WO2020085726A1 - 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극 - Google Patents

리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극 Download PDF

Info

Publication number
WO2020085726A1
WO2020085726A1 PCT/KR2019/013780 KR2019013780W WO2020085726A1 WO 2020085726 A1 WO2020085726 A1 WO 2020085726A1 KR 2019013780 W KR2019013780 W KR 2019013780W WO 2020085726 A1 WO2020085726 A1 WO 2020085726A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
forming
composition
electrode
secondary battery
Prior art date
Application number
PCT/KR2019/013780
Other languages
English (en)
French (fr)
Inventor
박솔지
안경호
한준혁
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19875433.5A priority Critical patent/EP3855535A4/en
Priority to CN201980070826.6A priority patent/CN113544880A/zh
Priority to US17/288,396 priority patent/US20210359287A1/en
Publication of WO2020085726A1 publication Critical patent/WO2020085726A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0442Anodisation, Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0457Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0054Halogenides
    • H01M2300/0057Chlorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing an electrode for a lithium secondary battery, an electrode for a lithium secondary battery manufactured using the same, and more specifically, both an organic electrolyte membrane and an inorganic electrolyte membrane are previously formed on the electrode surface to reduce electrode interface resistance. It relates to a method for manufacturing an electrode for a lithium secondary battery that can be made, and an electrode for a lithium secondary battery manufactured using the same.
  • the technology most suitable for various uses is a secondary battery-based technology.
  • a secondary battery In the case of a secondary battery, it can be miniaturized to a degree that can be applied to personal IT devices, etc., and it can be applied to electric vehicles, electric power storage devices, etc.
  • lithium secondary batteries which are theoretically the highest energy density battery systems, are in the spotlight and are currently applied to various devices.
  • the electrolyte is reduced and decomposed on the negative electrode in the activation or charge / discharge phase of the battery.
  • the product of the electrolyte that has been reduced and decomposed permeates lithium ions, but forms a Solid Electrolyte Interphase (SEI) film capable of inhibiting further decomposition of the electrolyte.
  • SEI Solid Electrolyte Interphase
  • lithium secondary batteries there is a problem that the interface resistance of the electrode increases during charging and discharging or storage, the capacity is reduced.
  • One of the causes of this problem is the further decomposition reaction of the salt contained in the electrolyte.
  • the salt contained in the electrolyte causes an additional reaction even after the SEI film is formed on the negative electrode as the lithium secondary battery is driven, only a portion of the thickness of the SEI film becomes thicker and the thickness of the SEI film may be uneven.
  • the SEI membrane may be damaged by becoming an SEI membrane initially formed by an additional reaction of the electrolyte. Due to this, the electrolyte may cause a chain decomposition reaction and self-discharge of the negative electrode.
  • the present invention is to solve the above problems, to form a chemically and mechanically stable organic electrolyte membrane and inorganic electrolyte membrane on the surface of the electrode, to reduce the interface resistance, improve capacity characteristics and life characteristics, high temperature safety It is to provide a method for manufacturing an electrode for a lithium secondary battery and an electrode for a lithium secondary battery manufactured using the same.
  • the present invention by immersing the electrode current collector in a composition for forming a first electrolyte membrane, applying a current to form a first electrolyte membrane and immersing the electrode current collector in which the first electrolyte membrane is formed in a second composition
  • one of the composition for forming the first electrolyte membrane and the composition for forming the second electrolyte membrane is a composition for forming an organic electrolyte membrane
  • the other composition is an inorganic electrolyte membrane
  • the composition for forming an inorganic electrolyte membrane provides a method of manufacturing an electrode for a lithium secondary battery comprising a compound represented by the following Chemical Formula 1.
  • M is a metal element selected from the group consisting of Li, Na, K and Rb,
  • M ' is a metal element selected from the group consisting of Al, Ga, In and Ti,
  • X is a halogen element selected from the group consisting of F, Cl, Br and I,
  • n is an integer from 1 to 6
  • m is an integer from 1 to 10.
  • the composition for forming the first electrolyte membrane may be a composition for forming an organic electrolyte membrane
  • the composition for forming the second electrolyte membrane may be a composition for forming an inorganic electrolyte membrane.
  • the composition for forming the second electrolyte membrane may be a composition for forming an inorganic electrolyte membrane
  • the composition for forming a second electrolyte membrane may be a composition for forming an organic electrolyte membrane.
  • the composition for forming an organic electrolyte membrane includes an organic solvent, wherein the organic solvent is a carbonate-based compound in which a halogen element is substituted or unsubstituted, an acetate-based compound in which a halogen element is substituted or unsubstituted, a halogen element is substituted or unsubstituted It may include at least one compound selected from the group consisting of a glyme-based compound, an ether-based compound in which the halogen element is substituted or unsubstituted, and a nitrile-based compound in which the halogen element is substituted or unsubstituted.
  • composition for forming an organic electrolyte membrane may include a lithium salt.
  • composition for forming an organic electrolyte membrane further includes an additive
  • the additive includes vinylene carbonate, vinylethylene carbonate, propanesultone, propensultone, lithium difluoro (oxalato) phosphate, and lithium difluoro Low (oxalato) borate, lithium tetrafluorooxalate phosphate, succinyl nitrile, succinic anhydride, ethylene sulfate, ethylene glycol bis (propionitrile) ether, lithium tetrafluoroborate, fluoroethylene carbonate and lithium difluoro It may include at least one compound selected from the group consisting of rophosphate.
  • the compound represented by Chemical Formula 1 may be one or more compounds selected from the group consisting of LiAlCl 4 -3 (SO 2 ) and NaAlCl 4 -2 (SO 2 ).
  • composition for forming an inorganic electrolyte membrane may further include an inorganic ionic liquid.
  • the present invention includes an electrode current collector and an organic electrolyte membrane and an inorganic electrolyte membrane on the electrode current collector, wherein the inorganic electrolyte membrane is formed by reducing the compound represented by Chemical Formula 1 Provide an electrode.
  • the organic electrolyte membrane and the inorganic electrolyte membrane may be mixed in one layer.
  • composition for forming a first electrolyte membrane used to form a first electrolyte membrane on an electrode current collector is prepared.
  • a metal thin film itself may be used, or a substrate on which an electrode active material layer is formed may be used.
  • the metal used in the metal thin film may include at least one metal selected from the group consisting of copper, nickel, and lithium, or a combination thereof.
  • the metal thin film may have a single-layer structure or a multi-layer structure, and in the case of a metal thin film having a multi-layer structure, the metal thin film may include at least one metal layer containing lithium.
  • the metal thin film when the metal thin film is composed of at least one metal or a combination thereof selected from the group consisting of copper and nickel, the metal thin film may further include a metal layer containing lithium on the surface.
  • a method for further including the lithium metal layer methods for forming a conventional metal layer such as rolling, sputtering or electroplating on a metal thin film can be used without limitation.
  • lithium ions Li +
  • Li + lithium ions
  • the substrate on which the electrode active material layer is formed when used as an electrode current collector, the substrate generally has a thickness of 3 ⁇ m to 500 ⁇ m.
  • a substrate is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and for example, on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used.
  • the electrode active material may use a compound capable of reversible intercalation and deintercalation of lithium, and specifically, one or more types such as cobalt, manganese, nickel, or aluminum. And lithium composite metal oxides including metal and lithium.
  • the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), a lithium-cobalt oxide (eg, LiCoO 2, etc.), a lithium-nickel oxide (For example, LiNiO 2, etc.), lithium-nickel-manganese oxide (for example, LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( Here, 0 ⁇ Z1 ⁇ 2), etc.), lithium-nickel-cobalt oxide (for example, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), etc.), lithium-manganese-cobalt System oxides (for example, LiCo 1-Y3 Mn Y3 O 2 (here, 0 ⁇ Y3 ⁇ 1), LiMn 2-z2 Co z2 O 4 (here, 0 ⁇ Z2
  • the electrode active material is natural graphite, artificial graphite, carbonaceous material; Lithium-containing titanium composite oxides (LTO), metals (Me) which are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me); And one or two or more negative electrode active materials selected from the group consisting of a composite of the metals (Me) and carbon.
  • LTO Lithium-containing titanium composite oxides
  • metals (Me) which are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Oxides of the metals (Me) Oxides of the metals (Me)
  • one or two or more negative electrode active materials selected from the group consisting of a composite of the metals (Me) and carbon.
  • the composition for forming the first electrolyte membrane is for forming a first electrolyte membrane, and the first electrolyte membrane may be an organic electrolyte membrane or an inorganic electrolyte membrane.
  • the first electrolyte membrane is an organic electrolyte membrane
  • the second electrolyte membrane to be described later must be an inorganic electrolyte membrane
  • the first electrolyte membrane is an inorganic electrolyte membrane
  • the second electrolyte membrane to be described later must be an organic electrolyte membrane. That is, the lithium secondary battery electrode manufactured according to the present invention includes both an organic electrolyte membrane and an inorganic electrolyte membrane, but the order is not particularly limited.
  • the organic electrolyte membrane component when the organic electrolyte membrane is first formed as the first electrolyte membrane, the organic electrolyte membrane component may be more distributed near the interface of the working electrode, and conversely, when the inorganic electrolyte membrane is first formed as the first electrolyte membrane , The inorganic electrolyte membrane component may be more distributed near the interface of the working electrode near the interface of the working electrode. Therefore, the distribution of organic / inorganic components included in the electrolyte membrane as well as in the vicinity of the electrode interface may be different according to the production order of the electrolyte membrane.
  • the order of forming the organic electrolyte membrane or forming the inorganic electrolyte membrane may be set according to the application field of the lithium secondary battery and the type of the electrolyte for the lithium secondary battery used accordingly.
  • the composition for forming the first electrolyte membrane may be a composition for forming an organic electrolyte membrane or a composition for forming an inorganic electrolyte membrane.
  • the composition for forming each electrolyte membrane will be described.
  • the composition for forming an organic electrolyte membrane is to form an organic electrolyte membrane by a reduction reaction, and also serves to transfer ions between the electrodes.
  • composition for forming an organic electrolyte membrane may include an organic solvent.
  • the organic solvent is a carbonate-based compound in which halogen elements are substituted or unsubstituted, an acetate-based compound in which halogen elements are substituted or unsubstituted, a glyme-based compound in which halogen elements are substituted or unsubstituted, an ether-based in which halogen elements are substituted or unsubstituted
  • the compound may include at least one compound selected from the group consisting of nitrile compounds in which halogen elements are substituted or unsubstituted.
  • the halogen element is at least one element selected from the group consisting of F, Cl, Br and I.
  • cyclic carbonate-based compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, and at least one selected from the group consisting of fluoroethylene carbonate (FEC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • 1,2-butylene carbonate 2,3-butylene carbonate
  • 1,2-pentylene carbonate 2,3-pentylene carbonate
  • vinylene carbonate vinylene carbonate
  • FEC fluoroethylene carbonate
  • linear carbonate compound is selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate At least one or more may be used, but is not limited thereto.
  • Acetate-based compounds in which the halogen element is substituted or unsubstituted can also be largely divided into cyclic acetate-based compounds or linear acetate-based compounds.
  • cyclic acetate-based compound examples are any one selected from the group consisting of cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone, or these And mixtures of two or more of them.
  • linear acetate-based compound is selected from the group consisting of linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate, or these A mixture of two or more of them may be used, but is not limited thereto.
  • the glyme-based compound includes a glyme (glyme) and a polyglyme (polyglyme) compound.
  • the glyme-based compound is dimethyl ether (CH 3 OCH 3 ), ethylene glycol dimethyl ether (CH 3 OCH 2 CH 2 OCH 3 ), diethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 2 OCH 3 ), diethylene glycol diethyl ether (C 2 H 5 (OCH 2 CH 2 ) 2 OC 2 H 5 ), triethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 3 OCH 3 ), triethylene glycol di Ethyl ether (C 2 H 5 (OCH 2 CH 2 ) 3 OC 2 H 5 ) and tetraethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 4 OCH 3 )
  • Mixtures of species or more may be used, but are not limited thereto.
  • ether compound in which the halogen element is substituted or unsubstituted dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether and 2,2-bis (trifluoromethyl)- Any one selected from the group consisting of 1,3-dioxalane or a mixture of two or more of them may be used, but is not limited thereto.
  • nitrile-based compound any one selected from the group consisting of acetonitrile, mono-nitrile, di-nitrile, and tri-nitrile or a mixture of two or more of them may be used, but is not limited thereto.
  • composition for forming an organic electrolyte membrane of the present invention may include a lithium salt.
  • the concentration of the lithium salt can be appropriately changed within a range that can be used normally, but in order to obtain an optimum anti-corrosion film formation effect on the electrode surface, a concentration of 0.8 M to 3.0 M in the composition for forming an organic electrolyte membrane, specifically 1.0 M To 3.0M concentration.
  • a concentration of 0.8 M to 3.0 M in the composition for forming an organic electrolyte membrane specifically 1.0 M To 3.0M concentration.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • a, and anions including Li + as the cation F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3 ) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (
  • the composition for forming an organic electrolyte membrane of the present invention may further include an additive.
  • the additive is a specific example of the additive, vinylene carbonate, vinyl ethylene carbonate, propanesultone, propensultone, lithium difluoro (oxalato) phosphate, lithium difluoro (oxalato) borate, lithium tetrafluoro
  • One or more compounds selected from the group consisting of oxalate phosphate, succinyl nitrile, succinic anhydride, ethylene sulfate, ethylene glycol bis (propionitrile) ether, lithium tetrafluoroborate, fluoroethylene carbonate and lithium difluorophosphate Can be used as an additive.
  • the compounds listed above are used together as an additive, the reaction of forming a stable electrolyte membrane on the electrode may proceed more smoothly.
  • composition for forming an inorganic electrolyte membrane may include a compound represented by Formula 1 below.
  • M is a metal element selected from the group consisting of Li, Na, K and Rb,
  • M ' is a metal element selected from the group consisting of Al, Ga, In and Ti,
  • X is a halogen element selected from the group consisting of F, Cl, Br and I,
  • n is an integer from 1 to 6
  • m is an integer from 1 to 10.
  • the compound represented by Chemical Formula 1 may be one or more compounds selected from the group consisting of LiAlCl 4 -3 (SO 2 ) and NaAlCl 4 -2 (SO 2 ).
  • composition for forming an inorganic electrolyte membrane may further include an inorganic ionic liquid.
  • the inorganic ionic liquid is bis (fluorosulfonyl) imide (hereinafter abbreviated as 'FSI'), bis (trifluoromethylsulfonyl) imide , Hereinafter abbreviated as 'TFSI'), bis (pentafluoroethylsulfonyl) imide (hereinafter abbreviated as 'PFSI') and hexafluorophosphate (hereinafter as 'PF 6 ') D abbreviation) may include at least one anion selected from the group consisting of.
  • the inorganic ionic liquid is N, N-diethyl-N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium (N, N-diethyl-N-methyl-N- (2- methoxyethyl) ammonium, hereinafter abbreviated as 'DEME'), N-ethyl-N-methylpyrrolidinium (hereinafter abbreviated as 'P12'), N-methyl-N-propylpi Lollidinium (N-methyl-N-propylpyrrolidinium, abbreviated as 'P13'), N-butyl-N-methylpyrrolidinium (abbreviated as 'P14'), 1-ethyl-2,3-dimethylimidazolium (1-ethyl-2,3-dimethylimidazolium, hereinafter abbreviated as 'C2dmim'), 2,3-dimethyl-1-propylimid
  • the inorganic ionic liquid P12-FSI, P12-TFSI, P12-PFSI, P12-PF 6 , P13-FSI, P13-TFSI, P13-PFSI, P13-PF 6 , P14-FSI, P14- TFSI, P14-PFSI, P14-PF 6 , C2dmim-FSI, C2dmim-TFSI, C2dmim-PFSI, C2dmim-PF 6 , C3dmim-FSI, C3dmim-TFSI, C3dmim-PFSI, C3dmim-PF 6 , C4mim-FSI, C4mim -TFSI, C4mim-PFSI, C4mim-PFSI, C4mim-PFSI, C4dmim-TFSI, C4dmim-PF 6 , C4dmim-FSI, C4dmim-TFSI, C4d
  • an inorganic polymer ionic liquid can be used as the inorganic ionic liquid.
  • the electrode current collector is immersed in a composition for forming a first electrolyte membrane, and then a current is applied to form a first electrolyte membrane.
  • the first electrolyte composition for film formation is a reduction reaction at the electrode current collector surface (reduction, B + + e - ⁇ B) is formed to form the first electrolyte membrane.
  • the conditions of the current applied may vary depending on the type of electrode to be manufactured or the components of the composition for forming the electrolyte membrane used, and the current conditions are not limited.
  • a current may be applied such that the voltage is in the range of -1V to 5.0V, specifically -0.2V to 4.5V, and more specifically 0V to 1.5V in OCV (Open Circuit Voltage).
  • OCV Open Circuit Voltage
  • the lithium secondary battery is used for the lithium secondary battery by the electrolyte for the lithium secondary battery even in the case of initial charging after assembling in the form of a full battery (formation step) without going through the separate electrolyte membrane forming treatment step according to the present invention on the electrode for the secondary battery.
  • An electrolyte membrane may be formed on the electrode.
  • the solvent of the electrolyte first decomposes during the formation of the electrolyte membrane in the initial charging step Side reactions may occur. Due to this side reaction, there was a problem that the electrolyte membrane in the initial charging step was not stably and uniformly formed.
  • the electrolyte membrane does not suppress additional interfacial reactions between the electrodes / electrolytes and the flow of ions cannot also be controlled, so that the electrolyte membrane is easily under high temperature conditions and / or overcharge conditions. Can collapse.
  • the electrode / electrolyte interface reaction cannot be suppressed, and heat generation and thermal runaway may occur due to side reactions, so that the life characteristics of the lithium secondary battery are deteriorated, and safety at high temperatures may also be deteriorated.
  • the above-described problems were overcome by using an electrode with an electrolyte membrane already formed as an electrode for a lithium secondary battery.
  • the organic electrolyte membrane and the inorganic electrolyte membrane are also formed, so that chemical and mechanical performance can also be improved.
  • the electrode current collector is separated.
  • the electrode current collector may be further dried or a washing process for removing impurities may be further roughened, but is not limited to a specific process, and may be subjected to a treatment process without limitation.
  • the electrolyte for a lithium secondary battery considering the solubility between organic and inorganic compounds, uses an organic electrolyte or an inorganic electrolyte alone. Therefore, there is a limitation that the electrolyte membrane formed through the formation step of the lithium secondary battery is formed of an organic electrolyte membrane or an inorganic electrolyte membrane.
  • the inorganic electrolyte component such as LiF may be included in the electrolyte membrane.
  • the inorganic compound component that can be formed only when using the organic electrolyte is in the electrolyte membrane. Since it cannot be included, the chemical and mechanical safety of lithium secondary batteries is relatively low.
  • the battery resistance is higher than that in the case of using the organic electrolyte, and the driveability of the lithium secondary battery is low.
  • the inorganic compound in the electrolyte membrane Reduction reactants may be included to further improve mechanical performance, and even when only an inorganic compound is used as an electrolyte for a lithium secondary battery, a reduction reactant of an organic compound is included in the electrolyte membrane to further improve ion conductivity and the like.
  • the electrolyte membrane component formed on the electrode interface includes both organic and inorganic compounds, so that chemical and mechanical safety in the lithium secondary battery can be improved.
  • composition for forming an organic electrolyte membrane When a composition for forming an organic electrolyte membrane is used to form the first electrolyte membrane, a composition for forming an inorganic electrolyte membrane is used to form the second electrolyte membrane. Conversely, when a composition for forming an inorganic electrolyte membrane is used to form the first electrolyte membrane, a composition for forming an organic electrolyte base is used to form the second electrolyte membrane.
  • the composition for forming the organic electrolyte membrane and the composition for forming the inorganic electrolyte membrane are the same as those described above, and thus the description is omitted.
  • conditions of an applied current may vary depending on the type of electrode to be manufactured or a component of the composition for forming an electrolyte membrane used, and the current condition is Although not limited, for example, current may be applied such that the voltage is in the range of -1V to 5.0V, specifically -0.2V to 4.5V, and more specifically 0V to 1.5V in OCV (Open Circuit Voltage).
  • OCV Open Circuit Voltage
  • the electrode current collector After forming the second electrolyte membrane, the electrode current collector is separated. In the process of separating, the electrode current collector may be further dried or a washing process for removing impurities may be further roughened, but is not limited to a specific process, and may be subjected to a treatment process without limitation.
  • the electrode for a lithium secondary battery according to the present invention includes an electrode current collector and an organic electrolyte membrane and an inorganic electrolyte membrane formed on the electrode current collector.
  • the organic electrolyte membrane is formed by reducing the composition for forming an organic electrolyte membrane
  • the inorganic electrolyte membrane is formed by reducing the composition for forming an inorganic electrolyte membrane containing a compound represented by the following Chemical Formula 1.
  • a compound formed by reduction of a compound represented by the following Chemical Formula 1 LiCl, Li 2 SO 4 , Al 2 O 3 , and the like, are not limited to the compounds listed above.
  • M is a metal element selected from the group consisting of Li, Na, K and Rb,
  • M ' is a metal element selected from the group consisting of Al, Ga, In and Ti,
  • X is a halogen element selected from the group consisting of F, Cl, Br and I,
  • n is an integer from 1 to 6
  • m is an integer from 1 to 10.
  • the electrode for a lithium secondary battery according to the present invention may be an anode or a cathode, and may be used for both the anode and the cathode.
  • the organic electrolyte membrane and the inorganic electrolyte membrane may each form separate layers, or the organic electrolyte membrane and the inorganic electrolyte membrane may be mixed in one layer.
  • the organic electrolyte membrane and the inorganic electrolyte membrane are mixed in one layer,
  • organic electrolyte membrane and the inorganic electrolyte membrane are not clearly distinguished, there may be a difference in the distribution of the components inside the electrolyte membrane based on the electrode current collector interface.
  • VC vinylene carbonate
  • a copper metal thin film on which the organic electrolyte membrane was formed was prepared as a working electrode, a lithium metal thin film as a counter electrode, and a lithium metal thin film as a reference electrode, followed by LiAlCl 4 -3 (SO 2 ) 10 g of solution is prepared as a composition for forming an inorganic electrolyte membrane.
  • the working electrode was separated and dried to prepare a negative electrode for a lithium secondary battery.
  • Example 1 Example 1 and except that a copper metal thin film with lithium metal deposited as a working electrode was used, and when forming an organic electrolyte membrane and an inorganic electrolyte membrane, a current was applied such that the voltage was 0.2 V at OCV (Open Circuit Voltage). In the same manner, a negative electrode for a lithium secondary battery was prepared.
  • OCV Open Circuit Voltage
  • a negative electrode for a lithium secondary battery was manufactured in the same manner as in Example 1, except that a graphite electrode was used as a working electrode.
  • fluoroethylene carbonate FEC
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • TFDOL 2,2-bis (trifluoromethyl) -1,3-dioxalan
  • VC vinylene carbonate
  • LiDFOP lithium difluoro (oxalate) phosphate
  • PRS 1,3-propensultone
  • 30% by weight of (N-butyl-N-methylpyrrolidinium) -FSI (P14-FSI) was added as an inorganic ionic liquid to the composition for forming an inorganic electrolyte membrane. was prepared.
  • a negative electrode for a lithium secondary battery was manufactured in the same manner as in Example 1, except that a current was applied such that the voltage became 0 V at OCV (Open Circuit Voltage).
  • a negative electrode for a lithium secondary battery was manufactured in the same manner as in Example 1, except that a current was applied such that the voltage became 0 V at OCV (Open Circuit Voltage).
  • a lithium metal thin film is prepared as a counter electrode, a lithium metal thin film as a reference electrode, a copper metal thin film as a working electrode, and 10 g of LiAlCl 4 -3 (SO 2 ) solvent is added as a composition for forming an inorganic electrolyte film. do.
  • OCV Open Circuit Voltage
  • FEC solvent fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl Carbonate
  • VC vinylene carbonate
  • the working electrode After placing the counter electrode, the reference electrode and the working electrode in order, immersed in the composition for forming the organic electrolyte membrane, and then applied an organic electrolyte membrane except that a voltage was applied to be 0.2 V at OCV (Open Circuit Voltage). Formed. Then, the working electrode was separated and dried to prepare a negative electrode for a lithium secondary battery.
  • OCV Open Circuit Voltage
  • Example 9 except that a copper metal thin film with lithium metal deposited as a working electrode was used, and when forming an organic electrolyte membrane and an inorganic electrolyte membrane, a current was applied so that the voltage became -0.2 V at OCV (Open Circuit Voltage).
  • OCV Open Circuit Voltage
  • LiFSI lithium bis (fluorosulfonyl) imide
  • DME dimethyl ether
  • VC vinylene carbonate
  • a negative electrode for a lithium secondary battery was manufactured in the same manner as in Example 9, except that it was added and used.
  • Example 9 As an additive for the composition for forming an organic electrolyte membrane, Example 9 and Example 1 except that 1% by weight of vinylene carbonate (VC), 0.5% by weight of lithium difluoro (oxalate) phosphate (LiDFOP) and 1% by weight of LiBr In the same manner, a negative electrode for a lithium secondary battery was prepared.
  • VC vinylene carbonate
  • LiDFOP lithium difluoro (oxalate) phosphate
  • LiBr LiBr
  • C4mim-FSI (1-butyl-3-methylimidazolium bis (fluorosulfonyl) imidazolium) -FSI
  • a negative electrode for a lithium secondary battery was manufactured in the same manner as in Example 9, except that a current was applied so that the voltage became -0.2 V at OCV (Open Circuit Voltage).
  • a negative electrode for a lithium secondary battery was manufactured in the same manner as in Example 9, except that a current was applied so that the voltage became -0.2 V at OCV (Open Circuit Voltage).
  • Positive electrode active material in solvent N-methyl-2-pyrrolidone (NMP) (((Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 ), NCM811): Conductive material (Bundled carbon nanotube): Binder (Polyvinyl Lidenfluoride (PVDF)) was mixed in a weight ratio of 97.7: 0.3: 2 to prepare a positive electrode active material slurry The positive electrode active material slurry was applied to an aluminum thin film having a thickness of 20 ⁇ m, and dried and roll pressed. Thus, a positive electrode current collector was prepared.
  • NMP solvent N-methyl-2-pyrrolidone
  • PVDF Polyvinyl Lidenfluoride
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • an organic electrolyte membrane was formed by applying a current so that the voltage became 4.25 V at OCV (Open Circuit Voltage).
  • a copper metal thin film on which the organic electrolyte membrane was formed was prepared as a working electrode, a lithium metal thin film as a counter electrode, and a lithium metal thin film as a reference electrode, followed by LiAlCl 4 -3 (SO 2 ) 10 g of solution is prepared as a composition for forming an inorganic electrolyte membrane.
  • the working electrode was separated and then dried to prepare a positive electrode for a lithium secondary battery.
  • a copper metal thin film (thickness: 20 ⁇ m) was prepared as a negative electrode for a lithium secondary battery.
  • a copper metal thin film (thickness: 20 ⁇ m) on which lithium metal was deposited on the surface was prepared as a negative electrode for a lithium secondary battery.
  • a silicon (Si) electrode was prepared as a negative electrode for a lithium secondary battery.
  • the graphite electrode was prepared as a negative electrode for a lithium secondary battery.
  • VC vinylene carbonate
  • the working electrode on which the organic electrolyte membrane was formed was separated to prepare a negative electrode for a lithium secondary battery in which only the organic electrolyte membrane was formed.
  • a lithium metal thin film is prepared as a counter electrode, a lithium metal thin film as a reference electrode, and a copper metal thin film as a working electrode, and then 10 g of a LiAlCl 4 -3 (SO 2 ) solution is prepared as a composition for forming an inorganic electrolyte film.
  • an inorganic electrolyte membrane was formed by applying a current such that the voltage became 0.2 V at OCV (Open Circuit Voltage). Thereafter, the working electrode on which the inorganic electrolyte membrane was formed was separated and dried to prepare a negative electrode for a lithium secondary battery in which only the inorganic electrolyte membrane was formed.
  • OCV Open Circuit Voltage
  • Positive electrode active material in solvent N-methyl-2-pyrrolidone (NMP) (((Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 ), NCM811): Conductive material (Bundled carbon nanotube): Binder (Polyvinyl Lidenfluoride (PVDF)) was mixed in a weight ratio of 97.7: 0.3: 2 to prepare a positive electrode active material slurry The positive electrode active material slurry was applied to an aluminum thin film having a thickness of 20 ⁇ m, and dried and roll pressed. The positive electrode current collector was prepared as a positive electrode for a lithium secondary battery.
  • NMP solvent N-methyl-2-pyrrolidone
  • PVDF Polyvinyl Lidenfluoride
  • a positive electrode active material slurry was added by adding 4.2 wt.% LiCoO 2 compound 94% by weight as a positive electrode active material, 4% by weight carbon black as a conductive material, and 2% by weight PVDF as a binder component to N-methyl-2 pyrrolidone (NMP) as a solvent. It was prepared.
  • a positive electrode for a lithium secondary battery having a positive electrode active material layer was prepared by applying the positive electrode active material slurry to a thickness of 10 ⁇ m on a 20 ⁇ m thick aluminum (Al) thin film surface and drying it.
  • LiPF 6 is added to the electrolyte solution in which fluoroethylene carbonate (FEC), ethylene carbonate (EC), and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 5:25:70 to a concentration of 1 M, and then vinyl as an additive.
  • Ren carbonate (VEC) was added to 1% by weight based on the total weight of the electrolyte.
  • a polyethylene (PE) sheet was prepared as a separator.
  • the prepared positive electrode, the separator, and the negative electrodes prepared according to Examples 1 to 16 and Comparative Examples 1 to 6 were sequentially stacked to prepare an electrode assembly, and then the electrode assembly was stored in a pouch-type battery case and then lithium An electrolyte for a secondary battery was injected to prepare a 4.2V class lithium secondary battery (Full cell) according to each example and comparative example.
  • a negative electrode active material slurry was prepared by adding a mixture of negative electrode active material (graphite): conductive material (carbon black): binder (polyvinylidene fluoride (PVDF)) in a weight ratio of 97: 0.5: 2.5 to distilled water as a solvent.
  • the negative electrode active material was applied to a negative electrode current collector (Cu thin film) having a thickness of 10 ⁇ m, and drying and roll press were performed to prepare a negative electrode.
  • LiPF 6 is added to the electrolyte solution in which fluoroethylene carbonate (FEC), ethylene carbonate (EC), and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 5:25:70 to a concentration of 1 M, and then vinyl as an additive.
  • Ren carbonate (VEC) was added to 1% by weight based on the total weight of the electrolyte.
  • a polyethylene (PE) sheet was prepared as a separator.
  • the prepared negative electrode, separator, and positive electrode prepared according to Example 16 and Comparative Example 7 were stacked in order to prepare an electrode assembly, and then the electrode assembly was stored in a pouch-type battery case, and the electrolyte for lithium secondary battery was injected.
  • a 4.2V class lithium secondary battery (Full cell) according to each of Example 16 and Comparative Example 7.
  • the lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared according to Comparative Examples 1 to 6 were formed at 200 mA current (0.1 C rate), and aged at about 25 ° C. for 2 days (aging). ), And then subjected to a degassing process.
  • the interface resistance was measured using a Biologic VMP3 device (1 MHz to 100 uHz range, 25 ° C. condition). At this time, the measured interface resistance of Example 1 was used as the reference interface resistance, and the results of comparing the respective interface resistances compared to the reference interface resistance are shown in Table 1 below.
  • the interface resistance ratio of the lithium secondary battery manufactured according to the embodiment is lower than that of the lithium secondary battery manufactured according to the comparative example.
  • the lithium secondary battery prepared in Examples 1 to 16 and the lithium secondary battery prepared according to Comparative Examples 1 to 7 were formed at 200 mA current (0.1 C rate), aged at about 25 ° C. for 2 days, and then degassed. Was conducted.
  • the lithium secondary batteries prepared in Examples 1 to 16 and the lithium secondary batteries prepared according to Comparative Examples 1 to 7 were 4.2 V 400mA (0.2 C, 0.05 C cut-off) CC / CV charging and 3 V 1000 mA (0.5 C) CC discharge were performed to measure the capacity, and the measured capacity of Example 1 was used as a reference capacity, and each capacity was compared to the reference capacity.
  • Table 2 One value is shown in Table 2 below.
  • the capacity ratio of the lithium secondary battery prepared according to the embodiment was higher at both room temperature (25 ° C) and high temperature (45 ° C) conditions than the lithium secondary battery capacity ratio prepared according to the comparative example. You can.
  • the lithium secondary batteries prepared in Examples 1 to 16 and the lithium secondary batteries prepared in Comparative Examples 1 to 7 were each formed at 200 mA current (0.1 C rate), aged at about 25 ° C. for 2 days, and then degassed. Was conducted.
  • Example 1 91
  • Example 2 93
  • Example 3 93
  • Example 4 95
  • Example 5 96
  • Example 6 90
  • Example 7 91
  • Example 8 92
  • Example 10 93
  • Example 11 97
  • Example 12 95
  • Example 13 87
  • Example 14 91
  • Example 15 91
  • Example 16 95 Comparative Example 1 0.2 Comparative Example 2 5 Comparative Example 3 0.5 Comparative Example 4 7 Comparative Example 5 62 Comparative Example 6 38 Comparative Example 7 72
  • the capacity retention rate at a high temperature (45 ° C) of the lithium secondary battery manufactured according to the embodiment is higher than that of the capacity at a high temperature (45 ° C) of the lithium secondary battery manufactured according to the comparative example. You can confirm that.

Abstract

본 발명은 전극 집전체를 제1 전해질막 형성용 조성물에 침지시킨 후 전류를 가하여 제1 전해질막을 형성시키는 단계; 및 상기 제1 전해질막이 형성된 전극 집전체를 제2조성물에 침지시킨 후 전류를 가하여 제2 전해질막을 형성시키는 단계;를 포함하고, 상기 제1 전해질막 형성용 조성물 및 제2 전해질막 형성용 조성물 중 하나는 유기 전해질막 형성용 조성물이고, 다른 하나의 조성물은 무기 전해질막 형성용 조성물이며, 상기 무기 전해질막 형성용 조성물은 화학식 1로 표시되는 화합물을 포함하는 것인 리튬 이차 전지용 전극의 제조방법을 제공한다.

Description

리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
관련 출원(들)과의 상호 인용
본 출원은 2018년 10월 26일자 한국 특허 출원 제2018-0128788호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차 전지용 전극의 제조방법, 이를 이용하여 제조한 리튬 이차 전지용 전극에 관한 것으로, 보다 상세하게는, 유기 전해질막 및 무기 전해질막을 모두 전극 표면 상에 미리 형성시켜, 전극 계면 저항을 감소시킬 수 있는 리튬 이차 전지용 전극의 제조방법, 이를 이용하여 제조한 리튬 이차 전지용 전극에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이를 위해 개발된 기술 중 여러 용도에 가장 적합한 기술이 이차전지 기반 기술이다. 이차전지의 경우 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하며, 전기자동차, 전력 저장 장치 등에 적용될 수도 있기 때문에 이에 대한 관심이 대두되고 있다. 이런 이차전지 기술 중, 이론적으로 에너지 밀도가 가장 높은 전지 시스템인 리튬 이차 전지가 각광을 받고 있으며, 현재 여러 디바이스에 적용되고 있다.
일반적으로 음극의 전위는 리튬 이차 전지에 사용되는 전해질의 전위창(potential window)보다 낮으므로, 전해질은 전지의 활성화 또는 충/방전 단계에서 음극 상에서 환원되며 분해된다. 이렇게 환원 분해된 전해질의 산물은 리튬 이온은 투과시키지만, 전해질의 추가 분해반응은 억제시킬 수 있는 Solid Electrolyte Interphase (SEI) 막을 형성하게 된다.
한편, 리튬 이차 전지는, 충방전 혹은 저장 도중 전극의 계면 저항이 증가하고, 용량이 감퇴된다는 문제점이 존재한다. 이러한 문제의 원인 중 하나로 제시되고 있는 것이 전해질에 포함되어 있는 염의 추가 분해반응이다.
예를 들어, 리튬 이차 전지가 구동됨에 따라 음극 상에 SEI 막이 형성된 이후에도 전해질에 포함되어 있는 염이 추가 반응을 일으키게 되면, SEI 막의 일부분의 두께만이 더 두꺼워져 SEI 막의 두께가 불균일해질 수 있다. 한편, SEI 막이 전해질의 추가 반응에 의하여 초기에 형성된 SEI 막이 되려 손상될 수도 있다. 이로 인하여 전해질은 연쇄적인 분해반응을 일으킬 수 있고, 음극의 자가 방전을 유발시킬 수 있다.
또한, 상기 SEI 막이 불완전하게 형성되면, 전해액의 추가적인 분해반응을 억제시키지 못하고, SEI 막을 손상시킴과 동시에 계면 저항을 상승시켜, 전체 전지의 전위가 저하될 수 있고, 전지의 용량 특성이 저하될 수 있다. 특히, 전지가 과충전되는 경우, 전해액의 추가적인 분해반응이 더 활발하게 일어날 수 있어, 상기와 같은 문제점이 발생함은 물론, 계면 저항 상승에 따른 전지 내부의 발열, 발화 현상이 문제될 수 있다.
한편, 최근에는 전지의 안전성 개선을 위해 고체 폴리머 전해질, 고체 전해질을 전지에 적용하려는 연구가 활발하게 진행 중인데, 고체 형태의 전해질의 경우, 액체나 젤 형태의 전해질을 전지에 적용하는 경우보다 계면 저항에 더 크게 영향을 받게 되어 문제된다.
나아가, 최근에는 전해질 성분 관련, 유기 전해질 이외에 무기 전해질을 도입하려는 시도 또한 증가하고 있는데, 무기 전해질 또한 계면 저항에 더 크게 영향을 받는다는 문제도 존재한다.
따라서, 전극 상에 안정적인 유무기 전해질막을 먼저 형성한 뒤, 전지에 도입하여 전해질막이 손상되는 것을 억제시키는 방법을 고안해볼 수 있다.
선행기술문헌
대한민국 공개특허공보 제10-2016-0038735호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 전극의 표면에 화학적, 기계적으로 안정적인 유기 전해질막 및 무기 전해질막을 형성시켜, 계면 저항을 감소시키고, 용량 특성 및 수명 특성, 고온 안전성을 개선시킬 수 있는 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조된 리튬 이차 전지용 전극을 제공하기 위한 것이다.
일 측면에서, 본 발명은, 전극 집전체를 제1 전해질막 형성용 조성물에 침지시킨 후 전류를 가하여 제1 전해질막을 형성시키는 단계 및 상기 제1 전해질막이 형성된 전극 집전체를 제2 조성물에 침지시킨 후 전류를 가하여 제2 전해질막을 형성시키는 단계를 포함하고, 상기 제1 전해질막 형성용 조성물 및 제2 전해질막 형성용 조성물 중 하나는 유기 전해질막 형성용 조성물이고, 다른 하나의 조성물은 무기 전해질막 형성용 조성물이며, 상기 무기 전해질막 형성용 조성물은 하기 화학식 1로 표시되는 화합물을 포함하는 것인 리튬 이차 전지용 전극의 제조방법을 제공한다.
[화학식 1]
MM'Xn-m(SO2)
M은 Li, Na, K 및 Rb로 이루어진 군에서 선택되는 금속원소이고,
M'는 Al, Ga, In 및 Ti로 이루어진 군에서 선택되는 금속원소이며,
X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 할로겐 원소이고,
n은 1 내지 6인 정수이며, m은 1 내지 10인 정수이다.
예를 들어, 상기 제1 전해질막 형성용 조성물은 유기 전해질막 형성용 조성물이고, 상기 제2 전해질막 형성용 조성물은 무기 전해질막 형성용 조성물일 수 있다.
또 다른 예를 들어, 상기 제2 전해질막 형성용 조성물은 무기 전해질막 형성용 조성물이고, 상기 제2 전해질막 형성용 조성물은 유기 전해질막 형성용 조성물일 수 있다.
상기 유기 전해질막 형성용 조성물은 유기용매를 포함하고, 상기 유기용매는, 할로겐 원소가 치환 또는 비치환된 카보네이트계 화합물, 할로겐 원소가 치환 또는 비치환된 아세테이트계 화합물, 할로겐 원소가 치환 또는 비치환된 글라임계 화합물, 할로겐 원소가 치환 또는 비치환된 에테르계 화합물 및 할로겐 원소가 치환 또는 비치환된 니트릴계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함할 수 있다.
한편, 상기 유기 전해질막 형성용 조성물은 리튬염을 포함할 수 있다.
또한, 상기 유기 전해질막 형성용 조성물은, 첨가제를 더 포함하며, 상기 첨가제는, 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 프로판설톤, 프로펜설톤, 리튬 다이플루오로(옥살라토)포스페이트, 리튬 다이플루오로(옥살라토)보레이트, 리튬테트라플루오로옥살레이트포스페이트, 숙신나이트릴, 숙신산무수물, 에틸렌 설페이트, 에틸렌글리콜비스(프로피오나이트릴)에터, 리튬 테트라플루오로보레이트, 플루오로에틸렌 카보네이트 및 리튬다이플루오로포스페이트로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함할 수 있다.
예를 들어, 상기 화학식 1로 표시되는 화합물은, LiAlCl4-3(SO2) 및 NaAlCl4-2(SO2)로 이루어진 군에서 선택되는 하나 이상의 화합물일 수 있다.
이때, 상기 무기 전해질막 형성용 조성물은, 무기 이온성 액체를 더 포함할 수 있다.
또 다른 측면에서, 본 발명은, 전극 집전체 및 상기 전극 집전체 상에 유기 전해질막 및 무기 전해질막을 포함하고, 상기 무기 전해질막은 상기 화학식 1로 표시되는 화합물이 환원되어 형성되는 것인 리튬 이차 전지용 전극을 제공한다.
이때, 상기 유기 전해질막 및 무기 전해질막은 하나의 층에 혼재되어 존재할 수 있다.
본 발명에 따른 리튬 이차 전지용 전극의 제조방법을 사용하여 전극을 제조하게 되면, 이미 전극 상에 화학적, 기계적으로 안정적인 유기 전해질막 및 무기 전해질막이 모두 형성되어 있어, 전지 내 계면저항이 낮고, 전지의 고온 안전성 및 용량 특성 또한 우수하다.
이하, 본 발명에 대해 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
<리튬 이차 전지용 전극의 제조방법>
본 발명에 따른 리튬 이차 전지용 전극의 제조방법은
(1) 제1 전해질막 형성 단계, 및 (2) 제2 전해질막 형성 단계를 포함한다.
이하 각 단계 별로 설명한다.
(1) 제1 전해질막 형성 단계
먼저, 전극집전체 상에 제1 전해질막을 형성시키기 위해 사용되는 제1 전해질막 형성용 조성물을 준비한다.
상기 전극집전체로는 금속 박막 자체를 사용할 수도 있고, 전극 활물질층이 형성된 기재를 사용할 수도 있다.
상기 금속 박막에 사용되는 금속은 구리, 니켈 및 리튬으로 이루어진 군에서 선택되는 적어도 하나 이상의 금속 또는 이들의 조합을 포함할 수 있다.
한편, 상기 금속 박막은 단층 구조이거나 다층 구조일 수 있으며, 다층 구조의 금속 박막인 경우, 리튬을 포함하는 금속 층을 적어도 한 층 이상 포함할 수 있다.
구체적인 예를 들어, 상기 금속 박막이 구리 및 니켈로 이루어진 군에서 선택되는 적어도 하나 이상의 금속 또는 이들의 조합으로 구성되는 경우, 상기 금속 박막은 표면에 리튬을 포함하는 금속 층을 더 포함할 수 있다. 이때, 상기 리튬 금속 층을 더 포함하기 위한 방법으로는 금속 박막 상에 리튬 금속을 압연, 스퍼터링 또는 전해도금방식 등 통상의 금속 층을 형성하는 방법들을 제한 없이 사용할 수 있다.
상기와 같이 리튬 금속 층을 더 포함하는 금속 박막을 사용하는 경우, 전지가 충전되는 동안 리튬 이온(Li+)이 제1 전해질막을 통하여 유입되어 리튬 금속으로 증착(deposition)될 때, 표면 에너지 측면 상 리튬 금속 층을 포함하지 않는 금속 박막을 사용하는 경우보다 더 균일하게 증착될 수 있다. 이는 표면 에너지 측면상 침-유사(needle-like) 형태가 아닌, 입상 (granular) 또는 층 (layer) 형태의 리튬 금속으로 증착되기 때문이다.
한편, 전극 활물질층이 형성된 기재를 전극 집전체로 사용하는 경우, 기재는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 기재는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
제조하려는 리튬 이차 전지용 전극이 양극인 경우, 상기 전극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있고, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함한다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군에서 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자 분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
제조하려는 리튬 이차 전지용 전극이 음극인 경우, 상기 전극 활물질은 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물; 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군에서 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.
다음으로, 상기 제1 전해질막 형성용 조성물에 대하여 설명한다.
상기 제1 전해질막 형성용 조성물은 제1 전해질막을 형성하기 위한 것으로, 상기 제1 전해질막은 유기 전해질막 또는 무기 전해질막일 수 있다. 상기 제1 전해질막이 유기 전해질막인 경우에는 후술하는 제2 전해질막이 무기 전해질막이여야 하며, 상기 제1 전해질막이 무기 전해질막인 경우에는 후술하는 제2 전해질막이 유기 전해질막이어야 한다. 즉, 본 발명에 따라 제조되는 리튬 이차 전지용 전극은 유기 전해질막 및 무기 전해질막을 모두 포함하되, 그 순서는 특별히 제한되지 않는다.
예를 들어, 제1 전해질막으로 유기 전해질막이 먼저 형성되는 경우, 유기 전해질막 성분이 작업 전극의 계면 근처에 더 많이 분포할 수 있고, 반대로, 제1 전해질막으로 무기 전해질막이 먼저 형성되는 경우에는, 무기 전해질막 성분이 작업 전극의 계면 근처에 작업 전극의 계면 근처에 더 많이 분포할 수 있다. 따라서, 전해질막의 생성 순서에 따라 전극 계면 부근은 물론, 전해질막 내부에 포함되는 유기/무기 성분의 분포가 상이할 수 있다. 상기 유기 전해질막 형성 또는 무기 전해질막 형성 순서는 리튬 이차 전지의 적용 분야, 그에 따라 사용되는 리튬 이차 전지용 전해질의 종류에 따라 설정될 수 있다.
따라서, 상기 제1 전해질막 형성용 조성물은 유기 전해질막 형성용 조성물 또는 무기 전해질막 형성용 조성물일 수 있다. 이하, 각 전해질막 형성용 조성물에 대하여 설명한다.
상기 유기 전해질막 형성용 조성물은 환원 반응에 의하여 유기 전해질막을 형성하는 것으로서, 상기 전극들 사이에 이온을 전달하는 역할도 수행한다.
상기 유기 전해질막 형성용 조성물은 유기용매를 포함할 수 있다.
상기 유기용매는 할로겐 원소가 치환 또는 비치환된 카보네이트계 화합물, 할로겐 원소가 치환 또는 비치환된 아세테이트계 화합물, 할로겐 원소가 치환 또는 비치환된 글라임계 화합물, 할로겐 원소가 치환 또는 비치환된 에테르계 화합물 및 할로겐 원소가 치환 또는 비치환된 니트릴계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함할 수 있다. 상기 할로겐 원소는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이다.
이때, 할로겐 원소가 치환 또는 비치환된 카보네이트계 화합물의 경우, 크게 환형 카보네이트계 화합물 또는 선형 카보네이트계 화합물로 나눌 수 있다.
상기 환형 카보네이트계 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (fluoroethylene carbonate, FEC)으로 이루어진 군에서 선택되는 적어도 하나 이상을 들 수 있다.
또한, 상기 선형 카보네이트 화합물은 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 적어도 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 할로겐 원소가 치환 또는 비치환된 아세테이트계 화합물 또한 크게 환형 아세테이트계 화합물 또는 선형 아세테이트계 화합물로 나눌 수 있다.
상기 환형 아세테이트계 화합물의 구체적인 예로는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤과 같은 환형 에스테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
또한, 상기 선형 아세테이트계 화합물은 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트와 같은 선형 에스테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 글라임계 화합물은 글라임(glyme) 및 폴리 글라임(polyglyme) 화합물을 포함한다. 구체적인 예를 들어, 상기 글라임계 화합물은 디메틸에테르(CH3OCH3), 에틸렌글리콜 디메틸에테르(CH3OCH2CH2OCH3), 디에틸렌글리콜 디메틸에테르(CH3(OCH2CH2)2OCH3), 디에틸렌글리콜 디에틸에테르(C2H5(OCH2CH2)2OC2H5), 트리에틸렌글리콜 디메틸에테르(CH3(OCH2CH2)3OCH3), 트리에틸렌글리콜 디에틸에테르(C2H5(OCH2CH2)3OC2H5) 및 테트라에틸렌글리콜 디메틸에테르(CH3(OCH2CH2)4OCH3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 할로겐 원소가 치환 또는 비치환된 에테르 화합물로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르, 에틸프로필 에테르 및 2,2-비스(트리플루오로메틸)-1,3-디옥살란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 니트릴계 화합물로는, 아세토니트릴, 모노-니트릴, 디-니트릴 및 트리-니트릴으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
한편, 본 발명의 유기 전해질막 형성용 조성물은 리튬염을 포함할 수 있다.
상기 리튬염의 농도는 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 유기 전해질막 형성용 조성물 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다. 리튬염이 상기 농도 범위 내로 포함되는 경우, 리튬 이온이 충분히 공급되어, 리튬 이온 수율(Li+ transference number) 및 리튬 이온의 해리도가 향상될 수 있다.
상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 예를 들어, 양이온으로 Li+를 포함하고, 음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수 있다.
한편, 본 발명의 유기 전해질막 형성용 조성물은 첨가제를 더 포함할 수 있다. 상기 첨가제는 첨가제의 구체적인 예시로서, 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 프로판설톤, 프로펜설톤, 리튬 다이플루오로(옥살라토)포스페이트, 리튬 다이플루오로(옥살라토)보레이트, 리튬테트라플루오로옥살레이트포스페이트, 숙신나이트릴, 숙신산무수물, 에틸렌 설페이트, 에틸렌글리콜비스(프로피오나이트릴)에터, 리튬 테트라플루오로보레이트, 플루오로에틸렌 카보네이트 및 리튬다이플루오로포스페이트로 이루어진 군에서 선택되는 1종 이상의 화합물을 첨가제로 사용할 수 있다. 첨가제로서 상기 나열된 화합물들을 함께 사용하는 경우, 전극 상에 안정적인 전해질 막의 형성 반응이 더 원활하게 진행될 수 있다.
다음으로, 상기 무기 전해질막 형성용 조성물은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
MM'Xn-m(SO2)
M은 Li, Na, K 및 Rb로 이루어진 군에서 선택되는 금속원소이고,
M'는 Al, Ga, In 및 Ti로 이루어진 군에서 선택되는 금속원소이며,
X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 할로겐 원소이고,
n은 1 내지 6인 정수이며, m은 1 내지 10인 정수이다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은, LiAlCl4-3(SO2) 및 NaAlCl4-2(SO2)로 이루어진 군에서 선택되는 하나 이상의 화합물일 수 있다.
이때, 상기 무기 전해질막 형성용 조성물은 무기 이온성 액체를 더 포함할 수 있다.
구체적으로, 상기 무기 이온성 액체는 비스(플루오로설포닐)이미드(bis(fluorosulfonyl)imide, 이하 'FSI'라 약칭함), 비스(트리플루오르메틸설포닐)이미드(bis(trifluoromethylsulfonyl) imide, 이하 'TFSI'라 약칭함), 비스(펜타플로우로설포닐)이미드(bis(pentafluoroethylsulfonyl) imide, 이하 'PFSI'라 약칭함) 및 헥사플로우로포스포니움(hexafluorophosphate, 이하 'PF6'라 약칭함)로 이루어진 그룹 중에서 선택된 최소한 1종의 음이온을 포함할 수 있다.
또한, 상기 무기 이온성 액체는 N,N-디에틸-N-디에틸-N-메틸-N-(2-메톡시에틸)암모늄(N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium, 이하 'DEME'라 약칭함), N-에틸-N-메틸피롤리디니움(N-ethyl-N-methylpyrrolidinium, 이하 'P12'라 약칭함), N-메틸-N-프로필피롤리디니움(N-methyl-N-propylpyrrolidinium, 이하 'P13'이라 약칭함), N-부틸-N-메틸피롤리디니움(N-butyl-N-methylpyrrolidinium, 이하 'P14'라 약칭함), 1-에틸-2,3-디메틸이미다졸리움(1-ethyl-2,3-dimethylimidazolium, 이하 'C2dmim'라 약칭함), 2,3-디메틸-1-프로필이미다졸리움(2,3-dimethyl-1-propylimidazolium, 이하 'C3dmim'라 약칭함), 1-부틸-3-메틸이미다졸리움(1-butyl-3-methylimidazolium, 이하 'C4mim'라 약칭함), 1-부틸-2,3-디메틸이미다졸리움(1-butyl-2,3-dimethylimidazolium, 이하 'C4dmim'라 약칭함), N-메틸-N-프로필 피페리디니움(N-methyl-N-propyl piperidinium, 이하 'PP13'라 약칭함), N-부틸-N-메틸피페리디니움(N-butyl-N-methylpiperidinium, 이하 'PP14'라 약칭함), 트리에틸펜틸포스포니움(triethylpentylphosphonium, 이하 'P2225'라 약칭함) 및 트리에틸옥틸포스포니움(triethyloctylphosphonium, 이하 'P2228'라 약칭함)로 이루어진 그룹 중에서 선택된 최소한 1종의 양이온을 포함할 수 있다.
구체적으로, 상기 무기 이온성 액체로서, P12-FSI, P12-TFSI, P12-PFSI, P12-PF6, P13-FSI, P13-TFSI, P13-PFSI, P13-PF6, P14-FSI, P14-TFSI, P14-PFSI, P14-PF6, C2dmim-FSI, C2dmim-TFSI, C2dmim-PFSI, C2dmim-PF6, C3dmim-FSI, C3dmim-TFSI, C3dmim-PFSI, C3dmim-PF6, C4mim-FSI, C4mim-TFSI, C4mim-PFSI, C4mim-PF6, C4dmim-FSI, C4dmim-TFSI, C4dmim-PFSI, C4dmim-PF6, PP13-FSI, PP13-TFSI, PP13-PFSI, PP13-PF6, PP14-FSI, PP14-TFSI, PP14-PFSI, PP14-PF6, P2225-FSI, P2225-TFSI, P2225-PFSI, P2225-PF6, P2228-FSI, P2228-TFSI, P2228-PFSI 및 P2228-PF6 로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다.
또한, 상기 무기 이온성 액체로서, 무기 고분자 이온성 액체를 사용할 수 있다.
이후, 상기 전극집전체를 제1 전해질막 형성용 조성물에 침지시킨 후 전류를 가하여 제1 전해질막을 형성시킨다.
전류가 가해지는 동안 전극 집전체 계면에서 전기화학적 산화반응(oxidation, A→A++e-)이 일어나고, 제1 전해질막 형성용 조성물은 전극 집전체 계면에서 환원반응(reduction, B++e-→B)을 일으키면서 제1 전해질막을 형성하게 된다.
이때, 제조하려는 전극의 종류 또는 사용되는 전해질막 형성용 조성물의 성분 등에 따라서 가해지는 전류의 조건을 달라질 수 있으며, 전류 조건이 제한되지 않는다.
예를 들면, 전압이 OCV(Open Circuit Voltage)에서 -1V 내지 5.0V, 구체적으로 -0.2V 내지 4.5V, 더욱 구체적으로 0V 내지 1.5V 범위가 되도록 전류를 가할 수 있다.
리튬 이차 전지용 전극 상에 본 발명에 따른 별도의 전해질막 형성 처리 단계를 거치지 않고, 곧바로 완전 전지 형태로 조립한 뒤 초기 충전하는 경우(포메이션(formation) 단계)에서도 리튬 이차 전지용 전해질에 의하여 리튬 이차 전지용 전극 상에 전해질막은 형성될 수 있다.
다만, 전해질막을 구성하는 성분들의 경우, 전해질 조성에 따라 달라질 수 있는데, 리튬 이차 전지용 전해질은 전해질막 형성 이외에도 전지의 다른 성능 또한 고려해야 하므로, 초기 충전 단계에서 전해질막이 형성되는 도중 전해질의 용매가 먼저 분해되는 등 부반응이 발생할 수 있다. 이러한 부반응에 의하여 초기 충전 단계에서의 전해질막은 안정적이고 균일하게 형성되지 않는다는 문제점이 있었다.
이때, 리튬 이차 전지용 전극 표면 상에 안정적으로 전해질막이 형성되지 않는 경우, 전해질막이 전극/전해질 간의 추가적인 계면 반응을 억제시키지 못하고 이온의 흐름 또한 조절할 수 없어, 고온 조건 및/또는 과충전 조건 등에서 전해질막이 쉽게 붕괴될 수 있다. 전해질막이 붕괴되면, 전극/전해질 계면반응을 억제시키지 못하여, 부반응에 따른 발열, 열폭주 현상까지 발생할 수 있으므로, 리튬 이차 전지의 수명특성이 열화됨은 물론, 고온에서의 안전성 또한 저하될 수 있다.
따라서, 본 발명의 경우, 전해질막이 이미 형성된 전극을 리튬 이차 전지용 전극으로 사용하여 상기와 같은 문제점을 극복하였다. 또한, 본 발명의 경우, 유기 전해질막 및 무기 전해질막도 함께 형성되어 화학적 및 기계적 성능 또한 개선될 수 있다.
상기 제1 전해질막이 전극 집전체 상에 형성된 후, 상기 전극 집전체를 분리한다. 분리하는 과정에서, 전극 집전체를 건조하거나, 불순물들을 제거하기 위한 세척 공정 등을 추가적으로 더 거칠 수 있으나, 특정 공정에 한정되는 것은 아니며, 제한 없이 처리 공정을 거칠 수 있다.
(2) 제2 전해질막 형성 단계
다음으로, 상기 제2 전해질막을 형성하는 단계에 대해 설명한다.
일반적으로, 리튬 이차 전지용 전해질은 유기 화합물 및 무기 화합물 간의 용해성을 고려하여, 유기 전해질 또는 무기 전해질을 단독으로 사용한다. 따라서, 리튬 이차 전지의 포메이션 단계를 통해 형성되는 전해질막은 유기 전해질막 또는 무기 전해질막으로 형성되는 한계가 존재한다.
다만, 유기 전해질을 사용하는 경우에도, LiF와 같은 무기 전해질 성분 일부가 전해질 막 내에 포함될 수는 있는데, 무기 전해질을 사용할 때에만 형성될 수 있는 무기 화합물 성분은 유기 전해질을 사용하는 경우에는 전해질 막 내에 포함될 수 없어 리튬 이차 전지의 화학적, 기계적 안전성이 상대적으로 낮다. 한편, 무기 전해질만을 단독으로 사용하는 경우에는, 전지 저항이 유기 전해질을 사용하는 경우보다 높아 리튬 이차 전지의 구동성이 낮다는 문제점이 있다.
본 발명의 경우, 리튬 이차 전지용 전극에 미리 형성되는 전해질막의 성분이 유기 화합물 및 무기 화합물의 환원반응물을 모두 포함하고 있어, 리튬 이차 전지용 전해질로서 유기화합물만을 포함하는 경우에도, 전해질막 내에 무기 화합물의 환원반응물이 포함되어 기계적 성능이 더 개선될 수 있고, 리튬 이차 전지용 전해질로서 무기화합물만을 포함하는 경우에도, 전해질막 내에 유기 화합물의 환원반응물이 포함되어 이온전도성 등이 더 개선될 수 있다.
따라서, 리튬 이차 전지용 전해질로서, 어떠한 것을 사용하는 경우에도 전극 계면 상에 형성된 전해질막 성분은 유무기 화합물을 모두 포함하고 있으므로, 리튬 이차 전지 내의 화학적, 기계적 안전성이 개선될 수 있다.
상기 제1 전해질막을 형성하기 위하여 유기 전해질막 형성용 조성물을 사용한 경우에는 상기 제2 전해질막을 형성하기 위해서는 무기 전해질막 형성용 조성물을 사용한다. 반대로, 상기 제1 전해질막을 형성하기 위하여 무기 전해질막 형성용 조성물을 사용한 경우에는 상기 제2 전해질막을 형성하기 위해서는 유기 전해지말 형성용 조성물을 사용한다. 상기 유기 전해질막 형성용 조성물 및 무기 전해질막 형성용 조성물에 대해서는 상술한 내용과 동일한 바 기재를 생략한다.
한편, 상기 제2 전해질막 형성용 조성물이 무기 전해질막 형성용 조성물인 경우에도 제조하려는 전극의 종류 또는 사용되는 전해질막 형성용 조성물의 성분 등에 따라서 가해지는 전류의 조건을 달라질 수 있으며, 전류 조건이 제한되지 않는데, 예를 들면, 전압이 OCV(Open Circuit Voltage)에서 -1V 내지 5.0V, 구체적으로 -0.2V 내지 4.5V, 더욱 구체적으로 0V 내지 1.5V 범위가 되도록 전류를 가할 수 있다.
상기 제2 전해질막을 형성시킨 후, 상기 전극 집전체를 분리한다. 분리하는 과정에서, 전극 집전체를 건조하거나, 불순물들을 제거하기 위한 세척 공정 등을 추가적으로 더 거칠 수 있으나, 특정 공정에 한정되는 것은 아니며, 제한 없이 처리 공정을 거칠 수 있다.
<리튬 이차 전지용 전극>
본 발명에 따른 리튬 이차 전지용 전극은 전극 집전체 및 상기 전극 집전체 상에 형성된 유기 전해질막 및 무기 전해질막을 포함한다.
이때, 상기 유기 전해질막은 유기 전해질막 형성용 조성물이 환원되어 형성되는 것이고, 상기 무기 전해질막은 하기 화학식 1로 표시되는 화합물을 포함하는 무기 전해질막 형성용 조성물이 환원되어 형성되는 것이다. 예를 들어, 하기 화학식 1로 표시되는 화합물이 환원되어 형성되는 화합물로서는, LiCl, Li2SO4, Al2O3 등이 있으며, 상기 나열된 화합물들로 한정되는 것은 아니다.
한편, 상기 전극 집전체, 유기 전해질막 형성용 조성물 및 무기 전해질막 형성용 조성물 및 환원과정에 대해서는 이미 상술한 내용과 동일하므로 기재를 생략한다.
[화학식 1]
MM'Xn-m(SO2)
M은 Li, Na, K 및 Rb로 이루어진 군에서 선택되는 금속원소이고,
M'는 Al, Ga, In 및 Ti로 이루어진 군에서 선택되는 금속원소이며,
X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 할로겐 원소이고,
n은 1 내지 6인 정수이며, m은 1 내지 10인 정수이다.
본 발명에 따른 리튬 이차 전지용 전극은 양극 또는 음극일 수 있으며, 양극과 음극에 모두 사용될 수도 있다.
한편, 상기 유기 전해질막과 무기 전해질막은 각각 별도의 층을 형성하고 있을 수도 있고, 유기 전해질막과 무기 전해질막이 하나의 층에 혼재되어 존재할 수도 있다. 유기 전해질막과 무기 전해질막이 하나의 층에 혼재되어 존재할 경우,
유기 전해질막과 무기 전해질막이 명확하게 구별되지 않으나, 전극 집전체 계면을 기준으로 전해질막 내부의 성분의 분포도에 차이가 있을 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
[실시예]
실시예 1.
상대전극으로 리튬 금속 박막을 준비하고, 기준전극으로 리튬 금속 박막을, 작업전극으로 구리 금속 박막을 준비한 뒤, 플루오로에틸렌카보네이트(FEC):에틸렌카보네이트(EC):에틸메틸카보네이트(EMC)=0.5:2.5:7 부피비로 혼합된 용매에 LiPF6가 1M 농도가 되도록 혼합한 뒤(10g) 첨가제로서 비닐렌카보네이트(VC)를 1 중량%로 첨가한 것을 유기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 유기 전해질막 형성용 조성물에 침지시킨 뒤 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가하여 유기 전해질막을 형성하였다.
그런 다음, 유기 전해질막이 형성된 작업전극을 분리한 후 상기 유기 전해질막이 형성된 구리 금속 박막을 작업전극으로, 상대전극으로 리튬 금속 박막, 기준전극으로 리튬 금속 박막을 준비한 뒤, LiAlCl4-3(SO2) 용액 10g을 무기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 무기 전해질막 형성용 조성물에 침지시킨뒤, 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가하여 무기 전해질막을 형성하였다. 이후, 작업전극을 분리한 후 건조시켜 리튬 이차 전지용 음극을 제조하였다.
실시예 2.
작업전극으로서 리튬 금속이 증착된 구리 금속 박막을 사용하고, 유기 전해질막 및 무기 전해질막을 형성할 때, 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 3.
작업전극으로서 흑연전극을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 4.
유기 전해질막 형성용 조성물의 용매로서, 플루오로에틸렌카보네이트(FEC):에틸렌카보네이트(EC):에틸메틸카보네이트 (EMC): 2,2-비스(트리플루오로메틸)-1,3-디옥살란(TFDOL)=0.5:2.5:6:1 부피비로 혼합된 용매를사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 5.
유기 전해질막 형성용 조성물의 첨가제로서, 비닐렌카보네이트(VC) 1 중량%, 리튬디플루오로(옥살레이트)포스페이트(LiDFOP) 0.5 중량% 및 1,3-프로펜설톤(PRS) 1 중량%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 6.
무기 전해질막 형성용 조성물에 무기 이온성 액체로서 (N-butyl-N-methylpyrrolidinium)-FSI(P14-FSI)를 30 중량% 더 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 7.
유기 전해질막을 형성할 때, 전압이 OCV(Open Circuit Voltage)에서 0V가 되도록 전류를 가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 8.
무기 전해질막을 형성할 때, 전압이 OCV(Open Circuit Voltage)에서 0V가 되도록 전류를 가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 9.
상대전극으로 리튬 금속 박막을 준비하고, 기준전극으로 리튬 금속 박막을, 작업전극으로 구리 금속 박막을 준비한 뒤, LiAlCl4-3(SO2) 용매를 10g 첨가한 것을 무기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 무기 전해질막 형성용 조성물에 침지시킨 뒤, 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가한 것을 제외하고는 무기 전해질막을 형성시켰다. 이후, 무기 전해질막이 형성된 작업전극을 분리한 후 건조시켰다.
그런 다음, 상기 무기 전해질막이 형성된 구리 금속 박막을 작업전극으로, 상대전극으로 리튬 금속 박막, 기준전극으로 리튬 금속 박막을 준비한 뒤, 용매 플루오로에틸렌카보네이트(FEC):에틸렌카보네이트(EC):에틸메틸카보네이트(EMC)=0.5:2.5:7 부피비로 혼합된 용매에 LiPF6가 1M 농도가 되도록 혼합한 뒤(10g) 첨가제로서 비닐렌카보네이트(VC)를 1 중량%로 첨가한 것을 유기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 유기 전해질막 형성용 조성물에 침지시킨 뒤 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가한 것을 제외하고는 유기 전해질막을 형성시켰다. 이후 작업전극을 분리한 후 건조시켜 리튬 이차 전지용 음극을 제조하였다.
실시예 10.
작업전극으로서 리튬 금속이 증착된 구리 금속 박막을 사용하고, 유기 전해질막 및 무기 전해질막을 형성할 때, 전압이 OCV(Open Circuit Voltage)에서 -0.2V가 되도록 전류를 가한 것을 제외하고는 실시예 9와 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 11.
유기 전해질막 형성용 조성물로서 디메틸에테르(DME)에 리튬비스(플루오로설포닐)이미드(LiFSI)가 3M 농도가 되도록 혼합한 뒤(10g) 첨가제로서 비닐렌카보네이트(VC)를 1 중량%로 첨가하여 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 12.
유기 전해질막 형성용 조성물의 첨가제로서, 비닐렌카보네이트(VC) 1 중량%, 리튬디플루오로(옥살레이트)포스페이트(LiDFOP) 0.5 중량% 및 LiBr 1 중량%를 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 13.
무기 전해질막 형성용 조성물로서 (1-butyl-3-methylimidazolium bis(fluorosulfonyl)imidazolium)-FSI(C4mim-FSI)를 20 중량% 더 첨가한 것을 제외하고는 실시예 9와 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 14.
무기 전해질막을 형성할 때, 전압이 OCV(Open Circuit Voltage)에서 -0.2V가 되도록 전류를 가한 것을 제외하고는 실시예 9와 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 15.
유기 전해질막을 형성할 때, 전압이 OCV(Open Circuit Voltage)에서 -0.2V가 되도록 전류를 가한 것을 제외하고는 실시예 9와 동일한 방법으로 리튬 이차 전지용 음극을 제조하였다.
실시예 16.
용제인 N-메틸-2-피롤리돈 (NMP)에 양극 활물질 (((Li(Ni0.8Co0.1Mn0.1)O2), NCM811): 도전재 (번들형 탄소 나노튜브): 바인더 (폴리비닐리덴플루오라이드 (PVDF))를 97.7:0.3:2 중량비로 혼합하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛인 알루미늄 박막에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극 집전체를 제조하였다.
이후, 상대전극으로 리튬 금속 박막을 준비하고, 기준전극으로 리튬 금속 박막을, 작업전극으로 상기 양극 집전체를 준비한 뒤, 플루오로에틸렌카보네이트(FEC):에틸렌카보네이트(EC):에틸메틸카보네이트(EMC)=0.5:2.5:7 부피비로 혼합된 용매에 LiPF6가 1M 농도가 되도록 혼합한 뒤(10g) 첨가제로서 비닐렌카보네이트(VC)를 1 중량%로 첨가한 것을 유기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 유기 전해질막 형성용 조성물에 침지시킨 뒤 전압이 OCV(Open Circuit Voltage)에서 4.25V가 되도록 전류를 가하여 유기 전해질막을 형성하였다.
그런 다음, 유기 전해질막이 형성된 작업전극을 분리한 후 상기 유기 전해질막이 형성된 구리 금속 박막을 작업전극으로, 상대전극으로 리튬 금속 박막, 기준전극으로 리튬 금속 박막을 준비한 뒤, LiAlCl4-3(SO2) 용액 10g을 무기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 무기 전해질막 형성용 조성물에 침지시킨뒤, 전압이 OCV에서 4.25V가 되도록 전류를 가하여 무기 전해질막을 형성하였다. 이후, 작업전극을 분리한 후 건조시켜 리튬 이차 전지용 양극을 제조하였다.
[비교예]
비교예 1.
구리 금속 박막(두께: 20㎛)을 리튬 이차 전지용 음극으로 준비하였다.
비교예 2.
리튬 금속이 표면에 증착된 구리 금속 박막(두께: 20 ㎛)을 리튬 이차 전지용 음극으로 준비하였다.
비교예 3.
실리콘(Si) 전극을 리튬 이차 전지용 음극으로 준비하였다.
비교예 4.
그라파이트(Graphite) 전극을 리튬 이차 전지용 음극으로 준비하였다.
비교예 5.
상대전극으로 리튬 금속 박막을 준비하고, 기준전극으로 리튬 금속 박막을, 작업전극으로 구리 금속 박막을 준비한 뒤, 플루오로에틸렌카보네이트(FEC):에틸렌카보네이트(EC):에틸메틸카보네이트(EMC)=0.5:2.5:7 부피비로 혼합된 용매에 LiPF6가 1M 농도가 되도록 혼합한 뒤(10g) 첨가제로서 비닐렌카보네이트(VC)를 1 중량%로 첨가한 것을 유기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 유기 전해질막 형성용 조성물에 침지시킨 뒤 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가하여 유기 전해질막을 형성하였다.
그런 다음, 유기 전해질막이 형성된 작업전극을 분리하여 유기 전해질막만이 형성된 리튬 이차 전지용 음극으로 준비하였다.
비교예 6.
상대전극으로 리튬 금속 박막을 준비하고, 기준전극으로 리튬 금속 박막을, 작업전극으로 구리 금속 박막을 준비한 뒤, LiAlCl4-3(SO2) 용액 10g을 무기 전해질막 형성용 조성물로서 준비한다.
상기 상대전극, 기준전극과 작업전극을 순서대로 배치시킨 뒤, 상기 무기 전해질막 형성용 조성물에 침지시킨 뒤, 전압이 OCV(Open Circuit Voltage)에서 0.2V가 되도록 전류를 가하여 무기 전해질막을 형성시켰다. 이후, 무기 전해질막이 형성된 작업전극을 분리한 후 건조시켜 무기 전해질막만이 형성된 리튬 이차 전지용 음극으로 준비하였다.
비교예 7.
용제인 N-메틸-2-피롤리돈 (NMP)에 양극 활물질 (((Li(Ni0.8Co0.1Mn0.1)O2), NCM811): 도전재 (번들형 탄소 나노튜브): 바인더 (폴리비닐리덴플루오라이드 (PVDF))를 97.7:0.3:2 중량비로 혼합하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛인 알루미늄 박막에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극 집전체를 제조하였다. 상기 양극 집전체를 리튬 이차 전지용 양극으로 준비하였다.
[리튬 이차 전지 제조]
(1) 실시예 1~15 및 비교예 1~6에 따른 리튬 이차 전지 제조
양극 활물질로 4.2V급 LiCoO2 화합물 94 중량%, 도전재로 카본 블랙 4 중량%, 바인더 성분으로 PVDF 2 중량%를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 양극활물질 슬러리를 제조하였다. 20㎛ 두께의 알루미늄(Al) 박막 표면에 상기 양극 활물질 슬러리를 10㎛ 두께로 도포한 후 건조하여 양극 활물질 층이 형성된 리튬 이차 전지용 양극을 제조하였다.
리튬 이차 전지용 전해질로서 플루오르에틸렌카보네이트(FEC), 에틸렌카보네이트(EC) 및 에틸메틸카보네이트(EMC)가 5:25:70 부피비로 혼합된 전해액에 LiPF6를 1M 농도가 되도록 첨가한 후, 첨가제로서 비닐렌카보네이트(VEC)를 전해액 전체 중량에 대하여 1 중량% 첨가하였다.
분리막으로서 폴리에틸렌(PE) 시트를 준비하였다. 상기 제조된 양극과, 분리막 및 상기 실시예 1~16 및 비교예 1~6에 따라 제조된 음극을 순서대로 적층하여 전극조립체를 제조한 다음, 상기 전극조립체를 파우치형 전지케이스에 수납한 뒤 리튬 이차 전지용 전해질을 주액하여 각각의 실시예 및 비교예에 따른 4.2V 급 리튬 이차 전지(Full cell)를 제조하였다.
(2) 실시예 16 및 비교예 7에 따른 리튬 이차 전지 제조
용제인 증류수에 음극 활물질 (그래파이트): 도전재 (카본 블랙): 바인더 (폴리비닐리덴플루오라이드 (PVDF))가 97:0.5:2.5 중량비로 혼합된 혼합물을 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질를 두께가 10㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
리튬 이차 전지용 전해질로서 플루오르에틸렌카보네이트(FEC), 에틸렌카보네이트(EC) 및 에틸메틸카보네이트(EMC)가 5:25:70 부피비로 혼합된 전해액에 LiPF6를 1M 농도가 되도록 첨가한 후, 첨가제로서 비닐렌카보네이트(VEC)를 전해액 전체 중량에 대하여 1 중량% 첨가하였다.
분리막으로서 폴리에틸렌(PE) 시트를 준비하였다. 상기 제조된 음극, 분리막 및 상기 실시예 16 및 비교예 7에 따라 제조된 양극을 순서대로 적층하여 전극조립체를 제조한 다음, 상기 전극조립체를 파우치형 전지케이스에 수납한 뒤 리튬 이차 전지용 전해질을 주액하여 각각의 실시예 16 및 비교예 7에 따른 4.2V 급 리튬 이차 전지(Full cell)를 제조하였다.
[실험예]
실험예 1: 계면 저항 측정 실험
상기 실시예 1 내지 15에서 제조된 리튬 이차 전지와 비교예 1 내지 6에 따라 제조된 리튬 이차 전지를 200mA 전류(0.1 C rate)로 포메이션(formation)하고, 약 25℃에서 2일 동안 숙성(aging)한 다음, 탈기(degassing) 공정을 실시하였다.
그런 다음, 등급 설정(grading) 전에 Biologic VMP3 장치(1MHz ~ 100uHz 범위, 25℃ 조건)를 이용하여 계면 저항을 측정하였다. 이때, 측정된 실시예 1의 계면 저항을 기준 계면저항으로 하고, 기준 계면저항 대비 각각의 계면 저항들을 비교한 결과를 하기 표 1에 나타내었다.
계면저항 비율((%), 실시예 1 기준)
실시예 1 100
실시예 2 80
실시예 3 42
실시예 4 81
실시예 5 85
실시예 6 109
실시예 7 101
실시예 8 102
실시예 9 100
실시예 10 80
실시예 11 75
실시예 12 83
실시예 13 112
실시예 14 100
실시예 15 100
비교예 1 200
비교예 2 160
비교예 3 250
비교예 4 150
비교예 5 138
비교예 6 146
상기 표 1을 참조하면, 실시예에 따라 제조된 리튬 이차 전지의 계면저항 비율이 비교예에 따라 제조된 리튬 이차 전지 계면저항 비율보다 더 낮은 것을 확인할 수 있다.
실험예 2. 리튬 이차 전지의 용량 평가
상기 실시예 1 내지 16에서 제조된 리튬 이차 전지와 비교예 1 내지 7에 따라 제조된 리튬 이차 전지를 200mA 전류(0.1 C rate)로 포메이션하고, 약 25℃에서 2일 동안 숙성한 다음, 탈기 공정을 실시하였다.
그런 다음, 상온(25℃) 및 고온(45℃) 온도 조건에서 각각 실시예 1 내지 16에서 제조된 리튬 이차 전지와 비교예 1 내지 7에 따라 제조된 리튬 이차 전지를 4.2 V 400mA (0.2 C, 0.05 C cut-off) CC/CV 충전과 3 V 1000 mA (0.5 C) CC 방전을 실시하여 용량을 측정하고, 측정된 실시예 1의 용량을 기준 용량으로 하여, 기준 용량 대비 각각의 용량을 비교한 값을 하기 표 2에 나타내었다.
용량 비율 ((%), 실시예 1 기준)
상온(25℃) 고온(45℃)
실시예 1 100 100
실시예 2 105 110
실시예 3 102 103
실시예 4 101 102
실시예 5 100 100
실시예 6 98 99
실시예 7 100 100
실시예 8 100 100
실시예 9 100 100
실시예 10 103 108
실시예 11 101 97
실시예 12 99 102
실시예 13 95 97
실시예 14 100 100
실시예 15 100 100
실시예 16 97 99
비교예 1 76 55
비교예 2 48 24
비교예 3 52 21
비교예 4 63 60
비교예 5 81 62
비교예 6 78 65
비교예 7 94 92
상기 표 2를 참조하면, 실시예에 따라 제조된 리튬 이차 전지의 용량 비율이 비교예에 따라 제조된 리튬 이차 전지 용량비율보다 상온(25℃) 및 고온(45℃) 조건에서 모두 더 높은 것을 확인할 수 있다.
실험예 3: 전지 고온 사이클(수명) 측정 실험
실시예 1 내지 16에서 제조된 리튬 이차 전지와 비교예 1 내지 7에서 제조된 리튬 이차 전지 각각에 대하여 200mA 전류(0.1 C rate)로 포메이션하고, 약 25℃에서 2일 동안 숙성한 다음, 탈기 공정을 실시하였다.
그런 다음, 4.2 V 400mA (0.2 C, 0.05 C cut-off) CC/CV 충전과 3 V 1000 mA (0.5 C) CC 방전을 1 사이클로 하여, 고온(45℃)에서 50회 사이클을 진행하였다. 이후 50번째 방전 용량과 첫 번째 초기용량(1회 충방전을 진행한 상태에서의 방전용량)을 이용하여 용량 유지율을 계산하고 그 결과를 표 3에 나타내었다.
50 사이클 후 용량 유지율(%,고온(45℃))
실시예 1 91
실시예 2 93
실시예 3 93
실시예 4 95
실시예 5 96
실시예 6 90
실시예 7 91
실시예 8 91
실시예 9 92
실시예 10 93
실시예 11 97
실시예 12 95
실시예 13 87
실시예 14 91
실시예 15 91
실시예 16 95
비교예 1 0.2
비교예 2 5
비교예 3 0.5
비교예 4 7
비교예 5 62
비교예 6 38
비교예 7 72
상기 표 3을 참조하면, 실시예에 따라 제조된 리튬 이차 전지의 고온(45℃)에서의 용량 유지율이 비교예에 따라 제조된 리튬 이차 전지의 고온(45℃)에서의 용량 유지율보다 모두 더 높은 것을 확인할 수 있다.
실험예 4: 고온 안전성 평가 (핫 박스 테스트: HOT box test)
실시예 1 내지 16, 비교예 1 내지 7에서 제조된 각각의 리튬 이차 전지를 SOC(State Of Charge) 100%로 만충시킨 뒤, 리튬 이차 전지를 각각 150℃에서 4시간 동안 방치하여 발화되는지 여부 및 그 발화가 시작되는 시간을 확인하는 실험을 실시하였다. 그 결과를 하기 표 4에 나타내었다.
발화 여부 발화 시작 시간(분)
실시예 1 × -
실시예 2 × -
실시예 3 × -
실시예 4 × -
실시예 5 × -
실시예 6 × -
실시예 7 × -
실시예 8 × -
실시예 9 × -
실시예 10 × -
실시예 11 O 200
실시예 12 × -
실시예 13 × -
실시예 14 × -
실시예 15 × -
실시예 16 × -
비교예 1 O 20
비교예 2 O 30
비교예 3 O 30
비교예 4 O 45
비교예 5 O 75
비교예 6 O 150
비교예 7 O 120
상기 표 4를 참조하면, 실시예에 따라 제조된 리튬 이차 전지의 경우, 실시예 11을 제외하고 모두 발화되지 않은 반면, 비교예에 따라 제조된 리튬 이차 전지의 경우, 모두 발화가 진행되었음을 확인할 수 있다. 한편, 실시예 11의 경우, 발화가 진행되었지만, 발화 시작 시간이 비교예들에 비해서는 더 늦은 것을 확인할 수 있다.

Claims (10)

  1. 전극 집전체를 제1 전해질막 형성용 조성물에 침지시킨 후 전류를 가하여 제1 전해질막을 형성시키는 단계; 및
    상기 제1 전해질막이 형성된 전극 집전체를 제2조성물에 침지시킨 후 전류를 가하여 제2 전해질막을 형성시키는 단계;를 포함하고,
    상기 제1 전해질막 형성용 조성물 및 제2 전해질막 형성용 조성물 중 하나는 유기 전해질막 형성용 조성물이고, 다른 하나는 무기 전해질막 형성용 조성물이며,
    상기 무기 전해질막 형성용 조성물은 하기 화학식 1로 표시되는 화합물을 포함하는 것인 리튬 이차 전지용 전극의 제조방법:
    [화학식 1]
    MM'Xn-m(SO2)
    M은 Li, Na, K 및 Rb로 이루어진 군에서 선택되는 금속원소이고,
    M'는 Al, Ga, In 및 Ti로 이루어진 군에서 선택되는 금속원소이며,
    X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 할로겐 원소이고,
    n은 1 내지 6인 정수이며,
    m은 1 내지 10인 정수이다.
  2. 제1항에 있어서,
    상기 제1 전해질막 형성용 조성물은 유기 전해질막 형성용 조성물이고,
    상기 제2 전해질막 형성용 조성물은 무기 전해질막 형성용 조성물인 것인 리튬 이차 전지용 전극의 제조방법.
  3. 제1항에 있어서,
    상기 제1 전해질막 형성용 조성물은 무기 전해질막 형성용 조성물이고,
    상기 제2 전해질막 형성용 조성물은 유기 전해질막 형성용 조성물인 것인 리튬 이차 전지용 전극의 제조방법.
  4. 제1항에 있어서,
    상기 유기 전해질막 형성용 조성물은 유기용매를 포함하고,
    상기 유기용매는 할로겐 원소가 치환 또는 비치환된 카보네이트계 화합물, 할로겐 원소가 치환 또는 비치환된 아세테이트계 화합물, 할로겐 원소가 치환 또는 비치환된 글라임계 화합물, 할로겐 원소가 치환 또는 비치환된 에테르계 화합물 및 할로겐 원소가 치환 또는 비치환된 니트릴계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함하는 것인 리튬 이차 전지용 전극의 제조방법.
  5. 제1항에 있어서,
    상기 유기 전해질막 형성용 조성물은 리튬염을 포함하는 것인 리튬 이차 전지용 전극의 제조방법.
  6. 제1항에 있어서,
    상기 유기 전해질막 형성용 조성물은 첨가제를 더 포함하며,
    상기 첨가제는 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 프로판설톤, 프로펜설톤, 리튬 다이플루오로(옥살라토)포스페이트, 리튬 다이플루오로(옥살라토)보레이트, 리튬테트라플루오로옥살레이트포스페이트, 숙신나이트릴, 숙신산무수물, 에틸렌 설페이트, 에틸렌글리콜비스(프로피오나이트릴)에터, 리튬 테트라플루오로보레이트, 플루오로에틸렌 카보네이트 및 리튬다이플루오로포스페이트로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함하는 것인 리튬 이차 전지용 전극의 제조방법.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 LiAlCl4-3(SO2) 및 NaAlCl4-2(SO2)로 이루어진 군에서 선택되는 하나 이상의 화합물인 것인 리튬 이차 전지용 전극의 제조방법.
  8. 제1항에 있어서,
    상기 무기 전해질막 형성용 조성물은 무기 이온성 액체를 더 포함하는 것인 리튬 이차 전지용 전극의 제조방법.
  9. 전극 집전체 및 상기 전극 집전체 상에 유기 전해질막 및 무기 전해질막을 포함하고,
    상기 무기 전해질막은 하기 화학식 1로 표시되는 화합물이 환원되어 형성되는 것인 리튬 이차 전지용 전극:
    [화학식 1]
    MM'Xn-m(SO2)
    M은 Li, Na, K 및 Rb로 이루어진 군에서 선택되는 금속원소이고,
    M'는 Al, Ga, In 및 Ti로 이루어진 군에서 선택되는 금속원소이며,
    X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 할로겐 원소이고,
    n은 1 내지 6인 정수이며,
    m은 1 내지 10인 정수이다.
  10. 제9항에 있어서,
    상기 유기 전해질막 및 무기 전해질막은 하나의 층에 혼재되어 존재하는 것인 리튬 이차 전지용 전극.
PCT/KR2019/013780 2018-10-26 2019-10-18 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극 WO2020085726A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19875433.5A EP3855535A4 (en) 2018-10-26 2019-10-18 A METHOD OF MANUFACTURING AN ELECTRODE FOR A LITHIUM SECONDARY BATTERY AND AN ELECTRODE FOR A LITHIUM SECONDARY BATTERY MANUFACTURED THEREOF
CN201980070826.6A CN113544880A (zh) 2018-10-26 2019-10-18 制备用于锂二次电池的电极的方法以及通过使用该方法制得的用于锂二次电池的电极
US17/288,396 US20210359287A1 (en) 2018-10-26 2019-10-18 Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared by using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180128788A KR102594515B1 (ko) 2018-10-26 2018-10-26 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
KR10-2018-0128788 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085726A1 true WO2020085726A1 (ko) 2020-04-30

Family

ID=70331621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013780 WO2020085726A1 (ko) 2018-10-26 2019-10-18 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극

Country Status (5)

Country Link
US (1) US20210359287A1 (ko)
EP (1) EP3855535A4 (ko)
KR (1) KR102594515B1 (ko)
CN (1) CN113544880A (ko)
WO (1) WO2020085726A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210336296A1 (en) * 2020-04-26 2021-10-28 International Business Machines Corporation Electrolyte compositions for rechargeable metal halide battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091659A (ko) * 2008-02-25 2009-08-28 주식회사 엘지화학 LiF계 화합물로 코팅된 음극 및 그 제조방법과 상기 음극을 포함하는 리튬이온 이차전지
KR101346414B1 (ko) * 2013-02-15 2014-01-16 한양대학교 산학협력단 겔 폴리머 전해질 및 이를 이용한 리튬이차전지
KR20160032773A (ko) * 2014-09-16 2016-03-25 전자부품연구원 이산화황 기반의 갈륨계 무기 전해질을 포함하는 전해액 및 그를 갖는 나트륨-이산화황 이차 전지
KR20160038735A (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 리튬 이차전지의 제조방법
JP2016058250A (ja) * 2014-09-10 2016-04-21 セイコーエプソン株式会社 リチウム電池用電極体及びリチウム電池
KR20170024862A (ko) * 2015-08-26 2017-03-08 주식회사 엘지화학 유무기 복합 고체 전지
KR20170092327A (ko) * 2016-02-03 2017-08-11 삼성전자주식회사 고체 전해질, 이를 포함하는 리튬전지
KR20180020631A (ko) * 2016-08-19 2018-02-28 한국기술교육대학교 산학협력단 알칼리-이산화황 전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891281A (en) * 1982-08-09 1990-01-02 Duracell Inc. Electrochemical cells having low vapor pressure complexed SO2 electrolytes
US4869977A (en) * 1988-04-25 1989-09-26 Amoco Corporation Electrolyte additive for lithium-sulfur dioxide electrochemical cell
WO2000044061A1 (de) * 1999-01-23 2000-07-27 Fortu Bat Batterien Gmbh Nichtwässrige elektrochemische zelle
KR101797271B1 (ko) * 2014-09-26 2017-11-13 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
CN108063271A (zh) * 2016-11-09 2018-05-22 微宏动力系统(湖州)有限公司 一种半液流电池
US10700377B2 (en) * 2017-01-17 2020-06-30 Samsung Electronics Co., Ltd. Solid electrolyte for a negative electrode of a secondary battery including first and second solid electrolytes with different affinities for metal deposition electronchemical cell and method of manufacturing
WO2019194192A1 (ja) * 2018-04-03 2019-10-10 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池部材、および非水系二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091659A (ko) * 2008-02-25 2009-08-28 주식회사 엘지화학 LiF계 화합물로 코팅된 음극 및 그 제조방법과 상기 음극을 포함하는 리튬이온 이차전지
KR101346414B1 (ko) * 2013-02-15 2014-01-16 한양대학교 산학협력단 겔 폴리머 전해질 및 이를 이용한 리튬이차전지
JP2016058250A (ja) * 2014-09-10 2016-04-21 セイコーエプソン株式会社 リチウム電池用電極体及びリチウム電池
KR20160032773A (ko) * 2014-09-16 2016-03-25 전자부품연구원 이산화황 기반의 갈륨계 무기 전해질을 포함하는 전해액 및 그를 갖는 나트륨-이산화황 이차 전지
KR20160038735A (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 리튬 이차전지의 제조방법
KR20170024862A (ko) * 2015-08-26 2017-03-08 주식회사 엘지화학 유무기 복합 고체 전지
KR20170092327A (ko) * 2016-02-03 2017-08-11 삼성전자주식회사 고체 전해질, 이를 포함하는 리튬전지
KR20180020631A (ko) * 2016-08-19 2018-02-28 한국기술교육대학교 산학협력단 알칼리-이산화황 전지

Also Published As

Publication number Publication date
KR20200046943A (ko) 2020-05-07
KR102594515B1 (ko) 2023-10-27
CN113544880A (zh) 2021-10-22
EP3855535A4 (en) 2021-11-17
EP3855535A1 (en) 2021-07-28
US20210359287A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020009494A1 (ko) 리튬 이차전지용 음극, 이의 전리튬화 방법 및 이를 포함하는 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022055258A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2021040392A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020085726A1 (ko) 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022065796A1 (ko) 비수 전해액용 첨가제, 이를 포함하는 비수 전해액 및 리튬 이차전지
WO2022103101A1 (ko) 리튬 이차 전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2022270812A1 (ko) 전지용 전해액 및 이를 포함하는 이차전지
WO2023068905A1 (ko) 전해액 첨가제, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875433

Country of ref document: EP

Effective date: 20210420