WO2020085830A1 - 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법 - Google Patents

입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법 Download PDF

Info

Publication number
WO2020085830A1
WO2020085830A1 PCT/KR2019/014108 KR2019014108W WO2020085830A1 WO 2020085830 A1 WO2020085830 A1 WO 2020085830A1 KR 2019014108 W KR2019014108 W KR 2019014108W WO 2020085830 A1 WO2020085830 A1 WO 2020085830A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
solvent
particle size
pore structure
airgel
Prior art date
Application number
PCT/KR2019/014108
Other languages
English (en)
French (fr)
Inventor
이대호
조문정
박효열
유승건
한세원
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190130977A external-priority patent/KR20200047360A/ko
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2020085830A1 publication Critical patent/WO2020085830A1/ko
Priority to US17/238,426 priority Critical patent/US20210308647A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide aerogel having a controlled particle size or pore structure and a method for manufacturing the same, and more specifically, it is possible to control the particle size of the polyimide resin as well as through an organic solvent mixture.
  • the present invention relates to a polyimide airgel having a controllable pore structure and a method for manufacturing the same.
  • polyimide is a material that is used in a variety of industries, such as automobiles, aeronautics, ships, electronics, displays and semiconductors because it has the highest level of heat resistance, strength and insulation performance among organic polymers.
  • polyimide is used as a flexible printed circuit board (FPCB), a high-integrated circuit board, and an insulating layer. Recently, low-conversion is required to suppress signal delay and loss rate due to high performance and high integration. In accordance with this, research on the production of high porosity airgels using polyimide has been actively conducted in recent years.
  • silica aerogel is used as a high-performance insulating material due to its advantages such as super-porosity and super-insulation, but there is a problem of mechanical brittleness, so research is needed to replace it with a product using high-strength polyimide.
  • the airgel is generally prepared by drying a wet gel cured in a solvent. Most of the drying is performed using a supercritical drying method. There are risks.
  • the present invention was invented in order to solve the above-mentioned problems, and it is possible to control the particle size of the polyimide resin as well as to control the pore structure through an organic solvent mixture. Providing them as technical solutions.
  • the first step of preparing a solvent A second step of synthesizing a polyamic acid resin by reacting a diamine-based monomer with an acid anhydride monomer under the solvent; A third step of forming the polyimide resin through imidization of the polyamic acid resin by reacting the polyamic acid resin at a high temperature at 150 to 200 ° C; A fourth step of crosslinking the polyimide resin to form a polyimide wet gel; And a fifth step of removing the solvent contained in the polyimide wet gel with a solvent having a relatively lower boiling point than the solvent, and then removing the solvent to form a polyimide aerogel.
  • a method of manufacturing a controlled polyimide airgel is provided.
  • the solvent contained in the polyimide wet gel is replaced with a composite organic solvent composed of two low boiling point solvents having a boiling point of 100 ° C. or less, and then dried to form a polyimide airgel. It is characterized in that the pore structure of the polyimide airgel is controlled by controlling the mixing amount of the two low-boiling point solvents.
  • nano-particles composed of polyimide, nano-walls, or a combination thereof are three-dimensional according to the weight ratio of the two low-boiling solvents. It characterized in that to form a polyimide airgel having a pore structure by a network connected to.
  • the solvent is replaced by introducing a mixed solvent formed by mixing the polyimide wet gel with a first solvent identical to the first solvent and a second solvent composed of the complex organic solvent. It characterized in that the solvent contained in the polyimide wet gel is substituted with a low boiling point solvent having a boiling point of 100 ° C or less.
  • the mixed solvent is characterized in that it is introduced multiple times while gradually increasing the weight ratio of the second solvent to the weight ratio of the first solvent.
  • At least one of the two low-boiling solvents is characterized in that it is not phase separated from the first solvent.
  • the particle size of the polyimide resin is controlled in the third step by controlling the mixing amount of the main solvent in the first step, and the subsolvent having a different solubility from the main solvent.
  • the main solvent is, N-methylpyrrolidone (N-Methylpyrrolidone), N, N-dimethylformamide (N, N-Dimethylformamide, DMF), N, N-dimethylacetamide (N, N-Dimethylacetamide, DMAc, N, N-diethyl formamide, N, N-diethyl acetamide, and mixtures thereof.
  • N-methylpyrrolidone N-Methylpyrrolidone
  • N, N-dimethylformamide N, N-Dimethylformamide, DMF
  • N, N-dimethylacetamide N, N-Dimethylacetamide, DMAc, N, N-diethyl formamide, N, N-diethyl acetamide, and mixtures thereof.
  • the solvent is toluene (toluene), benzene (benzene), xylene (xylene), cyclohexane (cyclohexane), cyclohexanol (cyclohexanol), cyclohexanone (cyclohexanone), benzyl alcohol (benzyl alcohol) alcohol), heptanol (heptanol), hexanol (hexanol), ethylene glycol (ethylene glycol), dimethyl formamide (dimethyl formamide), dimethyl acetamide (dimethyl acetamide) and a mixture thereof.
  • the polar size is included in any one or more of the diamine-based monomer and the acid anhydride monomer to control the particle size of the polyimide resin in the third step.
  • the particle surface is modified by modifying the particle surface of the polyimide resin by a monoamine-based monomer selected from picolylamine, ethanolamine, aminopropanol, and mixtures thereof.
  • the present invention provides a polyimide airgel in which particle size or pore structure is controlled, characterized by being manufactured by the above manufacturing method.
  • the particle size or pore structure of the present invention by means of solving the above problems is controlled, and the polyimide aerogel and the manufacturing method thereof have the following effects.
  • the porosity and pore structure of the final formed polyimide airgel can be easily controlled by using a composite organic solvent composed of two low-boiling point and low-polarity solvents during the solvent replacement process of the polyimide wet gel crosslinked from the polyimide resin. It has an effect.
  • FIG. 1 is a flow chart according to a preferred embodiment of the present invention.
  • Figure 2 is a graph showing the particle size change of the polyimide resin.
  • Figure 3 is a graph showing the particle size change of the polyimide resin.
  • Figure 4 is a graph showing the particle size change of the polyimide resin.
  • FIG. 7 is a SEM photograph showing the pore structure of a polyimide airgel.
  • FIG. 8 is a graph showing porosity and mechanical properties of polyimide airgels according to Examples 3 to 8 of the present invention.
  • thermogravimetric graph of a polyimide airgel is a thermogravimetric graph of a polyimide airgel.
  • FIG. 10 is a graph showing porosity and mechanical properties of the polyimide airgels according to Examples 9 to 13 of the present invention.
  • the polyimide airgel does not necessarily require a high porosity (porosity of 70% or more), but considering that various porosities from low porosity to high porosity can be used depending on the application purpose. It is realistically very important to control the porosity or pore structure while reducing the cost.
  • the applicability is significantly increased, which can be achieved even at a porosity of 50 to 60%.
  • a polyimide airgel having a low porosity to high porosity is prepared by using a low-cost solvent that is easily used for industrial purposes, reducing the solvent replacement process time, and applying a general drying method such as vacuum drying, but the solvent replacement process.
  • a general drying method such as vacuum drying, but the solvent replacement process.
  • it is intended to present a method for controlling the particle size of the polyimide resin.
  • the polyimide aerogel of the present invention is the first step (S10), the second step (S20), the third step (S30), the fourth step (S40) and the fifth step (S50)
  • polyimide resin is obtained in solution form or micro / nanoparticle form through polarity control of monomers and solvents during high-temperature polymerization reaction, particle surface modification, and polyimide aerogel is cross-linked from polyimide resin and then mixed organic It is characterized in that the pore structure can be obtained in a controlled state by removing the solvent in a general drying method through solvent replacement using a solvent, and each step will be described in more detail below.
  • the first step is a step of preparing a solvent (S10).
  • a solvent capable of dissolving the monomers is prepared.
  • the solvent is composed of a main solvent and a sub-solvent different in solubility from the main solvent.
  • N-methylpyrrolidone NMP
  • N, N-dimethylformamide N-methylpyrrolidone
  • DMF N, N-Dimethylacetamide
  • DMAc N, N-diethyl formamide
  • N, N-diethyl acetamide Any one or more of amide (N, N-diethyl acetamide) is used.
  • polyimide is made of a particulate resin, and 80 to 95 wt% of a main solvent and 5 to 20 wt% of a different solvent having different solubility can be mixed and used together to control particle size.
  • 80 to 95 wt% of the main solvent and 5 to 20 wt% of the subsolvent are used together, control of the particle size of the polyimide resin is optimal.
  • the main solvent is less than 80wt% or the subsolvent exceeds 20wt%, the diamine-based monomer and the acid anhydride monomer are not sufficiently reacted or dissolved, and if the main solvent exceeds 95wt% or the subsolvent is less than 5wt%, proper particle size control You cannot expect.
  • solvent for reference, as a solvent, toluene, benzene, xylene, cyclohexane, cyclohexanol, cyclohexanone, benzyl alcohol, Heptanol, hexanol, ethylene glycol, dimethyl formamide or dimethyl acetamide is used, but the solvent is different from the main solvent. Any solvent can be used.
  • the solvent mentioned in the first step should have a higher boiling point than the complex organic solvent in the fifth step. That is, since high-temperature polymerization is performed in the third step later, the solvent in the first step is preferably a high-boiling solvent having a boiling point exceeding 100 ° C (preferably, 150 ° C or more) that does not easily volatilize at a high temperature. This means that it is more preferable to select a solvent having a higher boiling point than water because it removes water generated during the high-temperature polymerization in the third step.
  • the second step is a step of synthesizing a polyamic acid resin by reacting a diamine-based monomer and an acid anhydride monomer under a solvent (S20).
  • the polyamic acid resin is prepared by introducing a diamine-based monomer and an acid anhydride monomer into a solvent under a nitrogen atmosphere at room temperature or low temperature (10-25 ° C) and reacting the polyamic acid resin.
  • Diamine-based monomers include phenylene diamine, methylene diamine, 6-methyl-1,3,5-triazine-2,4-diamine (6-Methyl-1,3,5-triazine- 2,4-diamine, diamino bipyridyl, diaminopyrimidine, hexamethylene diamine, bis [4- (3-aminopropenoxy) phenyl] sulfone (bis [4- (3-aminophenoxy) phenyl] sulfone), bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] hexafluoropropane), 1,4-bis (4-aminophenoxy) benzene (1,4-bis (4-aminophenoxy) benzene), bis [4- (3-aminophenoxy) phenyl] propane (bis [4- (3-aminophen
  • an excessive precipitation occurs when the solubility decreases as imidization proceeds in the third stage of high-temperature polymerization, and thus, a monomer containing a highly soluble functional group, such as a carboxyl group, sulfone group, amide group, or ether group, is used. It is more preferable to do.
  • a monomer containing a highly soluble functional group such as a carboxyl group, sulfone group, amide group, or ether group. It is more preferable to do.
  • an acid anhydride monomer for forming an imide group it is preferable to use a monomer containing a highly soluble functional group such as a sulfone group, a carbonyl group, or an ether group in order to prevent excessive decrease in solubility during the imidization reaction in a solution, like a diamine-based monomer.
  • a monomer containing a highly soluble functional group such as a sulfone group, a carbonyl group, or an ether group
  • both acid anhydride monomers include 3,3 ', 4,4'-benzophenonetetracarboxylic dihydride (3,3', 4,4'-benzophenonetetracarboxylic dianhydride) and 4,4'-biphthalic dihydride ( 4,4'-Biphthalic dianhydride), 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone Tetracarboxyldianhydride (3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride), Ethylenediaminetetraacetic dianhydride, Naphthalene-1,4,5,8-Tetracarboxyldianhydride 1,4,5,8-tetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxydianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,
  • Ah acid anhydride monomer
  • Am diamine-based monomer
  • the third step is a step of forming a polyimide resin through imidization of the polyamic acid resin by reacting the polyamic acid resin at a high temperature at 150 to 200 ° C (S30).
  • the third step is a process of forming a polyimide resin through a high temperature polymerization reaction or additional surface modification of the polyamic acid resin, and the amic acid structure of the polyamic acid resin completed in the second step is already through a high temperature reaction of 150 to 200 ° C. Dyeing occurs and synthesis into polyimide resin is completed.
  • ancillary equipment condenser, receiver, etc.
  • the imidization reaction does not sufficiently occur in the amic acid structure at a temperature of less than 150 ° C, and at a temperature exceeding 200 ° C, there is no more excellent effect on imidization compared to the case of a high-temperature polymerization reaction at a temperature lower than that.
  • the high-temperature polymerization is performed in the range of 150 ⁇ 200 °C.
  • the particle size of the polyimide resin can be controlled under three conditions, and the method is as follows.
  • the particle size is controlled by controlling the polar groups of the diamine-based monomer and the acid anhydride monomer.
  • At least one of the diamine-based monomer and the acid anhydride monomer mentioned in the second step includes a polar group to suppress excessive macroparticle formation and precipitation due to degradation of solubility as imidization proceeds at a high temperature reaction.
  • At least one of the diamine-based monomer and the acid anhydride monomer is made to contain a polar group to suppress excessive macroparticle formation and precipitation, and to control the particle size according to the polar group control of the monomer.
  • Figure 2 showing a graph showing the particle size change of the polyimide resin.
  • the particles become smaller. It is a graph that shows that when the polar group is small, large particles are formed. As shown in FIG. 2, the particle size decreases as the polar monomer content increases. Particularly, when the molar ratio or mole fraction is 0.35 to 0.4 or more, the particle type Non-resin is produced.
  • the effect of the co-solvent on the particle size can be confirmed through a graph showing the particle size change of the polyimide resin of FIG. 3.
  • benzyl alcohol a relatively non-polar solvent, is added, for example, in order to examine the effect of the solvents on the particle size of the polyimide resin, for example, N-Methylpyrrolidone (NMP).
  • NMP N-Methylpyrrolidone
  • hexylamine, octylamine, oleylamine, octadecylamine, aminoethoxyethanol, aminoethoxyethanol in the process of forming particles at a high temperature of 150 to 200 ° C A monoamine-based monomer selected from the group consisting of aniline, picolylamine, ethanolamine, aminopropanol, and mixtures thereof is added to the surface treatment.
  • the resin starts to suspend due to particle formation. After this point, a small amount of a surface treatment material such as a monoamine-based monomer is added to the particles of the polyimide resin through particle surface modification. The size can be adjusted.
  • FIG. 4 shows a graph showing the particle size change of the polyimide resin.
  • FIG. 4- (a) shows the surface treatment close to non-polarity with aniline
  • FIG. 4- (b) Indicates a surface treatment close to polarity with picolylamine. 4, it is confirmed that the particle size tends to increase as aniline is used, and the particle size tends to decrease as picolinylamine is used.
  • the presence or absence of particle formation of the polyimide resin and the particle size of the resin can be adjusted depending on the polarity of the solvent and monomer used during high temperature polymerization, and can also be controlled through surface treatment of particles formed during high temperature polymerization.
  • the polyimide resin made in this way can be synthesized more smoothly with a high porosity polyimide aerogel later.
  • the fourth step is a step of crosslinking the polyimide resin to form a polyimide wet gel (S40).
  • the crosslinking agent in the fourth step is a material that crosslinks the polyimide resin to form a network.
  • Melamine, triaminopyridine, trisaminoethylamine, and bishexamethylene Amines monomers having trivalent or tetravalent functional groups such as triamine (Bis (hexamethylene) triamine), diethylenetriamine, Trisaminophenylmethane and Pararosaniline base Any one or more of them may be used, and inorganic nanoparticles such as silica, titania, and alumina treated with amines may also be used.
  • a trivalent or tetravalent functional group material having an epoxy group, an isocyanate group, a hydroxy group, and an acid anhydride group, which can react with an acid anhydride group or an amine group, which is an end group of the polyimide resin, can be used.
  • a low-temperature reaction-type crosslinking agent to prevent evaporation of the solvent during crosslinking.
  • the crosslinking reaction is performed in the range of 20 to 100 ° C. If the crosslinking reaction is performed at less than 20 ° C, it takes a lot of time to complete in the form of a polyimide wet gel. Not only can this result, but it cannot be obtained in the form of a polyimide wet gel. More preferably, it is effective to perform a crosslinking reaction in the range of 20 to 60 ° C. For reference, in the case of a high temperature crosslinking reaction, it is necessary to pay attention to sealing to suppress evaporation of the solvent, so that the polyimide wet gel can be obtained smoothly.
  • a polyimide wet gel is formed in a form suitable for the purpose.
  • the molding may be molded into a structure through molding, or may be manufactured into a film through coating.
  • the crosslinking is completed while the polyimide resin and the crosslinking agent are reacted, thereby forming the polyimide wet gel.
  • the fifth step is to replace the solvent contained in the polyimide wet gel with a complex organic solvent composed of two low-boiling solvents having a boiling point of 100 ° C. or less, and then dry to form a polyimide airgel, and control the mixing amount of the two low-boiling solvents. It is a step of controlling the pore structure of the polyimide airgel through (S50).
  • the polyimide aerogel is preferably prepared from a resin in which the polyimide synthesized in the third step is in the form of particles, or a resin in which the particle and non-particle forms are mixed. It can also be produced from polyimide resin.
  • the focus has been focused on manufacturing a polyimide airgel with high porosity, but the present invention is appropriately applied to a desired field by controlling the porosity or pore structure of the polyimide airgel as well as high porosity through the fifth step. It is characterized by being able to.
  • the polyimide airgel in step 5 controls porosity or pore structure through control of the mixed amount of the mixed organic solvent composed of two solvents having a low boiling point and a low polarity having a boiling point of 150 ° C. or less for solvent replacement and solvent removal of the polyimide wet gel. It is made of.
  • the nano-particles composed of polyimide, nano-walls, or a combination of them are connected in three dimensions according to the weight ratio of the two low-boiling solvents constituting the complex organic solvent. It forms a polyimide airgel having a pore structure by a network.
  • Combined organic solvents are low-boiling and low-polarity solvents, acetone, ethanol, butanol, isopropyl alcohol, hexane, cyclohexane, toluene, benzene, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, chloroform, dichloromethane, ethyl acetate and propyl acetate It consists of two types selected from. However, the present invention is not limited to the above-described types, and may be variously modified as long as it has a low boiling point and a low polarity solvent.
  • the composite organic solvent composed of these two low boiling point and low polarity solvents is quickly removed from the solvent and, at the same time, shrinks pores by capillary pressure. It has the effect of reducing and producing less, thereby producing a highly porous polyimide airgel.
  • the boiling point of the composite organic solvent may be 150 ° C. or less, preferably 120 ° C., but more preferably, the boiling point is 100 ° C. or less in order to quickly and smoothly form polyimide airgel by drying immediately before drying. .
  • the detailed process for the solvent replacement in the fifth step is as follows.
  • the solvent contained in the polyimide wet gel has a boiling point of 100 by adding a mixed solvent in which a second solvent made of a composite organic solvent is mixed with the same solvent as the solvent used in the first step to the polyimide wet gel. It is substituted with a low-boiling-point solvent which is below °C.
  • the mixed solvent is added in a plurality of times or more a predetermined number of times while gradually increasing the weight ratio of the second solvent to the weight ratio of the first solvent, and at least one of the two low-boiling solvents is the first solvent and the first stage It is preferable to form a homogeneous mixed solution without phase separation with the same first solvent as the solvent of, and more preferably, there is mutual mixing property between the solvent of the first step and all the solvents constituting the complex organic solvent.
  • the replaced solvent should be easy to dry.
  • the porosity and the pore structure are changed depending on the solvent to be used, as well as the purpose of simply evaporating and replacing the solvent.
  • the porosity and the pore structure of the polyimide airgel are controlled by controlling the mixing amount according to the weight ratio of the two low boiling points and the low polarity solvent.
  • the composite organic solvent can be classified based on surface tension.
  • the composite organic solvent is two kinds of solvent having a surface tension of 25 mN / m or less and a solvent having a surface tension exceeding 25 mN / m. It can be made.
  • the complex organic solvent can be classified based on the relative permittivity of the solution.
  • the complex organic solvent is a solvent having a solution dielectric constant of 2 or less and a solvent having a solution dielectric constant of 2 or more. It can be made of.
  • the complex organic solvent can be classified based on the polarity index of the solution.
  • the complex organic solvent has a solution polarity index value of 2 or less, and a solution polarity index value of more than 2. It may be made of a solvent.
  • the solvent is removed in various ways, such as supercritical drying, freeze drying, vacuum drying, and atmospheric pressure high temperature drying, and the supercritical drying method is most preferable to obtain a high porosity polyimide airgel, but other methods Also, a polyimide airgel having a sufficient porous structure can be produced.
  • the drying temperature is in the range of room temperature to 200 ° C.
  • Previously there was a method of manufacturing a polyimide airgel having a high porosity by using a general drying method without using a supercritical drying method, but it takes a long time of about 5 to 10 days only in the solvent replacement process, and a special low surface containing fluorine groups.
  • an inexpensive industrial solvent is used, the solvent replacement is made within 12 hours, and the drying process is made within 12 hours, thereby forming a final polyimide airgel within 24 hours, thereby reducing the light cost of the process time, and the produced poly
  • the mid-airgel can not only have high porosity but also has excellent strength, so it can be used in various fields such as low dielectric substrate materials, insulation materials, membranes and adsorbents.
  • Benzophenone-3,3 ', 4,4'-Benzophenone-3,3', 4,4'-tetracarboxylic anhydride, 4,4'-oxydianiline (4,4'-oxydianiline ), 4, 4'-diaminophenyl sulfone (4, 4'-diaminophenyl sulfone) is dissolved in N-methylpyrrolidone and toluene under a nitrogen atmosphere at a temperature of 25 ° C to form a polyamic acid resin, Thereafter, the reaction temperature was raised to 180 ° C to prepare a polyimide resin.
  • FIG. 5 is an infrared spectral spectrum of a polyimide resin synthesized by high temperature polymerization.
  • the amic acid group (1540 cm -1 ) is confirmed through the dotted line in FIG. 5 (before the high temperature reaction), and the imide group (1725, 1780 cm -1 ) changed from the amic acid group through the solid line in FIG. 5 (after the high temperature reaction) is confirmed.
  • FIG. 5 it was confirmed that all the amic acid groups were changed to imide groups in the course of high-temperature polymerization, from which it was confirmed that a polyimide resin having an imide group was prepared.
  • the above-described solvent was added so that the final resin solid content was 15 wt%, and the above-mentioned monomer was set to have an acid anhydride monomer sum of 1.1 compared to 1 mole of diamine-based monomer, and the particle size was changed according to the content of diaminophenyl sulfone as a polar monomer.
  • the particle size of the polyimide resin used in the Examples was 2 ⁇ 3 ⁇ m resin was used.
  • 6- (a) and 6- (b) are enlarged particles of polyimide resin and are shown by SEM photographs, and 2 to 3 ⁇ m particles of the synthesized particulate polyimide resin are small particles of several tens of nanometers. It was confirmed that it was made. In addition, a part forming a film between particles is observed, and it can be seen that the non-particulate solution state resin is mixed.
  • Example 1 As a polar monomer, 3,5-diaminobenzoic acid was used instead of 4-aminophenyl sulfone, and the rest of the synthesis procedure was the same as in Example 1.
  • the produced polyimide resin has a particle size of 2 to 3 ⁇ m, and has a structure similar to that of Example 1.
  • a polyimide aerogel was prepared using the polyimide resin synthesized in Example 1, which will be described in Examples 3 to 8, and first shown in Table 1 below.
  • A means 'cyclohexane'
  • B means 'toluene'.
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 polyimide type Polyimide resin of Example 1 solvent ratio (A / B) 75/25 50/50 25/75 100/0 0/100 0/100 final solvent
  • a / B density (g / cc) 0.550 0.457 0.560 0.773 0.698 0.918 porosity (%) 63.3 69.5 62.7 48.5 53.5
  • the trifunctional amine group was added to the polyimide resin prepared in Example 1 compared to the solid content of the resin at 5 wt% and stirred for 1 hour, and then added to the mold (20 ⁇ 80 ⁇ 2 mm) to sufficiently crosslink at 25 ° C. for 18 hours.
  • the polyimide wet gel thus prepared was placed in a container in which NMP and a low boiling point / low polarity composite organic solvent (hereinafter referred to as S) were mixed to replace the solvent.
  • the two organic solvents with low boiling point and low polarity consist of cyclohexane (surface tension 24.4mN / m, dielectric constant 2.0, polarity index 0.2) and toluene (surface tension 28.4 mN / m, dielectric constant 2.4, polarity index 2.4).
  • NMP: composite organic solvent was changed stepwise, NMP and complex organic solvent (S) were added for 2 hours at a weight ratio of 75:25, NMP: S for 2 hours at a weight ratio of 50:50, and NMP: S was added. After 2 hours at a weight ratio of 25:75 and NMP: S at a weight ratio of 0: 100 for 2 hours, solvent replacement was carried out stepwise, and finally at cyclohexane (B) for 2 hours. Total solvent replacement consumed 10 hours.
  • the mixture was dried in a vacuum oven at 30 ° C for 2 hours, 60 ° C for 2 hours, and 80 ° C for 2 hours, and then heat treated at 200 ° C for 3 hours to finally produce a polyimide airgel. 9 hours was spent on total drying and heat treatment.
  • FIG. 7 is an SEM photograph showing the pore structure of a polyimide airgel. That is, FIG. 7 is a photograph showing four specimens observed from the polyimide aerogels prepared in Examples 3 to 8 using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the nano-particles and nano-walls are three-dimensionally connected to each other in a mixed state to form a network shape, which shows the pore structure created.
  • Example 7- (d) is a pore structure generated by a network in which tens of nanometers of nano-particles are connected in three dimensions when toluene (B) alone is used instead of the complex organic solvent in Example 7. It shows.
  • the structure may be a pore structure created by a network in which nano-particles are connected in three dimensions, or a pore structure created by a network in which nano-walls are connected in three dimensions, or nano -It can be seen that nano-particles and nano-walls can be controlled and formed by the pore structure generated while being connected to each other in three dimensions to form a network.
  • particles of several micrometers or more are not well observed, and only small nanoparticles of several tens of nanometers level are mainly observed. This is because the structure is rearranged as the nanoparticles are gathered to form the microparticles and the nanoparticles are dissolved through the solvent replacement process of the present invention. As a result, a phenomenon that a nano-sized pore structure is formed will occur.
  • FIG. 8 is a graph showing porosity and mechanical properties of the polyimide airgels according to Examples 3 to 8 of the present invention.
  • the true density was 1.50 g / cc (pyconometer measurement), and the apparent density measured from the weight and volume measurements of the polyimide airgel specimen is shown in FIG. 8- (a).
  • Mechanical properties were measured using a universal test machine (UTM) in a 3-point bending mode to measure bending characteristics, and a graph of the results was shown in FIG. 8- (b) and flexural modulus in FIG. 8- (c). In flexural strength, the maximum strain is shown in Figure 8- (d).
  • the modulus is in the range of approximately 100-400 MPa, and as shown in Fig. 6- (c), the strength is in the range of 5-20 MPa, shown in Fig. 6- (d)
  • the srain is in the range of 5 to 8%, and the difference in porosity is markedly changed by the composition and weight ratio of the two solvents constituting the complex organic solvent.
  • each item (100 according to the weight ratio of the A and B solvents constituting the complex organic solvent: 0 items, 75:25 items, 50:50 items, 25:75 items, and 0: 100 items) are represented by three bar graphs, and the three bar graphs shown for each item are poly polys produced in Examples 3 to 8.
  • the porosity and pore structure are significantly different depending on the composition of the two solvents constituting the complex organic solvent.
  • the porosity is significantly increased when two types of complex organic solvents consisting of A and B are used, respectively, than when each of the A and B solvents constituting the complex organic solvent is used alone.
  • the porosity simply does not change depending on the composition of the two solvents constituting the complex organic solvent.
  • the porosity of the polyimide aerogel is higher when A and B are used together than when the A and B solvents are used separately.
  • 9 is a thermogravimetric (TGA) graph of a polyimide airgel.
  • 9- (a) shows how much solid content remains while burning the polyimide aerogel of Example 4, which showed the highest porosity, from 100 ° C. to 700 ° C. under air atmosphere.
  • 9- (b) shows how much solid content remains while being burned while being heated from around 100 ° C to around 700 ° C.
  • FIG. 9 shows the thermal stability (or heat resistance) of the polyimide aerosol of Example 4 through thermogravimetric analysis (TGA) under the air atmosphere of FIG. 9- (a) or the nitrogen atmosphere of FIG. 9- (b). Is the result of evaluating. Since the material that makes up the polyimide aerogel skeleton is polyimide, the temperature at which it starts to burn in earnest is at least 500 ° C. It shows stability.
  • a polyimide aerogel was prepared using the polyimide resin synthesized in Example 2, which will be described in Examples 9 to 13, and first shown in Table 2 below.
  • Example 9 Example 10 Example 11 Example 12 Example 13 polyimide type Polyimide resin of Example 2 solvent ratio (A / B) 75/25 50/50 25/75 100/0 0/100 final solvent A A A A A density (g / cc) 0.39 0.33 0.39 0.74 0.46 porosity (%) 74.0 78.0 74.0 50.7 69.3
  • 10 is a graph showing porosity and mechanical properties of the polyimide airgels according to Examples 9 to 13 of the present invention.
  • 10- (a) shows the density and porosity of the polyimide airgel specimen, the mechanical properties are flexural modulus in FIG. 10- (b), flexureal strength in FIG. 10- (c), and 10- (d) In maxium strain.
  • FIG. 10- (a) the density and porosity of the polyimide airgel specimens prepared in Examples 9 to 13 are shown in FIG. 10- (a), and the airgel formed from the polyimide resin of Example 2 through FIG. 10- (a) has a porosity. It was confirmed that the porosity was higher than that of the polyimide airgel derived from the polyimide resin of Example 1, mostly at a level of 70 to 80%.
  • the composite organic solvent has a higher porosity than the single solvent, and the porosity varies depending on the solvent composition (see FIG. 10- (a)), and accordingly the mechanical properties are also remarkably It was confirmed to be different (see FIGS. 10- (b), 10- (c), and 10- (d)).
  • strain value of 10- (d) does not show a significant difference according to the weight ratio of the A and B solvents, modulus and strength tend to be generally opposite to those of the porosity, and strains are as in Examples 3 to 8. Porosity was not significantly affected.
  • the porosity and pore structure of the polyimide airgel finally formed are easily controlled by using a composite organic solvent composed of two low-boiling point and low-polarity solvents during the solvent replacement process of the polyimide wet gel crosslinked from the polyimide resin. I can do it, but it means a lot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법에 관한 것으로, 더욱 상세하게는, 폴리이미드 수지의 입자크기를 제어할 수 있을 뿐만 아니라 복합유기용매(organc solvent mixture)를 통하여 기공구조가 제어 가능한 폴리이미드 에어로젤과, 이를 제조하는 방법에 관한 것이다. 이러한 본 발명은, 용매를 준비하는 제1단계; 용매 하에서 디아민계 단량체와 산무수물 단량체를 반응시켜 폴리아믹산 수지를 합성하는 제2단계; 폴리아믹산 수지를 150~200℃에서 고온반응시켜 폴리아믹산 수지의 이미드화(imidization)를 통해 폴리이미드 수지를 형성하는 제3단계; 폴리이미드 수지를 가교시켜 폴리이미드 습식젤을 형성하는 제4단계; 폴리이미드 습식젤에 포함된 용매를, 용매보다 비점이 상대적으로 낮은 용매로 교체한 후 제거하여 폴리이미드 에어로젤을 형성하는 제5단계;를 통하여 달성된다.

Description

입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법
본 발명은 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법에 관한 것으로, 더욱 상세하게는, 폴리이미드 수지의 입자크기를 제어할 수 있을 뿐만 아니라 복합유기용매(organc solvent mixture)를 통하여 기공구조가 제어 가능한 폴리이미드 에어로젤과, 이를 제조하는 방법에 관한 것이다.
일반적으로 폴리이미드(polyimide)는 유기고분자 중에서 최고 수준의 내열성, 강도 및 절연성능을 지니기 때문에 자동차, 항공, 선박, 전자기기, 디스플레이 및 반도체 등 다양한 산업분야에 활용되는 소재이다.
이러한 폴리이미드는 대부분 필름 형태로 응용되고 있는데, 최근 다공성 또는 에어로젤(aerogel) 구조의 초다공성을 지니는 형태로의 연구가 각광을 받고 있다.
특히 폴리이미드는 유연인쇄회로기판(flexible PCB, FPCB), 고집적 회로(integrated circuit)의 기판 및 절연층으로 사용되고 있는데, 최근 고성능화 및 고집적화에 따른 신호 지연 및 손실률을 억제하기 위하여 저유전화가 요구되고 있고, 이에 따라 폴리이미드를 이용한 고다공성 에어로젤 제조에 대한 연구가 근래 들어 활발히 이루어지고 있다.
그 중 실리카 에어로젤은 초다공성, 초단열성 등의 장점으로 인해 고성능 단열재로 활용되고 있으나, 기계적 취성(brittleness)의 문제점이 있기 때문에 고강도 폴리이미드를 활용한 제품으로 대체하기 위한 연구가 필요하다.
최근 NASA 등에서 폴리이미드 에어로젤을 개발하였는데, 예컨대 "flexible and lightweight dielectric barrier discharge actuators using nanofoam/aerogels(US 2015-0076987 A1)"에서는 상온에서 폴리이미드 전구체인 폴리아믹산을 제조한 후 습식젤(wet-gel)을 형성한 다음, 초임계건조방식에 의하여 폴리이미드 에어로젤을 제조하는 기술이 소개된 바 있다.
이처럼 에어로젤은 일반적으로 용매에서 경화된 습식젤(wet-gel)을 건조하여 제조되는데, 건조 시 대부분 초임계건조(supercritical drying)방식이 이용되나, 이 과정에서 고온고압 조건에 따른 공정상의 고비용/고위험성의 문제점이 있다.
또한 폴리이미드의 화학적 반응 시 피리딘 등의 유독성 화학물질을 다량 사용하고, 이후 폐기해야되기 때문에 환경성 및 유해성 문제점이 있다.
또 다른 선행 연구에 의하면, "Aerogel materials and methods for their production(US 2018-0112054 A1)"에서는 폴리이미드, 폴리우레탄, 폴리우레아 등의 고분자 물질로부터 에어로젤을 제조하는 내용이 기재되어 있다. 즉 불소기를 함유하는 저표면장력 용매를 사용하여 초임계건조방식이 아닌 일반 상압건조방식을 적용하는 방법에 대해 기술하고 있다.
하지만 건조 이전의 용매교체 과정에서 5~10일 가량의 긴 공정시간이 소요되고, 불소기를 함유하는 특수한 용매를 사용한다는 점에서 공정시간 및 비용 측면에서 불리한 문제점이 있다.
따라서 입자크기 또는 기공구조를 제어해 봄으로써 저유전성 기판재료, 단열재, 멤브레인 및 흡착제 등 다양한 분야에 활용할 수 있는 새로운 폴리이미드 에어로젤에 대한 기술개발 연구가 절실히 요구되고 있는 시점이다.
본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 폴리이미드 수지의 입자크기를 제어할 수 있을 뿐만 아니라 복합유기용매(organc solvent mixture)를 통하여 기공구조가 제어 가능한 폴리이미드 에어로젤 및 이의 제조방법을 제공하는 것을 기술적 해결과제로 한다.
상기의 과제를 해결하기 위하여 본 발명은, 용매를 준비하는 제1단계; 상기 용매 하에서 디아민계 단량체와 산무수물 단량체를 반응시켜 폴리아믹산 수지를 합성하는 제2단계; 상기 폴리아믹산 수지를 150~200℃에서 고온반응시켜 상기 폴리아믹산 수지의 이미드화(imidization)를 통해 폴리이미드 수지를 형성하는 제3단계; 상기 폴리이미드 수지를 가교시켜 폴리이미드 습식젤을 형성하는 제4단계; 및 상기 폴리이미드 습식젤에 포함된 용매를, 상기 용매보다 비점이 상대적으로 낮은 용매로 교체한 후 제거하여 폴리이미드 에어로젤을 형성하는 제5단계;를 포함하는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법을 제공한다.
또한 본 발명에 있어서, 상기 제5단계에서는, 상기 폴리이미드 습식젤에 포함된 용매를 비점이 100℃ 이하인 2종 저비점 용매로 이루어진 복합유기용매로 치환한 후 건조시켜 폴리이미드 에어로젤을 형성하되, 상기 2종 저비점 용매의 혼합량 제어를 통해 상기 폴리이미드 에어로젤의 기공구조(pore structure)가 제어되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 제5단계에서는, 상기 2종 저비점 용매의 중량비에 따라 폴리이미드로 구성된 나노-입자들(nano-particle), 나노-월들(nano-wall) 또는 이들의 조합이 3차원으로 연결되는 네트워크에 의한 기공구조를 갖는 폴리이미드 에어로젤을 형성하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 제5단계에서는, 상기 폴리이미드 습식젤에 상기 제1단계의 용매와 동일한 제1용매 및 상기 복합유기용매로 이루어진 제2용매가 혼합 형성된 혼합용매를 투입하여 용매교체를 통해 상기 폴리이미드 습식젤에 포함된 용매가 비점이 100℃ 이하인 저비점 용매로 치환되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 혼합용매는, 상기 제1용매의 중량비 대비 상기 제2용매의 중량비를 단계적으로 증가시키면서 복수 회 투입되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 2종 저비점 용매 중 적어도 하나는 상기 제1용매와 상분리되지 않는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 제1단계에서 주용매와, 상기 주용매와 용해도가 다른 부용매의 혼합량 제어를 통해 상기 제3단계에서 상기 폴리이미드 수지의 입자크기가 제어되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 주용매는, N-메틸피롤리돈(N-Methylpyrrolidone), N,N-디메틸포름아마이드(N,N-Dimethylformamide, DMF), N,N-디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), N,N-디에틸포름아미드(N,N-diethyl formamide), N,N-디에틸 아세트아미드(N,N-diethyl acetamide) 및 이의 혼합으로부터 선택되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 부용매는, 톨루엔(toluene), 벤젠(benzene), 자일렌(xylene), 시클로헥산(cyclohexane), 시클로헥사놀(cyclohexanol), 시클로헥사논(cyclohexanone), 벤질알코올(benzyl alcohol), 헵타놀(heptanol), 헥사놀(hexanol), 에틸렌글리콜(ethylene glycol), 디메틸포름아미드(dimethyl formamide), 디메틸 아세트아미드(dimethyl acetamide) 및 이의 혼합으로부터 선택되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 제2단계에서 상기 디아민계 단량체 및 상기 산무수물 단량체 중 어느 하나 이상에 극성기가 포함되도록 하여 상기 제3단계에서 상기 폴리이미드 수지의 입자크기가 제어되는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 제3단계에서 헥실아민(hexylamine), 옥틸아민(octylamine), 올레일아민(oleylamine), 옥타데실아민(octadecylamine), 아미노에톡시에탄올 (aminoethoxyethanol), 아닐린(aniline), 피콜릴아민 (picolylamine), 에탄올아민(ethanolamine), 아미노프로판올(aminopropanol) 및 이의 혼합으로부터 선택되는 모노아민계 단량체에 의해 상기 폴리이미드 수지의 입자 표면이 개질되어 입자크기가 제어되는 것을 특징으로 한다.
또한 상기 다른 기술적 과제를 해결하기 위하여 본 발명은, 상기 제조방법에 의해 제조되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤을 제공한다.
상기 과제의 해결 수단에 의한 본 발명의 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법은 다음과 같은 효과가 있다.
첫째, 고온중합에 의해 폴리이미드 구조를 합성하기 때문에 상온 이미드화 유기물질의 다량 사용 및 폐기의 문제점이 없는 효과가 있다.
둘째, 폴리이미드를 용액 형태의 수지 또는 마이크로/나노입자 형태의 수지 등 다양한 구조의 합성이 가능함으로써 폴리이미드 에어로젤의 형성 및 기공구조 제어가 보다 원활하며, 초임계건조방식 뿐만 아니라 일반건조방식으로도 다공성의 폴리이미드 에어로젤 형성이 가능한 효과가 있다.
셋째, 고온중합 시 용매 및 단량체들의 극성 조절, 입자표면개질을 통하여 폴리이미드 수지의 입자크기를 제어할 수 있는 효과가 있다.
넷째, 폴리이미드 수지로부터 가교되는 폴리이미드 습식젤의 용매교체 과정에서 2종의 저비점이면서 저극성의 용매로 이루어진 복합유기용매를 사용함으로써 최종 형성되는 폴리이미드 에어로젤의 기공률 및 기공구조를 간편하게 제어할 수 있는 효과가 있다.
다섯째, 고다공성을 지니면서 강도가 우수하기 때문에 저유전성 기판재료, 단열재, 멤브레인 및 흡착제 등과 같이 다양한 분야로의 적용이 가능한 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 순서도.
도 2는 폴리이미드 수지의 입자크기 변화를 나타낸 그래프.
도 3은 폴리이미드 수지의 입자크기 변화를 나타낸 그래프.
도 4는 폴리이미드 수지의 입자크기 변화를 나타낸 그래프.
도 5는 고온중합에 의해 합성된 폴리이미드 수지의 적외선 분광 스펙트럼.
도 6는 폴리이미드 수지의 입자 SEM 사진.
도 7은 폴리이미드 에어로젤의 기공구조를 나타낸 SEM 사진.
도 8은 본 발명의 실시예 3 내지 8에 따른 폴리이미드 에어로젤의 기공률 및 기계적 물성을 나타낸 그래프.
도 9은 폴리이미드 에어로젤의 열중량분석 그래프.
도 10는 본 발명의 실시예 9 내지 13에 따른 폴리이미드 에어로젤의 기공률 및 기계적 물성을 나타낸 그래프.
본 발명을 설명하기에 앞서, 폴리이미드 에어로젤은 반드시 고기공률(70% 이상의 기공률)이 필요한 것이 아니라, 응용목적에 따라 저기공률에서부터 고기공률까지 다양한 기공률이 사용될 수 있다는 점을 고려할 때, 공정시간 및 비용을 줄이면서 기공률이나 기공구조를 제어하는 기술이 현실적으로 매우 중요하다.
예를 들어, 폴리이미드를 이용한 저유전성 기판재료의 경우, 유전율 2 이하만 되어도 응용성이 상당히 높아지며, 이는 실제로 기공률 50~60% 수준으로도 달성할 수 있게 된다.
따라서 본 발명에서는 공업용으로 쉽게 사용되는 저가의 용매를 사용하고, 용매교체 공정시간을 줄이며, 진공건조 등의 일반건조방식을 적용함으로써 저기공률에서부터 고기공률을 가지는 폴리이미드 에어로젤을 제조하되, 용매교체 공정에서 복합유기용매를 이루는 2종의 저비점 용매의 중량비율을 조절함으로써 다양한 기공률 및 기공구조가 제어되는 폴리이미드 에어로젤을 제조하는 방법을 제시하고자 한다. 이와 함께, 폴리이미드 수지의 입자크기 또한 제어할 수 있는 방법을 제시하고자 한다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세하게 설명하면 다음과 같다.
도 1은 본 발명의 바람직한 실시예에 따른 순서도이다. 도 1에 도시된 바와 같이, 본 발명의 폴리이미드 에어로젤은 제1단계(S10), 제2단계(S20), 제3단계(S30), 제4단계(S40) 및 제5단계(S50)를 통해 합성되는 것으로, 폴리이미드 수지는 고온중합반응 시 단량체 및 용매의 극성조절, 입자표면개질을 통해 용액 형태 또는 마이크로/나노입자 형태로 얻어지고, 폴리이미드 에어로젤은 폴리이미드 수지로부터 가교된 후 복합유기용매를 이용한 용매교체를 거쳐 일반건조방식의 용매제거를 통하여 기공구조가 제어된 상태로 얻어질 수 있는 것이 특징이며, 각각의 단계에 대하여 아래에서 더욱 상세히 설명하기로 한다.
먼저, 제1단계는 용매를 준비하는 단계이다(S10).
제1단계에서는 단량체들을 녹일 수 있는 용매를 준비한다.
용매로는 주용매 및 주용매와 용해성이 다른 부용매로 이루어지는데, 우선 중합반응이 이루어지기 위한 주용매로 N-메틸피롤리돈(N-Methylpyrrolidone, NMP), N,N-디메틸포름아마이드(N,N-Dimethylformamide, DMF), N,N-디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), N,N-디에틸포름아미드(N,N-diethyl formamide) 및 N,N-디에틸 아세트아미드(N,N-diethyl acetamide) 중 어느 하나 이상을 선택하여 사용한다.
이어서 폴리이미드를 입자형 수지로 제조하고, 입자크기를 제어하기 위해 주용매 80~95wt%와, 용해성이 다른 부용매 5~20wt%를 함께 혼합하여 사용 가능하다. 예컨대 80~95wt%의 주용매와 5~20wt%의 부용매가 함께 사용되는 경우 폴리이미드 수지의 입자크기의 제어가 최적으로 이루어진다. 주용매가 80wt% 미만이거나 부용매가 20wt%를 초과하는 경우 디아민계 단량체와 산무수물 단량체가 충분히 반응되거나 용해되지 못하고, 주용매가 95wt%를 초과하거나 부용매가 5wt% 미만인 경우 적정한 입자크기 제어를 기대할 수 없게 된다.
참고로, 부용매로는 톨루엔(toluene), 벤젠(benzene), 자일렌(xylene), 시클로헥산(cyclohexane), 시클로헥사놀(cyclohexanol), 시클로헥사논(cyclohexanone), 벤질알코올(benzyl alcohol), 헵타놀(heptanol), 헥사놀(hexanol), 에틸렌글리콜(ethylene glycol), 디메틸포름아미드(dimethyl formamide) 및 디메틸 아세트아미드(dimethyl acetamide) 중 어느 하나 이상을 사용하되, 주용매와 용해성이 차이나는 부용매라면 어느 것이든 사용 가능하다.
단, 제1단계에서 언급된 용매는 제5단계의 복합유기용매보다 비점이 상대적으로 높아야 한다. 즉 추후 제3단계에서 고온중합을 실시하기 때문에 제1단계의 용매는 고온에서 쉽게 휘발이 일어나지 않는 비점이 100℃를 초과(바람직하게는, 150℃ 이상)하는 고비점 용매인 것이 바람직하다. 이는 제3단계의 고온중합 시 생성되는 물을 제거하기 때문에 물보다 높은 비점의 용매를 선택하는 것이 보다 바람직함을 의미한다.
다음으로, 제2단계는 용매 하에서 디아민계 단량체와 산무수물 단량체를 반응시켜 폴리아믹산 수지를 합성하는 단계이다(S20).
폴리아믹산 수지는 상온 또는 저온(10~25℃)의 질소 분위기 하에서, 용매에 디아민계 단량체와 산무수물 단량체를 투입하고 반응시키는 과정으로 제조된다.
디아민계 단량체는 페닐렌디아민(Phenylene diamine), 메틸렌디아민(Methylene diamine), 6-메틸-1,3,5-트리아진-2,4-디아민(6-Methyl-1,3,5-triazine-2,4-diamine), 디아미노 바이피리딜(Diamino bipyridyl), 디아미노피리미딘(Diaminopyrimidine), 헥사메틸렌디아민(Hexamethylene diamine), 비스[4-(3-아미노프로페녹시)페닐]설폰(bis[4-(3-aminophenoxy)phenyl] sulfone), 비스[4-(3-아미노페녹시)페닐]헥사플루오로프로판(bis[4-(3-aminophenoxy)phenyl]hexafluoropropane), 1,4-비스(4-아미노페녹시)벤젠(1,4-bis(4-aminophenoxy)benzene), 비스[4-(3-아미노페녹시)페닐]프로판(bis[4-(3-aminophenoxy)phenyl]propane), 3,5-비스(4-아미노페녹시)벤조산(3,5-bis(4-aminopnenoxy)benzoic acid), 4,4'-비스(4-아미노페녹시)비페닐글리콜(4,4'-bis(4-aminophenoxy)biphenyl glycol), 4,4'-비스(4-아미노페녹시)네오펜틸글리콜4,4'-bis(4-aminophenoxy)neopentyl glycol, 비스(4-아미노페닐)에테르(bis(4-aminophenyl) ether), 1,4-부탄디올(1,4-butanediol), 비스(3-아미노프로필)에테르(bis(3-aminopropyl)ether), 1,4-시클로헥산디아민(1,4-cyclohexanediamine), 6,6'-디아미노-2,2'-비피딜아멜린(6,6'-diamino-2,2'-bipyridyl ammeline), 2,2'-벤지딘디설폰산(2,2'-benzidinedisulfonic acid), 비스(3-아미노-4-하이드록시페닐)설폰(bis(3-amino-4-hydroxyphenyl) sulfone), 비스(2-아미노페닐)설파이드(bis(2-aminophenyl) sulfide), 비스(3-아미노페닐)설파이드(bis(3-aminophenyl) sulfide), 비스(4-아미노페닐)설폰(bis(4-aminophenyl) sulfone), 2,2'-비스(트리플루오로메틸)벤지딘(2,2'-bis(trifluoromethyl)benzidine), 2,6-디아미노안트라퀴논(2,6-diaminoanthraquinone), 4,4'-디아미노벤자니리디(4,4'-diaminobenzanilide), 3,5-디아미노벤조산(3,5-diaminobenzoic acid), 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether), 4,4'-디아미노디페닐메탄(4,4'-diaminodiphenylmethane), 2,4-디아미노-6-히드록시피리미딘(2,4-diamino-6-hydroxypyrimidine), 4,6-디아미노-2-머캅토피리미딘(4,6-diamino-2-mercaptopyrimidine), 4,4'-디아미노옥타플루오로비페닐(4,4'-diaminooctafluorobiphenyl), 1,3-디아미노-2-프로판올(1,3-diamino-2-propanol), 2,6-디아미노피리딘(2,6-diaminopyridine), 비스아미노프로필테트라디실록산(Bis(aminopropyl)tetramethyldisiloxane) 및 아민변성 폴리디메틸실록산(실리콘) 중 어느 하나 이상을 포함하는 방향족, 지방족, 지환족, 실리콘계 디아민 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
참고로, 제3단계의 고온중합 과정에서 이미드화가 진행되면서 용해성이 낮아지면 과량 침전이 일어나기 때문에 상술된 단량체들 중 카르복시기, 술폰기, 아미드기, 에테르기 등 용해성이 높은 관능기를 포함한 단량체를 사용하는 것이 보다 바람직하다.
이미드기를 형성하기 위한 산무수물 단량체는 디아민계 단량체와 마찬가지로 용액 내 이미드화 반응 시 지나친 용해성 저하를 막기 위해 술폰기, 카르보닐기, 에테르기 등 용해성이 높은 관능기를 포함한 단량체를 사용하는 것이 바람직하다.
이러한 양쪽 산무수물 단량체로는 3,3',4,4'-벤조페논테트라카복실디안하이드라이드(3,3',4,4'-benzophenonetetracarboxylic dianhydride), 4,4'-비프탈릭디안하이드라이드(4,4'-Biphthalic dianhydride), 1,2,4,5-시클로헥산테트라카복실디안하이드라이드(1,2,4,5-cyclohexanetetracarboxylic dianhydride), 3,3',4,4'-디페닐설폰테트라카복실디안하이드라이드(3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride), 에틸렌디아민테트라아세트안하이드라이드(ethylenediaminetetraacetic dianhydride), 나프탈렌-1,4,5,8-테트라카복실디안하이드라이드(naphthalene-1,4,5,8-tetracarboxylic dianhydride), 3,4,9,10-페릴렌테트라카복실디안하이드라이드(3,4,9,10-perylenetetracarboxylic dianhydride), 피로멜리틱디안하이드라이드(pyromellitic dianhydride), 디에틸렌트리아민펜타아세틱안하이드라이드(diethylenetriaminepentaacetic dianhydride) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
특히 폴리아믹산 수지를 적절한 분자량으로 제조하기 위해서는 산무수물 단량체(Ah)와 디아민계 단량체(Am)의 비율, 즉 Ah/Am 또는 Am/Ah를 1.0~1.5 몰비(molar ratio)로 조절하는 것이 바람직하다. 디아민계 단량체와 산무수물 단량체 중 어느 하나가 과량이면 분자량이 감소하는데, 1.0 몰비 미만이거나 1.5 몰비를 초과하면 최적의 분자량을 얻을 수 없는 단점이 있을 뿐만 아니라 추후 만들어질 폴리이미드 수지의 입자크기에도 영향을 크기 미치기 때문에, 산무수물 단량체와 디아민계 단량체의 몰비를 1.0~1.5로 조절하는 것은 중요한 의미가 있다. 단, 고분자량으로 제조하기 위해서는 1.0에 가까운 몰비로 제조하는 것이 바람직하다.
다음으로, 제3단계는 폴리아믹산 수지를 150~200℃에서 고온반응시켜 폴리아믹산 수지의 이미드화(imidization)를 통해 폴리이미드 수지를 형성하는 단계이다(S30).
제3단계는 폴리아믹산 수지를 고온중합반응 또는 추가적인 표면개질을 통하여 폴리이미드 수지를 형성하는 과정으로써, 제2단계에서 완성된 폴리아믹산 수지의 아믹산 구조가 150~200℃의 고온반응을 통하여 이미드화가 일어나 폴리이미드 수지로의 합성이 완료된다. 참고로, 용액 내에서 이미드화 반응이 일어날 때 생성되는 물을 제거하기 위한 부수장비(콘덴서, 리시버 등)가 구비되는 것이 바람직하다.
제3단계에서 150℃ 미만인 온도에서는 아믹산 구조에 이미드화 반응이 충분히 일어나지 못하고, 200℃를 초과하는 온도에서는 그 이하의 온도로 고온중합반응시키는 경우와 비교하여 이미드화에 더 탁월한 효과가 나타나지 않으므로, 150~200℃ 범위에서 고온중합이 이루어지는 것이 바람직하다.
특히 폴리이미드 수지의 입자크기는 세가지의 조건으로 제어할 수 있는데, 그 방법은 다음과 같다.
첫째, 디아민계 단량체 및 산무수물 단량체의 극성기 조절에 따라 입자크기를 제어하는 방식이다.
말하자면, 제2단계에서 언급된 디아민계 단량체와 산무수물 단량체 중 적어도 한쪽은 극성기가 포함되도록 하여 고온반응 시 이미드화가 진행되면서 용해성 저하로 인한 지나친 거대입자 형성 및 침전을 억제한다.
쉽게 말해, 디아민계 단량체와 산무수물 단량체 중 적어도 한쪽은 극성기가 포함되도록 하여 지나친 거대입자 형성 및 침전을 억제하고, 단량체의 극성기 조절에 따라 입자크기를 제어할 수 있게 되는 것이다. 또한, 극성기가 큰 단량체를 일정 함량 이상 사용함으로써 용액형 수지로도 제조 가능하다.
이는 폴리이미드 수지의 입자크기 변화를 나타낸 그래프를 도시한 도 2에 의해 확인 가능한데, 도 2에서는 예를 들어 극성 모노머인 술폰계 모노머(sulfone monomer)의 함량을 조절함에 따라 극성기가 커지면서 입자가 작아짐을 나타내는 그래프인데, 극성기가 적으면 거대입자가 형성되는바, 도 2에서 나타낸 바와 같이 극성 단량체 함량이 증가할수록 입자크기가 감소하고, 특히 몰비 또는 몰분율(Mole fraction)이 0.35~0.4 이상에서는 입자형이 아닌 수지가 제조된다.
둘째, 제1단계에서 언급된 주용매 외에 용해도가 다른 부용매를 함께 사용함으로써, 고온중합 반응 시 생성되는 폴리이미드 수지의 입자크기를 제어하는 방식이다.
부용매가 입자크기에 주는 영향은 도 3의 폴리이미드 수지의 입자크기 변화를 나타낸 그래프를 통해 확인 가능하다. 즉 도 3에서는 부용매가 폴리이미드 수지의 입자크기에 주는 영향을 알아보기 위해 예를 들어 N-메틸피롤리돈(N-Methylpyrrolidone, NMP)보다 상대적으로 비극성 용매인 벤질알코올(benzyl alcohol)이 투입되는 경우 입자 형태의 폴리이미드 수지가 얻어지고, 부용매인 벤질알코올의 함량에 따라 입자크기가 증가한다.
셋째, 고온중합 과정에서 입자표면처리를 통해 폴리이미드 수지의 입자크기를 제어하는 방식이다.
즉 150~200℃의 고온에서 입자가 형성되기 시작하는 과정에서 헥실아민(hexylamine), 옥틸아민(octylamine), 올레일아민(oleylamine), 옥타데실아민(octadecylamine), 아미노에톡시에탄올(aminoethoxyethanol), 아닐린(aniline), 피콜릴아민(picolylamine), 에탄올아민(ethanolamine), 아미노프로판올(aminopropanol) 및 이의 혼합으로 이루어진 군으로부터 선택되는 모노아민계 단량체를 첨가하여 표면처리한다.
내용인즉 고온중합 반응 시 이미드화가 진행되면 입자 형성으로 인해 수지가 현탁해지기 시작하는데, 이 시점 이후에 모노아민계 단량체와 같은 표면처리물질을 소량 투입하여 입자표면개질을 통해 폴리이미드 수지의 입자크기 조절이 가능해진다.
예를 들어, 폴리이미드 수지의 입자크기 변화를 나타낸 그래프를 도시한 도 4를 통해 알 수 있는데, 도 4-(a)는 아닐린으로 비극성에 가깝게 표면처리한 것을 나타낸 것이고, 도 4-(b)는 피콜릴아민으로 극성에 가깝게 표면처리한 것을 나타낸 것이다. 이러한 도 4를 통하여 아닐린을 사용할수록 입자크기가 증가하는 경향이 있고, 피콜릴아민을 사용할수록 입자크기가 감소하는 경향이 있음이 확인된다.
정리하자면, 폴리이미드 수지의 입자 형성 유무 및 수지의 입자크기는 고온중합 시 사용하는 용매 및 단량체의 극성도에 따라 조절할 수 있으며, 고온중합 시 형성되는 입자의 표면처리를 통하여 조절도 가능하다. 이렇게 만들어진 폴리이미드 수지는 추후 보다 원활하게 고다공성의 폴리이미드 에어로젤로 합성할 수 있게 된다.
다음으로, 제4단계는 폴리이미드 수지를 가교시켜 폴리이미드 습식젤을 형성하는 단계이다(S40).
우선 제4단계에서의 가교제는 폴리이미드 수지를 가교시켜 네트워크를 이룰 수 있게 하는 물질로써, 멜라민(Melamine), 트리아미노피리딘(Triaminopyridine), 트리스아미노에틸아민(Tris(aminoethyl)amine), 비스헥사메틸렌트리아민(Bis(hexamethylene)triamine), 디에틸렌트리아민(Diethylenetriamine), 트리스아미노페닐메탄(Tris(aminophenyl)methane) 및 파라로스아닐린(Pararosaniline base) 등의 3가 혹은 4가 관능성기를 가지는 아민류 단량체 중에서 어느 하나 이상을 사용하며, 아민으로 처리된 실리카, 티타니아, 알루미나 등의 무기 나노입자도 사용 가능하다.
상술된 가교제 외에도, 폴리이미드 수지의 말단기인 산무수물기 또는 아민기와 반응하여 가교를 이룰 수 있도록 하는 에폭시기, 이소시아네이트기, 하이드록시기, 산무수물기를 갖는 3가 또는 4가 관능성기 물질도 사용될 수 있으며, 가교 시 용매의 증발이 일어나지 않도록 저온 반응형 가교제를 사용하는 것이 보다 바람직하다.
이때 가교반응은 20~100℃ 범위에서 이루어지는데, 20℃ 미만에서 가교반응을 시키면 폴리이미드 습식젤 형태로 완성되기까지 많은 시간이 소요되고, 100℃를 초과한 조건에서 가교반응을 시키면 오히려 물성 변형이 초래될 수 있을 뿐만 아니라 폴리이미드 습식젤 형태로 얻을 수 없다. 보다 바람직하게는 20~60℃ 범위에서 가교반응을 실시하는 것이 효과적이다. 참고로, 고온의 가교반응인 경우 용매의 증발을 억제하기 위하여 실링(sealing)에 유의해야 폴리이미드 습식젤을 원활하게 얻을 수 있다.
이렇게 가교제를 투입 후 목적에 맞는 형태로 폴리이미드 습식젤을 형성하는데, 몰딩을 통해 구조물 형태로 성형을 하거나 코팅을 통하여 필름 형태로 제조할 수도 있다. 이렇게 폴리이미드 수지와 가교제가 반응되면서 가교가 완료됨으로써, 폴리이미드 습식젤의 성형이 완료된다.
마지막으로, 제5단계는 폴리이미드 습식젤에 포함된 용매를 비점이 100℃ 이하인 2종 저비점 용매로 이루어진 복합유기용매로 치환한 후 건조시켜 폴리이미드 에어로젤을 형성하되, 2종 저비점 용매의 혼합량 제어를 통해 폴리이미드 에어로젤의 기공구조(pore structure)를 제어하는 단계이다(S50).
우선 폴리이미드 에어로젤은 제3단계에서 합성된 폴리이미드가 입자 형태로 되어있는 수지, 또는 입자와 비입자 형태가 혼합된 상태의 수지로부터 제조하는 것이 바람직하며, 폴리이미드 수지가 입자 형태가 아닌 용액 형태의 폴리이미드 수지로부터도 제조될 수 있다.
특히 기존에는 보통 폴리이미드 에어로젤을 고다공성으로 제조하는데 초점이 맞추어져 있었는데, 본 발명은 제5단계를 통하여 고다공성은 물론이고, 폴리이미드 에어로젤의 기공률이나 기공구조를 제어하여 원하는 분야에 적절하게 적용할 수 있는 것이 특징이다.
즉 제5단계에서의 폴리이미드 에어로젤은 폴리이미드 습식젤의 용매교체 및 용매제거를 위해 비점이 150℃ 이하인 저비점이면서 저극성의 2종 용매로 이루어진 복합유기용매 혼합량의 제어를 통하여 기공률 또는 기공구조 제어로 제조된다.
내용인즉 제5단계에서는 복합유기용매를 이루는 2종 저비점 용매의 중량비에 따라 폴리이미드로 구성된 나노-입자들(nano-particle), 나노-월들(nano-wall) 또는 이들의 조합이 3차원으로 연결되는 네트워크에 의한 기공구조를 갖는 폴리이미드 에어로젤을 형성하게 된다.
복합유기용매는 저비점이면서 표면장력이 낮은 저극성 용매인 acetone, ethanol, butanol, isopropyl alcohol, hexane, cyclohexane, toluene, benzene, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, chloroform, dichloromethane, ethyl acetate 및 propyl acetate 중 선택되는 2종으로 이루어진다. 단, 상술된 종류에 한정되는 것만은 아니고 저비점이면서 저극성 용매라면 다양하게 변경 가능하다.
이러한 2종의 저비점 및 저극성 용매로 이루어진 복합유기용매는 제1단계의 극성 용매로부터의 교체가 완료된 후, 건조 시 용매의 제거가 빠름과 동시에 모세관 압력(capillary pressure) 작용에 의해 기공의 수축을 덜 일으켜 줄여주는 효과가 있어 고다공성의 폴리이미드 에어로젤을 제조하게 된다.
복합유기용매의 비점과 관련하여, 비점이 150℃ 이하인 것일 수 있으며, 120℃인 것이 바람직하나, 건조 직전에 건조에 의한 폴리이미드 에어로젤 형성이 신속하고 원활히 하기 위해 비점이 100℃ 이하인 것이 더욱 바람직하다.
제5단계의 용매치환에 대한 상세한 과정은 다음과 같다. 폴리이미드 습식젤에 제1단계에서 사용된 용매와 동일한 제1용매에다가 복합유기용매로 이루어진 제2용매가 혼합 형성된 혼합용매를 투입하여 용매교체를 통해 폴리이미드 습식젤에 포함된 용매가 비점이 100℃ 이하인 저비점 용매로 치환된다.
이때 혼합용매는 제1용매의 중량비 대비 제2용매의 중량비를 단계적으로 증가시키면서 일정 횟수 이상 복수 회 투입되어 용매교체가 이루어지되, 2종 저비점 용매 중 적어도 하나는 제1단계의 용매 및 제1단계의 용매와 동일한 제1용매와 상분리되지 않고 균일한 혼합용액을 이루는 것이 바람직하며, 제1단계의 용매와 복합유기용매를 이루는 모든 용매 간 상호 혼합성이 있는 것이 보다 바람직하다.
이러한 용매교체가 완료된 후 건조가 이루어지는데, 교체된 용매는 건조에 용이해야 한다. 즉 교체하는 용매가 단순히 잘 휘발되어 날아가기 위한 용도와 함께, 어떤 용매를 쓰느냐에 따라 기공률 및 기공구조가 달라지게 된다.
혼합용매의 투입이 완료된 후, 건조가 이루어지기 직전에는 마지막으로 제1단계에서 사용된 용매와 동일한 제1용매를 제외하고, 비점이 100℃ 이하인 순수한 저극성 용매만을 투입함으로써, 건조 시 폴리이미드 에어로젤 형성과정에서 기공 수축의 최소화를 달성할 수 있게 된다.
2종 저비점 및 저극성 용매의 중량비에 따른 혼합량의 제어로 폴리이미드 에어로젤의 기공률 및 기공구조가 제어됨은 다음과 같이 확인된다.
즉 제5단계에서 사용되는 저비점의 저극성 용매 중 표면장력, 극성도, 폴리이미드 수지와의 친화성 및 용해성을 달리하는 2종 또는 그 이상의 용매를 선택하게 되면 복합유기용매를 이루는 용매 조성에 따라 다양한 기공률 및 기공구조가 발현되는 것이다.
한편, 저비점과 저극성을 갖는 용매 2종으로 이루어진 복합유기용매를 선정하는데 있어서, 다음과 같은 기반으로 한 분류를 모두 만족하는 것이 가장 바람직하긴 하나, 적어도 하나 이상의 조건은 만족하는 것이 좋다.
첫째, 복합유기용매는 표면장력(surface tension)을 기반으로 분류할 수 있는데, 예를 들어 복합유기용매는 표면장력이 25mN/m 이하인 용매와, 표면장력이 25mN/m를 초과하는 용매의 2종으로 이루어질 수 있다.
둘째, 복합유기용매는 용액의 유전상수값(relative permittivity)을 기반으로 분류할 수 있는데, 예를 들어 복합유기용매는 용액유전상수값이 2 이하인 용매와, 용액유전상수값이 2를 초과하는 용매로 이루어질 수 있다.
셋째, 복합유기용매는 용액의 극성도지표(polarity index)를 기반으로 분류할 수 있는데, 예를 들어 복합유기용매는 용액극성도지표값이 2 이하인 용매와, 용액극성도지표값이 2를 초과하는 용매로 이루어질 수 있다.
특히 비점이 100℃ 이하인 저비점의 저극성을 갖는 2종 복합유기용매의 용매 조성을 변화시킴에 따라 물리화학적 수치(표면장력, 유전상수, 극성도지표)로 예상되는 변화를 벗어나는 독특한 현상이 나타난다. 예컨대 폴리이미드 에어로젤의 기공률은 용매 간 조성비율에 따라 단순히 변화하는 것이 아니라, 특정 조성 범위에서 현저히 증가하는 현상이 있다. 이는 추후 실시예 3~13을 통해 설명하기로 한다.
이어서 용매교체가 완료된 후, 초임계건조, 동결건조, 진공건조 및 상압고온건조 등 다양한 방식으로 용매가 제거되며, 고다공성의 폴리이미드 에어로젤을 얻기 위해서는 초임계건조방식이 가장 바람직하나, 그외 다른 방식에 의해서도 충분한 다공질 구조의 폴리이미드 에어로젤을 제조할 수 있다.
건조온도는 상온 내지 200℃ 범위에서 이루어지는데, 급격한 용매 휘발에 의한 구조 파괴를 최소화하기 위해 상온에서 장시간 건조하거나, 승온하는 경우에는 서서히 온도를 증가시키는 것이 바람직하다. 기존에는 초임계건조방식을 사용하지 않고 일반 건조방식으로 기공률이 높은 폴리이미드 에어로젤을 제조하는 방식이 있었으나, 용매교체 공정에만 5~10일 정도의 장시간이 소요되고, 불소기를 함유하고 있는 특수한 저표면장력의 유기용매를 사용하고 있어 공정상 불리했던 점을 개선시켜 실제 공정의 생산성을 향상시키기 위해 제5단계에서 복합유기용매의 종류, 용매교체 및 건조시간을 최대한 단축시키는 것이 필요하다.
이에 따라 본 발명에서는 저렴한 공업용매를 사용하고, 용매교체를 12시간 이내로 하고, 건조공정이 12시간 이내로 하여 24시간 내에 최종 폴리이미드 에어로젤을 형성함으로써, 공정시간 빛 비용이 절감되며, 이렇게 제조된 폴리이미드 에어로젤은 고다공성을 지닐 수 있을 뿐만 아니라 강도가 우수하기 때문에 저유전성 기판재료, 단열재, 멤브레인 및 흡착제 증 다양한 분야로의 활용이 가능하다.
이하, 본 발명의 실시예를 더욱 상세하게 설명하면 다음과 같다. 단, 이하의 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
<실시예 1>
고온중합에 의하여 이미드기를 갖는 폴리이미드 수지 제조-1
벤조페논-3,3',4,4'-테트라카르복실산무수물(Benzophenone-3,3',4,4'-tetracarboxylic anhydride), 4,4'-옥시디아닐린(4,4'-oxydianiline), 4, 4’-디아미노페닐술폰(4, 4’-diaminophenyl sulfone)을 질소 분위기 하에서 25℃의 온도 조건으로 N-메틸피롤리돈 및 톨루엔에 용해하여 반응시켜 폴리아믹산 수지를 형성시키고, 이후 반응온도를 180℃로 승온하여 폴리이미드 수지를 제조하였다.
도 5는 고온중합에 의해 합성된 폴리이미드 수지의 적외선 분광 스펙트럼이다. 도 5의 점선(고온반응 이전)을 통해 아믹산기(1540cm-1)가 확인되고, 도 5의 실선(고온반응 이후)을 통해 아믹산기로부터 변화된 이미드기(1725, 1780cm-1)가 확인된다. 이러한 도 5에서와 같이, 고온중합하는 과정에서 아믹산기가 모두 이미드기로 변화한 것이 확인되었고, 이로부터 이미드기를 갖는 폴리이미드 수지가 제조됨이 확인되었다.
상술된 용매는 최종 수지 고형분이 15wt%가 되도록 투입하였으며, 상술된 단량체는 디아민계 단량체 1몰 대비 산무수물 단량체 합이 1.1이 되도록 하였고, 극성 단량체인 디아미노페닐술폰의 함량에 따라 입자크기가 변화하였고, 이후 실시예에서 사용된 폴리이미드 수지의 입자크기는 2~3㎛인 수지를 사용하였다.
도 6는 폴리이미드 수지의 입자 SEM 사진이다. 도 6-(a) 및 도 6-(b)는 폴리이미드 수지의 입자를 확대하여 SEM 사진으로 나타낸 것으로, 합성된 입자형 폴리이미드 수지의 2~3㎛ 입자는 수십나노미터의 작은 입자들로 이루어져있는 것을 확인하였다. 또한 입자 사이 막을 형성하는 부분이 관찰되는데, 이는 비입자형 용액 상태 수지가 혼재하는 것임을 알 수 있다.
<실시예 2>
고온중합에 의하여 이미드기를 갖는 폴리이미드 수지 제조-2
극성 단량체로써 4-아미노페닐술폰(4-Aminophenyl sulfone) 대신 3,5-디아미노벤조산(3,5-diaminobenzoic acid)을 사용하였으며, 나머지 합성과정은 실시예 1과 동일하다. 제조된 폴리이미드 수지의 입자크기는 2~3㎛이며, 실시예 1과 유사한 구조를 가진다.
한편, 실시예 1에서 합성된 폴리이미드 수지를 이용하여 폴리이미드 에어로젤을 제조하였으며, 이를 실시예 3 내지 8에서 설명하기로 하고, 우선 아래의 표 1에 나타내었다. 단, 후술될 실시예 3 내지 13 중 어느 한 군데 이상에서 언급되는 복합유기용매를 이루는 2종의 용매 중 A는 '시클로헥산', B는 '톨루엔'을 의미한다.
실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8
polyimide type 실시예 1의 폴리이미드 수지
solvent ratio(A/B) 75/25 50/50 25/75 100/0 0/100 0/100
final solvent A A A A A B
density(g/cc) 0.550 0.457 0.560 0.773 0.698 0.918
porosity(%) 63.3 69.5 62.7 48.5 53.5 38.8
<실시예 3>실시예 1의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-1
실시예 1에서 제조된 폴리이미드 수지에 3관능성 아민기를 수지 고형분 대비 5wt% 투입 후 1시간 동안 교반하고, 몰드(20×80×2mm)에 투입 후 25℃에서 18시간동안 충분히 가교되도록 하였다. 이와 같이 제조된 폴리이미드 습식젤을 NMP와 저비점/저극성 복합유기용매(이하, S로 표기)가 혼합된 용기에 넣고 용매교체를 진행하였다.
저비점과 저극성을 함께 갖는 2종 유기용매는 시클로헥산(표면장력 24.4mN/m, 유전상수 2.0, 극성지표 0.2)과 톨루엔(표면장력 28.4 mN/m, 유전상수 2.4, 극성지표 2.4)으로 이루어진 복합유기용매를 사용하였고, 시클로헥산(A)와 톨루엔(B)이 A/B=75/25 중량비율이 되도록 하였다.
NMP:복합유기용매의 중량비율을 단계적으로 변화시켰으며, NMP와 복합유기용매(S)를 75:25의 중량비로 2시간, NMP:S를 50:50의 중량비로 2시간, NMP:S를 25:75의 중량비로 2시간, NMP:S를 0:100의 중량비로 2시간 동안 방치하여 단계적으로 용매교체를 실시한 후 마지막으로 시클로헥산(B)에서 2시간동안 방치하였다. 총 용매교체는 10시간이 소모되었다.
이후 진공오븐에서 30℃로 2시간, 60℃로 2시간, 80℃로 2시간동안 건조하였으며, 이후 200℃로 3시간동안 열처리하여 최종적으로 폴리이미드 에어로젤을 제조하였다. 총 건조 및 열처리에 9시간이 소모되었다.
<실시예 4>
실시예 1의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-2
용매교체 과정에서 복합유기용매의 조성을 시클로헥산(A):톨루엔(B)=50:50의 중량비로 하였으며, 나머지 과정은 실시예 3과 같다.
<실시예 5>
실시예 1의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-3
용매교체 과정에서 복합유기용매의 조성을 시클로헥산(A):톨루엔(B)=25:75의 중량비로 하였으며, 나머지 과정은 실시예 3과 같다.
<실시예 6>
실시예 1의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-4
용매교체 과정에서 복합유기용매 대신 시클로헥산(A)만을 사용하였으며(A:B=100:0), 나머지 과정은 실시예 3과 같다. 다른 말로, 실시예 6의 경우 복합유기용매를 이루는 2종의 저비점 용매가 모두 시클로헥산(A)만으로 이루어진 것이라 할 수 있다.
<실시예 7>
실시예 1의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-5
용매교체 과정에서 복합유기용매 대신 톨루엔(B)만을 사용하였으며(A:B=0:100), 나머지 과정은 실시예 3과 같다. 다른 말로, 실시예 7의 경우 복합유기용매를 이루는 2종의 저비점 용매가 모두 톨루엔(B)만으로 이루어진 것이라 할 수 있다.
<실시예 8>
실시예 1의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-6
용매교체 과정에서 복합유기용매 대신 상기의 실시예 7과 같이 톨루엔(B)만을 사용하였으며(A:B=0:100), 다만 건조 이전 마지막 단계에서도 톨루엔(B)을 사용하였고, 나머지 과정은 실시예 7과 같다.
즉 표 1 및 도 8-(a)에서 보듯이, 실시예 7과 비교하여 최종 건조 직전 용매가 시클로헥산(A)에서 톨루엔(B)으로 변경되면서 기공률이 현저히 감소하였다. 톨루엔은 시클로헥산에 비하여 비점, 표면장력, 유전상수, 극성도지표가 모두 높기 때문에 최종 건조 시 휘발되는 용매로 시클로헥산보다 불리함을 나타내고 있다.
실시예 3 내지 7은 모두 건조 직전 최종 유기용매는 A로 통일하여 동일한 건조조건이기 때문에 표 1 및 도 8-(a)에서 나타난 기공률의 변화는 A, B 두 용매로 이루어진 복합유기용매 내에서 용매교체 과정에서 이미 기인했음을 의미한다.
보다 상세하게는 건조 이전의 습식젤 상태에서 복합유기용매 내에서 용매 조성에 따라 서로 다른 기공구조가 형성됨에 기인하는데, 이는 아래의 SEM 사진을 통하여 설명해 보기로 한다.
도 7은 폴리이미드 에어로젤의 기공구조를 나타낸 SEM 사진이다. 즉 도 7은 실시예 3 내지 8에서 제조된 폴리이미드 에어로젤 중에서 4개 시편을 주사전자현미경(scanning electron microscope, SEM)으로 그 시편을 관찰하여 나타낸 사진이다.
도 7-(a)는 실시예 6의 시클로헥산(A)만을 단독으로 사용한 경우 나노-월들(nano-wall)이 3차원으로 연결되는 네트워크에 의해 생성된 기공구조를 나타낸 것이다.
도 7-(b)는 시클로헥산(A)과 톨루엔(B)이 A:B=75:25의 중량비율로 이루어진 복합유기용매를 사용한 경우 나노-입자들(nano-particle)과 나노-월들(nano-wall)이 혼재된 상태로 서로 3차원으로 연결되어 네트워크 형태를 이루면서 생성된 기공구조를 나타낸 것이다.
도 7-(c)는 시클로헥산(A)과 톨루엔(B)이 A:B=50:50의 중량비율로 이루어진 복합유기용매를 사용한 경우, 도 7-(b)에서와 유사하게 나노-입자들(nano-particle)과 나노-월들(nano-wall)이 혼재된 상태로 서로 3차원으로 연결되어 네트워크 형태를 이루면서 생성된 기공구조를 나타낸 것이다.
도 7-(d)는 실시예 7에서 복합유기용매 대신 톨루엔(B)만을 단독으로 사용한 경우 수십 나노미터의 나노-입자들(nano-particle)이 3차원으로 연결되는 네트워크에 의해 생성된 기공구조를 나타낸 것이다.
이러한 도 7-(a), 도 7-(b), 도 7-(c) 및 도 7-(d)에 나타낸 폴리이미드 에어로젤의 SEM 사진을 통하여 2종 저비점 용매의 중량비율에 따라 생성되는 기공구조가 나노-입자들(nano-particle)이 3차원으로 연결되는 네트워크에 의해 생성된 기공구조이거나, 나노-월들(nano-wall)이 3차원으로 연결되는 네트워크에 의해 생성된 기공구조이거나, 나노-입자들(nano-particle)과 나노-월들(nano-wall)이 혼재된 상태로 서로 3차원으로 연결되어 네트워크 형태를 이루면서 생성된 기공구조로 제어되어 형성될 수 있음을 알 수 있다.
여기서 중요한 점은, 도 6에서 관찰된 고온중합에 의해 합성된 폴리이미드 수지의 입자 형상과는 달리, 수 마이크로미터 이상의 입자는 잘 관찰되지 않고, 수십 나노미터 수준의 작은 나노입자만 주로 관찰되고 있는데, 이는 나노입자가 모여 마이크로 입자를 이루고 있는 형상에서 본 발명의 용매교체 과정을 통하여 나노입자를 결합하고 있는 부분이 용해되면서 구조가 재배열되기 때문이다. 결과적으로 나노사이즈의 기공구조가 형성되는 현상이 발생하게 되는 것이다.
도 8는 본 발명의 실시예 3 내지 8에 따른 폴리이미드 에어로젤의 기공률 및 기계적 물성을 나타낸 그래프이다. 우선 진밀도는 1.50g/cc였으며(pyconometer 측정), 폴리이미드 에어로젤 시편의 무게와 부피 측정으로부터 측정한 겉보기 밀도는 도 8-(a)에 나타내었다. 기계적 물성은 만능인장시험기(Universal Test Machine, UTM)를 이용하여 3 포인트 벤딩 모드로 굴곡특성을 측정하였고, 그 결과에 대한 그래프를 도 8-(b)에 flexural modulus를, 도 8-(c)에 flexural strength, 도 8-(d)에 maximum strain을 나타내었다.
기계적 강도의 경우, 도 8-(b)에 나타낸 바와 같이 modulus는 대략 100~400MPa 범위이고, 도 6-(c)에 나타낸 바와 같이 strength는 5~20MPa 범위이며, 도 6-(d)에 나타낸 바와 같이 srain은 5~8%의 범위인바, 복합유기용매를 이루는 2종 용매의 조성 및 중량비에 의해 기공률 차이가 확연히 달라지는 결과를 나타내었다.
도 8-(a)의 복합유기용매를 이루는 A와 B 용매의 중량비율이 100:0, 75:25, 50:50으로 갈수록 도 8-(b)의 modulus 값과 도 8-(c)의 strength 값이 줄어드는 반면, 도 8-(a)의 복합유기용매를 이루는 A와 B 용매의 중량비율이 50:50, 25:75, 0:100으로 갈수록 도 8-(b)의 modulus 값과 도 8-(c)의 strength 값이 증가함이 확인되고, 도 8-(d)의 strain 값은 A와 B 용매의 중량비율에 따라 큰 차이가 나지 않는 것으로 보아, modulus와 strength는 대체로 기공율 증가에 따라 감소하는 경향을 나타내고, strain은 크게 영향을 받지 않는 것으로 나타났다.
또한, 도 8-(a), 도 8-(b), 도 8-(c) 및 도 8-(d)를 살펴보면, 각 항목(복합유기용매를 이루는 A, B 용매의 중량비에 따른 100:0 항목, 75:25 항목, 50:50 항목, 25:75 항목, 0:100 항목)별로 3개의 막대그래프로 나타내었는데, 각 항목별로 나타낸 3개의 막대그래프는 실시예 3 내지 8에서 제조된 폴리이미드 에어로젤의 물성을 80℃에서 건조한 후, 그리고 이어서 200℃에서 3시간 건조한 후, 그리고 추가적으로 250℃에서 3시간 열처리 이후를 비교한 것으로, 건조 온도에 따라 기공수축 및 물성저하가 거의 없이 매우 안정적임이 확인된다.
이러한 결과에서 보듯이, 복합유기용매를 이루는 2종의 용매조성에 따라 기공률 및 기공구조가 현저히 달라지게 된다. 특히 복합유기용매를 이루는 A, B 용매 각각 단독으로 사용한 경우보다 A, B로 이루어진 2종의 복합유기용매를 사용한 경우 기공률이 현저히 증가함이 확인된다.
즉 복합유기용매를 이루는 2종 용매의 조성에 따라 기공률이 단순하게 변화하지 않는 것은, 예를 들어 A, B 용매 각각 별도로 사용한 경우보다 A와 B가 함께 사용될 때 폴리이미드 에어로젤의 기공률이 높아지고, 특히 A:B=50:50의 중량비율에서 기공률이 가장 높게 나타나는 것은 에어로젤 형성 시 발현되는 내부 나노구조로 설명된다. 다시 말해 기공률과 관련해서는 나노-입자들(nano-particle)과 나노-월들(nano-wall)이 함께 적절히 혼재할 때 가장 높은 기공률을 나타냄이 확인된 것이다.
따라서 실시예 3 내지 8에서 나타낸 바와 같이, 소재의 응용목적 및 분야에 따라 적당한 기공률 및 강도를 선택하고자 할 때, 본 발명에서 기술하고 있는 용매교체 과정에서 복합유기용매 조성을 조절함으로써 손쉽게 물성을 제어할 수 있게 된다.
도 9은 폴리이미드 에어로젤의 열중량분석(TGA) 그래프이다. 앞서 기공률이 가장 높게 나타난 실시예 4의 폴리이미드 에어로젤을 공기 분위기 하에서 100℃ 부근에서부터 700℃ 부근까지 승온시키면서 태워 고형분이 얼마만큼의 양으로 남는지를 도 9-(a)에 나타내었고, 질소 분위기 하에서 100℃ 부근에서부터 700℃ 부근까지 승온시키면서 태워 고형분이 얼마만큼의 양으로 남는지를 도 9-(b)에 나타내었다.
도 9-(a)를 살펴보면, 폴리이미드 에어로젤이 공기 분위기 중에서 산화되어서 제거되기 때문에 완전히 타서 600℃ 이상에서 zero 수준에 가깝게 고형분이 없어지고, 도 9-(b)를 살펴보면, 폴리이미드 에어로젤이 질소 분위기 중에서 탄화되기 때문에 카본 형태의 재(ash)가 남으므로 600℃ 이상에서 60wt%에 가까운 고형분이 남게 된다.
쉽게 말해, 도 9은 실시예 4의 폴리이미드 에어로졸을 도 9-(a)의 공기 분위기 또는 도 9-(b)의 질소 분위기 하에서 열중량법(thermogravimetric analysis, TGA)을 통해 열안정성(또는 내열성)을 평가한 결과이다. 폴리이미드 에어로젤 골격을 이루는 소재가 폴리이미드이기 때문에 본격적으로 타기 시작하는 온도는 500℃ 이상이므로, 물론 600℃ 이상에서는 타긴 하지만 500℃에서는 고형분을 충분히 확보하고 있기 때문에 500℃ (이상)에서 매우 높은 열안정성을 보여주고 있다.
한편, 실시예 2에서 합성된 폴리이미드 수지를 이용하여 폴리이미드 에어로젤을 제조하였으며, 이를 실시예 9 내지 13에서 설명하기로 하고, 우선 아래의 표 2에 나타내었다.
실시예 9 실시예 10 실시예 11 실시예 12 실시예 13
polyimide type 실시예 2의 폴리이미드 수지
solvent ratio(A/B) 75/25 50/50 25/75 100/0 0/100
final solvent A A A A A
density(g/cc) 0.39 0.33 0.39 0.74 0.46
porosity(%) 74.0 78.0 74.0 50.7 69.3
<실시예 9>실시예 2의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-7
실시예 2에서 제조된 폴리이미드 수지를 사용하여 폴리이미드 에어로젤을 제조하였으며, 나머지 과정은 실시예 3과 동일하다. 단, 시클로헥산, 톨루엔 용매로 이루어진 복합유기용매 조성은 시클로헥산(A):톨루엔(B)=75:25의 중량비율로 하였다.
<실시예 10>
실시예 2의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-8
용매교체 과정에서 복합유기용매의 조성을 시클로헥산(A):톨루엔(B)=50:50의 중량비율로 하였으며, 나머지 과정은 실시예 9와 같다.
<실시예 11>
실시예 2의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-9
용매교체 과정에서 복합유기용매의 조성을 시클로헥산(A):톨루엔(B)=25:75의 중량비율로 하였으며, 나머지 과정은 실시예 9와 같다.
<실시예 12>
실시예 2의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-10
용매교체 과정에서 복합유기용매 대신 시클로헥산(A)만을 사용하였으며(A:B=100:0), 나머지 과정은 실시예 9와 같다. 다른 말로, 실시예 12의 경우 복합유기용매를 이루는 2종의 저비점 용매가 모두 시클로헥산(A)만으로 이루어진 것이라 할 수 있다.
<실시예 13>
실시예 2의 폴리이미드 수지로부터 폴리이미드 에어로젤의 제조-11
용매교체 과정에서 복합유기용매 대신 톨루엔(B)만을 사용하였으며(A:B=0:100), 나머지 과정은 실시예 9와 같다. 다른 말로, 실시예 13의 경우 복합유기용매를 이루는 2종의 저비점 용매가 모두 톨루엔(B)만으로 이루어지고 마지막 단계에서 시클로헥산(A)으로 이루어진 것이라 할 수 있다.
도 10는 본 발명의 실시예 9 내지 13에 따른 폴리이미드 에어로젤의 기공률 및 기계적 물성을 나타낸 그래프이다. 도 10-(a)에서는 폴리이미드 에어로젤 시편의 밀도 및 기공률을 나타내었고, 기계적 물성은 도 10-(b)에서 flexural modulus를, 도 10-(c)에서 flexureal strength를, 도 10-(d)에서 maxium strain을 나타내었다.
즉 실시예 9 내지 13에서 제조된 폴리이미드 에어로젤 시편의 밀도 및 기공률을 도 10-(a)에 나타내었고, 도 10-(a)를 통해 실시예 2의 폴리이미드 수지로부터 형성되는 에어로젤은 기공률이 대부분 70~80% 수준으로써, 실시예 1의 폴리이미드 수지로부터 유도되는 폴리이미드 에어로젤보다 기공률이 더 높음이 확인되었다.
실시예 3 내지 8에서와 유사하게 실시예 9 내지 13에서도 복합유기용매가 단독 용매보다 기공률이 높고, 용매조성에 따라 기공률이 달라지며(도 10-(a) 참고), 이에 따라 기계적 물성도 현저히 달라지는 것이 확인되었다(도 10-(b), 도 10-(c) 및 도 10-(d) 참고).
상세하게는 도 10-(a)의 복합유기용매를 이루는 A와 B 용매의 중량비율이 100:0인 경우를 제외하고 75:25, 50:50, 25:75, 0:100인 경우 대부분 70~80%(단, 실시예 13에서는 69.3%)의 기공률을 가짐으로써, 도 10-(b)의 modulus 값과 도 10-(c)의 strength 값은 도 10-(a)와는 반대로 복합유기용매를 이루는 A와 B 용매의 중량비율이 100:0인 경우보다 75:25, 50:50, 25:75, 0:100인 경우의 modulus 값과 strength 값이 상대적으로 더 낮게 나옴이 확인되고, 도 10-(d)의 strain 값은 A와 B 용매의 중량비율에 따라 큰 차이가 나지 않는 것으로 보아 modulus와 strength는 대체로 기공율의 수치와 반대되는 경향이 있고, strain은 실시예 3 내지 8에서와 같이 기공률에 크게 영향을 받지 않는 것으로 나타났다.
또한 도 10-(a), 도 10-(b), 도 10-(c) 및 도 10-(d)를 살펴보면, 각 항목(복합유기용매를 이루는 A, B 용매의 중량비에 따른 100:0 항목, 75:25 항목, 50:50 항목, 25:75 항목, 0:100 항목)별로 각각 2개의 막대그래프로 나타내었는데, 각 항목별로 나타낸 2개의 막대그래프는 실시예 9 내지 13에서 제조된 폴리이미드 에어로젤의 물성을 80℃에서 건조한 후, 그리고 이어서 200℃에서 3시간 건조한 후를 비교한 것으로, 건조 온도에 따라 기공수축 및 물성저하가 거의 없이 매우 안정적임이 확인된다.
상술된 실시예 9 내지 13으로부터, 고온중합법에 의해 이미드기를 지니는 폴리이미드 수지로부터 에어로젤을 형성하는 경우, 폴리이미드 수지의 극성기 종류에 따라 기공률이 달라지며, 이러한 경우에도 용매교체 시 복합유기용매를 이루는 2종의 중량비의 조절에 의해 추가적으로 기공률을 조절하는 것이 가능함을 알 수 있다.
따라서 본 발명은 폴리이미드 수지로부터 가교되는 폴리이미드 습식젤의 용매교체 과정에서 2종의 저비점이면서 저극성의 용매로 이루어진 복합유기용매를 사용함으로써 최종 형성되는 폴리이미드 에어로젤의 기공률 및 기공구조를 간편하게 제어할 수 있는데 큰 의미가 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다.
본 발명의 보호 범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 용매를 준비하는 제1단계;
    상기 용매 하에서 디아민계 단량체와 산무수물 단량체를 반응시켜 폴리아믹산 수지를 합성하는 제2단계;
    상기 폴리아믹산 수지를 150~200℃에서 고온반응시켜 상기 폴리아믹산 수지의 이미드화(imidization)를 통해 폴리이미드 수지를 형성하는 제3단계;
    상기 폴리이미드 수지를 가교시켜 폴리이미드 습식젤을 형성하는 제4단계; 및
    상기 폴리이미드 습식젤에 포함된 용매를, 상기 용매보다 비점이 상대적으로 낮은 용매로 교체한 후 제거하여 폴리이미드 에어로젤을 형성하는 제5단계;를 포함하는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  2. 제1항에 있어서,
    상기 제5단계에서는,
    상기 폴리이미드 습식젤에 포함된 용매를 비점이 100℃ 이하인 2종 저비점 용매로 이루어진 복합유기용매로 치환한 후 건조시켜 폴리이미드 에어로젤을 형성하되, 상기 2종 저비점 용매의 혼합량 제어를 통해 상기 폴리이미드 에어로젤의 기공구조(pore structure)가 제어되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  3. 제2항에 있어서,
    상기 제5단계에서는,
    상기 2종 저비점 용매의 중량비에 따라 폴리이미드로 구성된 나노-입자들(nano-particle), 나노-월들(nano-wall) 또는 이들의 조합이 3차원으로 연결되는 네트워크에 의한 기공구조를 갖는 폴리이미드 에어로젤을 형성하는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  4. 제2항에 있어서,
    상기 제5단계에서는,
    상기 폴리이미드 습식젤에 상기 제1단계의 용매와 동일한 제1용매 및 상기 복합유기용매로 이루어진 제2용매가 혼합 형성된 혼합용매를 투입하여 용매교체를 통해 상기 폴리이미드 습식젤에 포함된 용매가 비점이 100℃ 이하인 저비점 용매로 치환되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  5. 제4항에 있어서,
    상기 혼합용매는,
    상기 제1용매의 중량비 대비 상기 제2용매의 중량비를 단계적으로 증가시키면서 복수 회 투입되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  6. 제4항에 있어서,
    상기 2종 저비점 용매 중 적어도 하나는 상기 제1용매와 상분리되지 않는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  7. 제1항에 있어서,
    상기 제1단계에서 주용매와, 상기 주용매와 용해도가 다른 부용매의 혼합량 제어를 통해 상기 제3단계에서 상기 폴리이미드 수지의 입자크기가 제어되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  8. 제7항에 있어서,
    상기 주용매는,
    N-메틸피롤리돈(N-Methylpyrrolidone), N,N-디메틸포름아마이드(N,N-Dimethylformamide, DMF), N,N-디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), N,N-디에틸포름아미드(N,N-diethyl formamide), N,N-디에틸 아세트아미드(N,N-diethyl acetamide) 및 이의 혼합으로부터 선택되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  9. 제7항에 있어서,
    상기 부용매는,
    톨루엔(toluene), 벤젠(benzene), 자일렌(xylene), 시클로헥산(cyclohexane), 시클로헥사놀(cyclohexanol), 시클로헥사논(cyclohexanone), 벤질알코올(benzyl alcohol), 헵타놀(heptanol), 헥사놀(hexanol), 에틸렌글리콜(ethylene glycol), 디메틸포름아미드(dimethyl formamide), 디메틸 아세트아미드(dimethyl acetamide) 및 이의 혼합으로부터 선택되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  10. 제1항에 있어서,
    상기 제2단계에서 상기 디아민계 단량체 및 상기 산무수물 단량체 중 어느 하나 이상에 극성기가 포함되도록 하여 상기 제3단계에서 상기 폴리이미드 수지의 입자크기가 제어되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  11. 제1항에 있어서,
    상기 제3단계에서 헥실아민(hexylamine), 옥틸아민(octylamine), 올레일아민(oleylamine), 옥타데실아민(octadecylamine), 아미노에톡시에탄올 (aminoethoxyethanol), 아닐린(aniline), 피콜릴아민 (picolylamine), 에탄올아민(ethanolamine), 아미노프로판올(aminopropanol) 및 이의 혼합으로부터 선택되는 모노아민계 단량체에 의해 상기 폴리이미드 수지의 입자 표면이 개질되어 입자크기가 제어되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤의 제조방법.
  12. 폴리이미드 에어로젤에 있어서,
    제1항 내지 제11항 중 어느 한 항의 제조방법에 의해 제조되는 것을 특징으로 하는 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤.
PCT/KR2019/014108 2018-10-26 2019-10-25 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법 WO2020085830A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/238,426 US20210308647A1 (en) 2018-10-26 2021-04-23 Polyimide aerogel having controlled particle size and pore structure, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180128614 2018-10-26
KR10-2018-0128614 2018-10-26
KR10-2019-0130977 2019-10-21
KR1020190130977A KR20200047360A (ko) 2018-10-26 2019-10-21 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/238,426 Continuation US20210308647A1 (en) 2018-10-26 2021-04-23 Polyimide aerogel having controlled particle size and pore structure, and method for producing same

Publications (1)

Publication Number Publication Date
WO2020085830A1 true WO2020085830A1 (ko) 2020-04-30

Family

ID=70331724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014108 WO2020085830A1 (ko) 2018-10-26 2019-10-25 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2020085830A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926244A (zh) * 2022-12-09 2023-04-07 江南大学 一种3d打印有机-无机复合气凝胶及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023103A (ko) * 1998-09-17 2000-04-25 모리시타 요이찌 다공질체 및 그 제조방법
CN106750493A (zh) * 2017-01-16 2017-05-31 东华大学 一种聚酰亚胺气凝胶的制备方法
CN107698794A (zh) * 2016-08-08 2018-02-16 航天特种材料及工艺技术研究所 一种交联型聚酰亚胺气凝胶的制备方法
JP2018053100A (ja) * 2016-09-29 2018-04-05 宇部興産株式会社 ポリイミド多孔質体の製造方法
JP2018053099A (ja) * 2016-09-29 2018-04-05 宇部興産株式会社 ポリイミドゲル状組成物、ポリイミド多孔質体、その製造方法、断熱材
CN108203516A (zh) * 2016-12-16 2018-06-26 航天特种材料及工艺技术研究所 一种制备交联型聚酰亚胺气凝胶的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023103A (ko) * 1998-09-17 2000-04-25 모리시타 요이찌 다공질체 및 그 제조방법
CN107698794A (zh) * 2016-08-08 2018-02-16 航天特种材料及工艺技术研究所 一种交联型聚酰亚胺气凝胶的制备方法
JP2018053100A (ja) * 2016-09-29 2018-04-05 宇部興産株式会社 ポリイミド多孔質体の製造方法
JP2018053099A (ja) * 2016-09-29 2018-04-05 宇部興産株式会社 ポリイミドゲル状組成物、ポリイミド多孔質体、その製造方法、断熱材
CN108203516A (zh) * 2016-12-16 2018-06-26 航天特种材料及工艺技术研究所 一种制备交联型聚酰亚胺气凝胶的方法
CN106750493A (zh) * 2017-01-16 2017-05-31 东华大学 一种聚酰亚胺气凝胶的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926244A (zh) * 2022-12-09 2023-04-07 江南大学 一种3d打印有机-无机复合气凝胶及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2018147602A1 (ko) 폴리아마이드-이미드 필름
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2014003451A1 (en) Polyimide and polyimide film comprising the same
KR20200047360A (ko) 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법
WO2016117856A1 (ko) 기공을 갖는 입자를 이용한 폴리이미드 필름의 제조방법 및 저유전율의 폴리이미드 필름
WO2019112151A1 (ko) 저유전율 및 고열전도성을 가지는 폴리이미드 필름
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2016175344A1 (ko) 폴리이미드 수지 및 이를 이용한 필름
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2022025341A1 (ko) 저유전성, 고절연성 및 고강도성을 갖는 폴리이미드 에어로젤의 제조방법, 이로부터 제조되는 폴리이미드 에어로젤
WO2021101324A2 (ko) 저유전 폴리이미드 복합 분말 및 그 제조방법
WO2020085830A1 (ko) 입자크기 또는 기공구조가 제어되는 폴리이미드 에어로젤 및 이의 제조방법
WO2019143000A1 (ko) 2 종 이상의 필러를 포함하는 고열전도성 폴리이미드 필름
WO2019045376A1 (ko) 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2023200191A1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
WO2020017692A1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2021101323A1 (ko) 열전도 폴리이미드 복합 분말 및 그 제조방법
WO2022107969A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875006

Country of ref document: EP

Kind code of ref document: A1