescent structures, and a second electrode that are sequentially disposed on the base substrate.
  • a first electrode such as an anode
  • a second electrode such as a cathode
  • the two electrodes can form a resonant cavity.
  • the distance between the reflective conductive layer and the transflective layer is the cavity length of the resonant cavity.
  • the wavelength of the light emitted by the pixel structure is positively correlated with the cavity length of the resonant cavity in the pixel structure.
  • the light emitted by all the light-emitting layers in the pixel structure 02 can be combined to form white light.
  • the resonant cavity is capable of filtering out light of a certain color in white light for energy amplification, and energy-attenuating other light different from the color.
  • the pixel structure 02 is caused to emit light of the color, and the brightness of the light emitted by the pixel structure 02 is higher.
  • the pixel structure 02 can emit light of the same color as the color block 031 disposed corresponding to the pixel structure 02 through the resonant cavity.
  • the pixel structure 02 in the display substrate 0 may comprise a tandem OLED, which is for example composed of a plurality of electroluminescent structures. It should be noted that the luminous efficiency and the luminous power of the tandem OLED are relatively high. Therefore, the luminous efficiency and the luminous power of the display substrate 0 provided by the embodiments of the present disclosure are also relatively high.
  • the display substrate may have various implementations, and five of the implementations are exemplified hereinafter.
  • FIG. 2 is a schematic structural view of a display substrate in accordance with an embodiment of the present disclosure.
  • Figure 2 illustrates one implementation of a display substrate.
  • the pixel structure 02 in the display substrate 0 may include a first electrode 021, a red light emitting layer 022, a green light emitting layer 023, a first electrical connection layer 024, a blue light emitting layer 025, and a second, which are sequentially disposed on the base substrate 01.
  • Electrode 026 is a schematic structural view of a display substrate in accordance with an embodiment of the present disclosure.
  • Figure 2 illustrates one implementation of a display substrate.
  • the pixel structure 02 in the display substrate 0 may include a first electrode 021, a red light emitting layer 022, a green light emitting layer 023, a first electrical connection layer 024, a blue light emitting layer 025, and a second, which are sequentially disposed on the base substrate 01.
  • Electrode 026 is sequentially disposed on the base substrate 01.
  • one of the first electrode 021 and the second electrode 026 may be a cathode and the other electrode may be an anode.
  • the first electrode 021 is an anode
  • the second electrode 026 It is a cathode.
  • a resonant cavity can be formed by the first electrode 021 and the second electrode 026 in the OLED.
  • the cavity length d of the cavity in the OLED is related to the wavelength ⁇ of the light emitted by the OLED.
  • the wavelength of the light is related to the color of the light
  • the cavity length of the cavity is related to the color of the light emitted by the OLED. In such a case, the adjustment of the color of the light emitted by the OLED can be achieved by adjusting the cavity length d of the resonant cavity.
  • the wavelength of light emitted by the pixel structure is positively correlated with the cavity length of the resonant cavity in the pixel structure. This means that the cavity lengths of the resonant cavities in the two pixel structures 02 emitting different color lights are different.
  • the cavity length d of the resonant cavity in the pixel structure 02 can be adjusted by adjusting the thickness of the insulating layer in the first electrode 021 of the pixel structure 02.
  • the wavelength of the light emitted by the pixel structure will be positively correlated with the thickness of the insulating layer in the pixel structure.
  • the color of the light emitted by the pixel structure ie, the wavelength, in particular, the center wavelength, can be adjusted by the choice of the cavity length of the resonant cavity.
  • represents the center wavelength or the dominant wavelength of the outgoing light.
  • the first electrode 021 may include a first transparent conductive layer 0211, a reflective conductive layer 0212, an insulating layer 0213, and a second transparent conductive layer 0214 which are sequentially disposed on the base substrate 01.
  • the second transparent conductive layer 0214 is electrically connected to the reflective conductive layer 0212 through a via hole (not shown in FIG. 2) in the insulating layer 0213.
  • Both the first transparent conductive layer 0211 and the second transparent conductive layer 0214 may be made of indium tin oxide.
  • the reflective conductive layer 0212 can be made of silver.
  • the insulating layer 0213 may be made of silicon dioxide.
  • the transflective layer in the second electrode 026 may include a transflective material obtained by doping with magnesium silver.
  • the thickness of the insulating layer 0213 in the two pixel structures 02 emitting different color lights is different, that is, the cavity lengths of the resonant cavities in the two pixel structures 02 emitting different color lights are different.
  • the corresponding coefficient k can be selected as any positive integer.
  • the appropriate cavity length can be selected according to the wavelength of the light emitted by the actually required pixel structure.
  • the cavity length of the resonant cavity in the pixel structure 02 may be selected to be a certain coefficient k on the premise that the pixel structure 02 has been determined to emit light of a certain color by the cavity effect. Corresponding cavity length.
  • a plurality of pixel structures 02 in the display substrate may include a red light pixel structure 02 for emitting red light, a green light pixel structure 02 for emitting green light, and a blue light emitting light.
  • the coefficient k corresponding to the cavity length of the first cavity in the red pixel structure 02 may be set to i
  • the coefficient k corresponding to the cavity length of the second cavity in the green pixel structure 02 may also be set.
  • the coefficient k corresponding to the cavity length of the third resonant cavity in the blue pixel structure 02 can also be set to i, where i ⁇ 1.
  • the coefficient k corresponding to the cavity length of the resonant cavity is i.
  • the thickness of the insulating layer in the red pixel structure 02 may be 145 nm
  • the thickness of the insulating layer in the green pixel structure 02 may be 90 nm
  • the insulating layer in the blue pixel structure 02 The thickness can be 45 nanometers.
  • each pixel structure 02 may further include a first hole injection layer (HIL) 027, a first hole transport layer (HTL) 028, and a first electron transport layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EIL electron injection layer
  • a thin film encapsulation (TFE) layer (not shown in FIG. 2) is further disposed between the plurality of pixel structures 02 and the color resist layer 03, and the color resist layer 03 further includes the respective color block blocks.
  • Black matrix pattern 032 between 031.
  • the thickness of the first transparent conductive layer 0211 may be 80 angstroms
  • the thickness of the reflective conductive layer 0212 may be 1000 angstroms
  • the thickness of the second transparent conductive layer 0214 may be 80 angstroms
  • the thickness of the first hole injection layer 027 may be
  • the thickness of the first hole transport layer 028 may be 150 angstroms
  • the thickness of the red light emitting layer 022 may be 100 angstroms
  • the thickness of the green light emitting layer 023 may be 300 angstroms
  • the thickness of the first electron transport layer 029 may be 100 angstroms.
  • the first electrical connection layer 024 may have a thickness of 150 angstroms
  • the second hole injection layer B 1 may have a thickness of 100 angstroms
  • the second hole transport layer B2 may have a thickness of 100 angstroms
  • the blue light-emitting layer 025 The thickness of the second electron transport layer B3 may be 300 angstroms
  • the thickness of the electron injection layer B4 may be 100 angstroms
  • the thickness of the second electrode 026 may be 120 angstroms.
  • each of the pixel structures 02 may include a tandem OLED (also referred to as a stacked OLED).
  • a red light-emitting layer 022 is used to emit red light
  • a green light-emitting layer 023 is used to emit green light
  • a blue light-emitting layer 025 is used to emit blue light.
  • the red luminescent layer 022 and the green luminescent layer 023 are superposed to form an electroluminescent structure, and the blue luminescent layer 025 independently forms an electroluminescent structure.
  • the two electroluminescent structures are electrically connected by a first electrical connection layer 024 between the green light-emitting layer 023 and the blue light-emitting layer 025 to achieve a series connection between the two electroluminescent structures. That is, the red luminescent layer and the green luminescent layer form a first electroluminescent structure, the blue luminescent layer forms a second electroluminescent structure, and the first electroluminescent structure and the second electroluminescent structure are electrically connected through the first The layers are connected in series.
  • a graph as shown in Fig. 3 can be obtained.
  • the horizontal axis represents the wavelength of light in nanometers
  • the vertical axis represents the intensity of light (dimensionless).
  • the wavelength of red light emitted from the display substrate is concentrated near 600 nm
  • the wavelength of green light is concentrated near 520 nm
  • the wavelength of blue light is concentrated near 450 nm.
  • the simulation of the display substrate provided in Fig. 2 can also be used to derive the parameters as shown in Table 1.
  • Table 1 the color coordinate CIEx (ie: the color gamut chart developed by CIE) in the colorimetric standard established by the Commission Internationale de L'Eclairage (CIE) is the reddest light emitted by the display substrate.
  • the color coordinate x) is 0.650
  • CIEy ie, the color coordinate y in the color gamut chart defined by CIE
  • CIEY ie, the brightness in the colorimetric standard established by CIE
  • the CIEx of the greenest light emitted from the display substrate was 0.117
  • CIEy was 0.771
  • CIEY was 79.6
  • the bluest light emitted from the display substrate had a CIEx of 0.146, a CIEy of 0.032, and a CIEY of 66.8.
  • the color gamut of the display substrate in the color gamut chart defined by CIE can be obtained (such as the color gamut A1 in FIG. 4). It can be seen that the display substrate provided by the embodiment of the present disclosure can achieve a color gamut of 120% in the color gamut standard established by the National Television Standards Committee (NTSC).
  • NTSC National Television Standards Committee
  • the transmittance of the color block may be set to be 50% to 60%, or higher than 60%.
  • the embodiments of the present disclosure are not particularly limited. Thereby, the total brightness of all the light emitted from the display substrate can reach 2,500 nits.
  • the transmittance of the color block is often low, thus resulting in a low total luminance of all light emitted from a conventional display substrate, for example, typically 300 nits.
  • the brightness, color gamut, and color purity of the display substrate provided are relatively high.
  • the display substrate can be made to satisfy, for example, the requirements of the display device in the field of microdisplay.
  • FIG. 5 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • Figure 5 shows a second implementation of a display substrate.
  • the coefficient k corresponding to the cavity length of the first cavity in the red pixel structure 02 may be j, and green light.
  • the coefficient k corresponding to the cavity length of the second cavity in the pixel structure 02 may be j
  • the coefficient k corresponding to the cavity length of the third cavity in the blue pixel structure 02 may be j+1, where j ⁇ 1 .
  • i and j may or may not be equal.
  • the thickness of the insulating layer in the red pixel structure 02 may be 90 nm
  • the thickness of the insulating layer in the green pixel structure 02 may be 18 nm
  • the thickness of the insulating layer in the blue pixel structure 02 may be 120 nm.
  • the horizontal axis represents the wavelength of light in nanometers
  • the vertical axis represents the intensity of light in units of W ⁇ m -2 ⁇ nm -1 ⁇ sr -1 .
  • the wavelength of red light emitted from the display substrate is concentrated near 620 nm
  • the wavelength of green light is concentrated near 520 nm
  • the wavelength of blue light is concentrated near 460 nm.
  • the simulation of the display substrate provided in Fig. 5 can also be used to derive the parameters as shown in Table 2.
  • Table 2 the CIEx of the reddish light emitted from the display substrate is 0.673, CIEy is 0.341, and CIEY is 67.3; the CIEx of the greenest light emitted from the display substrate is 0.157, CIEy is 0.740, and CIEY is 68.9.
  • the CIEx of the bluest light emitted by the display substrate is 0.142, CIEy is 0.048, and CIEY is 26.8.
  • the color gamut of the display substrate in the color gamut chart defined by CIE (such as the color gamut A2 in Fig. 7) can be obtained. It can be seen that, in accordance with embodiments of the present disclosure, the display substrate provided can achieve a color gamut of 115% in the color gamut standard established by NTSC. In addition, the total brightness of all light emitted from the display substrate can reach 2200 nits.
  • FIG. 8 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • Figure 8 shows a third implementation of a display substrate.
  • the plurality of electroluminescent structures in each of the pixel structures 02 may have different arrangements.
  • the red light-emitting layer 022 independently forms one electroluminescent structure
  • the green light-emitting layer 023 independently forms another electroluminescent structure
  • the blue light-emitting layer 025 is formed independently.
  • a second electrical connection layer B5 may be disposed between the red light-emitting layer 022 and the green light-emitting layer 023, and the red light-emitting layer 022 may be electrically connected to the green light-emitting layer 023 through the second electrical connection layer B5.
  • the green light-emitting layer 023 can be electrically connected to the blue light-emitting layer 025 through the first electrical connection layer 024, and the series connection of the three electroluminescent structures is finally realized. That is, in the embodiment shown in FIG. 5, the red light-emitting layer forms a first electroluminescent structure, the green light-emitting layer forms a second electroluminescent structure, and the blue light-emitting layer forms a third electroluminescent structure. Moreover, the first electroluminescent structure and the second electroluminescent structure are connected in series by the second electrical connection layer, and the second electroluminescent structure and the third electroluminescent structure are connected in series by the first electrical connection layer.
  • the second electrical connection layer B5 may include a second electron transport layer B6, a third hole injection layer B7, and a third hole transport layer B8 which are sequentially stacked, wherein the electron transport layer is adjacent to the red light emitting layer. 022 settings.
  • the second electron transport layer B6 may have a thickness of 300 angstroms
  • the third hole injection layer B7 may have a thickness of 100 angstroms
  • the third hole transport layer B8 may have a thickness of 150 angstroms.
  • the color gamut achieved by the display substrate in the color gamut standard established by NTSC By simulating the display substrate provided in FIG. 8, the color gamut achieved by the display substrate in the color gamut standard established by NTSC, the total brightness of all light emitted by the display substrate, and the color purity of light emitted by the display substrate can be obtained. . Obviously, in the above third implementation manner, the color gamut, the total brightness, and the color purity of the display substrate are relatively high.
  • FIG. 9 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • Figure 9 shows a fourth implementation of a display substrate.
  • the first electrode 021 in each pixel structure 02 may not include an insulating layer, but only includes the substrate substrate 01 in order.
  • the first transparent conductive layer 0211, the reflective conductive layer 0212 and the second transparent conductive layer 0214 are disposed.
  • the thickness of the second transparent conductive layer 0214 in the first electrode 021 of the pixel structure 02 can be adjusted. It is apparent that the thickness of the second transparent conductive layer 0214 in the two pixel structures 02 emitting different color lights is different. At this point, the wavelength of light emitted from the pixel structure will be positively correlated with the thickness of the second transparent conductive layer in the pixel structure.
  • the thickness of the second transparent conductive layer in the red light pixel structure 02 may be 100 nanometers
  • the thickness of the second transparent conductive layer in the green light pixel structure 02 may be 26 nanometers
  • the transparent conductive layer may have a thickness of 130 nm.
  • FIG. 10 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • Figure 10 shows a fifth implementation of a display substrate.
  • the thickness of the insulating layer 0213 in the two pixel structures 02 emitting light of different colors may be the same.
  • the electron injection layer B4, the electron transport layer (such as the first electron transport layer 029 and the second electron transport layer B3), the hole injection layer (such as the first hole injection layer 027 and the second hole injection) is a functional film layer.
  • the functional film layers of the two OLEDs emitting different color lights can be designed to have different thicknesses.
  • the functional film layer may be selected, for example, as the electron injection layer B4.
  • the thickness of the electron injection layer B4 can be designed to be different for two OLEDs emitting different colors of light.
  • the functional film layer may further include other film layers (such as the first hole injection layer 027 and the like).
  • the embodiments of the present disclosure are not particularly limited.
  • the display substrate provided by the embodiment of the present disclosure is comparatively analyzed with the display substrate in the related art.
  • an OLED display substrate may include two types, wherein an OLED display substrate includes a substrate substrate, a plurality of OLEDs disposed on the substrate substrate, and a plurality of OLEDs disposed away from the substrate a color resist layer on one side of the substrate.
  • an OLED display substrate includes a substrate substrate, a plurality of OLEDs disposed on the substrate substrate, and a plurality of OLEDs disposed away from the substrate a color resist layer on one side of the substrate.
  • a plurality of OLEDs are capable of emitting white light
  • the color resist layer includes a plurality of color resist blocks in one-to-one correspondence with the plurality of OLEDs.
  • the light emitted by the OLED is white light
  • the amount of light that can pass through the color block in white light is relatively small, for example, the red light that can pass through the red color block in white light is less, and the white light can The green light through the green color block is less, or the blue light in the white light can pass through the blue color block, so the color of light emitted from the display substrate is generally shallow, resulting in the color purity of the light emitted by the display substrate. Lower.
  • the color of the light emitted by the OLED is the same as the color of the correspondingly disposed color block.
  • the amount of light that can pass through the color block in the light emitted from the OLED is relatively large, so that the color of light emitted from the display substrate is dark, and the color purity of light emitted from the display substrate is also high. .
  • FIG. 11 is a schematic structural diagram of another OLED display substrate according to the related art.
  • the OLED display substrate 1 includes a base substrate 10 and a plurality of OLEDs 11 disposed on the base substrate 10, wherein each OLED 11 is capable of emitting light of one color, thereby causing a plurality of OLEDs 11 Together they can emit red, green and blue light.
  • the range of wavelengths of light emitted from each of the OLEDs 11 is large, and light of other colors is usually also interposed in these lights. For example, it is required that a certain OLED 11 emits red light, but light emitted from the OLED 11 is usually mixed with a little yellow light. As a result, the purity of light emitted from each OLED 11 will be relatively low.
  • a color block is disposed correspondingly on a side of each OLED away from the substrate, and the color block can filter the light emitted by the OLED, thereby removing the inclusions in the light. The light components of other colors can thereby increase the purity of light emitted from the display substrate.
  • the process of manufacturing the display substrate is not limited by the FMM. Therefore, the PPI of the display substrate provided in the embodiment of the present disclosure will be large.
  • the PPI of the display substrate may reach 6000.
  • the PPI of the display substrate in the related art is generally less than 6000, for example, about 2000.
  • the display substrate can also achieve a color gamut greater than 100% in the color gamut standard established by the NTSC.
  • a display substrate including a plurality of pixel structures and a color resist layer, wherein each pixel structure is used to emit light of the same color as the corresponding color block. Therefore, among the light emitted from the OLED, the proportion of light that can pass through the color block is large, so that the color purity of the display substrate is high, and the display effect of the display substrate is also improved.
  • FIG. 12 is a flowchart of a method of manufacturing a display substrate in accordance with an embodiment of the present disclosure.
  • the method can be used to fabricate a display substrate as shown in any of Figures 1, 2, 5, 8, 9, and 10.
  • the manufacturing method of the display substrate may include the following steps.
  • Step 1201 Providing a substrate.
  • Step 1202 Form a plurality of pixel structures on the base substrate.
  • Step 1203 forming a color resist layer on a side of the plurality of pixel structures away from the substrate.
  • the color resist layer includes a plurality of color block blocks corresponding to the plurality of pixel structures, wherein each of the plurality of pixel structures emits light of one color, and light emitted from each of the pixel structures The color is the same as the color of its corresponding color block.
  • the display substrate manufactured by the method includes a plurality of pixel structures and a color resist layer, wherein each of the pixel structures is used to emit light of the same color as the corresponding color block. Therefore, among the light emitted from the pixel unit, the amount of light that can pass through the color block is large, so that the color purity of the display substrate is high, and the display effect of the display substrate is improved.
  • the display substrate manufactured by the above method may have various implementation manners, for example, the implementation manners shown in FIG. 2, FIG. 5, FIG. 8, FIG. 9, and FIG. .
  • the method of manufacturing the display substrate is similar.
  • the above manufacturing method can be used to manufacture a display substrate as shown in FIG. 2.
  • step 1202 can include the following sub-steps, as shown in FIG.
  • Step 12021 sequentially forming a first transparent conductive layer and a reflective conductive layer on the base substrate.
  • the first transparent conductive layer 0211 when the first transparent conductive layer 0211 is manufactured, coating, magnetron sputtering, thermal evaporation, or Plasma Enhanced Chemical Vapor Deposition (PECVD) may be used.
  • a method of depositing a transparent conductive material on the base substrate 01 is performed to obtain a transparent conductive material layer (not shown in FIG. 14). After that, the transparent conductive material layer is processed by a patterning process to obtain a first transparent conductive layer 0211.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • a single patterning process includes photoresist coating, exposure, development, etching, and photoresist stripping. Therefore, treating the transparent conductive material layer by using a patterning process comprises: coating a layer of photoresist on the transparent conductive material layer; then exposing the photoresist with a mask to form the photoresist into a completely exposed region and a non-exposed area; then processed by a development process to remove the photoresist in the fully exposed area and the photoresist in the non-exposed area is retained; then the corresponding fully exposed areas on the layer of transparent conductive material are etched and After the etching is completed, the photoresist in the non-exposed area is peeled off, thereby obtaining the first transparent conductive layer 0211.
  • a reflective conductive material layer (not shown in Fig. 14) may be formed on the base substrate 01 on which the first transparent conductive layer 0211 is formed. After that, the reflective conductive material layer is processed by a patterning process to obtain a reflective conductive layer 0212 as shown in FIG.
  • Step 12022 forming an insulating layer on the base substrate on which the first transparent conductive layer and the reflective conductive layer are formed.
  • step 12022 it is necessary to form an insulating layer having various thicknesses on the base substrate.
  • FIGS. 15 to 18 The process of forming an insulating layer on the base substrate can be as shown in FIGS. 15 to 18.
  • an insulating material layer and a photoresist layer may be sequentially formed on the substrate substrate 01 on which the first transparent conductive layer 0211 and the reflective conductive layer 0212 are formed (FIG. 15 to FIG. The insulating material layer and the photoresist layer are not shown in FIG. 18).
  • the photoresist layer is exposed using a mask to form a fully exposed region and a non-exposed region, wherein the non-exposed regions are corresponding regions of the reflective conductive layer 0212 in the photoresist layer.
  • the process is then followed by a development process to remove the photoresist in the fully exposed areas and the photoresist in the non-exposed areas remains.
  • the corresponding area on the insulating material layer of the fully exposed region is etched, and the photoresist in the non-exposed region is peeled off after the etching is completed.
  • the first insulating layer pattern C1 and the first photoresist pattern C2 as shown in FIG. 15 can be obtained.
  • the first photoresist pattern C2 may be exposed and developed using a halftone mask to remove the insulating layer to be formed with a minimum thickness.
  • the photoresist in the region, and the photoresist in the region where the sub-thickness insulating layer is to be formed is thinned, thereby obtaining the second photoresist pattern C3 as shown in FIG.
  • the second photoresist pattern C3 includes a first thickness region C31, a second thickness region C32, and a photoresist complete removal region C33, wherein the photoresist thickness in the first thickness region C31 is greater than that in the second thickness region C32.
  • the photoresist thickness, and the first thickness region C31 is a corresponding region of the insulating layer to be formed to the maximum thickness in the second photoresist pattern C3.
  • the first insulating layer pattern C1 may be etched using the second photoresist pattern C3 as a mask, such as by dry etching. During the etching, the first insulating layer pattern C1 corresponding to the photoresist completely removed region C33 is thinned, and the second thickness region C32 and its corresponding first insulating layer pattern C1 are thinned. After that, the first thickness region C31 is peeled off again, thereby obtaining the second insulating layer pattern C4 as shown in FIG.
  • a via hole C5 can be formed in the second insulating layer pattern C4, so that three thicknesses of the insulating layer 0213 can be obtained.
  • the three thicknesses of the insulating layer 0213 are respectively in one-to-one correspondence with the first thickness region C31, the second thickness region C32, and the photoresist complete removal region C33 in the second photoresist pattern C3.
  • step 12022 can also be implemented in other manners.
  • three different thicknesses of the insulating layer may be formed in sequence, and the embodiment of the present disclosure does not limit this.
  • Step 12023 sequentially forming a second transparent insulating layer, a first hole injecting layer, a first hole transporting layer, a red light emitting layer, a green light emitting layer, and a first electron transporting layer on the base substrate on which the insulating layer is formed.
  • each of the film layers that need to be formed may include: coating a material for the film layer, and then processing the material by a patterning process.
  • the process may refer to the process for fabricating the first transparent conductive layer or the reflective conductive layer in step 12021.
  • a structure as shown in FIG. 19 can be obtained.
  • the structure shown in FIG. 19 includes a red light pixel structure capable of emitting red light, a green light pixel structure emitting green light, and a blue light pixel structure emitting blue light.
  • a color resist layer can be formed on the TFE layer.
  • the display substrate manufactured by the method provided above includes a plurality of pixel structures and a color resist layer, wherein each pixel structure is used to emit the same color as the corresponding color block Light. Therefore, among the light emitted from the pixel structure, more light can pass through the color block, so that the color purity of the display substrate is higher, and the display effect of the display substrate is better.
  • Embodiments of the present disclosure also provide a display device.
  • the display device may include the display substrate shown in any of FIGS. 1, 2, 5, 8, 9, and 10.
  • the display device may be any product or component having a display function such as an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

本申请公开了显示基板、其制造方法以及显示装置。显示基板包括:衬底基板,位于衬底基板上的多个像素结构,以及位于所述多个像素结构远离衬底基板的一侧上的色阻层。色阻层包括多个色阻块,每一个色阻块对应于所述多个像素结构中的一个或多个。由多个像素结构中的每个像素结构发出的光具有与其对应的色阻块相同的颜色。

Description

显示基板、其制造方法和显示装置
对相关申请的交叉引用
本申请要求2018年5月9日提交的中国专利申请号201810438219.8的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本申请涉及显示技术领域,并且特别涉及显示基板、其制造方法和显示装置。
背景技术
随着显示技术的发展,有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示基板得到了广泛的应用。
OLED显示基板通常包括衬底基板和设置在衬底基板上的多个OLED。此外,在所述多个OLED远离衬底基板的一侧上还设置有色阻层。示例性地,这样的多个OLED均能够发出白光。色阻层包括与多个OLED一一对应的多个色阻块。具体地,所述多个色阻块包括红色色阻块、绿色色阻块和蓝色色阻块。每个色阻块仅允许入射白光中的指定波长的光透过。比如,红色色阻块仅允许红光透过,绿色色阻块仅允许绿光透过,而蓝色色阻块仅允许蓝光透过,从而使得OLED显示基板发出彩色光。
然而,在相关技术中,由OLED显示基板发出的彩色光的色纯度较低,从而导致OLED显示基板的显示效果较差。
发明内容
根据本公开的一方面,提供了一种显示基板。所述显示基板包括:衬底基板,位于所述衬底基板上的多个像素结构,以及位于所述多个像素结构远离所述衬底基板的一侧上的色阻层(color resist layer),其中,所述色阻层包括多个色阻块(color resist block),每一个色阻块对应于所述多个像素结构中的一个或多个,并且由所述多个像素结构中的每个像素结构发出的光具有与其对应的色阻块相同的颜色。
可选地,每个像素结构包括串联的多个电致发光结构。
可选地,每个像素结构包括依次设置在所述衬底基板上的第一发光层、第二发光层、第一电连接层和第三发光层。所述多个电致发光结构包括第一电致发光结构和第二电致发光结构。所述第一电致发光结构包括所述第一发光层和所述第二发光层,所述第二电致发光结构包括所述第三发光层,并且所述第一电致发光结构与所述第二电致发光结构通过所述第一电连接层串联连接。作为示例,所述第一发光层包括红色发光层,所述第二发光层包括绿色发光层,并且所述第三发光层包括蓝色发光层。
可选地,每个像素结构包括依次设置在所述衬底基板上的第一发光层、第二电连接层、第二发光层、第一电连接层和第三发光层。所述多个电致发光结构包括第一电致发光结构、第二电致发光结构和第三电致发光结构。所述第一电致发光结构包括所述第一发光层,所述第二电致发光结构包括所述第二发光层,并且所述第三电致发光结构包括所述第三发光层。所述第一电致发光结构与所述第二电致发光结构通过所述第二电连接层串联连接,并且所述第二电致发光结构与所述第三电致发光结构通过所述第一电连接层串联连接。
可选地,每一个色阻块对应于所述多个像素结构中的一个相应的像素结构
可选地,每个像素单元还包括第一电极和第二电极,其中,所述第一电极、所述多个电致发光结构和所述第二电极依次设置在所述衬底基板上。所述第一电极包括反射导电层,并且所述第二电极包括半透半反导电层,并且由所述像素结构发出的光的波长与所述反射导电层与所述半透半反导电层之间的距离正相关。
可选地,所述第一电极还包括第一透明导电层、绝缘层和第二透明导电层,其中,所述第一透明导电层、所述反射导电层、所述绝缘层和所述第二透明导电层依次设置在所述衬底基板上。所述第二透明导电层通过所述绝缘层中的过孔与所述反射导电层电连接,并且由所述像素结构发出的光的波长与所述第一电极中的所述绝缘层的厚度正相关。
可选地,所述第一电极还包括第一透明导电层和第二透明导电层,其中,所述第一透明导电层、所述反射导电层和所述第二透明导电层 依次设置在所述衬底基板上,并且由所述像素结构发出的光的波长与所述第一电极中的所述第二透明导电层的厚度正相关。
可选地,每个像素结构还包括位于所述第一电极和所述第二电极之间的功能膜层,其中,所述功能膜层包括电子注入层、电子传输层、空穴注入层和空穴传输层中的至少一个,并且由所述像素结构发出的光的波长与所述像素结构中的所述功能膜层的厚度正相关。
可选地,所述反射导电层与所述半透半反导电层之间的距离
Figure PCTCN2019081463-appb-000001
其中,k为正整数系数(coefficient being positive integer),λ为由所述像素结构发出的光的波长,n为所述反射导电层与所述半透半反导电层之间的介质的平均折射率,并且θ为由所述像素结构发出的光在所述反射导电层上的反射角。
可选地,所述多个像素结构包括用于发出第一颜色光的第一像素结构、用于发出第二颜色光的第二像素结构和用于发出第三颜色光的第三像素结构。所述系数k在所述第一像素结构中、所述第二像素结构中和所述第三像素结构中均相同。
可选地,所述多个像素结构包括用于发出第一颜色光的第一像素结构、用于发出第二颜色光的第二像素结构和用于发出第三颜色光的第三像素结构。所述第一像素结构中和所述第二像素结构中的所述系数k相同,但是比所述第三像素结构中的所述系数k小(smaller by one)。
根据本公开的另一方面,提供了一种用于显示基板的制造方法。所述方法包括以下步骤:提供衬底基板;在所述衬底基板上形成多个像素结构;以及在所述多个像素结构远离所述衬底基板的一侧上形成色阻层。所述色阻层包括多个色阻块,每一个色阻块对应于所述多个像素结构中的一个或多个,并且由所述多个像素结构中的每个像素结构发出的光具有与其对应的色阻块相同的颜色。
可选地,在所述衬底基板上形成多个像素结构的步骤包括:针对每个像素结构,在所述衬底基板上依次形成第一电致发光结构、第一电连接层和第二电致发光结构,其中,所述第一电致发光结构包括第一发光层和第二发光层,所述第二电致发光结构包括第三发光层,并且所述第一电致发光结构与所述第二电致发光结构通过所述第一电连 接层串联连接。作为示例,所述第一发光层包括红色发光层,所述第二发光层包括绿色发光层,并且所述第三发光层包括蓝色发光层。
可选地,在所述衬底基板上形成多个像素结构的步骤包括:针对每个像素结构,在所述衬底基板上依次形成第一电致发光结构、第二电连接层、第二电致发光结构、第一电连接层和第三电致发光结构,其中,所述第一电致发光结构包括第一发光层,所述第二电致发光结构包括第二发光层,所述第三电致发光结构包括第三发光层,所述第一电致发光结构与所述第二电致发光结构通过所述第二电连接层串联连接,并且所述第二电致发光结构与所述第三电致发光结构通过所述第一电连接层串联连接。
根据本公开的又一方面,提供了一种显示装置,其中,所述显示装置包括在以上任一个实施例中描述的显示基板。
附图说明
为了更清楚地说明本公开的实施例中的技术方案,下面将对实施例的描述中需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅代表本申请的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为根据本公开的实施例的显示基板的结构示意图;
图2为根据本公开的实施例的显示基板的结构示意图;
图3为从图2中示出的显示基板发出的光的强度与波长的关系图;
图4为从图2中示出的显示基板发出的光的色域图;
图5为根据本公开的实施例的显示基板的结构示意图;
图6为从图5中示出的显示基板发出的光的强度与波长的关系图;
图7为从图5中示出的显示基板发出的光的色域图;
图8为根据本公开的实施例的显示基板的结构示意图;
图9为根据本公开的实施例的显示基板的结构示意图;
图10为根据本公开的实施例的显示基板的结构示意图;
图11为根据相关技术的显示基板的结构示意图;
图12为根据本公开的实施例的用于显示基板的制造方法的流程图;
图13为根据本公开的实施例的用于显示基板的制造方法的流程图;
图14为根据本公开的实施例在制造过程期间显示基板的结构示意图;
图15为根据本公开的实施例在制造过程期间显示基板的结构示意图;
图16为根据本公开的实施例在制造过程期间显示基板的结构示意图;
图17为根据本公开的实施例在制造过程期间显示基板的结构示意图;
图18为根据本公开的实施例在制造过程期间显示基板的结构示意图;以及
图19为根据本公开的实施例在制造过程期间显示基板的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请中的实施方式作进一步地详细描述。
显示装置具有响应速度快、全固化以及自发光等特点并且已经得到了广泛的应用。例如,显示装置可以应用在柔性显示领域、透明显示领域以及微显示领域等。
作为示例,显示装置在微显示领域中的应用可以包括:增强现实技术(Augmented Reality;简称AR)显示器、头盔显示器、立体显示镜以及眼镜式显示器等。在微显示领域中,一般要求显示装置具有较高的色纯度、亮度(比如,亮度大于1500尼特)和色域。本公开的实施例提供了一种显示基板以及包括该显示基板的显示装置。该显示基板不仅能够应用于微显示领域,而且还能够应用于其它显示领域。对此,本公开的实施例不作限定。
图1为根据本公开的实施例的显示基板的结构示意图。如图1所示,显示基板0可以包括衬底基板01。此外,衬底基板01上还设置有多个像素结构02,并且多个像素结构02远离衬底基板01的一侧上还设置有色阻层03。具体地,色阻层03包括与多个像素结构02一一对 应设置的多个色阻块031。多个像素结构02中的每个像素结构02发出一种颜色的光。对于多个像素结构02中的每个像素结构02,由像素结构02发出的光的颜色与其对应设置的色阻块031的颜色相同。
需要说明的是,每个色阻块031均对应于一种颜色。这意味着,该色阻块031仅允许其对应颜色的光透过,并且禁止与其不对应颜色的光透过。该色阻块031的颜色也就是与该色阻块对应的光的颜色。
综上所述,在本公开的实施例中,提供了一种显示基板,其包括多个像素结构和色阻层,并且每个像素结构用于发出具有与其对应设置的色阻块相同的颜色的光。因此,在由像素结构发出的光中,能够通过色阻块的光占据较大部分,从而使得显示基板的色纯度较高并且显示基板的显示效果得到提升。
可选地,衬底基板可以由硅制成。当然,可替换地,该衬底基板还可以由其它材质制成,例如玻璃。就这一方面而言,本公开的实施例不作特别限定。
可选地,该显示基板0中的像素结构02也可以设计为微腔OLED。也就是说,像素结构02可以包括依次设置在衬底基板上的第一电极、多个电致发光结构和第二电极。在像素结构02的这两个电极中,靠近衬底基板的第一电极(比如阳极)包括反射导电层,而远离衬底基板的第二电极(比如阴极)包括半透半反导电层。由此,这两个电极能够形成谐振腔。反射导电层与半透半反导电层的距离即为谐振腔的腔长。根据谐振原理,由像素结构发出的光的波长与像素结构中的谐振腔的腔长正相关。需要说明的是,由像素结构02中的所有发光层发出的光线可以组合形成白光。在这样的情况下,该谐振腔能够筛选出白光中的某一颜色的光进行能量放大,并且将与该颜色不同的其它光进行能量削弱。最终,使得像素结构02发出该颜色的光,并且由像素结构02发出的光的亮度较高。在本公开的实施例中,像素结构02可以通过谐振腔发出与该像素结构02对应设置的色阻块031的颜色相同的光。
可选地,该显示基板0中的像素结构02可以包括串联式OLED,其例如由多个电致发光结构构成。需要说明的是,串联式OLED的发光效率和发光功率都比较高。因此,由本公开的实施例提供的显示基板0的发光效率和发光功率同样都比较高。
示例性地,根据本公开的实施例提供,显示基板可以具有多种实现方式,并且在下文中对其中的五种实现方式进行举例说明。
图2为根据本公开的实施例的显示基板的结构示意图。具体地,图2示出了显示基板的一种实现方式。该显示基板0中的像素结构02可以包括依次设置在衬底基板01上的第一电极021、红色发光层022、绿色发光层023、第一电连接层024、蓝色发光层025和第二电极026。
作为示例,第一电极021和第二电极026中的一个电极可以为阴极,而另一个电极可以为阳极,在本公开的实施例中,例如,第一电极021为阳极,并且第二电极026为阴极。示例性地,可以通过该OLED中的第一电极021与第二电极026形成谐振腔。对于每个OLED,OLED中的谐振腔的腔长d与该OLED发出的光的波长λ相关。
例如,腔长d与波长λ的关系可以表示为2k(λ/2)=2ndcosθ,其中,k为正整数系数,一般地,称为腔长系数;n表示该谐振腔中的介质的平均折射率;并且θ是由该OLED发出的光在反射导电层上的反射角。而且,由于光的波长与光的颜色相关,因此该谐振腔的腔长与该OLED发出的光的颜色相关。在这样的情况下,通过调整谐振腔的腔长d,能够实现对OLED发出的光的颜色的调整。在该显示基板0中,由像素结构发出的光的波长与像素结构中的谐振腔的腔长正相关。这意味着,发出不同颜色光的两个像素结构02中的谐振腔的腔长不同。
本公开的实施例中,通过调整像素结构02的第一电极021中的绝缘层的厚度,可以调整像素结构02中的谐振腔的腔长d。在这样的情况下,由像素结构发出的光的波长将与像素结构中的绝缘层的厚度正相关。由此,可以看出,根据本公开的实施例,通过谐振腔的腔长的选择,可以调整由像素结构发出的光的颜色,即,波长,特别地,中心波长。本领域技术人员应当理解到,从谐振腔出射的光一般具有一定的频谱宽度,并且因此,在以上指示的关于谐振腔的腔长与出射波长之间的等式2k(λ/2)=2ndcosθ中,λ表示的是出射光的中心波长或者说主波长。即便考虑到例如工艺步骤方面的误差或限制,出射光中存在其它波长的杂散光,这样的杂散光也可以借助于后续的对应色阻块而被滤除,从而有效地保证了从整个显示基板的每一个像素出射的光的纯度。对此,本文在以下将围绕表1和表2更详细地解释和说明。
示例性地,第一电极021可以包括依次设置在衬底基板01上的第一透明导电层0211、反射导电层0212、绝缘层0213和第二透明导电层0214。而且,第二透明导电层0214通过绝缘层0213中的过孔(图2中未标出)与反射导电层0212电连接。第一透明导电层0211和第二透明导电层0214均可以由氧化铟锡制成。反射导电层0212可以由银制成。绝缘层0213可以由二氧化硅制成。第二电极026中的半透半反导电层可以包括由镁银掺杂得到的半透半反材料。发出不同颜色光的两个像素结构02中的绝缘层0213的厚度不同,即,发出不同颜色光的两个像素结构02中的谐振腔的腔长不同。
可选地,在对每个像素结构02中的谐振腔的腔长进行设计时,可以将对应的系数k选择为任意一个正整数。此时,如果将系数k选取为一个特定值,那么就可以根据实际需要的像素结构发出的光的波长来选择适合的谐振腔腔长。换言之,在本公开的实施例中,在已经确定像素结构02通过谐振腔效应发出某种颜色的光的前提下,该像素结构02中的谐振腔的腔长可以选择为与某一特定系数k对应的腔长。这意味着,当像素结构02中的谐振腔的腔长较短,并且像素结构02中的各个膜层的厚度也较薄时,可以将对应的系数k的值适当地调大,以增大所需谐振腔的腔长,以及像素结构02中的各个膜层的厚度。由此,便于像素结构02的制造。
示例性地,如图2所示,显示基板中的多个像素结构02可以包括用于发出红光的红光像素结构02,用于发出绿光的绿光像素结构02以及用于发出蓝光的蓝光像素结构02。作为示例,与红光像素结构02中的第一谐振腔的腔长对应的系数k可以设定为i,与绿光像素结构02中的第二谐振腔的腔长对应的系数k也可以设定为i,并且与蓝光像素结构02中的第三谐振腔的腔长对应的系数k同样可以设定为i,其中,i≥1。也就是说,在这三种像素结构中,与谐振腔的腔长对应的系数k均为i。在这样的情况下,例如,红光像素结构02中的绝缘层的厚度可以为145纳米,绿光像素结构02中的绝缘层的厚度可以为90纳米,而蓝光像素结构02中的绝缘层的厚度可以为45纳米。
继续参考图2,每个像素结构02还可以包括第一空穴注入层(Hole Injection Layer;简称HIL)027、第一空穴传输层(Hole Transport Layer;简称HTL)028、第一电子传输层(Electron Transport Layer;简称ETL) 029、第二空穴注入层B1、第二空穴传输层B2、第二电子传输层B3和电子注入层(Electron Injection Layer;简称EIL)B4。此外,在多个像素结构02与色阻层03之间还设置有薄膜封装(Thin Film Encapsulation;简称TFE)层(图2中未示出),并且色阻层03还包括位于各个色阻块031之间的黑矩阵图案032。
作为示例,第一透明导电层0211的厚度可以为80埃,反射导电层0212的厚度可以为1000埃,第二透明导电层0214的厚度可以为80埃,第一空穴注入层027的厚度可以为100埃,第一空穴传输层028的厚度可以为150埃,红色发光层022的厚度可以为100埃,绿色发光层023的厚度可以为300埃,第一电子传输层029的厚度可以为200埃,第一电连接层024的厚度可以为150埃,第二空穴注入层B 1的厚度可以为100埃,第二空穴传输层B2的厚度可以为100埃,蓝色发光层025的厚度可以为250埃,第二电子传输层B3的厚度可以为300埃,电子注入层B4的厚度可以为100埃,并且第二电极026的厚度可以为120埃。
进一步地,如图2所示,在显示基板0中,每个像素结构02均可以包括串联式OLED(也称为叠层OLED)。继续参考图2,在每个像素结构02中,红色发光层022用于发出红光,绿色发光层023用于发出绿光,并且蓝色发光层025用于发出蓝光。红色发光层022和绿色发光层023叠加在一起形成一个电致发光结构,并且蓝色发光层025独立形成一个电致发光结构。这两个电致发光结构通过位于绿色发光层023和蓝色发光层025之间的第一电连接层024电连接,以实现这两个电致发光结构之间的串联连接。也就是说,红色发光层和绿色发光层形成第一电致发光结构,蓝色发光层形成第二电致发光结构,并且第一电致发光结构与第二电致发光结构通过第一电连接层串联连接。
对图2提供的显示基板进行模拟,可以得出如图3所示的曲线图。在该曲线图中,横轴表示光的波长,单位为纳米,并且纵轴表示光的强度(无量纲)。参考图3,由显示基板发出的红光的波长集中在600纳米附近,绿光的波长集中在520纳米附近,而蓝光的波长集中在450纳米附近。
对图2提供的显示基板进行模拟,还可以得出如表1所示的参数。 参考以下表1,由显示基板发出的最红的光在国际照明委员会(Commission Internationale de L′Eclairage;简称CIE)制定的色度学标准中的色坐标CIEx(即:由CIE制定的色域图中的色坐标x)为0.650,CIEy(即:由CIE制定的色域图中的色坐标y)为0.341,而CIEY(即:由CIE制定的色度学标准中的亮度)为66.0;由显示基板发出的最绿的光的CIEx为0.117,CIEy为0.771,而CIEY为79.6;以及由显示基板发出的最蓝的光的CIEx为0.146,CIEy为0.032,而CIEY为66.8。
表1
光的颜色 CIEx CIEy CIEY
0.650 0.341 66.0
绿 0.117 0.771 79.6
0.146 0.032 66.8
根据表1中的色坐标可以得出该显示基板在CIE制定的色域图中的色域(如图4中的色域A1)。可以看出,由本公开的实施例提供的显示基板在国家电视标准委员会(National Television Standards Committee;简称NTSC)制定的色域标准中能够达到120%的色域。
可选地,为了提高由显示基板发出的光的亮度,在本公开的实施例中,可以将色阻块的透过率设定为50%-60%,或者比60%高。就这一方面而言,本公开的实施例不作特殊限定。由此,从显示基板发出的所有光的总亮度可以达到2500尼特。与此相对,在相关技术中,色阻块的透过率往往较低,因此导致由常规显示基板发出的所有光的总亮度较低,比如,通常地300尼特。
可以看出,根据本公开的实施例,所提供的显示基板的亮度、色域和色纯度都比较高。在这样的情况下,使得该显示基板能够满足例如微显示领域对显示装置的要求。
图5为根据本公开的实施例的显示基板的结构示意图。图5示出了显示基板的第二种实现方式。
与图2中示出的显示基板不同,此时,在图5所示的显示基板中,与红光像素结构02中的第一谐振腔的腔长对应的系数k可以为j,与绿光像素结构02中的第二谐振腔的腔长对应的系数k可以为j,并且与蓝光像素结构02中的第三谐振腔的腔长对应的系数k可以为j+1,其中,j≥1。可选地,i与j可以相等,也可以不相等。作为具体示例, 红光像素结构02中的绝缘层的厚度可以为90纳米,绿光像素结构02中的绝缘层的厚度可以为18纳米,并且蓝光像素结构02中绝缘层的厚度可以为120纳米。
对图5提供的显示基板进行模拟,可以得出如图6所示的曲线图。在该曲线图中,横轴表示光的波长,单位为纳米,并且纵轴表示光的强度,单位为W·m -2·nm -1·sr -1。参考图6,由显示基板发出的红光的波长集中在620纳米附近,绿光的波长集中在520纳米附近,并且蓝光的波长集中在460纳米附近。
对图5提供的显示基板进行模拟,还可以得出如表2所示的参数。参考以下表2,由显示基板发出的最红的光的CIEx为0.673,CIEy为0.341,而CIEY为67.3;由显示基板发出的最绿的光的CIEx为0.157,CIEy为0.740,而CIEY为68.9;以及由显示基板发出的最蓝的光的CIEx为0.142,CIEy为0.048,而CIEY为26.8。
表2
光的颜色 CIEx CIEy CIEY
0.673 0.341 67.3
绿 0.157 0.740 68.9
0.142 0.048 26.8
根据表2中的色坐标可以得出该显示基板在由CIE制定的色域图中的色域(如图7中的色域A2)。可以看出,根据本公开的实施例,所提供的显示基板在NTSC制定的色域标准中能够达到115%的色域。另外,从该显示基板发出的所有光的总亮度可以达到2200尼特。
图8为根据本公开的实施例的显示基板的结构示意图。图8示出了显示基板的第三种实现方式。
与图5所示的显示基板不同,在如图8所示的显示基板中,每个像素结构02中的多个电致发光结构还可以具有不同的布置。示例性地,在图8所示的每个像素结构02中,红色发光层022独立形成一个电致发光结构,绿色发光层023独立形成另一个电致发光结构,而蓝色发光层025独立形成又一个电致发光结构。此时,红色发光层022与绿色发光层023之间还可以设置有第二电连接层B5,并且红色发光层022可以通过第二电连接层B5与绿色发光层023电连接。此外,绿色发光层023可以通过第一电连接层024与蓝色发光层025电连接,并且最 终实现这三个电致发光结构的串联连接。也就是说,在如图5所示的实施例中,红色发光层形成第一电致发光结构,绿色发光层形成第二电致发光结构,并且蓝色发光层形成第三电致发光结构。而且,第一电致发光结构与第二电致发光结构通过第二电连接层串联连接,并且第二电致发光结构与第三电致发光结构通过第一电连接层串联连接。
继续参考图8,该第二电连接层B5可以包括依次层叠设置的第二电子传输层B6、第三空穴注入层B7和第三空穴传输层B8,其中,电子传输层靠近红色发光层022设置。在示例实施例中,第二电子传输层B6的厚度可以为300埃,第三空穴注入层B7的厚度可以为100埃,并且第三空穴传输层B8的厚度可以为150埃。
对图8提供的显示基板进行模拟,可以得出显示基板在NTSC制定的色域标准中达到的色域、由该显示基板发出的所有光的总亮度、以及由该显示基板发出光的色纯度。显然,在以上第三种实现方式中,显示基板的色域、总亮度以及色纯度均比较高。
图9为根据本公开的实施例的显示基板的结构示意图。图9示出了显示基板的第四种实现方式。
与图2所示的显示基板不同,在如图9所示的显示基板中,每个像素结构02中的第一电极021还可以不包括绝缘层,而是仅包括在衬底基板01上依次设置的第一透明导电层0211、反射导电层0212和第二透明导电层0214。此时,通过调整像素结构02的第一电极021中的第二透明导电层0214的厚度,可以调整像素结构02中的谐振腔的腔长d。显然,发出不同颜色光的两个像素结构02中的第二透明导电层0214的厚度不同。此时,从像素结构发出的光的波长将与像素结构中的第二透明导电层的厚度正相关。
作为示例,红光像素结构02中的第二透明导电层的厚度可以为100纳米,绿光像素结构02中的第二透明导电层的厚度可以为26纳米,并且蓝光像素结构02中的第二透明导电层的厚度可以为130纳米。
图10为根据本公开的实施例的显示基板的结构示意图。图10示出了显示基板的第五种实现方式。
与图2所示的显示基板不同,在如图10所示的显示基板中,发出不同颜色光的两个像素结构02中的绝缘层0213的厚度可以相同。而且,在OLED中,电子注入层B4、电子传输层(比如第一电子传输层 029和第二电子传输层B3)、空穴注入层(比如第一空穴注入层027和第二空穴注入层B1)和空穴传输层(如第一空穴传输层028和第二空穴传输层B2)中的至少一个为功能膜层。在这样的情况下,发出不同颜色光的两个OLED中的功能膜层可以设计为具有不同的厚度。在本公开的实施例中,功能膜层可以例如选择为电子注入层B4。由此,对于发出不同颜色光的两个OLED,可以将电子注入层B4的厚度设计为不同的。可选地,功能膜层还可以包括其它膜层(比如第一空穴注入层027等)。对此,本公开实施例不作特殊限定。此时,通过调整像素结构02中的功能膜层的厚度,可以调整像素结构02中的谐振腔的腔长d。
以下将对本公开的实施例提供的显示基板与相关技术中的显示基板进行对比分析。
示例性地,根据相关技术的OLED显示基板可以包括两种类型,其中,一种OLED显示基板包括衬底基板、设置在衬底基板上的多个OLED、以及设置在该多个OLED远离衬底基板的一侧上的色阻层。具体地,这样的多个OLED均能够发出白光,并且色阻层包括与多个OLED一一对应的多个色阻块。
然而,在现有技术中,由于OLED发出的光为白光,并且白光中能够通过色阻块的光的占比较少,比如,白光中能够通过红色色阻块的红光较少,白光中能够通过绿色色阻块的绿光较少,或者白光中能够通过蓝色色阻块的蓝光较少,因此,从显示基板发出的光的颜色一般较浅,从而导致由显示基板发出的光的色纯度较低。与此相对,在本公开的实施例中,由OLED发出的光的颜色与对应设置的色阻块的颜色相同。也就是说,在从该OLED发出的光中能够通过色阻块的光的占比较多,从而使得从显示基板发出的光的颜色较深,而且从显示基板发出的光的色纯度也较高。
图11为根据相关技术的另一种OLED显示基板的结构示意图。如图11所示,该OLED显示基板1包括衬底基板10和设置在衬底基板10上的多个OLED 11,其中,每个OLED 11能够发出一种颜色的光,从而使得多个OLED 11联合起来能够发出红光、绿光和蓝光。
但是,在这样的实施例中,从每个OLED 11发出的光的波长范围较大,并且在这些光中通常还会夹杂有其它颜色的光。例如,要求某 一OLED 11发出红光,但是从该OLED 11发出的光中通常还会夹杂有些许黄光。这样一来,从每个OLED 11发出的光的纯度将比较低。然而,在本公开的实施例中,由于在每个OLED远离衬底基板的一侧对应设置有色阻块,并且该色阻块能够对该OLED发出的光进行过滤,从而去除夹杂在光中的其它颜色的光成分,从而可以提高由显示基板发出的光的纯度。
另外,需要说明的是,在制造如图11所示的显示基板时,需要使用高精度金属掩模板(Fine Metal Mask;简称FMM),因此往往受限于FMM的精度。由于这样的原因,在相关技术中无法制造出在衬底基板上的正投影面积较小的OLED,从而导致显示基板中每英寸所拥有的像素个数(Pixels Per Inch;简称PPI)较少。
与此相对,在制造由本公开的实施例提供的显示基板时,无需使用FMM。因此,制造显示基板的工艺不会受到FMM的限制。所以,在本公开的实施例中提供的显示基板的PPI将较大。示例性地,在本公开的实施例中,显示基板的PPI可以达到6000。作为比较,相关技术中的显示基板的PPI一般都小于6000,比如,2000左右。
此外,根据本公开的实施例,显示基板在由NTSC制定的色域标准中还能够达到大于100%的色域。
需要说明的是,在本公开的实施例中,像素结构内的各个发光层的排布顺序仅仅作为示例而示出或者讨论。可选地,各个发光层的排布顺序还可以修改,并且本公开的实施例对此不作限定。
综上所述,在本公开的实施例中,提供了一种显示基板,包括多个像素结构以及色阻层,其中,每个像素结构用于发出与其对应的色阻块颜色相同的光。因此,在从OLED发出的光中,能够通过色阻块的光的占比将较多,从而使得显示基板的色纯度较高,并且显示基板的显示效果也得以提升。
图12为根据本公开的实施例的用于显示基板的制造方法的流程图。该方法可以用于制造如图1、图2、图5、图8、图9和图10中任一个所示的显示基板。如图12所示,该显示基板的制造方法可以包括以下步骤。
步骤1201、提供衬底基板。
步骤1202、在衬底基板上形成多个像素结构。
步骤1203、在多个像素结构远离衬底基板的一侧上形成色阻层。
具体地,色阻层包括与多个像素结构一一对应的多个色阻块,其中,多个像素结构中的每个像素结构发出一种颜色的光,并且从每个像素结构发出的光的颜色与其对应的色阻块的颜色相同。
综上所述,根据本公开的实施例,提供了一种用于显示基板的制造方法。具体地,通过该方法所制造的显示基板包括多个像素结构和色阻层,其中,每个像素结构用于发出与其对应的色阻块的颜色相同的光。因此,在从像素单元发出的光中,能够通过色阻块的光较多,使得显示基板的色纯度较高,并且显示基板的显示效果得以提升。
需要说明的是,在本公开的实施例中,通过上述方法所制造的显示基板可以具有多种实现方式,例如,图2、图5、图8、图9和图10所示的实现方式等。在这些实现方式中,显示基板的制造方法相似。作为示例,在本公开的实施例中,以上制造方法可以用于制造如图2所示的显示基板。
示例性地,在制造如图2所示的显示基板时,步骤1202可以包括以下子步骤,如图13所示。
步骤12021、在衬底基板上依次形成第一透明导电层和反射导电层。
可选地,如图14所示,在制造第一透明导电层0211时,可以采用涂覆、磁控溅射、热蒸发或者等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition;简称PECVD)等方法在衬底基板01上沉积一层透明导电材质,从而得到透明导电材质层(图14中未示出)。在此之后,再采用一次构图工艺对该透明导电材质层进行处理,以得到第一透明导电层0211。
作为示例,一次构图工艺包括光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。因此,采用一次构图工艺对透明导电材质层进行处理包括:在透明导电材质层上涂覆一层光刻胶;然后采用掩膜版对光刻胶进行曝光以使光刻胶形成完全曝光区和非曝光区;之后采用显影工艺进行处理以使完全曝光区的光刻胶被去除并且非曝光区的光刻胶得以保留;之后再对透明导电材质层上的对应完全曝光区进行刻蚀并且在刻蚀完毕后剥离非曝光区中的光刻胶,从而得到第一透明导电层0211。
在形成第一透明导电层0211之后,可以在形成有第一透明导电层 0211的衬底基板01上形成反射导电材质层(图14中未示出)。在此之后,再采用一次构图工艺对该反射导电材质层进行处理,以得到如图14所示的反射导电层0212。
步骤12022、在形成有第一透明导电层和反射导电层的衬底基板上形成绝缘层。
需要说明的是,需要在衬底基板上形成能够发出多种颜色的光的多个像素结构。而且,如图2所示,在显示基板中,还需要调整绝缘层的厚度,以便调整从对应OLED发出的光的颜色。因此,在步骤12022中,需要在衬底基板上形成具有多种厚度的绝缘层。示例性地,需要在衬底基板上形成能够发出红光的OLED、发出绿光的OLED和发出蓝光的OLED。因此,在步骤12022中,需要在衬底基板上形成具有三种厚度的绝缘层。例如,发出红光的OLED中的绝缘层厚度最大,而发出蓝光的OLED中的绝缘层厚度最小。
在衬底基板上形成绝缘层的过程可以如图15至图18所示。结合图15至图18,在形成绝缘层0213时,可以首先在形成有第一透明导电层0211和反射导电层0212的衬底基板01上依次形成绝缘材质层和光刻胶层(图15至图18中均未示出绝缘材质层和光刻胶层)。
然后,采用掩膜版对光刻胶层进行曝光,以使光刻胶层形成完全曝光区和非曝光区,其中,非曝光区为反射导电层0212在光刻胶层中的对应区域。之后采用显影工艺进行处理,以使完全曝光区中的光刻胶被去除,并且非曝光区中的光刻胶保留。之后,对完全曝光区在绝缘材质层上的对应区域进行刻蚀,并且在刻蚀完毕后剥离非曝光区中的光刻胶。由此,可以得到如图15所示的第一绝缘层图案C1以及第一光刻胶图案C2。
进一步地,在得到第一绝缘层图案C1以及第一光刻胶图案C2之后,可以采用半色调掩膜板对第一光刻胶图案C2进行曝光和显影,以去除待形成最小厚度绝缘层的区域中的光刻胶,以及减薄待形成次小厚度绝缘层的区域中的光刻胶,从而得到如图16所示的第二光刻胶图案C3。该第二光刻胶图案C3包括第一厚度区C31、第二厚度区C32以及光刻胶完全去除区C33,其中,第一厚度区C31中的光刻胶厚度大于第二厚度区C32中的光刻胶厚度,并且第一厚度区C31为待形成最大厚度的绝缘层在第二光刻胶图案C3中的对应区域。
之后,可以以第二光刻胶图案C3为掩膜,对第一绝缘层图案C1进行刻蚀,比如通过干刻的方式进行刻蚀。在刻蚀的过程中,与光刻胶完全去除区C33对应的第一绝缘层图案C1减薄,并且第二厚度区C32及其对应的第一绝缘层图案C1均被减薄。在此之后,再剥离第一厚度区C31,从而得到如图17所示的第二绝缘层图案C4。
最后,如图18所示,可以在该第二绝缘层图案C4中形成过孔C5,从而能够得到三种厚度的绝缘层0213。这三种厚度的绝缘层0213分别与第二光刻胶图案C3中的第一厚度区C31、第二厚度区C32以及光刻胶完全去除区C33一一对应。
可选地,步骤12022还可以通过其它方式实现。比如,三种不同厚度的绝缘层可以依次形成,并且本公开的实施例对此不作限定。
步骤12023、在形成有绝缘层的衬底基板上依次形成第二透明绝缘层、第一空穴注入层、第一空穴传输层、红色发光层、绿色发光层、第一电子传输层、第一电连接层、第二空穴注入层、第二空穴传输层、蓝色发光层、第二电子传输层、电子注入层和第二电极。
在步骤12023中,需要形成的每一个膜层的形成过程均可以包括:涂覆用于该膜层的材质,并且之后通过一次构图工艺对该材质进行处理。该过程可以参考步骤12021中用于制造第一透明导电层或反射导电层的过程。
在依次形成第二透明绝缘层、第一空穴注入层、第一空穴传输层、红色发光层、绿色发光层、第一电子传输层、第一电连接层、第二空穴注入层、第二空穴传输层、蓝色发光层、第二电子传输层、电子注入层和第二电极之后,可以得到如图19所示的结构。示例性地,图19所示的结构包括能够发出红光的红光像素结构、发出绿光的绿光像素结构以及发出蓝光的蓝光像素结构。
需要说明的是,在制得多个像素结构之后,还需要在形成有多个像素结构的衬底基板上形成TFE层。在步骤1203中,可以在该TFE层上形成色阻层。
综上所述,根据本公开的实施例,由上文提供的方法所制造的显示基板包括多个像素结构和色阻层,其中,每个像素结构用于发出与其对应的色阻块颜色相同的光。因此,在从像素结构发出的光中,能够通过色阻块的光较多,从而使得显示基板的色纯度较高,并且显示 基板的显示效果较佳。
本公开的实施例还提供了一种显示装置。该显示装置可以包括图1、图2、图5、图8、图9和图10中任一个所示的显示基板。示例性地,该显示装置可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等具有显示功能的任何产品或部件。
需要说明的是,关于本公开所提供的方法实施例,可以参照与其相应的显示基板以及显示装置的实施例。对此,本公开的实施例不做特殊限定。此外,在本公开的实施例提供的方法中,各个步骤的先后顺序能够进行适当调整。而且,步骤也能够根据情况进行相应增减。在本公开揭露的技术范围内,任何熟悉本技术领域的技术人员可容易设想到各种变化,都应涵盖在本公开的保护范围之内,因此不再赘述。
以上所述仅为本申请的可选实施例,并不用以限制本申请。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种显示基板,包括:
    衬底基板,
    位于所述衬底基板上的多个像素结构,以及
    位于所述多个像素结构远离所述衬底基板的一侧上的色阻层,其中,
    所述色阻层包括多个色阻块,每一个色阻块对应于所述多个像素结构中的一个或多个,并且
    由所述多个像素结构中的每个像素结构发出的光具有与其对应的色阻块相同的颜色。
  2. 根据权利要求1所述的显示基板,其中,
    每个像素结构包括串联的多个电致发光结构。
  3. 根据权利要求2所述的显示基板,其中,
    每个像素结构包括依次设置在所述衬底基板上的第一发光层、第二发光层、第一电连接层和第三发光层,以及
    所述多个电致发光结构包括第一电致发光结构和第二电致发光结构,其中
    所述第一电致发光结构包括所述第一发光层和所述第二发光层,所述第二电致发光结构包括所述第三发光层,并且所述第一电致发光结构与所述第二电致发光结构通过所述第一电连接层串联连接。
  4. 根据权利要求3所述的显示基板,其中,
    所述第一发光层包括红色发光层,所述第二发光层包括绿色发光层,并且所述第三发光层包括蓝色发光层。
  5. 根据权利要求2所述的显示基板,其中,
    每个像素结构包括依次设置在所述衬底基板上的第一发光层、第二电连接层、第二发光层、第一电连接层和第三发光层,以及
    所述多个电致发光结构包括第一电致发光结构、第二电致发光结构和第三电致发光结构,其中
    所述第一电致发光结构包括所述第一发光层,所述第二电致发光结构包括所述第二发光层,所述第三电致发光结构包括所述第三发光 层,所述第一电致发光结构与所述第二电致发光结构通过所述第二电连接层串联连接,并且所述第二电致发光结构与所述第三电致发光结构通过所述第一电连接层串联连接。
  6. 根据权利要求1所述的显示基板,其中,
    每一个色阻块对应于所述多个像素结构中的一个相应的像素结构。
  7. 根据权利要求2至6中任一项所述的显示基板,其中,
    每个像素结构还包括第一电极和第二电极,并且
    所述第一电极、所述多个电致发光结构和所述第二电极依次设置在所述衬底基板上,其中
    所述第一电极包括反射导电层,
    所述第二电极包括半透半反导电层,并且
    所述反射导电层与所述半透半反导电层之间的距离与由所述像素结构发出的光的波长正相关。
  8. 根据权利要求7所述的显示基板,其中,
    所述第一电极还包括第一透明导电层、绝缘层和第二透明导电层,其中,所述第一透明导电层、所述反射导电层、所述绝缘层和所述第二透明导电层依次设置在所述衬底基板上,以及
    所述第二透明导电层通过所述绝缘层中的过孔与所述反射导电层电连接,并且由所述像素结构发出的光的波长与所述第一电极中的所述绝缘层的厚度正相关。
  9. 根据权利要求7所述的显示基板,其中,
    所述第一电极还包括第一透明导电层和第二透明导电层,其中,所述第一透明导电层、所述反射导电层和所述第二透明导电层依次设置在所述衬底基板上,并且由所述像素结构发出的光的波长与所述第一电极中的所述第二透明导电层的厚度正相关。
  10. 根据权利要求7所述的显示基板,其中,
    每个像素结构还包括位于所述第一电极和所述第二电极之间的功能膜层,其中,所述功能膜层包括电子注入层、电子传输层、空穴注入层和空穴传输层中的至少一个,并且由所述像素结构发出的光的波长与所述像素结构中的所述功能膜层的厚度正相关。
  11. 根据权利要求7所述的显示基板,其中,
    所述反射导电层与所述半透半反导电层之间的距离
    Figure PCTCN2019081463-appb-100001
    其中,k为正整数系数,λ为由所述像素结构发出的光的波长,n为所述反射导电层与所述半透半反导电层之间的介质的平均折射率,并且θ为由所述像素结构发出的光在所述反射导电层上的反射角。
  12. 根据权利要求11所述的显示基板,其中,
    所述多个像素结构包括用于发出第一颜色光的第一像素结构、用于发出第二颜色光的第二像素结构和用于发出第三颜色光的第三像素结构,并且
    所述系数k在所述第一像素结构中、所述第二像素结构中和所述第三像素结构中均相同。
  13. 根据权利要求11所述的显示基板,其中,
    所述多个像素结构包括用于发出第一颜色光的第一像素结构、用于发出第二颜色光的第二像素结构和用于发出第三颜色光的第三像素结构,并且
    所述第一像素结构中和所述第二像素结构中的所述系数k相同,但是比所述第三像素结构中的所述系数k小1。
  14. 一种显示基板的制造方法,包括以下步骤:
    提供衬底基板;
    在所述衬底基板上形成多个像素结构;以及
    在所述多个像素结构远离所述衬底基板的一侧上形成色阻层,其中,
    所述色阻层包括多个色阻块,每一个色阻块对应于所述多个像素结构中的一个或多个,并且
    由所述多个像素结构中的每个像素结构发出的光具有与其对应的色阻块相同的颜色。
  15. 根据权利要求14所述的方法,其中,在所述衬底基板上形成多个像素结构的步骤包括:
    针对每个像素结构,在所述衬底基板上依次形成第一电致发光结构、第一电连接层和第二电致发光结构,
    其中,所述第一电致发光结构包括所述第一发光层和第二发光层,所述第二电致发光结构包括第三发光层,并且所述第一电致发光结构 与所述第二电致发光结构通过所述第一电连接层串联连接。
  16. 根据权利要求15所述的方法,其中,所述第一发光层包括红色发光层,所述第二发光层包括绿色发光层,并且所述第三发光层包括蓝色发光层。
  17. 根据权利要求14所述的方法,其中,在所述衬底基板上形成多个像素结构的步骤包括:
    针对每个像素结构,在所述衬底基板上依次形成第一电致发光结构、第二电连接层、第二电致发光结构、第一电连接层和第三电致发光结构,
    其中,所述第一电致发光结构包括第一发光层,所述第二电致发光结构包括第二发光层,所述第三电致发光结构包括第三发光层,所述第一电致发光结构与所述第二电致发光结构通过所述第二电连接层串联连接,并且所述第二电致发光结构与所述第三电致发光结构通过所述第一电连接层串联连接。
  18. 一种显示装置,包括根据权利要求1至13中任一项所述的显示基板。
PCT/CN2019/081463 2018-05-09 2019-04-04 显示基板、其制造方法和显示装置 WO2019214378A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19800317.0A EP3792977A4 (en) 2018-05-09 2019-04-04 DISPLAY SUBSTRATE, METHOD OF MAKING THEREOF, AND DISPLAY DEVICE
JP2020534873A JP2021520599A (ja) 2018-05-09 2019-04-04 表示基板、その製造方法及び表示装置
US16/604,768 US11404486B2 (en) 2018-05-09 2019-04-04 Display substrate, manufacturing method thereof and display device
US17/664,801 US20220285454A1 (en) 2018-05-09 2022-05-24 Display panel, manufacturing method thereof and display device
US17/664,809 US20220285455A1 (en) 2018-05-09 2022-05-24 Display panel, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810438219.8A CN110491899B (zh) 2018-05-09 2018-05-09 显示面板及其制造方法、显示装置
CN201810438219.8 2018-05-09

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/604,768 A-371-Of-International US11404486B2 (en) 2018-05-09 2019-04-04 Display substrate, manufacturing method thereof and display device
US17/664,809 Continuation US20220285455A1 (en) 2018-05-09 2022-05-24 Display panel, manufacturing method thereof and display device
US17/664,801 Continuation US20220285454A1 (en) 2018-05-09 2022-05-24 Display panel, manufacturing method thereof and display device

Publications (1)

Publication Number Publication Date
WO2019214378A1 true WO2019214378A1 (zh) 2019-11-14

Family

ID=68467224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081463 WO2019214378A1 (zh) 2018-05-09 2019-04-04 显示基板、其制造方法和显示装置

Country Status (5)

Country Link
US (3) US11404486B2 (zh)
EP (1) EP3792977A4 (zh)
JP (1) JP2021520599A (zh)
CN (4) CN114975560A (zh)
WO (1) WO2019214378A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11450694B2 (en) * 2018-08-21 2022-09-20 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and electronic device
CN110931533B (zh) * 2019-12-10 2022-11-25 武汉天马微电子有限公司 一种显示面板及其制作方法、显示装置
CN111029383A (zh) * 2019-12-13 2020-04-17 京东方科技集团股份有限公司 一种oled显示模组及其制备方法、oled显示装置
CN112213882A (zh) * 2020-10-26 2021-01-12 京东方科技集团股份有限公司 反射式显示基板及制作方法、显示面板和显示装置
WO2024049505A1 (en) * 2022-09-02 2024-03-07 Google Llc See-through display with varying thickness conductors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024844A (zh) * 2009-09-15 2011-04-20 三星移动显示器株式会社 有机发光显示设备
CN103050630A (zh) * 2011-12-05 2013-04-17 友达光电股份有限公司 电激发光显示面板的画素结构
CN104103672A (zh) * 2014-07-02 2014-10-15 京东方科技集团股份有限公司 一种oled单元及其制作方法、oled显示面板、oled显示设备
US9231034B1 (en) * 2014-01-07 2016-01-05 Apple Inc. Organic light-emitting diode displays
CN107204400A (zh) * 2017-05-24 2017-09-26 京东方科技集团股份有限公司 显示基板及其制作方法以及显示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737800B1 (en) * 2003-02-18 2004-05-18 Eastman Kodak Company White-emitting organic electroluminescent device with color filters and reflective layer for causing colored light constructive interference
JP2005011793A (ja) * 2003-05-29 2005-01-13 Sony Corp 積層構造の製造方法および積層構造、表示素子ならびに表示装置
JP4179119B2 (ja) * 2003-09-19 2008-11-12 ソニー株式会社 有機発光装置の製造方法
US7268485B2 (en) * 2003-10-07 2007-09-11 Eastman Kodak Company White-emitting microcavity OLED device
JP4507964B2 (ja) * 2005-04-15 2010-07-21 ソニー株式会社 表示装置および表示装置の製造方法
KR101383490B1 (ko) * 2007-09-21 2014-04-08 엘지디스플레이 주식회사 전계발광소자
KR101894898B1 (ko) 2011-02-11 2018-09-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 사용한 전자 기기
JP6186698B2 (ja) * 2012-10-29 2017-08-30 セイコーエプソン株式会社 有機el装置、電子機器
KR101998627B1 (ko) * 2013-01-25 2019-07-11 삼성디스플레이 주식회사 유기 전계 발광소자 및 그의 제조방법
JP6099420B2 (ja) * 2013-02-08 2017-03-22 株式会社半導体エネルギー研究所 発光装置
CN104218169B (zh) * 2013-05-30 2017-04-12 群创光电股份有限公司 有机发光装置以及包含其的影像显示系统
JP2016085969A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、及び照明装置
KR102311911B1 (ko) * 2014-11-25 2021-10-13 엘지디스플레이 주식회사 유기 발광 소자 및 그를 이용한 유기 발광 디스플레이 장치
CN105514295A (zh) 2016-02-29 2016-04-20 京东方科技集团股份有限公司 发光装置和形成发光装置的方法以及显示装置
KR102503845B1 (ko) * 2016-04-20 2023-02-27 삼성디스플레이 주식회사 유기발광소자 및 이를 포함하는 유기발광 표시패널
CN106410049A (zh) * 2016-06-02 2017-02-15 深圳市华星光电技术有限公司 Oled器件与oled显示器
KR20180090421A (ko) * 2017-02-02 2018-08-13 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107025451B (zh) * 2017-04-27 2019-11-08 上海天马微电子有限公司 一种显示面板及显示装置
CN108598134A (zh) * 2018-05-30 2018-09-28 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024844A (zh) * 2009-09-15 2011-04-20 三星移动显示器株式会社 有机发光显示设备
CN103050630A (zh) * 2011-12-05 2013-04-17 友达光电股份有限公司 电激发光显示面板的画素结构
US9231034B1 (en) * 2014-01-07 2016-01-05 Apple Inc. Organic light-emitting diode displays
CN104103672A (zh) * 2014-07-02 2014-10-15 京东方科技集团股份有限公司 一种oled单元及其制作方法、oled显示面板、oled显示设备
CN107204400A (zh) * 2017-05-24 2017-09-26 京东方科技集团股份有限公司 显示基板及其制作方法以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3792977A4 *

Also Published As

Publication number Publication date
CN110491899B (zh) 2022-07-15
EP3792977A1 (en) 2021-03-17
US20220285455A1 (en) 2022-09-08
US20220285454A1 (en) 2022-09-08
US11404486B2 (en) 2022-08-02
EP3792977A4 (en) 2022-02-23
JP2021520599A (ja) 2021-08-19
CN114582944A (zh) 2022-06-03
CN114566533A (zh) 2022-05-31
CN114975560A (zh) 2022-08-30
CN110491899A (zh) 2019-11-22
US20210327966A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2019214378A1 (zh) 显示基板、其制造方法和显示装置
CN110911463B (zh) Oled显示背板及其制作方法和oled显示装置
US11700739B2 (en) Display substrate, manufacturing method thereof, and display device
KR100542993B1 (ko) 고효율 평판표시장치 및 그의 제조방법
US9111882B1 (en) Organic light emitting device and fabricating method thereof
WO2020043093A1 (zh) 发光器件、像素单元、像素单元的制备方法和显示装置
CN108807493B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
KR102174652B1 (ko) 발광 소자, 표시 장치 및 조명 장치
KR20140089260A (ko) 유기 발광 다이오드 마이크로-캐비티 구조 및 그 제조 방법
US10727451B2 (en) Display substrate and manufacturing method thereof, and display device
US9490301B2 (en) OLED structure and manufacturing method thereof
JP2010251156A (ja) カラー有機エレクトロルミネッセンス表示装置およびその製造方法
US11362311B2 (en) Sub-electrode microlens array for organic light emitting devices
CN109742266B (zh) 一种oled微腔结构的制作方法
WO2020207433A1 (zh) 显示基板及其制作方法、显示装置
US11552134B2 (en) Light emitting diode with microcavities and different reflective layers and fabricating method thereof, display substrate, and display apparatus
CN110429119A (zh) 阵列基板及采用该阵列基板的制备方法、显示装置
US11322724B2 (en) Display substrate having microcavity structure, fabricating method thereof and display device
CN113948660B (zh) 一种显示面板及其制作方法和显示装置
WO2019109682A1 (zh) 阵列基板、其制作方法及显示装置
WO2015067098A1 (zh) 叠层有机发光二极管器件和显示装置
TWI843221B (zh) 用於無偏光器led顯示器的發光像素和子像素結構及形成發光像素的處理方法
CN113437125B (zh) 一种像素界定层、显示基板及显示装置
CN110164926B (zh) 一种有机发光显示装置
KR20180068239A (ko) 칼라 필터 및 칼라필터를 구비한 유기 발광다이오드 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019800317

Country of ref document: EP

Effective date: 20201209