WO2020085183A1 - 基板積層体の製造方法及び積層体 - Google Patents

基板積層体の製造方法及び積層体 Download PDF

Info

Publication number
WO2020085183A1
WO2020085183A1 PCT/JP2019/040845 JP2019040845W WO2020085183A1 WO 2020085183 A1 WO2020085183 A1 WO 2020085183A1 JP 2019040845 W JP2019040845 W JP 2019040845W WO 2020085183 A1 WO2020085183 A1 WO 2020085183A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
bonding layer
bonding
laminate
group
Prior art date
Application number
PCT/JP2019/040845
Other languages
English (en)
French (fr)
Inventor
靖剛 茅場
鎌田 潤
中村 雄三
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to SG11202103798VA priority Critical patent/SG11202103798VA/en
Priority to US17/284,833 priority patent/US20210391292A1/en
Priority to KR1020217011470A priority patent/KR102582227B1/ko
Priority to EP19876881.4A priority patent/EP3855477A4/en
Priority to JP2020553279A priority patent/JP7162679B2/ja
Priority to CN201980069246.5A priority patent/CN112889131A/zh
Publication of WO2020085183A1 publication Critical patent/WO2020085183A1/ja
Priority to IL282337A priority patent/IL282337A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/035Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/03515Curing and solidification, e.g. of a photosensitive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/065Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1181Cleaning, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/1184Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/11845Chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27015Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for aligning the layer connector, e.g. marks, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • H01L2224/27416Spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/275Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/27515Curing and solidification, e.g. of a photosensitive layer material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/2783Reworking, e.g. shaping
    • H01L2224/2784Reworking, e.g. shaping involving a mechanical process, e.g. planarising the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • H01L2224/29191The principal constituent being an elastomer, e.g. silicones, isoprene, neoprene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8113Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/81132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8313Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/83132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0695Polyamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/07Polyamine or polyimide
    • H01L2924/07025Polyimide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0715Polysiloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a method for manufacturing a substrate laminate and a laminate.
  • Patent Document 1 JP-A-4-132258
  • Patent Document 2 JP-A 2010-226060
  • Patent Document 3 JP-A-2016-47895
  • Non-Patent Document 1 A. Bayrashev, B. Ziaie, Sensors and Actuators A 103 (2003) 16-22.
  • Non-Patent Document 2 Q. Y. Tong, U. M. Gosele, Advanced Material 11, No. 17 (1999) 1409-1425.
  • Non-Patent Document 3 Z. Song, Z. Tan, L. Liu, Z. Wang, Microsystem Technology, 21 (2015) 1633-1641.
  • Non-Patent Document 4 J. J. McMahon, E. Chan, S. H. Lee, R. J. Gutmann, and J.-Q. Lu, Proceedings-Electronic Components and Technology Conference-June 2008 871-878.
  • Directly bonding has a problem that voids are easily generated due to fine irregularities due to wiring on the substrate surface and particles.
  • the adhesive is applied to the surface of the substrates and then dried to a semi-cured state before the substrates are bonded together. At this time, there is a problem that a displacement of the bonding position of the substrates (a displacement of the alignment) is likely to occur.
  • One aspect of the present invention is made in view of the above problems, and provides a method for manufacturing a substrate laminate capable of manufacturing a substrate laminate in which generation of voids and misalignment of alignment are suppressed, and a laminate.
  • the purpose is to
  • ⁇ 1> A step of applying a bonding material on the surface of at least one of the first substrate and the second substrate, and curing the bonding material applied on the surface to obtain a composite elastic modulus at 23 ° C. of 10 GPa.
  • substrate laminated body provided with the process of forming the following joining layer and the process of joining the said 1st board
  • the bonding layer is formed in a state where the first substrate and the second substrate are in contact with each other via the bonding layer.
  • the curing rate of the bonding layer is 70% or more after the step of forming the bonding layer and before the step of bonding the first substrate and the second substrate, ⁇ 1> to ⁇ 3> 7.
  • ⁇ 5> The method for manufacturing a substrate laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the bonding layer has a silanol group on the surface.
  • ⁇ 6> The method for manufacturing a substrate laminate according to any one of ⁇ 1> to ⁇ 5>, in which the bonding layer has a siloxane bond and at least one of an amide bond and an imide bond.
  • the method further comprises a step of forming a hydroxyl group by performing a surface treatment on at least one surface of the first substrate and the second substrate, which surface is in contact with the bonding layer.
  • ⁇ 8> The method for manufacturing a substrate laminate according to any one of ⁇ 1> to ⁇ 7>, wherein the bonding layer in the substrate laminate has a thickness of 0.001 ⁇ m to 8.0 ⁇ m.
  • the surface energy of a bonding interface between the first substrate and the second substrate in the substrate laminate is 2 J / m 2 or more, ⁇ 1> to ⁇ 8>.
  • the method Prior to the step of applying the bonding material, the method further includes the step of forming an electrode on the surface of the at least one of the first substrate and the second substrate on which the bonding material is applied.
  • ⁇ 12> The method for manufacturing a substrate laminate according to ⁇ 11>, further including a step of removing the bonding material on the electrode after the step of applying the bonding material and before the step of forming the bonding layer. .
  • ⁇ 13> In ⁇ 11>, further comprising a step of removing the bonding layer on the electrode after the step of forming the bonding layer and before the step of bonding the first substrate and the second substrate.
  • the method further includes the step of forming an electrode on the surface on which the bonding layer is formed, ⁇ 1> to ⁇ 13> The method for manufacturing a substrate laminate according to any one of ⁇ 1> to ⁇ 13>.
  • a laminate comprising a substrate and a bonding layer formed on the substrate, wherein the bonding layer is formed by curing a bonding material and has a composite elastic modulus at 23 ° C. of 10 GPa or less.
  • One aspect of the present invention can provide a method for manufacturing a substrate laminate capable of manufacturing a substrate laminate in which generation of voids and misalignment are suppressed, and a laminate.
  • FIG. 8 is a schematic diagram showing alignment marks formed on a first substrate and a second substrate in Example 2.
  • FIG. 9 is a schematic diagram showing a deviation of alignment marks when the first substrate and the second substrate are joined in Example 2.
  • Example 4 it is a figure which shows the state of the copper electrode of ⁇ exposure of a copper electrode>, and a joining layer.
  • (a) shows a temporary fixed substrate laminate in which the first substrate is temporarily fixed on the second substrate via a bonding layer, and a surface on which the bonding layer of the first substrate is formed.
  • FIG. 6B is a view seen from the opposite side
  • FIG. 6B is a view showing a substrate laminated body in which the first substrate is bonded to the second substrate via the bonding layer, and the bonding layer of the first substrate is formed. It is the figure seen from the opposite side to the surface.
  • a numerical range represented by “to” means a range including the numerical values before and after “to” as a lower limit value and an upper limit value.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the “substrate laminate” means a laminate having a structure in which two substrates are joined together via a joining layer formed by the method for producing a substrate laminate according to the present disclosure.
  • the substrate laminate may have three or more substrates, and two substrates out of the three or more substrates may be bonded via a bonding layer formed by the method for producing a substrate laminate of the present disclosure. It may have a structure joined together.
  • a method for manufacturing a substrate laminate of the present disclosure includes a step of applying a bonding material on the surface of at least one of a first substrate and a second substrate (hereinafter, also referred to as “first step”), and the surface.
  • a step of curing the bonding material applied above to form a bonding layer having a composite elastic modulus at 23 ° C. of 10 GPa or less (hereinafter, also referred to as “second step”), and the formed bonding layer.
  • a step of joining the first substrate and the second substrate via each other hereinafter, also referred to as “third step”).
  • the composite elastic modulus at 23 ° C can be measured by the method described in Examples below.
  • the bonding material is cured, and the first substrate and the second substrate are bonded via the bonding layer having a composite elastic modulus at 23 ° C. of 10 GPa or less. That is, the first substrate and the second substrate are bonded by the bonding layer in which the bonding material is in the cured state rather than the semi-cured state, and the composite elastic modulus at 23 ° C. is equal to or less than a predetermined numerical value. Since the first substrate and the second substrate are bonded via the cured bonding layer, the bonding position shift (alignment shift) of the substrates is unlikely to occur. Furthermore, by bonding the first substrate and the second substrate via the bonding layer having a composite elastic modulus at 23 ° C. of 10 GPa or less, voids are absorbed in the bonding layer and generation of voids is suppressed. .
  • the method for manufacturing a substrate laminate of the present disclosure includes a step of applying a bonding material on the surface of at least one of the first substrate and the second substrate.
  • the materials of the first substrate and the second substrate are not particularly limited, and may be those normally used.
  • the materials of the first substrate and the second substrate may be the same or different.
  • the first substrate and the second substrate include Si, Al, Ti, Zr, Hf, Fe, Ni, Cu, Ag, Au, Ga, Ge, Sn, Pd, As, Pt, Mg, In, Ta, and It is preferable to contain at least one element selected from the group consisting of Nb.
  • Examples of the material of the first substrate and the second substrate include semiconductors: Si, InP, GaN, GaAs, InGaAs, InGaAlAs, SiC, oxides, carbides, and nitrides: boron silicate glass (Pyrex (registered trademark)) , Quartz glass (SiO 2 ), sapphire, ZrO 2 , Si 3 N 4 , AlN, piezoelectric material, dielectric material: BaTiO 3 , LiNbO 3 , SrTiO 3 , diamond, metal: Al, Ti, Fe, Cu, Ag, Au. , Pt, Pd, Ta, Nb and the like.
  • semiconductors Si, InP, GaN, GaAs, InGaAs, InGaAlAs, SiC, oxides, carbides, and nitrides: boron silicate glass (Pyrex (registered trademark)) , Quartz glass (SiO 2 ), sapphire, ZrO 2
  • first substrate and the second substrate may be resins such as polydimethylsiloxane (PDMS), epoxy resin, phenol resin, polyimide, benzocyclobutene resin, and polybenzoxazole.
  • PDMS polydimethylsiloxane
  • epoxy resin epoxy resin
  • phenol resin phenol resin
  • polyimide polyimide
  • benzocyclobutene resin polybenzoxazole
  • the first substrate and the second substrate may have a multi-layer structure.
  • Si is a semiconductor memory, a stack of LSIs, a CMOS image sensor, a MEMS encapsulation, an optical device, an LED, etc .
  • SiO 2 is a semiconductor memory, a stack of LSIs, a MEMS encapsulation, a micro channel, a CMOS image sensor, an optical device, an LED, etc .
  • PDMS is a microchannel; InGaAlAs, InGaAs, InP are optical devices; InGaAlAs, GaAs, GaN are LEDs and the like.
  • At least one of the first substrate and the second substrate may have an electrode on the surface to which the bonding material is applied.
  • the step of forming an electrode on the surface of at least one of the first substrate and the second substrate on which the bonding material is applied May be further provided.
  • the electrode may be formed in a convex shape on the surface of the first substrate or the second substrate, or may be formed so as to penetrate the first substrate or the second substrate. It may be formed in a state of being embedded in the substrate or the second substrate.
  • the electrode When the electrode is provided on the surface to which the bonding material is applied and the bonding material is applied to the surface of the substrate having the electrode, it is preferable to form the electrode in a convex shape on the surface of the substrate. Even if an electrode is provided on the surface of the substrate, if the bonding material is not applied to the surface of the substrate having the electrode, the electrode on the surface of the substrate may have any shape.
  • the electrode may be formed on the surface on which the bonding layer is formed.
  • a hole in which an electrode is formed may be formed in the bonding layer by dry etching, and the electrode may be formed in the formed hole.
  • Step 3 of forming electrodes When the bonding material has photosensitivity, holes for forming electrodes by photolithography are formed in the bonding material provided on at least one of the first substrate and the second substrate, and the bonding material is cured to form the bonding layer. After passing through the forming process, an electrode may be formed in the formed hole.
  • Examples of the material for the electrodes include copper, solder, tin, gold, silver and aluminum.
  • examples of the method of forming the electrode include electric field plating, electroless plating, sputtering, and inkjet method.
  • the thicknesses of the first substrate and the second substrate are each independently preferably 0.5 ⁇ m to 1 mm, more preferably 1 ⁇ m to 900 ⁇ m, and further preferably 2 ⁇ m to 900 ⁇ m.
  • the shapes of the first board and the second board are not particularly limited.
  • the first substrate and the second substrate are silicon substrates, it may be a silicon substrate on which an interlayer insulating layer (Low-k film) is formed, and the silicon substrate may have fine grooves (recesses). ), Fine through holes and the like may be formed.
  • the surface roughness (Ra) of each of the first substrate and the second substrate is preferably 1.2 nm or less independently, and is a low temperature which will be described later at a low temperature when the first substrate and the second substrate are bonded.
  • the surface roughness (Ra) of the substrate in which the bonding material is applied to only one of the substrates and the bonding material is not applied to the other of the substrates is 1.2 nm or less from the viewpoint that fixation becomes easy. Is more preferable.
  • the surface roughness of the substrate can be evaluated by morphological observation with a scanning probe microscope (SPM). Specifically, SPA400 (manufactured by Hitachi High-Technologies Corporation), which is SPM, is used to measure the surface roughness in a 3 ⁇ m ⁇ 3 ⁇ m square area in a dynamic force microscope mode.
  • the contact angles of water droplets on the surfaces of the first substrate and the second substrate are independently 90 ° or less, and when the first substrate and the second substrate are joined, they can be temporarily fixed at a low temperature.
  • the contact angle of water is measured by using a solid-liquid interface analysis system (DropMaster 500 image processing formula, manufactured by Kyowa Interface Science Co., Ltd.) under the conditions of 23 ° C. and 50% humidity. It is obtained by measuring the angle.
  • the bonding material is not particularly limited as long as it can be cured to form a bonding layer having a composite elastic modulus at 23 ° C. of 10 GPa or less.
  • the bonding material for example, a material such as polyimide, polyamide, polyamideimide, parylene, polyarylene ether, tetrahydronaphthalene, octahydroanthracene or the like in which a bond or structure is formed by crosslinking, polybenzoxazal, polybenzoxazine, etc.
  • Examples thereof include a material having a nitrogen ring-containing structure, a material having a bond or structure such as Si—O formed by crosslinking, and an organic material such as a siloxane-modified compound.
  • the organic material may contain an aromatic ring structure.
  • Examples of the bonding material include a homopolymerizable or copolymerizable polymerizable compound and a combination of the polymerizable compound and a crosslinking agent. Further, the bonding material may be a photosensitive material.
  • Examples of the structure having a Si—O bond include structures represented by the following formulas (1) to (3).
  • the group bonded to Si may be substituted with (alkylene group, phenylene group, etc., for example, (—O—) x (R 1 ) y Si—
  • (R 1 ) y Si— A structure having (R 2 ) -Si (R 1 ) y (—O—) x and the like (R 1 represents a methyl group and the like, R 2 represents an alkylene group, a phenylene group and the like.
  • X and y are each independently. It is an integer of 0 or more, and x + y is 3.).
  • Examples of the material in which the Si—O bond is formed by crosslinking include compounds represented by the following formulas (4) and (5).
  • the structures represented by the formulas (1) and (2) can be produced, for example, by heating and reacting the compounds represented by the formulas (4) and (5).
  • the bonding material when the bonding material includes a material such as polyimide, polyamide, or polyamideimide in which a bond or structure is formed by crosslinking, it has a cationic functional group containing at least one of a primary nitrogen atom and a secondary nitrogen atom.
  • the compound (A) is a compound having a cationic functional group containing at least one of a primary nitrogen atom and a secondary nitrogen atom, and having a weight average molecular weight of 90 or more and 400,000 or less.
  • the cationic functional group is not particularly limited as long as it is a functional group capable of being positively charged and containing at least one of a primary nitrogen atom and a secondary nitrogen atom.
  • the compound (A) may contain a tertiary nitrogen atom in addition to the primary nitrogen atom and the secondary nitrogen atom.
  • the “primary nitrogen atom” means a nitrogen atom bonded to only two hydrogen atoms and one atom other than the hydrogen atom (for example, nitrogen contained in a primary amino group (—NH 2 group)). Atom) or a nitrogen atom (cation) bonded to only three hydrogen atoms and one atom other than a hydrogen atom.
  • the “secondary nitrogen atom” is a nitrogen atom bonded to only one hydrogen atom and two atoms other than the hydrogen atom (that is, the nitrogen atom contained in the functional group represented by the following formula (a)).
  • tertiary nitrogen atom is a nitrogen atom bonded to only three atoms other than a hydrogen atom (that is, a nitrogen atom which is a functional group represented by the following formula (b)), or a hydrogen atom. It refers to a nitrogen atom (cation) bonded to only one atom and three atoms other than a hydrogen atom.
  • the functional group represented by the formula (a) may be a functional group forming a part of the secondary amino group (—NHR a group; R a represents an alkyl group). However, it may be a divalent linking group contained in the skeleton of the polymer.
  • the functional group represented by the formula (b) (that is, the tertiary nitrogen atom) is a tertiary amino group (—NR b R c group; where R b and R c are each independently an alkyl group. (Representing a group), or a trivalent linking group contained in the polymer skeleton.
  • the weight average molecular weight of the compound (A) is 90 or more and 400,000 or less.
  • the compound (A) include an aliphatic amine, a compound having a siloxane bond (Si—O bond) and an amino group, an amine compound having no Si—O bond in the molecule and having a ring structure, and the like.
  • the weight average molecular weight is preferably 10,000 or more and 200,000 or less.
  • the weight average molecular weight is preferably 130 or more and 10000 or less, more preferably 130 or more and 5000 or less, and 130 or more. It is more preferably 2000 or less.
  • the weight average molecular weight is preferably 90 or more and 600 or less.
  • a weight average molecular weight refers to the polyethylene glycol conversion weight average molecular weight measured by GPC (Gel Permeation Chromatography) method other than a monomer. Specifically, the weight average molecular weight was measured by using an aqueous solution having a sodium nitrate concentration of 0.1 mol / L as a developing solvent, and using an analyzer Shodex DET RI-101 and two kinds of analytical columns (Tosoh TSKgel G6000PWXL-CP and TSKgel G3000PWXL- The refractive index is detected using CP) at a flow rate of 1.0 mL / min, and is calculated with analysis software (Empower3 manufactured by Waters) using polyethylene glycol / polyethylene oxide as a standard product.
  • GPC Gel Permeation Chromatography
  • the compound (A) may further have an anionic functional group, a nonionic functional group, or the like, if necessary.
  • the nonionic functional group may be a hydrogen bond accepting group or a hydrogen bond donating group.
  • Examples of the nonionic functional group include a hydroxy group, a carbonyl group, an ether group (—O—), and the like.
  • the anionic functional group is not particularly limited as long as it is a functional group capable of being negatively charged. Examples of the anionic functional group include a carboxylic acid group, a sulfonic acid group, and a sulfuric acid group.
  • Examples of the compound (A) include aliphatic amines, and more specifically, ethyleneimine, propyleneimine, butyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine, trimethyleneimine, tetramethyleneimine,
  • Examples include polyalkyleneimine, which is a polymer of alkyleneimine such as pentamethyleneimine, hexamethyleneimine, and octamethyleneimine; polyallylamine; and polyacrylamide.
  • Polyethyleneimine (PEI) is produced by a known method described in JP-B-43-8828, JP-B-49-33120, JP-A-2001-213958, International Publication No. 2010/137711, etc. be able to.
  • Polyalkyleneimines other than polyethyleneimine can also be produced by the same method as for polyethyleneimine.
  • the compound (A) is a derivative of the above-mentioned polyalkyleneimine (polyalkyleneimine derivative; particularly preferably polyethyleneimine derivative).
  • the polyalkyleneimine derivative is not particularly limited as long as it is a compound that can be produced using the above polyalkyleneimine. Specifically, a polyalkyleneimine derivative obtained by introducing an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms), an aryl group or the like into polyalkyleneimine, or a crosslinkable group such as a hydroxyl group is introduced into polyalkyleneimine. Examples thereof include polyalkyleneimine derivatives. These polyalkyleneimine derivatives can be produced using the above-mentioned polyalkyleneimine by a method usually performed. Specifically, for example, it can be manufactured according to the method described in JP-A-6-016809.
  • a hyperbranched polyalkyleneimine obtained by improving the branching degree of the polyalkyleneimine by reacting the cationic functional group-containing monomer with the polyalkyleneimine is also preferable.
  • a method of obtaining a highly branched polyalkyleneimine for example, a polyalkyleneimine having a plurality of secondary nitrogen atoms in the skeleton is reacted with a cationic functional group-containing monomer to produce a plurality of the secondary nitrogen atoms.
  • the cationic functional group introduced to improve the degree of branching include aminoethyl group, aminopropyl group, diaminopropyl group, aminobutyl group, diaminobutyl group, triaminobutyl group, and the like.
  • the aminoethyl group is preferable from the viewpoint of decreasing the amount of the functional group and increasing the density of the cationic functional group.
  • the polyethyleneimine and its derivative may be commercially available products.
  • polyethyleneimine and its derivative commercially available from Nippon Shokubai Co., Ltd., BASF, MP-Biomedicals, etc. can be appropriately selected and used.
  • Examples of the compound (A) include compounds having a Si—O bond and an amino group in addition to the above-mentioned aliphatic amine.
  • Examples of the compound having a Si—O bond and an amino group include siloxane diamine, a silane coupling agent having an amino group, and a siloxane polymer of a silane coupling agent having an amino group.
  • Examples of the silane coupling agent having an amino group include compounds represented by the following formula (A-3).
  • R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 each independently represent an optionally substituted (which may include a carbonyl group, an ether group or the like in the skeleton) alkylene group having 1 to 12 carbon atoms, an ether group or a carbonyl group.
  • R 4 and R 5 each independently represent an optionally substituted alkylene group having 1 to 4 carbon atoms or a single bond.
  • Ar represents a divalent or trivalent aromatic ring.
  • X 1 represents hydrogen or an optionally substituted alkyl group having 1 to 5 carbon atoms.
  • X 2 represents hydrogen, a cycloalkyl group, a heterocyclic group, an aryl group, or an optionally substituted (having a carbonyl group, an ether group, etc. skeleton) alkyl group having 1 to 5 carbon atoms.
  • a plurality of R 1 , R 2 , R 3 , R 4 , R 5 and X 1 may be the same or different.
  • the substituents of the alkyl group and the alkylene group in R 1 , R 2 , R 3 , R 4 , R 5 , X 1 , and X 2 are each independently an amino group, a hydroxy group, an alkoxy group, a cyano group, a carboxylic acid.
  • Examples of the divalent or trivalent aromatic ring in Ar include a divalent or trivalent benzene ring.
  • Examples of the aryl group for X 2 include a phenyl group, a methylbenzyl group, a vinylbenzyl group and the like.
  • silane coupling agent represented by the formula (A-3) include N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane and N- (2-aminoethyl) -3. -Aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminoisobutyldimethylmethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N- (2-aminoethyl)- 11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, (aminoethylaminoethyl) phenyltriethoxysilane, methylbenzyl
  • silane coupling agent containing an amino group other than the formula (A-3) examples include N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine and N, N′-bis [3- (trimethoxy).
  • silane coupling agent having an amino group may be used alone or in combination of two or more. Further, a silane coupling agent having an amino group and a silane coupling agent having no amino group may be used in combination. For example, a silane coupling agent having a mercapto group may be used to improve the adhesion with a metal.
  • a polymer (siloxane polymer) formed from these silane coupling agents via a siloxane bond may be used.
  • siloxane polymer formed from these silane coupling agents via a siloxane bond
  • Si—O—Si siloxane bond
  • a polymer having a linear siloxane structure a polymer having a branched siloxane structure, a polymer having a cyclic siloxane structure, a polymer having a cage siloxane structure, etc. Is obtained.
  • the cage siloxane structure is represented by, for example, the following formula (A-1).
  • Examples of the siloxane diamine include compounds represented by the following formula (A-2).
  • i is an integer of 0 to 4
  • j is an integer of 1 to 3
  • Me is a methyl group.
  • Examples of the compound (A) include the above-mentioned aliphatic amines, compounds having a Si—O bond and an amino group, and amine compounds having no Si—O bond in the molecule and having a ring structure. .
  • amine compounds having a ring structure and having no Si—O bond in the molecule and having a weight average molecular weight of 90 or more and 600 or less are preferable.
  • Examples of the amine compound having no ring structure and having a ring structure and a weight average molecular weight of 90 or more and 600 or less include alicyclic amine, aromatic ring amine, and heterocyclic (heterocyclic) amine.
  • the molecule may have a plurality of ring structures, and the plurality of ring structures may be the same or different.
  • a compound having an aromatic ring is more preferable because a thermally more stable compound is easily obtained.
  • a thermal cross-linking structure such as amide, amide imide or imide is formed with the cross-linking agent (B).
  • a compound having a primary amino group is preferable because it is easy and heat resistance can be improved.
  • amine compound since the number of thermally crosslinked structures such as amide, amideimide, and imide together with the crosslinking agent (B) can be easily increased and heat resistance can be further enhanced, two primary amino groups are included. A diamine compound having one and a triamine compound having three primary amino groups are preferable.
  • Examples of the alicyclic amine include cyclohexylamine and dimethylaminocyclohexane.
  • Examples of the aromatic ring amine include diaminodiphenyl ether, xylenediamine (preferably paraxylenediamine), diaminobenzene, diaminotoluene, methylenedianiline, dimethyldiaminobiphenyl, bis (trifluoromethyl) diaminobiphenyl, diaminobenzophenone, diaminobenzanilide.
  • the heterocycle of the heterocyclic amine includes a heterocycle containing a sulfur atom as a hetero atom (for example, a thiophene ring), or a heterocycle containing a nitrogen atom as a hetero atom (for example, a pyrrole ring, a pyrrolidine ring, a pyrazole ring, an imidazole ring).
  • a heterocycle containing a sulfur atom as a hetero atom for example, a thiophene ring
  • a heterocycle containing a nitrogen atom as a hetero atom for example, a pyrrole ring, a pyrrolidine ring, a pyrazole ring, an imidazole ring.
  • 5-membered ring such as triazole ring
  • 6-membered ring such as isocyanuric ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, triazine ring
  • indole ring indoline ring, quinoline ring, acridine ring
  • Condensed rings such as a naphthyridine ring, a quinazoline ring, a purine ring and a quinoxaline ring).
  • heterocyclic amine having a nitrogen-containing heterocycle examples include melamine, ammeline, melam, melem, tris (4-aminophenyl) amine and the like.
  • examples of the amine compound having both a heterocycle and an aromatic ring include N2, N4, N6-tris (4-aminophenyl) -1,3,5-triazine-2,4,6-triamine.
  • the compound (A) Since the compound (A) has a primary or secondary amino group, the compound (A) does not react with a functional group such as a hydroxyl group, an epoxy group, a carboxy group, an amino group or a mercapto group which may be present on the surfaces of the first substrate and the second substrate.
  • the substrates can be strongly adhered to each other by an electric interaction or by forming a covalent bond with the functional group closely.
  • the compound (A) has a primary or secondary amino group, it is easily dissolved in the polar solvent (D) described later.
  • the affinity with the hydrophilic surface of the substrate such as a silicon substrate is increased, so that a smooth film is easily formed and the thickness of the bonding layer is increased. Can be thinned.
  • an aliphatic amine or a compound having an Si—O bond and an amino group is preferable from the viewpoint of forming a smooth thin film, and a compound having an Si—O bond and an amino group is preferable from the viewpoint of heat resistance. More preferable.
  • the ratio of the total number of primary nitrogen atoms and secondary nitrogen atoms in the compound (A) to the number of silicon atoms is preferably 0.2 or more and 5 or less from the viewpoint of forming a smooth thin film.
  • the compound (A) contains a compound having a Si—O bond and an amino group, a methyl group that bonds to Si in the compound having a Si—O bond and an amino group in view of adhesiveness between substrates.
  • the non-crosslinkable groups such as (1) and (2) satisfy the relationship of (non-crosslinkable group) / Si ⁇ 2 in a molar ratio. By satisfying this relationship, the density of crosslinks (crosslinks between Si—O—Si bonds and amide bonds, imide bonds, etc.) of the formed film is improved, the substrates have sufficient adhesive force, and the substrates are separated. It is speculated that this can be suppressed.
  • the compound (A) has a cationic functional group containing at least one of a primary nitrogen atom and a secondary nitrogen atom.
  • the proportion of primary nitrogen atoms in all the nitrogen atoms in the compound (A) is preferably 20 mol% or more, and 25 mol% More preferably, it is more preferably 30 mol% or more.
  • the compound (A) may have a cationic functional group containing a primary nitrogen atom and not containing a nitrogen atom other than the primary nitrogen atom (for example, a secondary nitrogen atom or a tertiary nitrogen atom). Good.
  • the proportion of secondary nitrogen atoms in all the nitrogen atoms in the compound (A) is preferably 5 mol% or more and 50 mol% or less, It is more preferably 10 mol% or more and 45 mol% or less.
  • the compound (A) may contain a tertiary nitrogen atom in addition to the primary nitrogen atom and the secondary nitrogen atom.
  • the compound (A) contains a tertiary nitrogen atom
  • the proportion of tertiary nitrogen atoms in all the nitrogen atoms therein is preferably 20 mol% or more and 50 mol% or less, and more preferably 25 mol% or more and 45 mol% or less.
  • the content of the component derived from the compound (A) in the bonding layer is not particularly limited, and may be, for example, 1% by mass or more and 82% by mass or less with respect to the entire bonding layer, and 5% by mass.
  • the amount is preferably 82% by mass or more and more preferably 13% by mass or more and 82% by mass or less.
  • the cross-linking agent (B) is a compound having three or more —C ( ⁇ O) OX groups (X is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) in the molecule, and preferably A compound having 3 to 6 of —C ( ⁇ O) OX groups in the molecule, and more preferably a compound having 3 or 4 of —C ( ⁇ O) OX groups in the molecule.
  • examples of X in the —C ( ⁇ O) OX group include a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and among them, a hydrogen atom, a methyl group, an ethyl group, a propyl group. Is preferred.
  • the cross-linking agent (B) is a compound having a weight average molecular weight of 200 or more and 600 or less.
  • the compound is preferably 200 or more and 400 or less.
  • the cross-linking agent (B) preferably has a ring structure in the molecule.
  • the ring structure include an alicyclic structure and an aromatic ring structure.
  • the cross-linking agent (B) may have a plurality of ring structures in the molecule, and the plurality of ring structures may be the same or different.
  • the alicyclic structure examples include an alicyclic structure having 3 to 8 carbon atoms, preferably an alicyclic structure having 4 to 6 carbon atoms, which may be saturated or unsaturated in the ring structure. Good. More specifically, as the alicyclic structure, a saturated alicyclic structure such as cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring; cyclopropene ring, cyclobutene ring, cyclopentene ring, Examples thereof include unsaturated alicyclic structures such as a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • the aromatic ring structure is not particularly limited as long as it has a ring structure showing aromaticity, and examples thereof include a benzene ring such as a benzene ring, a naphthalene ring, an anthracene ring, and a perylene ring, an aromatic ring such as a pyridine ring, and a thiophene ring.
  • a benzene ring such as a benzene ring, a naphthalene ring, an anthracene ring, and a perylene ring
  • an aromatic ring such as a pyridine ring
  • thiophene ring examples include non-benzene-based aromatic rings such as heterocycles, indene rings and azulene rings.
  • the ring structure that the cross-linking agent (B) has in the molecule is preferably, for example, at least one selected from the group consisting of a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a benzene ring and a naphthalene ring. At least one of a benzene ring and a naphthalene ring is more preferable from the viewpoint of further increasing the number.
  • the cross-linking agent (B) may have a plurality of ring structures in the molecule, and when the ring structure is benzene, it may have a biphenyl structure, a benzophenone structure, a diphenyl ether structure, or the like.
  • the cross-linking agent (B) preferably has a fluorine atom in the molecule, more preferably has 1 or more and 6 or less fluorine atoms in the molecule, and has 3 or more and 6 or less fluorine atoms in the molecule. It is more preferable to have.
  • the cross-linking agent (B) may have a fluoroalkyl group in the molecule, and specifically, may have a trifluoroalkyl group or a hexafluoroisopropyl group.
  • a carboxylic acid compound such as alicyclic carboxylic acid, benzenecarboxylic acid, naphthalenecarboxylic acid, diphthalic acid, fluorinated aromatic ring carboxylic acid; alicyclic carboxylic acid ester, benzenecarboxylic acid ester, naphthalene Examples thereof include carboxylic acid ester compounds such as carboxylic acid ester, diphthalic acid ester and fluorinated aromatic ring carboxylic acid ester.
  • the carboxylic acid ester compound has a carboxy group (—C ( ⁇ O) OH group) in the molecule, and in three or more —C ( ⁇ O) OX groups, at least one X has a carbon number.
  • a compound having 1 to 6 alkyl groups that is, having an ester bond).
  • the crosslinking agent (B) is a carboxylic acid ester compound, aggregation due to association between the compound (A) and the crosslinking agent (B) is suppressed, aggregates and pits are reduced, and film thickness is adjusted. Will be easier.
  • the carboxylic acid compound is preferably a tetravalent or less carboxylic acid compound containing 4 or less —C ( ⁇ O) OH groups, and a trivalent compound containing 3 or 4 —C ( ⁇ O) OH groups.
  • a tetravalent carboxylic acid compound is more preferable.
  • the carboxylic acid ester compound is preferably a compound containing 3 or less carboxy groups (—C ( ⁇ O) OH groups) in the molecule and 3 or less ester bonds, and a carboxy group in the molecule. More preferably, it is a compound containing 2 or less and also 2 or less ester bonds.
  • X is an alkyl group having 1 to 6 carbon atoms
  • X is a methyl group, an ethyl group, a propyl group, A butyl group or the like is preferable, but an ethyl group or a propyl group is preferable from the viewpoint of further suppressing aggregation due to the association between the compound (A) and the crosslinking agent (B).
  • carboxylic acid compound examples are not limited to these, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,3,5-cyclohexane.
  • Alicyclic carboxylic acids such as tricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,3,4,5,6-cyclohexanehexacarboxylic acid; 1 Benzenecarboxylic acids such as 2,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, pyromellitic acid, benzenepentacarboxylic acid and mellitic acid; 1,4,5,8-naphthalenetetracarboxylic acid, 2 Naphthalenecarboxylic acid such as 3,3,6,7-naphthalenetetracarboxylic acid; 3,3 ′
  • carboxylic acid ester compound examples include compounds in which at least one carboxy group in the specific examples of the carboxylic acid compound described above is substituted with an ester group.
  • carboxylic acid ester compound examples include half-esterified compounds represented by the following general formulas (B-1) to (B-6).
  • R in the general formulas (B-1) to (B-6) each independently represents an alkyl group having 1 to 6 carbon atoms, among which a methyl group, an ethyl group, a propyl group and a butyl group are preferable, and an ethyl group, A propyl group is more preferred.
  • the half-esterified compound can be produced, for example, by mixing a carboxylic acid anhydride, which is an anhydride of the above-mentioned carboxylic acid compound, with an alcohol solvent to open the carboxylic acid anhydride.
  • the content of the component derived from the crosslinking agent (B) in the bonding layer is not particularly limited, and for example, the substance derived from the crosslinking agent (B) with respect to the total number of nitrogen atoms in the substance derived from the compound (A).
  • Y represents an imide-bridged or amide-bridged nitrogen atom, OH, or an ester group.
  • the bonding layer preferably has a crosslinked structure such as amide, amideimide, and imide, and is excellent in heat resistance.
  • the compound (A) has an uncrosslinked cationic functional group
  • the crosslinking density is low and the heat resistance is high. It is thought that the sex is not sufficient.
  • the cationic functional group of the compound (A) reacts with the carboxy group of the cross-linking agent (B) to form a covalent bond, which increases the cross-linking density and has high heat resistance.
  • a solution containing a bonding material may be applied on the surface of at least one of the first substrate and the second substrate.
  • the solution containing the bonding material preferably contains the polar solvent (D) together with the bonding material such as the compound (A) and the crosslinking agent (B).
  • the polar solvent (D) refers to a solvent having a relative dielectric constant of 5 or more at room temperature.
  • the polar solvent (D) include protic inorganic compounds such as water and heavy water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, Alcohols such as cyclohexanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, benzyl alcohol, diethylene glycol, triethylene glycol and glycerin; ethers such as tetrahydrofuran and dimethoxyethane; furfural, acetone, ethyl methyl ketone , Aldehydes and ketones such as cyclohexane; acetic anhydride, ethyl acetate, butyl acetate, ethylene carbonate, propylene carbonate, formaldehyde, N-methylformamide, N, -Acid derivatives such as dimethylformamide, N-methylacetamide,
  • the polar solvent (D) preferably contains a protic solvent, more preferably water, and further preferably ultrapure water.
  • the content of the polar solvent (D) in the solution is not particularly limited, and is, for example, 1.0% by mass or more and 99.9998% by mass or less, and 40% by mass or more and 99.999896% by mass or less based on the entire solution. Is preferred.
  • the boiling point of the polar solvent (D) is preferably 150 ° C. or lower, from the viewpoint of volatilizing the polar solvent (D) by heating when forming the bonding layer and reducing the amount of residual solvent in the bonding layer, and 120 ° C. The following is more preferable.
  • the solution containing the bonding material may contain the additive (C) in addition to the bonding material such as the compound (A) and the crosslinking agent (B), the polar solvent and the like.
  • the additive (C) an acid (C-1) having a carboxy group and a weight average molecular weight of 46 or more and 195 or less and a base having a nitrogen atom and a weight average molecular weight of 17 or more and 120 or less and having no ring structure (C-2) Is mentioned.
  • the additive (C) is volatilized by heating when forming the bonding layer, but the bonding layer in the substrate laminate of the present disclosure may contain the additive (C).
  • the acid (C-1) is an acid having a carboxyl group and a weight average molecular weight of 46 or more and 195 or less.
  • the acid (C-1) as the additive (C)
  • the amino group in the compound (A) and the carboxy group in the acid (C-1) form an ionic bond, thereby crosslinking the compound (A). It is speculated that aggregation due to association with the agent (B) is suppressed.
  • the interaction for example, electrostatic interaction
  • the interaction between the ammonium ion derived from the amino group in the compound (A) and the carboxylate ion derived from the carboxy group in the acid (C-1) is a compound (A)
  • aggregation is suppressed because the interaction between the ammonium ion derived from the amino group in) and the carboxylate ion derived from the carboxy group in the crosslinking agent (B) is stronger.
  • the present invention is not limited to the above assumptions.
  • the acid (C-1) is not particularly limited as long as it is a compound having a carboxy group and having a weight average molecular weight of 46 or more and 195 or less, and examples thereof include monocarboxylic acid compounds, dicarboxylic acid compounds and oxydicarboxylic acid compounds. . More specifically, as the acid (C-1), formic acid, acetic acid, malonic acid, oxalic acid, citric acid, benzoic acid, lactic acid, glycolic acid, glyceric acid, butyric acid, methoxyacetic acid, ethoxyacetic acid, phthalic acid, Examples thereof include terephthalic acid, picolinic acid, salicylic acid, and 3,4,5-trihydroxybenzoic acid.
  • the content of the acid (C-1) in the solution containing the bonding material is not particularly limited, and includes, for example, the carboxy group in the acid (C-1) with respect to the total number of nitrogen atoms in the compound (A).
  • the number ratio (COOH / N) is preferably 0.01 or more and 10 or less, more preferably 0.02 or more and 6 or less, and further preferably 0.5 or more and 3 or less.
  • the base (C-2) is a base having a nitrogen atom and a weight average molecular weight of 17 or more and 120 or less.
  • the solution containing the bonding material contains the base (C-2) as the additive (C), so that the carboxy group in the crosslinking agent (B) and the amino group in the base (C-2) form an ionic bond. Therefore, it is presumed that aggregation due to the association between the compound (A) and the crosslinking agent (B) is suppressed. More specifically, the interaction between the carboxylate ion derived from the carboxy group in the crosslinking agent (B) and the ammonium ion derived from the amino group in the base (C-2) is derived from the amino group in the compound (A). It is presumed that aggregation is suppressed because the interaction between the ammonium ion and the carboxylate ion derived from the carboxy group in the cross-linking agent (B) is stronger.
  • the present invention is not limited to the above assumptions.
  • the base (C-2) is not particularly limited as long as it is a compound having a nitrogen atom and not having a ring structure having a weight average molecular weight of 17 or more and 120 or less, and examples thereof include monoamine compounds and diamine compounds. More specifically, as the base (C-2), ammonia, ethylamine, ethanolamine, diethylamine, triethylamine, ethylenediamine, N-acetylethylenediamine, N- (2-aminoethyl) ethanolamine, N- (2-amino) Ethyl) glycine and the like.
  • the content of the base (C-2) in the solution containing the bonding material is not particularly limited, and for example, the nitrogen atom in the base (C-2) relative to the number of carboxy groups in the cross-linking agent (B).
  • the ratio (N / COOH) of the number is preferably 0.5 or more and 5 or less, and more preferably 0.9 or more and 3 or less.
  • the solution containing the bonding material may contain a solvent other than the polar solvent (D), and examples thereof include normal hexane.
  • the solution containing the bonding material may contain phthalic acid, benzoic acid, or the like, or a derivative thereof, for improving electrical characteristics.
  • the solution containing the bonding material may contain benzotriazole or a derivative thereof in order to suppress corrosion of copper, for example.
  • the pH of the solution containing the bonding material is not particularly limited and is preferably 2.0 or more and 12.0 or less.
  • the acid (C-1) is used as the additive (C)
  • the solution containing the bonding material becomes cloudy and gels (the gelation may take time to clear the composition, which is not preferable). Can be suitably suppressed.
  • the base (C-2) is used as the additive (C)
  • the solution containing the bonding material becomes cloudy and gels (the gelation may take time to clear the composition, which is not preferable). Can be suitably suppressed.
  • Examples of the method for applying the bonding material on the surface of at least one of the first substrate and the second substrate include vapor deposition such as vapor deposition polymerization, CVD (chemical vapor deposition) method, and ALD (atomic layer deposition) method. Coating methods such as a film method, a dipping method, a spray method, a spin coating method, a bar coating method and the like can be mentioned. When the bonding material is applied by the coating method, it is preferable to apply the solution containing the above-mentioned bonding material.
  • a bar coating method is preferably used when forming a film having a micron-sized film thickness
  • a spin coating method is used when forming a film having a nano-sized (several nm to several hundred nm) film thickness. It is preferable.
  • the film thickness of the bonding material may be appropriately adjusted according to the intended thickness of the bonding layer.
  • the method of applying the bonding material by the spin coating method is not particularly limited.
  • a solution containing the bonding material is dropped on the surface of the first substrate, A method of increasing the rotation speed of the first substrate and drying it can be used.
  • the method of applying the bonding material by the spin coating method there are no particular restrictions on the conditions such as the number of rotations of the substrate, the dropping amount and dropping time of the solution containing the bonding material, the number of rotations of the substrate during drying, and the bonding to be formed. It may be appropriately adjusted in consideration of the material thickness and the like.
  • the substrate to which the bonding material is applied may be washed in order to remove the excess bonding material applied.
  • the cleaning method include wet cleaning with a rinse liquid such as a polar solvent and plasma cleaning.
  • the method for manufacturing a substrate laminate of the present disclosure further includes a step of removing the bonding material on the electrode after the step of applying the bonding material and before the step of forming the bonding layer, when the method includes the step of forming the electrode. You may have it. As a result, the bonding material applied on the electrode surface is removed, and the electrode can be exposed. Examples of methods for removing the bonding material provided on the electrode surface include a fly cut method, a chemical mechanical polishing method (CMP), and plasma dry etching. As the removal method, one method may be used alone, or two or more methods may be used in combination.
  • CMP chemical mechanical polishing method
  • a surface planar (DFS8910 (manufactured by Disco Corporation)) or the like can be used.
  • CMP is used
  • a slurry containing silica or alumina generally used for polishing a resin a slurry containing hydrogen peroxide and silica used for polishing a metal, and the like may be used.
  • fluorocarbon plasma, oxygen plasma or the like may be used.
  • the method for manufacturing a substrate laminate of the present disclosure includes a step (second step) of curing the bonding material applied on the surface to form a bonding layer having a composite elastic modulus at 23 ° C. of 10 GPa or less.
  • the bonding material applied on the surface of the substrate is cured by heating or the like to form the bonding layer.
  • the bonding material contains a thermosetting compound, it is cured by heating the bonding material at a temperature equal to or higher than the curing temperature.
  • the bonding material provided on the surface is heated at 100 ° C. to 450 ° C. to be cured.
  • the above temperature refers to the temperature of the surface of the bonding material applied on the surface.
  • the solvent in the solution containing the bonding material is removed.
  • the components in the bonding material react to obtain a cured product, and a bonding layer containing the cured product is formed.
  • the temperature is preferably 150 ° C to 450 ° C, more preferably 180 ° C to 400 ° C.
  • the pressure when heating is performed in the second step is not particularly limited, and an absolute pressure of more than 17 Pa superatmospheric pressure is preferable.
  • the absolute pressure is more preferably 1000 Pa or higher and atmospheric pressure or lower, further preferably 5000 Pa or higher and atmospheric pressure or lower, and particularly preferably 10,000 Pa or higher and atmospheric pressure or lower.
  • the heating in the second step can be performed by a usual method using a furnace or a hot plate.
  • a furnace for example, SPX-1120 manufactured by Apex Co., VF-1000LP manufactured by Koyo Thermo Systems Co., Ltd., or the like can be used.
  • the heating in the second step may be performed in an atmosphere of air or an inert gas (nitrogen gas, argon gas, helium gas, etc.) atmosphere.
  • the heating time in the second step is not particularly limited and is, for example, 3 hours or less, preferably 1 hour or less.
  • the lower limit of the heating time is not particularly limited and may be, for example, 5 minutes.
  • the bonding material provided on the surface may be irradiated with ultraviolet rays (UV).
  • UV ultraviolet rays
  • ultraviolet rays having a wavelength of 170 nm to 230 nm, excimer light having a wavelength of 222 nm, excimer light having a wavelength of 172 nm and the like are preferable. Further, it is preferable to perform ultraviolet irradiation in an inert gas atmosphere.
  • Whether or not the bonding material is cured may be confirmed by, for example, measuring the peak intensity of specific bonds and structures by FT-IR (Fourier transform infrared spectroscopy).
  • Specific bonds and structures include bonds and structures generated by a crosslinking reaction. For example, when an amide bond, an imide bond, a siloxane bond, a tetrahydronaphthalene structure, an oxazole ring structure, or the like is formed, it can be determined that the bonding material is cured, and the peak intensity derived from these bonds, the structure, or the like is determined by FT.
  • -It can be confirmed by measuring with IR. Amide bond can be confirmed in the presence of vibration peak at about 1650 cm -1 and about 1520 cm -1.
  • the imide bond can be confirmed by the presence of vibration peaks at about 1770 cm -1 and about 1720 cm -1 .
  • Siloxane bonds can be confirmed in the presence of vibration peaks between 1000cm -1 ⁇ 1080cm -1.
  • the tetrahydronaphthalene structure can be confirmed by the presence of a vibration peak between 1500 cm -1 .
  • the oxazole ring structure can be confirmed by the presence of vibration peaks at about 1625 cm -1 and about 1460 cm -1 .
  • the bonding layer formed by curing the bonding material preferably has a siloxane bond and at least one of an amide bond and an imide bond.
  • the curing rate of the bonding layer obtained by curing the bonding material is, for example, that of the bonding material before applying to the substrate, the bonding layer before the third step, and the bonding layer after the third step of a specific bond and structure.
  • the peak intensity (the sum of the peak intensities when there are multiple peaks such as imide and amide) is measured by FT-IR (Fourier Transform Infrared Spectroscopy) to determine the increase or decrease rate of the peak intensity. You may check. When a band-shaped peak, such as a siloxane bond, whose peak separation is difficult, is used, the maximum peak intensity may be adopted.
  • the increase rate of the peak intensity may be calculated by the following formula, and the calculated value may be used as the curing rate of the bonding layer.
  • Increase rate of peak strength (hardening rate of bonding layer) [(peak strength of specific bond and structure of bonding layer before the third step) / (bonding layer after heating at 300 ° C. for 1 hour in the third step) Specific bond and structure peak intensity)] ⁇ 100
  • the background signal may be removed by a usual method. If necessary, FT-IR measurement can be carried out by a transmission method or a reflection method.
  • the peak intensity when there are multiple bonds and structures that cause an increase in peak intensity, the peak intensity may be read as the total intensity of multiple peak intensities.
  • the curing rate of the bonding layer is preferably 70% or more, more preferably 80% or more, further preferably 85% or more, and 90% from the viewpoint of more suitably suppressing the misalignment. It is particularly preferable that it is not less than 93%, and even more preferable that it is not less than 93%. Further, the curing rate of the bonding layer may be 100%, 99% or less, 95% or less, or 90% or less.
  • the term "curing rate of the bonding layer" as used herein means the curing rate of the bonding layer after the step of forming the bonding layer and before the step of bonding the first substrate and the second substrate.
  • the amount of silicon on the surface of the bonding layer is preferably 20 atom% or less, more preferably 15 atom% or less, and further preferably 10 atom% or less.
  • the amount of silicon on the surface of the bonding layer can be evaluated by measuring an atomic ratio with an X-ray photoelectron spectrometer (XPS). Specifically, using AXIS-NOVA (manufactured by KRATOS), which is XPS, the atomic ratio is measured from the peak intensity of the narrow spectrum when the total amount of each element detected in the wide spectrum is 100%. be able to.
  • XPS X-ray photoelectron spectrometer
  • the composite elastic modulus of the bonding layer at 23 ° C. is preferably 8 GPa or less, more preferably 6 GPa or less from the viewpoint of suitably suppressing the generation of voids. Further, the composite elastic modulus of the bonding layer at 23 ° C. is preferably 0.1 GPa or more, and more preferably 1 GPa or more, from the viewpoint of suitably suppressing misalignment.
  • the bonding layer formed on the first substrate is a temporarily fixed laminated body described below (hereinafter, also referred to as “temporary fixed substrate laminated body”), and the first substrate and the second substrate in the substrate laminated body.
  • the surface of the bonding layer has a functional group capable of forming a chemical bond.
  • a functional group include an amino group, an epoxy group, a vinyl group, a silanol group (Si—OH group), and the like, and a silanol group is preferable from the viewpoint of heat resistance.
  • These functional groups may be formed by surface treatment after forming the bonding layer, or may be formed by silane coupling agent treatment or the like. Alternatively, compounds containing these functional groups may be mixed in the bonding material.
  • the bonding layer formed on at least one of the first substrate and the second substrate preferably has a Si—OH group on the surface.
  • the surface of the bonding layer has a Si—OH group, it becomes easier to perform temporary fixing at a low temperature when bonding the first substrate and the second substrate. Furthermore, it becomes possible to increase the bonding strength at the interface between the first substrate and the second substrate after the bonding process.
  • the surface energy of the bonding interface between the first substrate and the second substrate is preferably 2.5 (J / m 2 ) or more. Whether or not the surface of the bonding layer has a Si—OH group can be evaluated by surface analysis of the bonding layer by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • the method for manufacturing a substrate laminate of the present disclosure in the case of including a step of forming an electrode, after the step of forming the bonding layer and before the step of bonding the first substrate and the second substrate, The method may further include a step of removing the bonding layer. As a result, the bonding layer on the electrode surface is removed and the electrode can be exposed. Examples of methods for removing the bonding layer on the electrode surface include a fly-cut method, a chemical mechanical polishing method (CMP), and plasma dry etching. As the removal method, one method may be used alone, or two or more methods may be used in combination.
  • CMP chemical mechanical polishing method
  • a surface planar (DFS8910 (manufactured by Disco Corporation)) or the like can be used.
  • CMP is used
  • a slurry containing silica or alumina generally used for polishing a resin a slurry containing hydrogen peroxide and silica used for polishing a metal, and the like may be used.
  • fluorocarbon plasma, oxygen plasma or the like may be used.
  • the oxide on the surface of the electrode may be reduced if necessary.
  • the reduction treatment method include a method of heating the substrate at 100 ° C. to 300 ° C. in an acid atmosphere such as formic acid, and a method of heating the substrate in a hydrogen atmosphere. These treatments may be performed simultaneously with the bonding step (third step) described below.
  • the surface of the bonding layer may be flattened.
  • the method for flattening include a fly-cut method, a chemical mechanical polishing method (CMP), and the like.
  • CMP chemical mechanical polishing method
  • one method may be used alone, or two or more methods may be used in combination.
  • the surface roughness (Ra) of the joining layer is preferably 1.2 nm or less.
  • the surface roughness of the bonding layer can be evaluated by morphological observation with a scanning probe microscope (SPM).
  • SPM scanning probe microscope
  • SPA400 manufactured by Hitachi High-Technologies Corporation, which is SPM, is used to measure the surface roughness in a 3 ⁇ m ⁇ 3 ⁇ m square area in a dynamic force microscope mode.
  • the surface of the bonding layer may be washed.
  • the cleaning method include wet cleaning with a rinse solution and plasma cleaning.
  • the method for manufacturing a substrate laminate of the present disclosure includes a step (third step) of joining the first substrate and the second substrate via the formed joining layer.
  • the third step for example, the first substrate and the second substrate are brought into contact with each other via the bonding layer formed in the second step to form a laminated body. Then, the first substrate and the second substrate are bonded. If necessary, this laminated body is heated to bond the first substrate and the second substrate.
  • the bonding layers are formed on the first substrate and the second substrate, respectively, it is preferable that the surfaces of the first substrate and the second substrate on which the bonding layers are formed are bonded to each other.
  • a step of temporarily fixing the first substrate and the second substrate may be included. That is, the first substrate and the second substrate may be temporarily fixed and then joined.
  • the temporary fixing of the first substrate and the second substrate is preferably performed at a low temperature of room temperature or higher and 100 ° C. or lower.
  • the surface energy of the bonding interface between the first substrate and the second substrate when the first substrate and the second substrate are temporarily fixed is equal to the surface energy of the first substrate and the second substrate.
  • alignment deviation (joint position shift) suppressed is preferably 0.05 J / m 2 or more, 0.1 J / m 2 More preferably, it is more preferably 0.15 J / m 2 or more.
  • the surface energy (bonding strength) of the bonding interface of the temporarily fixed substrate laminate is determined according to the method of non-patent document MPMaszara, G. Goetz, A.
  • is the surface energy (J / m 2 )
  • t b is the blade thickness (m)
  • E is the Young's modulus (GPa) of the silicon substrate included in the first substrate and the second substrate
  • t is the The thickness (m) of the first substrate and the second substrate
  • L represent the peeling distance (m) of the laminate from the blade edge.
  • the pressure for bonding the first substrate and the second substrate is not particularly limited, and an absolute pressure of 10 ⁇ 4 Pa or more and superatmospheric pressure is preferable.
  • the absolute pressure is more preferably 10 ⁇ 3 Pa or more and atmospheric pressure or less, further preferably 100 Pa or more and atmospheric pressure or less, and particularly preferably 1000 Pa or more and atmospheric pressure or less.
  • it may be performed in an air atmosphere or in an inert gas (nitrogen gas, argon gas, helium gas, etc.) atmosphere. Good.
  • the bonding layer it is preferable to heat the bonding layer at 100 ° C. to 450 ° C. in a state where the first substrate and the second substrate are in contact with each other with the bonding layer interposed therebetween.
  • the above temperature refers to the temperature of the surface of the first substrate or the second substrate on which the bonding layer is formed.
  • the temperature is preferably 100 ° C to 400 ° C, more preferably 150 ° C to 300 ° C.
  • the heating in the third step can be performed by a usual method using a furnace or a hot plate. Further, the heating in the third step may be performed in an atmosphere of air or an inert gas (nitrogen gas, argon gas, helium gas, etc.) atmosphere.
  • the heating time in the third step is not particularly limited and is, for example, 3 hours or less, preferably 1 hour or less. The lower limit of the heating time is not particularly limited and may be, for example, 5 minutes.
  • the laminated body in a state where the first substrate and the second substrate are in contact with each other via the bonding layer is pressed.
  • Pressurization may be performed simultaneously with heating.
  • the pressure when pressurizing the laminate is not particularly limited and is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.1 MPa or more and 5 MPa or less.
  • the pressurizing device for example, TEST MINI PRESS manufactured by Toyo Seiki Co., Ltd. may be used.
  • the method for manufacturing a substrate laminate of the present disclosure is directed to a surface of at least one of the first substrate and the second substrate on the side in contact with the bonding layer, preferably the bonding layer of the first substrate and the second substrate.
  • a step of forming at least one functional group selected from the group consisting of a hydroxyl group, an epoxy group, a carboxy group, an amino group, and a mercapto group by performing a surface treatment on the surface on the contact side also referred to as “surface treatment step”) (Referred to)
  • This tends to increase the bonding strength between the substrates.
  • Examples of surface treatment include plasma treatment, chemical treatment, and ozone treatment such as UV ozone treatment.
  • Hydroxyl groups can be provided on the surfaces of the first substrate and the second substrate by subjecting the surfaces of the first substrate and the second substrate to surface treatment such as plasma treatment, chemical treatment, and ozone treatment such as UV ozone treatment.
  • the hydroxyl group is contained in the first substrate or the second substrate and is contained in Si, Al, Ti, Zr, Hf, Fe, Ni, Cu, Ag, Au, Ga, Ge, Sn, Pd, As, Pt, Mg, It preferably exists in a state of being bonded to at least one element selected from the group consisting of In, Ta and Nb. Above all, it is more preferable that at least one of the surfaces of the first substrate and the second substrate on which the bonding layer is formed has a silanol group containing a hydroxyl group.
  • the epoxy group can be provided on the surfaces of the first and second substrates by subjecting the surfaces of the first and second substrates to surface treatment such as silane coupling with epoxysilane.
  • the carboxy group can be provided on each of the surfaces of the first and second substrates by subjecting the surfaces of the first and second substrates to surface treatment such as silane coupling with carboxysilane.
  • the amino group can be provided on each of the surfaces of the first and second substrates by subjecting the surfaces of the first and second substrates to a surface treatment such as silane coupling with aminosilane.
  • the mercapto group can be provided on each of the surfaces of the first and second substrates by subjecting the surfaces of the first and second substrates to surface treatment such as silane coupling with mercaptosilane.
  • At least one surface of the bonding layer may be subjected to the above-mentioned surface treatment from the viewpoint of increasing the bonding strength of the substrate laminate. Good.
  • a primer such as a silane coupling agent may be formed on the surface of at least one of the first substrate and the second substrate to which the bonding material is applied.
  • a primer such as a silane coupling agent may be formed on at least one surface of the bonding layer.
  • the thickness of the bonding layer in the substrate laminate is preferably 0.001 ⁇ m to 8.0 ⁇ m, more preferably 0.01 ⁇ m to 6.0 ⁇ m, and more preferably 0.03 ⁇ m to 5.0 ⁇ m. More preferable.
  • the thickness of the bonding layer is 0.001 ⁇ m or more, the bonding strength between the substrates can be increased.
  • the thickness of the bonding layer is 8.0 ⁇ m or less, it is possible to suppress variation in the thickness of the bonding layer when the bonding layer is formed on a large area substrate.
  • the bonding layer in the substrate laminate has improved bonding strength and variation in the thickness of the bonding layer. From the viewpoint of suppression of the above, 0.01 ⁇ m to 8.0 ⁇ m is preferable, 0.03 ⁇ m to 6.0 ⁇ m is more preferable, and 0.05 ⁇ m to 5.0 ⁇ m is further preferable.
  • the bonding strength is improved and the variation in the thickness of the bonding layer is suppressed.
  • it is preferably 0.001 ⁇ m or more and less than 1.0 ⁇ m, more preferably 0.01 ⁇ m to 0.8 ⁇ m, and further preferably 0.03 ⁇ m to 0.6 ⁇ m.
  • the surface energy of the bonding interface between the first substrate and the second substrate is preferably not less than 2J / m 2 or more, more preferably 2.1 J / m 2 or more, 2. It is more preferably 5 (J / m 2 ) or more.
  • the cured product contained in the bonding layer preferably has at least one of an amide bond and an imide bond, and more preferably has an imide bond, from the viewpoint of excellent heat resistance.
  • the content of sodium and potassium in the bonding layer is preferably 10 mass ppb or less on an elemental basis.
  • the content of sodium or potassium is 10 mass ppb or less on the basis of each element, it is possible to suppress the occurrence of inconvenience in the electrical characteristics of the semiconductor device such as malfunction of the transistor.
  • At least one of the first substrate and the second substrate may further have another substrate laminated on the surface opposite to the bonding layer side surface.
  • the preferable material of the other substrate is the same as the preferable material of the first substrate and the second substrate.
  • the material of the other substrate may be the same as or different from at least one of the first substrate and the second substrate.
  • the substrate laminated body of the present disclosure after the second step or the third step, at least one of the first substrate and the second substrate is thinned (back grinding or back surface grinding), if necessary. You may go. Further, in the substrate laminated body, after the second step or after the third step, a dicing process may be performed as necessary to divide the substrate into individual pieces. For example, in the dicing process, a dicer (DAD6340 (manufactured by Disco Corporation)) or the like can be used.
  • DAD6340 manufactured by Disco Corporation
  • the laminated body of the present disclosure includes a substrate and a bonding layer formed on the substrate.
  • the bonding layer is formed by curing a bonding material, and has a composite elastic modulus at 23 ° C. of 10 GPa or less.
  • water ultrapure water (Milli-Q water manufactured by Millipore, resistance 18 M ⁇ ⁇ cm (25 ° C.) or less) was used. Each evaluation was performed by the following method.
  • ⁇ Crosslinked structure> The crosslinked structure of the bonding layer was measured by FT-IR (Fourier transform infrared spectroscopy).
  • ⁇ Measurement of composite elastic modulus> For the measurement samples prepared in each example and each comparative example, using a nano indentator (trade name TI-950 Tribo Indenter, manufactured by Hysitron, Berkovich type indenter), unloading at 23 ° C. at a test depth of 20 nm -Measure the displacement curve and calculate the composite elastic modulus at 23 ° C from the maximum load and the maximum displacement according to the calculation method in Reference (Handbook of Micro / nano Tribology (second Edition), Bharat Bhushan, CRC Press). I asked.
  • the composite elastic modulus is defined by the following equation (1).
  • E r represents the composite elastic modulus
  • E i represents the Young's modulus of the indenter, which is 1140 GPa
  • ⁇ i represents the Poisson's ratio of the indenter, which is 0.07
  • E s and ⁇ s Represents the Young's modulus and Poisson's ratio of the sample, respectively.
  • ⁇ Measurement of water drop contact angle> The static contact angle of water was measured using a solid-liquid interface analysis system (DropMaster 500 image processing type, manufactured by Kyowa Interface Science Co., Ltd.) under the conditions of 23 ° C. and 50% humidity.
  • ⁇ Measurement of silicon amount on the surface of the bonding layer > X-ray photoelectron spectrometer (XPS) AXIS-NOVA (manufactured by KRATOS) was used, and the atomic ratio was calculated from the peak intensity of the narrow spectrum of each element when the total amount of each element detected in the wide spectrum was 100%. was measured to measure the amount of silicon on the surface of the bonding layer.
  • XPS X-ray photoelectron spectrometer
  • KRATOS KRATOS
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) PHI nanoTOFII (ULVAC-PHI, Inc.) was used to determine whether the surface of the bonding layer had a Si—OH group based on the presence or absence of a peak of mass-to-charge ratio (m / Z) 45. was evaluated.
  • void width around the Cu wiring pattern was measured by observing the substrate laminate with an ultrasonic microscope.
  • the void width was determined at four locations around the straight line portion of the Cu wiring pattern, and the void average was calculated.
  • the bonding interface of The surface energy was measured by a blade insertion test.
  • a blade with a thickness of 0.1 mm to 0.3 mm is inserted at the joint interface of the temporary fixed substrate laminate or the substrate laminate, and the distance at which the laminate or the substrate laminate is peeled from the blade edge with an infrared light source and an infrared camera. was measured, and then the surface energy was measured based on the formula below.
  • 3 ⁇ 10 9 ⁇ t b 2 ⁇ E 2 ⁇ t 6 / (32 ⁇ L 4 ⁇ E ⁇ t 3 ).
  • is the surface energy (J / m 2 )
  • t b is the blade thickness (m)
  • E is the Young's modulus (GPa) of the silicon substrate included in the first substrate and the second substrate
  • t is the The thickness (m) of the first substrate and the second substrate
  • L represents the separation distance (m) of the laminate or the substrate laminate from the blade edge.
  • Example 1 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared. Details are shown below.
  • a bonding material a hydrolysis product of 2 g of 3-aminopropyldiethoxymethylsilane (3APDES; (3-Aminopropyl) diethoxymethylsilane) and pyromellitic acid half ester (R in the general formula (B-1) is an ethyl group) 1.
  • the surface roughness (Ra) of the surface is 0.17 nm
  • the water droplet contact angle is 10 ° or less
  • the SiO x film (thickness 500 nm, composite elastic modulus 70 GPa, SiO x surface) is formed on the silicon substrate (diameter 100 mm) by the same method.
  • a second substrate having a surface roughness (Ra) of 0.17 nm, a water droplet contact angle of 10 ° or less, and a Cu wiring pattern (line width 0.1 mm, height 20 nm) formed on a SiO x film was formed. Got ready.
  • the first substrate prepared as described above was placed on a spin coater so that the surface on which the SiO x film was formed was vertically upper side, and 2.0 mL of the prepared solution containing the bonding material was kept at a constant speed for 10 seconds. After dripping and holding for 23 seconds, it was dried at 4000 rpm for 1 second, at 600 rpm for 30 seconds, and at 2000 rpm for 10 seconds. This provided the bonding material on the first substrate.
  • the first substrate provided with the bonding material was heated at 400 ° C. for 10 minutes in a nitrogen atmosphere. As a result, a bonding layer (thickness: 64 nm) having a siloxane bond and an imide bond was formed.
  • the composite elastic modulus of the bonding layer and the SiO x film was measured as follows. First, as a bonding material, a composition containing 10% by mass of 3APDES and 8% by mass of pyromellitic acid half ester was prepared by the same method as in Example 1, spin-coated on a silicon substrate, and heated at 400 ° C. for 10 minutes. To prepare a measurement sample. The thickness of the bonding material was 660 nm.
  • the SiO x film was formed on a silicon substrate by a plasma CVD method using tetraethoxysilane (TEOS) as a precursor, and a measurement sample was prepared. The thickness of the SiO x film was 500 nm.
  • the composite elastic modulus of the prepared measurement sample was calculated as described above.
  • the composite elastic modulus of the bonding layer was 4.2 GPa.
  • the surface roughness (Ra) was 0.30 nm
  • the water droplet contact angle was 70 °
  • the curing rate was 95% or more
  • the amount of silicon on the surface was 7.9 atom%.
  • the presence of silanol groups on the surface of the bonding layer (TOF-SIMS peak count number 3 ⁇ 10 ⁇ 4 ) was confirmed.
  • the first substrate and the second substrate are brought into contact with each other through the bonding layer formed as described above, and the temperature is raised from room temperature to 250 ° C. using a hot press machine under reduced pressure conditions, and then for 30 minutes. Thermocompression bonding was performed under the condition of 1.65 MPa. Then, by cooling, a substrate laminated body including the first substrate, the bonding layer, and the second substrate was manufactured.
  • the void width of the substrate laminate obtained in Example 1 was 3 mm. Further, the surface energy of the bonding interface between the first substrate and the second substrate of the substrate laminate was 2.12 J / m 2 .
  • Example 1 ⁇ Production of substrate laminate> A first substrate and a second substrate were prepared in the same manner as in Example 1. The amount of silicon on the surface of the SiO x film of the first substrate was 33 atom%. The presence of silanol groups on the surface of the SiO x film of the first substrate (TOF-SIMS peak count number 1 ⁇ 10 ⁇ 5 ) was confirmed. Without applying the bonding material to the first substrate, the first substrate and the second substrate are brought into contact with each other so that the surfaces on which the SiO x film (thickness 500 nm, composite elastic modulus 70 GPa) is formed face each other. After the temperature was raised from room temperature to 250 ° C. using a hot press machine under reduced pressure conditions, thermocompression bonding was performed for 30 minutes under the condition of 1.65 MPa. Then, by cooling, a substrate laminated body including the first substrate and the second substrate was manufactured.
  • the void width of the substrate laminate obtained in Comparative Example 1 was measured in the same manner as the substrate laminate obtained in Example 1.
  • the void width of the substrate laminate obtained in Comparative Example 1 was 16 mm. Further, the surface energy of the bonding interface between the first substrate and the second substrate of the substrate laminate obtained in Comparative Example 1 was 0.16 J / m 2 .
  • Example 2 The solution containing the bonding material prepared in Example 1 was used. Similar to the first substrate on which the SiO x film (thickness 500 nm, composite elastic modulus 70 GPa) formed by the plasma CVD method using tetraethoxysilane (TEOS) as a precursor is formed on the silicon substrate and the silicon substrate. A second substrate on which a SiO x film (thickness 500 nm, composite elastic modulus 70 GPa) was formed by the method of 1. was prepared. Then, patterns for alignment accuracy measurement were formed in the SiO x films on the first substrate and the second substrate. Specifically, as shown in FIG. 1, a cross-shaped alignment mark 2 is formed on a first substrate 1, and an alignment mark 4 corresponding to the above-mentioned cross-shaped alignment mark 2 is formed on a second substrate 3. Formed.
  • TEOS tetraethoxysilane
  • the first substrate After applying the bonding material to the first substrate in the same manner as in Example 1, the first substrate is heated in a nitrogen atmosphere at 400 ° C. for 10 minutes to form a bonding layer.
  • the first substrate and the second substrate were brought into contact with each other via the bonding layer so that the alignment marks of the substrate of 1 were aligned, and a substrate laminate was manufactured in the same manner as in Example 1.
  • the bonding layer formed on the first substrate in Example 2 the curing rate, the composite elastic modulus, the amount of silicon on the surface, the presence or absence of silanol groups on the surface, the surface roughness (Ra), and the water droplet contact angle were determined by It was the same as the bonding layer formed on the first substrate in No. 1.
  • the surface energy of the bonding interface between the first substrate and the second substrate of the substrate laminate obtained in Example 2 was the same as that of the substrate laminate obtained in Example 1.
  • ⁇ Measurement of misalignment amount> The amount of alignment deviation was measured by observing the substrate laminate obtained in Example 2 with an infrared microscope. Specifically, as shown in FIG. 2, ⁇ x and ⁇ y, which are the alignment deviation amounts in the two directions, were obtained, and ⁇ x + ⁇ y was taken as the alignment deviation amount. The amount of misalignment of the substrate laminate obtained in Example 2 was less than 5 ⁇ m. It is known that when the substrates are attached to each other in a state in which a solution containing benzocyclobutene as a bonding material is dried without being cured (B stage state), an alignment shift of about 20 ⁇ m to 40 ⁇ m occurs. (Non-patent document 3: Microsystem Technology magazine, 2015, 21 volumes, 1633-1641).
  • Example 3 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared. Details are shown below.
  • a bonding material a hydrolysis product of 9 g of 3-aminopropyldiethoxymethylsilane (3APDES; (3-Aminopropyl) diethoxymethylsilane) and pyromellitic acid half ester (R in the general formula (B-1) is an ethyl group) 7.
  • a SiO x film (thickness: 100 nm) was formed on a silicon substrate by the same method as in Example 1, and a columnar copper electrode (diameter 22 ⁇ m, height 2.8 ⁇ m, pitch 40 ⁇ m) was further formed thereon.
  • a first substrate and a second substrate cut into a size of 50 mm ⁇ 50 mm were prepared.
  • the first substrate prepared as described above is placed on a spin coater with the surface on which the copper electrode is formed facing vertically upward, and 2.0 mL of the solution containing the prepared bonding material is dropped at a constant rate for 10 seconds. Then, it was held for 23 seconds, then rotated at 2000 rpm for 1 second and 600 rpm for 30 seconds, and then rotated at 2000 rpm for 10 seconds to be dried. This provided the bonding material on the first substrate.
  • the first substrate provided with the bonding material was heated at 200 ° C. for 30 minutes in a nitrogen atmosphere.
  • a bonding layer having a siloxane bond and an imide bond (thickness on the SiO x film in the region where the copper electrode was not formed, 2.6 ⁇ m, composite elastic modulus, 6.5 GPa) was formed. The bonding material adhered also on the copper electrode. Similarly, a bonding layer (thickness on the SiO x film in the region where the copper electrode was not formed, 2.6 ⁇ m, and composite elastic modulus, 6.5 GPa) was formed on the surface of the second substrate.
  • the amount of silicon and the presence or absence of silanol groups on the surfaces of the bonding layers of the bonding layers formed on the first substrate and the second substrate were the same as in Example 1.
  • ⁇ Exposed copper electrode> The surfaces of the first substrate and the second substrate on which the bonding layer was formed were subjected to fly-cut processing using a surface planar (DFS8910 (manufactured by Disco Corporation)) to expose the copper electrodes.
  • the thickness of the SiO x film of the bonding layer after fly-cut process is about 1.2 [mu] m
  • the thickness of the copper electrode on the SiO x film was about 1.2 [mu] m.
  • Example 3 ⁇ Determination of voids between substrates> The substrate laminate manufactured in Example 3 was cut, and the cross section of the substrate laminate was observed with a scanning electron microscope to determine the presence or absence of voids between the substrates. No void was confirmed in the cross section of the substrate laminate obtained in Example 3.
  • Example 4 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared. Details are shown below.
  • 3APDES 3-aminopropyldiethoxymethylsilane
  • R in the general formula (B-1) 4,4′-oxydiphthalic acid half ester
  • a SiO x film (thickness 100 nm) that is a thermal oxide film is formed on a silicon substrate, and a columnar copper electrode (diameter 22 ⁇ m, height 2.8 ⁇ m, pitch 40 ⁇ m) is further formed thereon, and 50 mm ⁇ A first substrate and a second substrate cut into a size of 50 mm were prepared.
  • the first substrate prepared as described above is placed on a spin coater with the surface on which the copper electrode is formed facing vertically upward, and 2.0 mL of the solution containing the prepared bonding material is dropped at a constant rate for 10 seconds. Then, it was held for 23 seconds, then rotated at 2000 rpm for 1 second and 600 rpm for 30 seconds, and then rotated at 2000 rpm for 10 seconds to be dried. By this.
  • the bonding material was applied on the first substrate.
  • the first substrate provided with the bonding material was heated at 200 ° C. for 30 minutes in a nitrogen atmosphere.
  • a bonding layer having a siloxane bond and an imide bond (a thickness of 2.8 ⁇ m on the SiO x film in a region where the copper electrode is not formed, a composite elastic modulus of 5.8 GPa) was formed.
  • a 1.0 ⁇ m-thick bonding material was also formed on the copper electrode.
  • a bonding layer (thickness of 2.8 ⁇ m on the SiO x film in the region where the copper electrode is not formed and composite elastic modulus of 5.8 GPa) was formed on the surface of the second substrate.
  • the amount of silicon on the surface was 6.5 atom%.
  • the presence of silanol groups on the surface of the bonding layer (TOF-SIMS peak count number 2 ⁇ 10 ⁇ 4 ) was confirmed.
  • ⁇ Exposed copper electrode> The surface of the first substrate and the second substrate on which the bonding layer was formed was treated with a CMP apparatus (ARW-8C1MS (manufactured by M.T. Co., Ltd.)) to prepare a silica-blended slurry (COMPOL80 (Fujimi Co., Ltd.).
  • the bonding material on the copper electrode is removed by polishing with Incorporated) to expose the copper electrode, and the substrate after CMP is washed with a post-CMP cleaning solution (CMP-B01 (Kanto Chemical Co., Inc.)). .
  • the thickness of the bonding layer on the SiO x film in the region where the copper electrode was not formed after CMP was 2.4 ⁇ m, and the surface roughness (Ra) of the bonding layer was 0.60 nm. Further, when a step difference between the bonding layer and the exposed copper electrode was measured using a contact type surface profilometer (Profilometer P16 + (manufactured by KLA Tencor Co., Ltd.)), the copper electrode was convex by 60 nm from the surface of the bonding layer. It was
  • the copper electrode was polished with a slurry containing hydrogen peroxide and silica, and the CMP-treated substrate was washed with a post-CMP washing solution (CMP-B01 (manufactured by Kanto Chemical Co., Inc.)).
  • CMP-B01 manufactured by Kanto Chemical Co., Inc.
  • the thickness of the bonding layer on the SiO x film in the region where the copper electrode was not formed after CMP was 2.3 ⁇ m.
  • the copper electrode was recessed by 100 nm from the surface of the bonding layer.
  • Example 4 The state of the copper electrode and the bonding layer in ⁇ Exposure of copper electrode> in Example 4 will be described with reference to FIG.
  • the SiO x film 32 and the copper electrode 33 are formed in this order on the substrate 31, and the bonding layer 34 is formed on the SiO x film 32 and the copper electrode 33.
  • the bonding material on the copper electrode 33 is removed, and the copper electrode 33 is exposed in a state of being convex by 60 nm from the surface of the bonding layer 34.
  • FIG. 3C the copper electrode 33 is polished and exposed in a state where the copper electrode 33 is recessed by 100 nm from the surface of the bonding layer 34.
  • Example 5 ⁇ Preparation of solution containing bonding material> The solution containing the bonding material prepared in Example 1 was used.
  • the substrate was prepared. Hydrophilic treatment was performed on all the substrates by UV ozone treatment.
  • the first substrate prepared as described above is placed on a spin coater, 2.0 mL of the prepared bonding material-containing solution is dropped at a constant rate for 10 seconds, and after holding for 13 seconds, 2000 rpm for 1 second and 600 rpm. After rotating for 30 seconds at 2000 rpm for 10 seconds, it was dried. This provided the bonding material on the first substrate.
  • the first substrate provided with the bonding material was heated at 400 ° C. for 10 minutes in a nitrogen atmosphere.
  • a bonding layer having a siloxane bond and an imide bond (curing rate: 95% or more, thickness: 103 nm, composite elastic modulus: 4.2 GPa, surface roughness (Ra): 0.30 nm, water droplet contact angle: 69 °) was formed.
  • the amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 1.
  • the first substrate and the second substrate are brought into contact with each other at room temperature (23 ° C.) in the atmosphere through the bonding layer formed as described above, and the first substrate, the bonding layer, and the second substrate was prepared.
  • the surface energy of the bonding interface of the above-mentioned temporary fixed substrate laminate was 0.24 J / m 2 .
  • Example 6 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 1 except that the content of 3APDES was 20% by mass and the content of pyromellitic acid half ester was 16% by mass.
  • the bonding layer (curing rate: 95% or more, thickness: 2.) was formed on the first substrate in the same manner as in Example 5 except that the bonding layer had a thickness of 2.5 ⁇ m and a surface roughness (Ra) of 0.21 nm. 5 ⁇ m, composite elastic modulus 4.2 GPa, water droplet contact angle 69 °).
  • the amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 1.
  • the temporary fixed substrate laminate formed as described above was bonded to the first substrate and the second substrate in the same manner as in Example 5 to obtain a substrate laminate.
  • the surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 7 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared in the same manner as in Example 1.
  • a bonding layer (curing rate: 95% or more, thickness: 103 nm, composite elastic modulus: 4.2 GPa, surface roughness (Ra): 0.30 nm, water droplet contact angle: 69 °) was formed on the first substrate in the same manner as in Example 5. Formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 1.
  • the temporary fixed substrate laminate formed as described above was bonded to the first substrate and the second substrate in the same manner as in Example 5 to obtain a substrate laminate.
  • the surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 8 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared in the same manner as in Example 1.
  • a bonding layer (curing rate: 95% or more, thickness: 103 nm, composite elastic modulus: 4.2 GPa, surface roughness (Ra): 0.30 nm, water droplet contact angle: 69 °) was formed on the first substrate in the same manner as in Example 5. Formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 1.
  • the temporary fixed substrate laminate formed as described above was bonded to the first substrate and the second substrate in the same manner as in Example 5 to obtain a substrate laminate.
  • the surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 9 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 1 except that the content of 3APDES was 20% by mass and the content of pyromellitic acid half ester was 16% by mass.
  • the substrate was prepared. Hydrophilic treatment was performed on all the substrates by UV ozone treatment.
  • a bonding layer (hardening rate 95% or more, thickness 2.5 ⁇ m, composite elastic modulus 4.2 GPa, surface roughness (Ra) 0.21 nm, water droplet contact angle 69 ° was formed on the first substrate. ) was formed.
  • the amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 1.
  • a dicing tape was attached and fixed to the surface of the first substrate on which the bonding layer was formed, which was obtained above, on the side where the bonding layer was not formed.
  • the first substrate on which the bonding layer fixed to the dicing tape was formed was diced into 10 mm ⁇ 10 mm squares. Further, the particles generated by dicing were washed with water.
  • the temporary fixed substrate laminate formed as described above was heated from room temperature to 250 ° C., and then thermocompression-bonded at 250 ° C. for 10 minutes under a nitrogen atmosphere at 1 MPa. Then, by cooling, the first substrate and the second substrate were bonded to each other to obtain a substrate laminate.
  • FIG. 4A shows a temporary fixed substrate laminate in which the first substrate 41 is temporarily fixed on the second substrate 43 via a bonding layer and a surface of the first substrate 41 on which the bonding layer is formed. Is a view from the other side.
  • FIG. 4B shows a substrate laminated body in which the first substrate 41 is bonded to the second substrate 43 via a bonding layer on the side opposite to the surface of the first substrate 41 on which the bonding layer is formed. It is the figure seen from.
  • the absolute values of the differences ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 between the vertices of the adjacent pieces of the first substrate on which the bonding layer is formed were measured at seven different points from the above, the alignment of the substrate laminate was measured. The deviation amount was less than 1 ⁇ m at all seven locations.
  • Example 9 From the results of Example 9, it was found that it is possible to manufacture a substrate laminate in which misalignment is suppressed.
  • Example 10 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 4. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 9. ⁇ Formation of bonding layer> The first substrate prepared as described above is placed on a spin coater, 2.0 mL of the prepared bonding material-containing solution is dropped at a constant rate for 10 seconds, and after holding for 23 seconds, 2000 rpm for 1 second and 600 rpm. After rotating for 30 seconds at 2000 rpm for 10 seconds, it was dried. This provided the bonding material on the first substrate. The first substrate provided with the bonding material was heated at 200 ° C. for 30 minutes in a nitrogen atmosphere.
  • a bonding layer having a siloxane bond and an imide bond (hardening rate 95% or more, thickness 2.8 ⁇ m, composite elastic modulus 5.8 GPa, surface roughness (Ra) 0.20 nm) was formed.
  • the amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4.
  • the first substrate on which the bonding layer was formed, obtained as described above, was separated into individual pieces in the same manner as in Example 9, and particles were further washed.
  • ⁇ Production of temporary fixed substrate laminate> After manufacturing the temporary fixed substrate laminate in the same manner as in Example 9, the dicing tape attached to the back surface of the first substrate was peeled off and removed.
  • a substrate laminate was obtained in the same manner as in Example 9.
  • ⁇ Measurement of misalignment amount> The amount of misalignment was measured in the same manner as in Example 9. The amount of misalignment of the substrate laminate was less than 1 ⁇ m at all seven locations.
  • Example 11 ⁇ Preparation of solution containing bonding material> Hydrolyzate of 1.26 g of 3-aminopropyldiethoxymethylsilane (3APDES; (3-Aminopropyl) diethoxymethylsilane) and 4,4′-oxydiphthalic acid half ester (R in the general formula (B-1) is an ethyl group) A solution containing a bonding material was prepared in the same manner as in Example 4 except that 1.32 g was used. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 5.
  • a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 350 nm, composite elastic modulus 5.5 GPa) was formed.
  • the amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4.
  • Copper electrodes having a thickness of 100 nm, a diameter of 2 mm, and a pitch of 10 mm were formed on the surface of the bonding layer on the first substrate by sputtering.
  • ⁇ Production of temporary fixed substrate laminate The surface of the bonding layer on the singulated first substrate and the surface of the bonding layer on the diced second substrate are brought into contact with each other at room temperature (23 ° C.) in the atmosphere to form the first substrate and the bonding layer. Then, a temporary fixed substrate laminated body including the second substrate was manufactured.
  • the temporary fixed substrate laminate formed as described above is subjected to thermocompression bonding at 250 ° C. for 5 minutes in an air atmosphere under the condition of 2 MPa to bond the first substrate and the second substrate, and thus the substrate laminate.
  • Example 11 ⁇ Method 2 for determining the presence or absence of voids between substrates>
  • the substrate laminate obtained in Example 11 was cut and the cross section of the substrate laminate was observed with a scanning electron microscope to determine the presence or absence of voids between the substrates. No void was observed in the cross section of the substrate laminate obtained in Example 11.
  • ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 5.
  • ⁇ Formation of bonding layer> In the same manner as in Example 11, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 550 nm, composite elastic modulus 33.4 GPa, water droplet contact angle 44 °, surface roughness (Ra) 0.20 nm). ) was formed. It was confirmed that the amount of silicon on the surface of the bonding layer was 29.4 atomic%, and that silanol groups were present (TOF-SIMS peak count number 2 ⁇ 10 ⁇ 5 ).
  • ⁇ Copper electrode formation> A copper electrode was formed in the same manner as in Example 11.
  • ⁇ Chip formation> In the same manner as in Example 11, the first substrate and the second substrate that had been subjected to the above-described steps were individually diced into chips of 20 mm ⁇ 20 mm square.
  • ⁇ Production of temporary fixed substrate laminate> A temporary fixed substrate laminate was manufactured in the same manner as in Example 11.
  • ⁇ Production of substrate laminate> The temporary fixed substrate laminate formed as described above was subjected to thermocompression bonding at 250 ° C. for 5 minutes in an air atmosphere under the condition of 2 MPa, and the first fixed substrate and the second substrate were formed from the temporary fixed substrate laminate. And peeled off and could not be joined. It is presumed that the reason is that the unevenness of the bonding surface could not be absorbed and the first substrate and the second substrate could not be bonded.
  • a first substrate and a second substrate were prepared in the same manner as in Example 5.
  • a bonding layer having a siloxane bond and an imide bond (hardening rate 95% or more, thickness 450 nm, composite elastic modulus 15.9 GPa, water droplet contact angle 45 °, surface roughness (Ra) 0.30 nm. ) was formed.
  • Example 12 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 4. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 5. ⁇ Formation of bonding layer> In the same manner as in Example 11, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 1.5 ⁇ m, composite elastic modulus 5.5 GPa) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4. ⁇ Copper electrode formation> A copper electrode was formed in the same manner as in Example 11.
  • ⁇ Determination of presence / absence of voids between substrates> The presence / absence of voids between the substrates of the substrate laminate manufactured in Example 12 was observed with an infrared microscope as in Example 11. In this determination method 1, no void was observed in the substrate laminate obtained in Example 12 (the void was below the measurement limit).
  • ⁇ Method 2 for determining the presence or absence of voids between substrates> The substrate laminate manufactured in Example 12 was cut and the cross section of the substrate laminate was observed with a scanning electron microscope to determine the presence or absence of voids between the substrates. No void was observed in the cross section of the substrate laminate obtained in Example 12.
  • Example 13 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared in the same manner as in Example 12. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 7. ⁇ Formation of bonding layer> In the same manner as in Example 11, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 1.5 ⁇ m, composite elastic modulus 5.5 GPa) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4. ⁇ Copper electrode formation> A copper electrode was formed in the same manner as in Example 11.
  • ⁇ Determination of presence / absence of voids between substrates> The presence / absence of voids between the substrates of the substrate laminate manufactured in Example 13 was observed with an infrared microscope as in Example 11. In this determination method 1, voids were not observed in the substrate laminate obtained in Example 13 (below the measurement limit).
  • ⁇ Method 2 for determining the presence or absence of voids between substrates> The substrate laminate manufactured in Example 13 was cut, and the cross section of the substrate laminate was observed with a scanning electron microscope to determine the presence or absence of voids between the substrates. No void was observed in the cross section of the substrate laminate obtained in Example 13.
  • Example 14 ⁇ Preparation of solution containing bonding material> A solution containing the bonding material was prepared in the same manner as in Example 12. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 8. ⁇ Formation of bonding layer> In the same manner as in Example 11, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 1.5 ⁇ m, composite elastic modulus 5.5 GPa) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4. ⁇ Copper electrode formation> A copper electrode was formed in the same manner as in Example 11.
  • ⁇ Determination of presence / absence of voids between substrates> The presence / absence of voids between the substrates of the substrate laminate manufactured in Example 14 was observed with an infrared microscope as in Example 11. In this determination method 1, voids were not observed in the substrate laminate obtained in Example 14 (below the measurement limit).
  • ⁇ Method 2 for determining the presence or absence of voids between substrates> The substrate laminate manufactured in Example 14 was cut, and the cross section of the substrate laminate was observed with a scanning electron microscope to determine the presence or absence of voids between the substrates. No void was observed in the cross section of the substrate laminate obtained in Example 14.
  • Example 15 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 4. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 5. ⁇ Formation of bonding layer> In the same manner as in Example 11, a bonding layer having a siloxane bond and an imide bond (curing rate: 95% or more, thickness: 2.8 ⁇ m, composite elastic modulus: 5.5 GPa) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4. ⁇ Production of temporary fixed substrate laminate> A temporary fixed substrate laminate was manufactured in the same manner as in Example 5.
  • the surface energy of the bonding interface of the above-mentioned temporary fixed substrate laminate was 0.1 J / m 2 .
  • the temporary fixed substrate laminate formed as described above was heated at 200 ° C. for 30 minutes in a nitrogen atmosphere to bond the first substrate and the second substrate to obtain a substrate laminate.
  • the surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 16 ⁇ Preparation of solution containing bonding material> Hydrolyzate of 0.42 g of 3-aminopropyldiethoxymethylsilane (3APDES; (3-Aminopropyl) diethoxymethylsilane) and 4,4′-oxydiphthalic acid half ester (R in the general formula (B-1) is an ethyl group) A solution containing a bonding material was prepared in the same manner as in Example 4 except that 0.44 g was used. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 5.
  • ⁇ Formation of bonding layer> In the same manner as in Example 10, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 140 nm, composite elastic modulus 5.8 GPa) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4.
  • ⁇ Production of temporary fixed substrate laminate> A temporary fixed substrate laminate was manufactured in the same manner as in Example 5. The surface energy of the bonding interface of the temporary fixed substrate laminate described above was 0.2 J / m 2 .
  • ⁇ Production of substrate laminate> A substrate laminate was obtained in the same manner as in Example 15. The surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 17 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 16. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 5. ⁇ Formation of bonding layer> In the same manner as in Example 5, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 140 nm, composite elastic modulus 5.5 GPa, surface roughness (Ra) 0.30 nm, water droplet contact angle 73 °. ) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4.
  • a temporary fixed substrate laminate was manufactured in the same manner as in Example 5.
  • the surface energy of the bonding interface of the temporary fixed substrate laminate described above was 0.2 J / m 2 .
  • a substrate laminate was obtained in the same manner as in Example 15.
  • the surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 18 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 16. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 7. ⁇ Formation of bonding layer> In the same manner as in Example 5, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 140 nm, composite elastic modulus 5.5 GPa, surface roughness (Ra) 0.30 nm, water droplet contact angle 73 °. ) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4.
  • ⁇ Production of temporary fixed substrate laminate> A temporary fixed substrate laminate was manufactured in the same manner as in Example 5. The surface energy of the bonding interface of the above-mentioned temporary fixed substrate laminate was 2.5 J / m 2 or more (measurement limit). ⁇ Production of substrate laminate> A substrate laminate was obtained in the same manner as in Example 15. The surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).
  • Example 19 ⁇ Preparation of solution containing bonding material> A solution containing a bonding material was prepared in the same manner as in Example 16. ⁇ Preparation of substrate> A first substrate and a second substrate were prepared in the same manner as in Example 8. ⁇ Formation of bonding layer> In the same manner as in Example 5, a bonding layer having a siloxane bond and an imide bond (curing rate 95% or more, thickness 140 nm, composite elastic modulus 5.5 GPa, surface roughness (Ra) 0.30 nm, water droplet contact angle 73 °. ) was formed. The amount of silicon on the surface of the bonding layer and the presence or absence of silanol groups were the same as in Example 4.
  • a temporary fixed substrate laminate was manufactured in the same manner as in Example 5.
  • the surface energy of the bonding interface of the above-mentioned temporary fixed substrate laminate was 0.9 J / m 2 .
  • a substrate laminate was obtained in the same manner as in Example 15.
  • the surface energy of the bonding interface between the first substrate and the second substrate was 2.5 J / m 2 or more (measurement limit).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を付与する工程と、前記表面上に付与された前記接合材料を硬化して23℃における複合弾性率が10GPa以下である接合層を形成する工程と、形成された前記接合層を介して前記第1の基板と前記第2の基板とを接合する工程と、を備える基板積層体の製造方法。

Description

基板積層体の製造方法及び積層体
 本発明は、基板積層体の製造方法及び積層体に関する。
 電子機器の小型軽量化、高性能化が進行するに伴い、半導体チップ等の高集積化が求められている。しかし、回路の微細化ではその要求に十分に応えることは困難である。そこで、近年、複数枚の半導体基板(ウェハ)、半導体チップ等を縦に積層し、多層の三次元構造とすることにより高集積化する方法が提案されている。半導体基板(ウェハ)、半導体チップ等(以後、「半導体基板等」と称する場合がある)を積層する方法としては、基板同士の直接接合方法、接着剤を用いる方法等が提案されている(例えば、特許文献1~3、非特許文献1~4参照)。
 [特許文献1]特開平4-132258号公報
 [特許文献2]特開2010-226060号公報
 [特許文献3]特開2016-47895号公報
 [非特許文献1]A.Bayrashev, B.Ziaie, Sensors and Actuators A 103 (2003) 16-22.
 [非特許文献2]Q. Y. Tong, U. M. Gosele, Advanced Material 11, No. 17 (1999) 1409-1425.
 [非特許文献3]Z. Song, Z. Tan, L. Liu, Z. Wang, Microsystem Technology, 21 (2015) 1633-1641.
 [非特許文献4]J. J. McMahon, E. Chan, S. H. Lee, R. J. Gutmann, and J.-Q. Lu, Proceedings - Electronic Components and Technology Conference ・ June 2008 871-878
 直接接合では、基板表面の配線等による微細な凹凸、パーティクルなどによりボイドが発生しやすいという問題がある。
 一方で、接着剤を用いて接合する場合、接着剤を基板表面に付与し、次いで乾燥させて半硬化状態とした後に基板同士を貼り合わせる。このとき、基板の接合位置ずれ(アラインメントのずれ)が生じやすいという問題がある。
 本発明の一態様は、上記問題に鑑みてなされたものであり、ボイドの発生及びアラインメントのずれが抑制された基板積層体を製造可能な基板積層体の製造方法、並びに、積層体を提供することを目的とする。
 前記課題を解決するための具体的手段は以下のとおりである。
<1> 第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を付与する工程と、前記表面上に付与された前記接合材料を硬化して23℃における複合弾性率が10GPa以下である接合層を形成する工程と、形成された前記接合層を介して前記第1の基板と前記第2の基板とを接合する工程と、を備える基板積層体の製造方法。
<2> 前記接合層を形成する工程では、前記表面上に付与された前記接合材料を100℃~450℃で加熱して硬化させる<1>に記載の基板積層体の製造方法。
<3> 前記第1の基板と前記第2の基板とを接合する工程では、前記接合層を介して前記第1の基板と前記第2の基板とを接触させた状態にて前記接合層を100℃~450℃で加熱して接合させる<1>又は<2>に記載の基板積層体の製造方法。
<4> 前記接合層を形成する工程後かつ前記第1の基板と前記第2の基板とを接合する工程前の、接合層の硬化率が70%以上である、<1>~<3>のいずれか1つに記載の基板積層体の製造方法。
<5> 前記接合層は、表面にシラノール基を有する、<1>~<4>のいずれか1つに記載の基板積層体の製造方法。
<6> 前記接合層が、シロキサン結合と、アミド結合及びイミド結合の少なくとも一方とを有する、<1>~<5>のいずれか1項に記載の基板積層体の製造方法。
<7> 前記第1の基板及び前記第2の基板の少なくとも一方の、前記接合層と接触する側の面に表面処理を行うことにより、水酸基を形成する工程を更に備える<1>~<6>のいずれか1つに記載の基板積層体の製造方法。
<8> 基板積層体における前記接合層の厚さは、0.001μm~8.0μmである<1>~<7>のいずれか1つに記載の基板積層体の製造方法。
<9> 基板積層体における、前記第1の基板と前記第2の基板との接合界面の表面エネルギーが2J/m以上である、<1>~<8>のいずれか1つに記載の基板積層体の製造方法。
<10> 前記接合層を形成する工程後に、前記接合層を介して前記第1の基板と前記第2の基板とを仮固定する工程をさらに備え、前記仮固定する工程後の前記第1の基板と前記第2の基板との接合界面の表面エネルギーは、0.05J/m以上である、<1>~<9>のいずれか1つに記載の基板積層体の製造方法。
<11> 前記接合材料を付与する工程の前に、前記第1の基板及び前記第2の基板の少なくとも一方の前記接合材料が付与される表面上に電極を形成する工程を更に備える<1>~<10>のいずれか1つに記載の基板積層体の製造方法。
<12> 前記接合材料を付与する工程の後かつ前記接合層を形成する工程の前に、前記電極上の接合材料を除去する工程を更に備える、<11>に記載の基板積層体の製造方法。
<13> 前記接合層を形成する工程後かつ前記第1の基板と前記第2の基板とを接合する工程の前に、前記電極上の接合層を除去する工程を更に備える、<11>に記載の基板積層体の製造方法。
<14> 前記接合層を形成する工程後かつ前記第1の基板と前記第2の基板とを接合する工程の前に、前記接合層が形成された表面に電極を形成する工程を更に備える、<1>~<13>のいずれか1つに記載の基板積層体の製造方法。
<15> 基板と、前記基板上に形成された接合層と、を備え、前記接合層は、接合材料を硬化してなり、23℃における複合弾性率が10GPa以下である積層体。
 本発明の一態様は、ボイドの発生及びアラインメントのずれが抑制された基板積層体を製造可能な基板積層体の製造方法、並びに、積層体を提供することができる。
実施例2において、第1の基板及び第2の基板に形成されたアラインメントマークを示す概略図である。 実施例2において、第1の基板及び第2の基板を接合した際のアラインメントマークのずれを示す概略図である。 実施例4において、<銅電極の露出>の銅電極及び接合層の状態を示す図である。 実施例9において、(a)は、第2の基板上に、接合層を介して第1の基板を仮固定した仮固定基板積層体を、第1の基板の接合層が形成された面とは反対側から見た図であり、(b)は、第2の基板上に、接合層を介して第1の基板を接合した基板積層体を、第1の基板の接合層が形成された面とは反対側から見た図である。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「基板積層体」は、2つの基板が本開示の基板積層体の製造方法にて形成される接合層を介して接合された構造を有する積層体を意味する。なお、基板積層体は、3つ以上の基板を有していてもよく、3つ以上の基板の内の2つの基板が本開示の基板積層体の製造方法にて形成される接合層を介して接合された構造を有していてもよい。
〔基板積層体の製造方法〕
 本開示の基板積層体の製造方法は、第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を付与する工程(以下、「第1工程」とも称する。)と、前記表面上に付与された前記接合材料を硬化して23℃における複合弾性率が10GPa以下である接合層を形成する工程(以下、「第2工程」とも称する。)と、形成された前記接合層を介して前記第1の基板と前記第2の基板とを接合する工程(以下、「第3工程」とも称する。)と、を備える。
 なお、23℃における複合弾性率は、後述の実施例に記載の方法により測定することができる。
 本開示の基板積層体の製造方法では、接合材料が硬化され、23℃における複合弾性率が10GPa以下である接合層を介して、第1の基板及び第2の基板が接合される。すなわち、接合材料が半硬化状態ではなく硬化状態であり、かつ23℃における複合弾性率が所定の数値以下である接合層により、第1の基板及び第2の基板が接合される。硬化された接合層を介して、第1の基板及び第2の基板が接合されることにより、基板の接合位置ずれ(アラインメントのずれ)が発生しにくい。更に、23℃における複合弾性率が10GPa以下である接合層を介して、第1の基板及び第2の基板が接合されることにより、空隙が接合層に吸収されてボイドの発生が抑制される。
<接合材料を付与する工程(第1工程)>
 本開示の基板積層体の製造方法は、第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を付与する工程を備える。
(第1の基板及び第2の基板)
 第1の基板及び第2の基板の材質は、特に限定されず、通常使用されるものであればよい。なお、第1の基板及び第2の基板の材質は、同じであっても異なっていてもよい。
 第1の基板及び第2の基板としては、Si、Al、Ti、Zr、Hf、Fe、Ni、Cu、Ag、Au、Ga、Ge、Sn、Pd、As、Pt、Mg、In、Ta及びNbからなる群から選ばれる少なくとも1種の元素を含むことが好ましい。第1の基板及び第2の基板の材質としては、例えば、半導体:Si、InP、GaN、GaAs、InGaAs、InGaAlAs、SiC、酸化物、炭化物、窒化物:ホウ素珪酸ガラス(パイレックス(登録商標))、石英ガラス(SiO)、サファイア、ZrO、Si、AlN、圧電体、誘電体:BaTiO、LiNbO,SrTiO、ダイヤモンド、金属:Al、Ti、Fe、Cu、Ag、Au、Pt、Pd、Ta、Nbなどである。
 第1の基板及び第2の基板の材質としては、他にも樹脂:ポリジメチルシロキサン(PDMS)、エポキシ樹脂、フェノール樹脂、ポリイミド、ベンゾシクロブテン樹脂、ポリベンゾオキサゾールなどであってもよい。
 第1の基板及び第2の基板は、多層構造であってもよい。例えば、シリコン基板等の表面に酸化ケイ素、窒化ケイ素、SiCN(炭窒化ケイ素)等の無機物層が形成された構造、シリコン基板等の表面にポリイミド樹脂、ポリベンゾオキサゾール樹脂、エポキシ樹脂、シクロテン(Dow, Chem)等の有機物層が形成された構造、シリコン基板上に無機物及び有機物の複合体が形成された構造が挙げられる。
 各材料は主な用途として、次のものに使用される。
 Siは、半導体メモリー、LSIの積層、CMOSイメージセンサー、MEMS封止、光学デバイス、LEDなど;
 SiOは、半導体メモリー、LSIの積層、MEMS封止、マイクロ流路、CMOSイメージセンサー、光学デバイス、LEDなど;
 PDMSは、マイクロ流路;
 InGaAlAs、InGaAs、InPは、光学デバイス;
 InGaAlAs、GaAs、GaNは、LEDなど。
<電極を形成する工程1>
 第1の基板及び第2の基板の少なくとも一方は、接合材料が付与される表面に電極を有していてもよい。例えば、本開示の基板積層体の製造方法は、接合材料を付与する工程の前に、第1の基板及び第2の基板の少なくとも一方の接合材料が付与される表面上に電極を形成する工程を更に備えていてもよい。
 電極は、第1の基板又は第2の基板の表面上に凸状に形成されていてもよく、第1の基板又は第2の基板を貫通する状態で形成されていてもよく、第1の基板又は第2の基板に埋め込まれた状態で形成されていてもよい。
 接合材料が付与される表面に電極を有し、更に基板における電極を有する表面に接合材料を付与する場合は、電極を基板の表面上に凸状に形成することが好ましい。基板表面に電極を有していても、基板における電極を有する表面に接合材料を付与しない場合には、基板表面の電極はいかなる形状であってもよい。
<電極を形成する工程2>
 第1の基板及び第2の基板の少なくとも一方に接合層が形成された後、接合層が形成された表面に電極を形成してもよい。例えば、接合層に電極が形成される孔をドライエッチングにより形成し、形成された孔に電極を形成してもよい。
<電極を形成する工程3>
 接合材料が感光性を有する場合、第1の基板及び第2の基板の少なくとも一方に付与された接合材料にフォトリソグラフィで電極が形成される孔を形成し、接合材料を硬化して接合層を形成する工程を経た後、形成された孔に電極を形成してもよい。
 電極の材料としては、例えば、銅、はんだ、すず、金、銀、アルミニウム等が挙げられる。
 前述の電極を形成する工程1~3にて、電極の形成方法としては、電界めっき、無電解めっき、スパッタリング、インクジェット法等が挙げられる。
 第1の基板及び第2の基板の厚さは、それぞれ独立に、0.5μm~1mmであることが好ましく、1μm~900μmであることがより好ましく、2μm~900μmであることが更に好ましい。
 第1の基板及び第2の基板の形状も特に制限されない。例えば、第1の基板及び第2の基板がシリコン基板の場合、層間絶縁層(Low-k膜)が形成されたシリコン基板であってもよく、また、シリコン基板には、微細な溝(凹部)、微細な貫通孔などが形成されていてもよい。
 第1の基板及び第2の基板の表面粗度(Ra)は、それぞれ独立に1.2nm以下であることが好ましく、第1の基板及び第2の基板を接合する際に低温で後述の仮固定が可能となりやすい点から、基板の一方にのみ接合材料が付与され、他方には接合材料が付与されない場合に接合材料が付与されていない基板の表面粗度(Ra)は、1.2nm以下であることがより好ましい。
 基板の表面粗度は走査型プローブ顕微鏡(SPM)による形態観察で評価できる。具体的には、SPMであるSPA400(日立ハイテクノロジーズ製)を用い、ダイナミックフォースマイクロスコープモードにて、3μm×3μm角領域で測定を行うことで表面粗度が求められる。
 また、第1の基板及び第2の基板の表面の水滴接触角は、それぞれ独立に90°以下であることが好ましく、第1の基板及び第2の基板を接合する際に低温で仮固定が可能となりやすい点から、基板の一方にのみ接合材料が付与され、他方には接合材料が付与されない場合に接合材料が付与されていない基板の表面の水滴接触角は、90°以下であることがより好ましい。
 水滴接触角の測定は、具体的には、23℃、湿度50%の条件で、固液界面解析システム(DropMaster500画像処理式、協和界面科学株式会社製)を使用して、水の静的接触角を測定することで求められる。
(接合材料)
 接合材料は、硬化することにより23℃における複合弾性率が10GPa以下の接合層を形成可能なものであれば特に制限されない。接合材料としては、例えば、ポリイミド、ポリアミド、ポリアミドイミド、パリレン、ポリアリレンエーテル、テトラヒドロナフタレン、オクタヒドロアントラセン等の結合又は構造が架橋により形成される材料、ポリベンゾオキサザール、ポリベンゾオキサジン等の窒素環含有構造が形成される材料、Si-O等の結合又は構造が架橋により形成される材料、シロキサン変性化合物などの有機材料が挙げられる。有機材料は、芳香環構造を含有していてもよい。また、接合材料は、単独重合又は共重合可能な重合性化合物、この重合性化合物と架橋剤との組み合わせ等が挙げられる。また、接合材料は感光性を有する材料であってもよい。
 Si-O結合(シロキサン結合)を有する構造としては、例えば、以下に示す式(1)~式(3)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000001

 
 
 Si-O結合(シロキサン結合)を有する構造にて、Siに結合する基が(アルキレン基、フェニレン基等で置換されていてもよい。例えば、(-O-)(R)Si-(R)-Si(R(-O-)等を有する構造(Rはメチル基等を表し、Rはアルキレン基、フェニレン基等を表す。x及びyはそれぞれ独立に0以上の整数であり、かつx+yは3である。)であってもよい。
 Si-O結合が架橋により形成される材料としては、例えば、以下に示す式(4)及び式(5)で表される化合物が挙げられる。また、式(1)及び式(2)で表される構造は、例えば、式(4)及び式(5)で表される化合物を加熱して反応させることで生成できる。
Figure JPOXMLDOC01-appb-C000002
 例えば、接合材料が、ポリイミド、ポリアミド、ポリアミドイミド等の結合又は構造が架橋により形成される材料を含む場合、1級窒素原子及び2級窒素原子の少なくとも1つを含むカチオン性官能基を有し、重量平均分子量が90以上40万以下である化合物(A)と、分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である)を3つ以上有し、3つ以上の-C(=O)OX基のうち、1つ以上6つ以下が-C(=O)OH基であり、重量平均分子量が200以上600以下である架橋剤(B)と、を含むことが好ましい。
(化合物(A))
 化合物(A)は、1級窒素原子及び2級窒素原子の少なくとも1つを含むカチオン性官能基を有し、重量平均分子量が90以上40万以下である化合物である。カチオン性官能基としては、正電荷を帯びることができ、かつ1級窒素原子及び2級窒素原子の少なくとも1つを含む官能基であれば特に限定されない。
 更に、化合物(A)は、1級窒素原子及び2級窒素原子のほかに、3級窒素原子を含んでいてもよい。
 本開示において、「1級窒素原子」とは、水素原子2つ及び水素原子以外の原子1つのみに結合している窒素原子(例えば、1級アミノ基(-NH基)に含まれる窒素原子)、又は、水素原子3つ及び水素原子以外の原子1つのみに結合している窒素原子(カチオン)を指す。
 また、「2級窒素原子」とは、水素原子1つ及び水素原子以外の原子2つのみに結合している窒素原子(即ち、下記式(a)で表される官能基に含まれる窒素原子)、又は、水素原子2つ及び水素原子以外の原子2つのみに結合している窒素原子(カチオン)を指す。
 また、「3級窒素原子」とは、水素原子以外の原子3つのみに結合している窒素原子(即ち、下記式(b)で表される官能基である窒素原子)、又は、水素原子1つ及び水素原子以外の原子3つのみに結合している窒素原子(カチオン)を指す。
Figure JPOXMLDOC01-appb-C000003

 
 式(a)及び式(b)において、*は、水素原子以外の原子との結合位置を示す。
 ここで、前記式(a)で表される官能基は、2級アミノ基(-NHR基;ここで、Rはアルキル基を表す)の一部を構成する官能基であってもよいし、ポリマーの骨格中に含まれる2価の連結基であってもよい。
 また、前記式(b)で表される官能基(即ち、3級窒素原子)は、3級アミノ基(-NR基;ここで、R及びRは、それぞれ独立に、アルキル基を表す)の一部を構成する官能基であってもよいし、ポリマーの骨格中に含まれる3価の連結基であってもよい。
 化合物(A)の重量平均分子量は、90以上40万以下である。化合物(A)としては、例えば、脂肪族アミン、シロキサン結合(Si-O結合)とアミノ基とを有する化合物、分子内にSi-O結合を有さず、環構造を有するアミン化合物等が挙げられる。化合物(A)が脂肪族アミンの場合、重量平均分子量は1万以上20万以下であることが好ましい。化合物(A)がシロキサン結合(Si-O結合)とアミノ基とを有する化合物の場合、重量平均分子量は130以上10000以下であることが好ましく、130以上5000以下であることがより好ましく、130以上2000以下であることが更に好ましい。化合物(A)が分子内にSi-O結合を有さず、環構造を有するアミン化合物の場合、重量平均分子量は90以上600以下が好ましい。
 なお、本開示において、重量平均分子量は、モノマー以外について、GPC(Gel Permeation Chromatography)法によって測定された、ポリエチレングリコール換算の重量平均分子量を指す。
 具体的には、重量平均分子量は、展開溶媒として硝酸ナトリウム濃度0.1mol/Lの水溶液を用い、分析装置Shodex DET RI-101及び2種類の分析カラム(東ソー製 TSKgel G6000PWXL-CP及びTSKgel G3000PWXL-CP)を用いて流速1.0mL/minで屈折率を検出し、ポリエチレングリコール/ポリエチレンオキサイドを標準品として解析ソフト(Waters製 Empower3)にて算出される。
 また、化合物(A)は、必要に応じて、アニオン性官能基、ノニオン性官能基等を更に有していてもよい。
 前記ノニオン性官能基は、水素結合受容基であっても、水素結合供与基であってもよい。前記ノニオン性官能基としては、例えば、ヒドロキシ基、カルボニル基、エーテル基(-O-)、等を挙げることができる。
 前記アニオン性官能基は、負電荷を帯びることができる官能基であれば特に制限はない。前記アニオン性官能基としては、例えば、カルボン酸基、スルホン酸基、硫酸基等を挙げることができる。
 化合物(A)としては、脂肪族アミンが挙げられるが、より具体的には、エチレンイミン、プロピレンイミン、ブチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミン、トリメチレンイミン、テトラメチレンイミン、ペンタメチレンイミン、ヘキサメチレンイミン、オクタメチレンイミンなどのアルキレンイミンの重合体であるポリアルキレンイミン;ポリアリルアミン;ポリアクリルアミドが挙げられる。
 ポリエチレンイミン(PEI)は、特公昭43-8828号公報、特公昭49-33120号公報、特開2001-213958号公報、国際公開第2010/137711号パンフレット等に記載の公知の方法によって、製造することができる。ポリエチレンイミン以外のポリアルキレンイミンについても、ポリエチレンイミンと同様の方法により製造できる。
 化合物(A)は、上述したポリアルキレンイミンの誘導体(ポリアルキレンイミン誘導体;特に好ましくはポリエチレンイミン誘導体)であることも好ましい。ポリアルキレンイミン誘導体としては、上記ポリアルキレンイミンを用いて製造可能な化合物であれば特に制限はない。具体的には、ポリアルキレンイミンにアルキル基(好ましくは炭素数1~10のアルキル基)、アリール基等を導入したポリアルキレンイミン誘導体、ポリアルキレンイミンに水酸基等の架橋性基を導入して得られるポリアルキレンイミン誘導体等を挙げることができる。
 これらのポリアルキレンイミン誘導体は、上記ポリアルキレンイミンを用いて通常行われる方法により製造することができる。具体的には例えば、特開平6―016809号公報等に記載の方法に準拠して製造することができる。
 また、ポリアルキレンイミン誘導体としては、ポリアルキレンイミンに対してカチオン性官能基含有モノマーを反応させることにより、ポリアルキレンイミンの分岐度を向上させて得られた高分岐型のポリアルキレンイミンも好ましい。
 高分岐型のポリアルキレンイミンを得る方法としては、例えば、骨格中に複数の2級窒素原子を有するポリアルキレンイミンに対してカチオン性官能基含有モノマーを反応させ、前記複数の2級窒素原子のうちの少なくとも1つをカチオン性官能基含有モノマーによって置換する方法、末端に複数の1級窒素原子を有するポリアルキレンイミンに対してカチオン性官能基含有モノマーを反応させ、前記複数の1級窒素原子のうちの少なくとも1つをカチオン性官能基含有モノマーによって置換する方法等、が挙げられる。
 分岐度を向上するために導入されるカチオン性官能基としては、アミノエチル基、アミノプロピル基、ジアミノプロピル基、アミノブチル基、ジアミノブチル基、トリアミノブチル基等を挙げることができるが、カチオン性官能基当量を小さくしカチオン性官能基密度を大きくする点から、アミノエチル基が好ましい。
 また、前記ポリエチレンイミン及びその誘導体は、市販のものであってもよい。例えば、株式会社日本触媒、BASF社、MP-Biomedicals社等から市販されているポリエチレンイミン及びその誘導体から、適宜選択して用いることもできる。
 化合物(A)としては、前述の脂肪族アミンのほかに、Si-O結合とアミノ基とを有する化合物が挙げられる。Si-O結合とアミノ基とを有する化合物としては、例えば、シロキサンジアミン、アミノ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤のシロキサン重合体などが挙げられる。
 アミノ基を有するシランカップリング剤としては、例えば下記式(A-3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004

 
 式(A-3)中、Rは置換されていてもよい炭素数1~4のアルキル基を表す。R及びRは、それぞれ独立に、置換(骨格にカルボニル基、エーテル基等を含んでもよい)されていてもよい炭素数1~12のアルキレン基、エーテル基又はカルボニル基を表す。R及びRは、それぞれ独立に、置換されていてもよい炭素数1~4のアルキレン基又は単結合を表す。Arは2価又は3価の芳香環を表す。Xは水素又は置換されていてもよい炭素数1~5のアルキル基を表す。Xは水素、シクロアルキル基、ヘテロ環基、アリール基又は置換(骨格にカルボニル基、エーテル基等を含んでもよい)されていてもよい炭素数1~5のアルキル基、を表す。複数のR、R、R、R、R、Xは同じであっても異なっていてもよい。
 R、R、R、R、R、X、Xにおけるアルキル基及びアルキレン基の置換基としては、それぞれ独立に、アミノ基、ヒドロキシ基、アルコキシ基、シアノ基、カルボン酸基、スルホン酸基、ハロゲン等が挙げられる。
 Arにおける2価又は3価の芳香環としては、例えば、2価又は3価のベンゼン環が挙げられる。Xにおけるアリール基としては、例えば、フェニル基、メチルベンジル基、ビニルベンジル基等が挙げられる。
 式(A-3)で表されるシランカップリング剤の具体例としては、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルジメチルエトキシシラン、3-アミノプロピルジメチルメトキシシラン、トリメトキシ[2-(2-アミノエチル)-3-アミノプロピル]シラン、ジアミノメチルメチルジエトキシシラン、メチルアミノメチルメチルジエトキシシラン、p-アミノフェニルトリメトキシシラン、N-メチルアミノプロピルトリエトキシシラン、N-メチルアミノプロピルメチルジエトキシシラン、(フェニルアミノメチル)メチルジエトキシシラン、アセトアミドプロピルトリメトキシシラン、及びこれらの加水分解物が挙げられる。
 式(A-3)以外のアミノ基を含むシランカップリング剤としては、例えば、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス[(3-トリエトキシシリル)プロピル]アミン、ピペラジニルプロピルメチルジメトキシシラン、ビス[3-(トリエトキシシリル)プロピル]ウレア、ビス(メチルジエトキシシリルプロピル)アミン、2,2-ジメトキシ-1,6-ジアザ―2-シラシクロオクタン、3,5-ジアミノ-N-(4-(メトキシジメチルシリル)フェニル)ベンズアミド、3,5-ジアミノ-N-(4-(トリエトキシシリル)フェニル)ベンズアミド、5-(エトキシジメチルシリル)ベンゼン-1,3-ジアミン、及びこれらの加水分解物が挙げられる。
 前述のアミノ基を有するシランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、アミノ基を有するシランカップリング剤と、アミノ基を有しないシランカップリング剤とを組み合わせて用いてもよい。例えば、金属との密着性改善のためメルカプト基を有するシランカップリング剤を用いてもよい。
 また、これらのシランカップリング剤から、シロキサン結合(Si-O-Si)を介して形成される重合体(シロキサン重合体)を用いてもよい。例えば、3-アミノプロピルトリメトキシシランの加水分解物からは、線形シロキサン構造を有する重合体、分岐状シロキサン構造を有する重合体、環状シロキサン構造を有する重合体、かご状シロキサン構造を有する重合体等が得られる。かご状シロキサン構造は、例えば、下記式(A-1)で表される。
Figure JPOXMLDOC01-appb-C000005

 
 シロキサンジアミンとしては、例えば、下記式(A-2)で表される化合物が挙げられる。なお、式(A-2)中、iは0~4の整数、jは1~3の整数、Meはメチル基である。
Figure JPOXMLDOC01-appb-C000006

 
 また、シロキサンジアミンとしては、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(式(A-2)において、i=0、j=1)、1,3-ビス(2-アミノエチルアミノ)プロピルテトラメチルジシロキサン(式(A-2)において、i=1、j=1)が挙げられる。
 化合物(A)としては、前述の脂肪族アミン、及びSi-O結合とアミノ基とを有する化合物の他に、分子内にSi-O結合を有さず、環構造を有するアミン化合物が挙げられる。中でも、分子内にSi-O結合を有さず、環構造を有する重量平均分子量90以上600以下のアミン化合物が好ましい。分子内にSi-O結合を有さず、環構造を有する重量平均分子量90以上600以下のアミン化合物としては、脂環式アミン、芳香環アミン、複素環(ヘテロ環)アミン等が挙げられる。分子内に複数の環構造を有していてもよく、複数の環構造は、同じであっても異なっていてもよい。環構造を有するアミン化合物としては、熱的に、より安定な化合物が得られ易いため、芳香環を有する化合物がより好ましい。
 また、分子内にSi-O結合を有さず、環構造を有する重量平均分子量90以上600以下のアミン化合物としては、架橋剤(B)とともにアミド、アミドイミド、イミドなどの熱架橋構造を形成し易く、耐熱性を高めることができる点から、1級アミノ基を有する化合物が好ましい。更に、前述のアミン化合物としては、架橋剤(B)とともにアミド、アミドイミド、イミドなどの熱架橋構造の数を多くし易く、耐熱性をより高めることができる点から、1級アミノ基を2つ有するジアミン化合物、1級アミノ基を3つ有するトリアミン化合物等が好ましい。
 脂環式アミンとしては、例えば、シクロヘキシルアミン、ジメチルアミノシクロヘキサンなどが挙げられる。
 芳香環アミンとしては、例えば、ジアミノジフェニルエーテル、キシレンジアミン(好ましくはパラキシレンジアミン)、ジアミノベンゼン、ジアミノトルエン、メチレンジアニリン、ジメチルジアミノビフェニル、ビス(トリフルオロメチル)ジアミノビフェニル、ジアミノベンゾフェノン、ジアミノベンズアニリド、ビス(アミノフェニル)フルオレン、ビス(アミノフェノキシ)ベンゼン、ビス(アミノフェノキシ)ビフェニル、ジカルボキシジアミノジフェニルメタン、ジアミノレゾルシン、ジヒドロキシベンジジン、ジアミノベンジジン、1,3,5-トリアミノフェノキシベンゼン、2,2’-ジメチルベンジジン、トリス(4-アミノフェニル)アミン、2,7-ジアミノフルオレン、1,9-ジアミノフルオレン、ジベンジルアミンなどが挙げられる。
 複素環アミンの複素環としては、ヘテロ原子として硫黄原子を含む複素環(例えば、チオフェン環)、又は、ヘテロ原子として窒素原子を含む複素環(例えば、ピロール環、ピロリジン環、ピラゾール環、イミダゾール環、トリアゾール環等の5員環;イソシアヌル環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、トリアジン環等の6員環;インドール環、インドリン環、キノリン環、アクリジン環、ナフチリジン環、キナゾリン環、プリン環、キノキサリン環等の縮合環等)などが挙げられる。
 例えば、窒素を含有する複素環を有する複素環アミンとしては、メラミン、アンメリン、メラム、メレム、トリス(4-アミノフェニル)アミンなどが挙げられる。
 更に、複素環と芳香環の両方を有するアミン化合物としては、N2,N4,N6-トリス(4-アミノフェニル)-1,3,5-トリアジン-2,4,6-トリアミンなどが挙げられる。
 化合物(A)は、一級又は二級のアミノ基を有するため、第1基板及び第2基板の表面に存在し得る水酸基、エポキシ基、カルボキシ基、アミノ基、メルカプト基等の官能基との静電相互作用により、又は、前記官能基との共有結合を密に形成することにより、基板同士を強く接着することができる。
 また、化合物(A)は、一級又は二級のアミノ基を有するため、後述の極性溶媒(D)に容易に溶解する。極性溶媒(D)に容易に溶解する化合物(A)を用いることで、シリコン基板などの基板の親水性表面との親和性が高くなるため、平滑な膜を形成しやすく、接合層の厚さを薄くすることができる。
 化合物(A)としては、平滑な薄膜形成の点より、脂肪族アミン又はSi-O結合とアミノ基とを有する化合物が好ましく、耐熱性の点よりSi-O結合とアミノ基とを有する化合物がより好ましい。
 化合物(A)がSi-O結合とアミノ基とを有する化合物を含む場合には、化合物(A)中の1級窒素原子及び2級窒素原子の合計数と、ケイ素原子の数との比率(1級窒素原子及び2級窒素原子の合計数/ケイ素原子の数)が0.2以上5以下であると、平滑な薄膜形成の点から好ましい。
 化合物(A)がSi-O結合とアミノ基とを有する化合物を含む場合には、基板同士の接着性の点より、Si-O結合とアミノ基とを有する化合物において、Siに結合するメチル基などの非架橋性基がモル比で、(非架橋性基)/Si<2の関係を満たすことが好ましい。この関係を満たすことにより、形成される膜の架橋(Si-O-Si結合とアミド結合、イミド結合等との架橋)密度が向上し、基板同士が十分な接着力を有し、基板の剥離を抑制できると推測される。
 前述のように、化合物(A)は、1級窒素原子及び2級窒素原子の少なくとも1つを含むカチオン性官能基を有する。ここで、化合物(A)が1級窒素原子を含む場合には、化合物(A)中の全窒素原子中に占める1級窒素原子の割合が20モル%以上であることが好ましく、25モル%以上であることがより好ましく、30モル%以上であることが更に好ましい。また、化合物(A)は、1級窒素原子を含み、かつ1級窒素原子以外の窒素原子(例えば、2級窒素原子、3級窒素原子)を含まないカチオン性官能基を有していてもよい。
 また、化合物(A)が2級窒素原子を含む場合には、化合物(A)中の全窒素原子中に占める2級窒素原子の割合が5モル%以上50モル%以下であることが好ましく、10モル%以上45モル%以下であることがより好ましい。
 また、化合物(A)は、1級窒素原子及び2級窒素原子のほかに、3級窒素原子を含んでいてよく、化合物(A)が3級窒素原子を含む場合には、化合物(A)中の全窒素原子中に占める3級窒素原子の割合が20モル%以上50モル%以下であることが好ましく、25モル%以上45モル%以下であることがより好ましい。
 本開示において、接合層中における化合物(A)由来の成分の含有量は、特に制限されず、例えば、接合層全体に対して1質量%以上82質量%以下とすることができ、5質量%以上82質量%以下であることが好ましく、13質量%以上82質量%以下であることがより好ましい。
(架橋剤(B))
 架橋剤(B)は、分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である)を3つ以上有し、3つ以上の-C(=O)OX基(以下、「COOX」とも称する。)のうち、1つ以上6つ以下が-C(=O)OH基(以下、「COOH」とも称する。)であり、重量平均分子量が200以上600以下である化合物である。
 架橋剤(B)は、分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である。)を3つ以上有する化合物であるが、好ましくは、分子内に-C(=O)OX基を3つ以上6つ以下有する化合物であり、より好ましくは、分子内に-C(=O)OX基を3つ又は4つ有する化合物である。
 架橋剤(B)において、-C(=O)OX基中のXとしては、水素原子又は炭素数1以上6以下のアルキル基が挙げられ、中でも、水素原子、メチル基、エチル基、プロピル基が好ましい。なお、-C(=O)OX基中のXは互いに同一であってもよく、異なっていてもよい。
 架橋剤(B)は、分子内にXが水素原子である-C(=O)OH基を1つ以上6つ以下有する化合物であるが、好ましくは、分子内に-C(=O)OH基を1つ以上4つ以下有する化合物であり、より好ましくは、分子内に-C(=O)OH基を2つ以上4つ以下有する化合物であり、更に好ましくは、分子内に-C(=O)OH基を2つ又は3つ有する化合物である。
 架橋剤(B)は、重量平均分子量が200以上600以下の化合物である。好ましくは、200以上400以下の化合物である。
 架橋剤(B)は、分子内に環構造を有することが好ましい。環構造としては、脂環構造、芳香環構造などが挙げられる。また、架橋剤(B)は、分子内に複数の環構造を有していてもよく、複数の環構造は、同じであっても異なっていてもよい。
 脂環構造としては、例えば、炭素数3以上8以下の脂環構造、好ましくは炭素数4以上6以下の脂環構造が挙げられ、環構造内は飽和であっても不飽和であってもよい。より具体的には、脂環構造としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環などの飽和脂環構造;シクロプロペン環、シクロブテン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環などの不飽和脂環構造が挙げられる。
 芳香環構造としては、芳香族性を示す環構造であれば特に限定されず、例えば、ベンゼン環、ナフタレン環、アントラセン環、ペリレン環などのベンゼン系芳香環、ピリジン環、チオフェン環などの芳香族複素環、インデン環、アズレン環などの非ベンゼン系芳香環などが挙げられる。
 架橋剤(B)が分子内に有する環構造としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環、ベンゼン環及びナフタレン環からなる群より選択される少なくとも1つが好ましく、接合層の耐熱性をより高める点から、ベンゼン環及びナフタレン環の少なくとも一方がより好ましい。
 前述したように、架橋剤(B)は、分子内に複数の環構造を有していてもよく、環構造がベンゼンの場合、ビフェニル構造、ベンゾフェノン構造、ジフェニルエーテル構造などを有してもよい。
 架橋剤(B)は、分子内にフッ素原子を有することが好ましく、分子内に1つ以上6つ以下のフッ素原子を有することがより好ましく、分子内に3つ以上6つ以下のフッ素原子を有することが更に好ましい。例えば、架橋剤(B)は、分子内にフルオロアルキル基を有していてもよく、具体的には、トリフルオロアルキル基又はヘキサフルオロイソプロピル基を有していてもよい。
 更に、架橋剤(B)としては、脂環カルボン酸、ベンゼンカルボン酸、ナフタレンカルボン酸、ジフタル酸、フッ化芳香環カルボン酸などのカルボン酸化合物;脂環カルボン酸エステル、ベンゼンカルボン酸エステル、ナフタレンカルボン酸エステル、ジフタル酸エステル、フッ化芳香環カルボン酸エステルなどのカルボン酸エステル化合物が挙げられる。なお、カルボン酸エステル化合物は、分子内にカルボキシ基(-C(=O)OH基)を有し、かつ、3つ以上の-C(=O)OX基において、少なくとも1つのXが炭素数1以上6以下のアルキル基(すなわち、エステル結合を有する)である化合物である。本開示では、架橋剤(B)がカルボン酸エステル化合物であることにより、化合物(A)と架橋剤(B)との会合による凝集が抑制され、凝集体及びピットが少なくなり、膜厚の調整が容易となる。
 前記カルボン酸化合物としては、-C(=O)OH基を4つ以下含む4価以下のカルボン酸化合物であることが好ましく、-C(=O)OH基を3つ又は4つ含む3価又は4価のカルボン酸化合物であることがより好ましい。
 前記カルボン酸エステル化合物としては、分子内にカルボキシ基(-C(=O)OH基)を3つ以下含み、かつエステル結合を3つ以下含む化合物であることが好ましく、分子内にカルボキシ基を2つ以下含み、かつエステル結合を2つ以下含む化合物であることがより好ましい。
 また、前記カルボン酸エステル化合物では、3つ以上の-C(=O)OX基において、Xが炭素数1以上6以下のアルキル基である場合、Xは、メチル基、エチル基、プロピル基、ブチル基などが好ましいが、化合物(A)と架橋剤(B)との会合による凝集をより抑制する点から、エチル基又はプロピル基であることが好ましい。
 前記カルボン酸化合物の具体例としては、これらに限定されず、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸等の脂環カルボン酸;1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、ピロメリット酸、ベンゼンペンタカルボン酸、メリト酸等のベンゼンカルボン酸;1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸等のナフタレンカルボン酸;3,3’,5,5’-テトラカルボキシジフェニルメタン、ビフェニル-3,3’,5,5’-テトラカルボン酸、ビフェニル-3,4’,5-トリカルボン酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸、4,4’-オキシジフタル酸、3,4’-オキシジフタル酸、1,3-ビス(フタル酸)テトラメチルジシロキサン、4,4’-(エチン-1,2-ジイル)ジフタル酸(4,4'-(Ethyne-1,2-diyl)diphthalic acid)、4,4’-(1,4-フェニレンビス(オキシ))ジフタル酸(4,4'-(1,4-phenylenebis(oxy))diphthalic acid)、4,4’-([1,1’-ビフェニル]-4,4’-ジイルビス(オキシ))ジフタル酸(4,4'-([1,1'-biphenyl]-4,4'-diylbis(oxy))diphthalic acid)、4,4’-((オキシビス(4,1-フェニレン))ビス(オキシ))ジフタル酸(4,4'-((oxybis(4,1-phenylene))bis(oxy))diphthalic acid)等のジフタル酸;ペリレン-3,4,9,10-テトラカルボン酸等のペリレンカルボン酸;アントラセン-2,3,6,7-テトラカルボン酸等のアントラセンカルボン酸;4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸、9,9-ビス(トリフルオロメチル)-9H-キサンテン-2,3,6,7-テトラカルボン酸、1,4-ジトリフルオロメチルピロメリット酸等のフッ化芳香環カルボン酸が挙げられる。
 前記カルボン酸エステル化合物の具体例としては、前述のカルボン酸化合物の具体例における少なくとも1つのカルボキシ基がエステル基に置換された化合物が挙げられる。カルボン酸エステル化合物としては、例えば、下記一般式(B-1)~(B-6)で表されるハーフエステル化された化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007

 
 一般式(B-1)~(B-6)におけるRは、それぞれ独立に炭素数1以上6以下のアルキル基であり、中でもメチル基、エチル基、プロピル基、ブチル基が好ましく、エチル基、プロピル基がより好ましい。
 ハーフエステル化された化合物は、例えば、前述のカルボン酸化合物の無水物であるカルボン酸無水物を、アルコール溶媒に混合し、カルボン酸無水物を開環させて生成することが可能である。
 本開示において、接合層中における架橋剤(B)由来の成分の含有量は、特に制限されず、例えば、化合物(A)由来物質中の全窒素原子の数に対する架橋剤(B)由来の物質中のカルボニル基(-(C=O)-Y)の数の比率((-(C=O)-Y)/N)は、0.1以上3.0以下であることが好ましく、0.3以上2.5以下であることがより好ましく、0.4以上2.2以下であることが更に好ましい。ここで、-(C=O)-Yにおいて、Yはイミド架橋若しくはアミド架橋された窒素原子、OH、又はエステル基を表す。(-(C=O)-Y)/Nが0.1以上3.0以下であることにより、接合層は、アミド、アミドイミド、イミドなどの架橋構造を好適に有し、耐熱性により優れる。
 化合物(A)は未架橋カチオン性官能基を有しているため、接合層の成分として、化合物(A)を含み、かつ架橋剤(B)を含まない場合には、架橋密度が低く、耐熱性が十分で無いことが考えられる。一方、接合層では、化合物(A)のカチオン性官能基と、架橋剤(B)のカルボキシ基とが反応して共有結合を形成することで、架橋密度が大きくなり、高い耐熱性を有する。
(極性溶媒(D))
 第1工程では、第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を含む溶液を付与してもよい。このとき、接合材料を含む溶液は、前述の化合物(A)、架橋剤(B)等の接合材料とともに、極性溶媒(D)を含むことが好ましい。ここで、極性溶媒(D)とは室温における比誘電率が5以上である溶媒を指す。極性溶媒(D)としては、具体的には、水、重水などのプロトン性無機化合物;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、イソペンチルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、2-メトキシエタノール、2-エトキシエタノール、ベンジルアルコール、ジエチレングリコール、トリエチレングリコール、グリセリンなどのアルコール類;テトラヒドロフラン、ジメトキシエタンなどのエーテル類;フルフラール、アセトン、エチルメチルケトン、シクロヘキサンなどのアルデヒド・ケトン類;無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、ホルムアルデヒド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ヘキサメチルリン酸アミドなどの酸誘導体;アセトニトリル、プロピオニトリルなどのニトリル類;ニトロメタン、ニトロベンゼンなどのニトロ化合物;ジメチルスルホキシドなどの硫黄化合物が挙げられる。極性溶媒(D)としては、プロトン性溶媒を含むことが好ましく、水を含むことがより好ましく、超純水を含むことが更に好ましい。
 溶液中における極性溶媒(D)の含有量は、特に限定されず、例えば、溶液全体に対して1.0質量%以上99.99896質量%以下であり、40質量%以上99.99896質量%以下であることが好ましい。
 極性溶媒(D)の沸点としては、接合層を形成するときの加熱により極性溶媒(D)を揮発させ、接合層中の残溶媒の量を少なくする点から、150℃以下が好ましく、120℃以下がより好ましい。
(添加剤(C))
 接合材料を含む溶液は、前述の化合物(A)、架橋剤(B)等の接合材料、極性溶媒等のほかに添加剤(C)を含んでいてもよい。添加剤(C)としては、カルボキシ基を有する重量平均分子量46以上195以下の酸(C-1)、窒素原子を有する重量平均分子量17以上120以下の環構造を有しない塩基(C-2)が挙げられる。また、接合層を形成するときの加熱により添加剤(C)は揮発するが、本開示の基板積層体中の接合層は、添加剤(C)を含んでいてもよい。
 酸(C-1)は、カルボキシ基を有する重量平均分子量46以上195以下の酸である。添加剤(C)として酸(C-1)を含むことにより、化合物(A)におけるアミノ基と酸(C-1)におけるカルボキシ基とがイオン結合を形成することで、化合物(A)と架橋剤(B)との会合による凝集が抑制されると推測される。より詳細には、化合物(A)におけるアミノ基に由来するアンモニウムイオンと酸(C-1)におけるカルボキシ基に由来するカルボキシラートイオンとの相互作用(例えば、静電相互作用)が、化合物(A)におけるアミノ基に由来するアンモニウムイオンと架橋剤(B)におけるカルボキシ基に由来するカルボキシラートイオンとの相互作用よりも強いため、凝集が抑制されると推測される。なお、本発明は上記推測によって何ら限定されない。
 酸(C-1)としては、カルボキシ基を有し、かつ重量平均分子量46以上195以下の化合物であれば特に限定されず、モノカルボン酸化合物、ジカルボン酸化合物、オキシジカルボン酸化合物などが挙げられる。より具体的には、酸(C-1)としては、ギ酸、酢酸、マロン酸、シュウ酸、クエン酸、安息香酸、乳酸、グリコール酸、グリセリン酸、酪酸、メトキシ酢酸、エトキシ酢酸、フタル酸、テレフタル酸、ピコリン酸、サリチル酸、3,4,5-トリヒドロキシ安息香酸などが挙げられる。
 本開示において、接合材料を含む溶液における酸(C-1)の含有量は、特に制限されず、例えば、化合物(A)中の全窒素原子の数に対する酸(C-1)中のカルボキシ基の数の比率(COOH/N)が、0.01以上10以下であることが好ましく、0.02以上6以下であることがより好ましく、0.5以上3以下が更に好ましい。
 塩基(C-2)は、窒素原子を有する重量平均分子量17以上120以下の塩基である。接合材料を含む溶液は、添加剤(C)として塩基(C-2)を含むことにより、架橋剤(B)におけるカルボキシ基と塩基(C-2)におけるアミノ基とがイオン結合を形成することで、化合物(A)と架橋剤(B)との会合による凝集が抑制されると推測される。より詳細には、架橋剤(B)におけるカルボキシ基に由来するカルボキシラートイオンと塩基(C-2)におけるアミノ基に由来するアンモニウムイオンとの相互作用が、化合物(A)におけるアミノ基に由来するアンモニウムイオンと架橋剤(B)におけるカルボキシ基に由来するカルボキシラートイオンとの相互作用よりも強いため、凝集が抑制されると推測される。なお、本発明は上記推測によって何ら限定されない。
 塩基(C-2)としては、窒素原子を有し、かつ重量平均分子量17以上120以下の環構造を有しない化合物であれば特に限定されず、モノアミン化合物、ジアミン化合物などが挙げられる。より具体的には、塩基(C-2)としては、アンモニア、エチルアミン、エタノールアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、N-アセチルエチレンジアミン、N-(2-アミノエチル)エタノールアミン、N-(2-アミノエチル)グリシンなどが挙げられる。
 本開示において、接合材料を含む溶液における塩基(C-2)の含有量は、特に制限されず、例えば、架橋剤(B)中のカルボキシ基の数に対する塩基(C-2)中の窒素原子の数の比率(N/COOH)が、0.5以上5以下であることが好ましく、0.9以上3以下であることがより好ましい。
 本開示の基板積層体の接合層に絶縁性が求められる場合において、絶縁性又は機械強度改善のため、テトラエトキシシラン、テトラメトキシシラン、ビストリエトキシシリルエタン、ビストリエトキシシリルメタン、ビス(メチルジエトキシシリル)エタン、1,1,3,3,5,5-ヘキサエトキシ-1,3,5-トリシラシクロヘキサン、1,3,5,7-テトラメチル―1,3,5,7-テトラヒドロキシルシクロシロキサン、1,1,4,4-テトラメチル-1,4-ジエトキシジシルエチレン、1,3,5-トリメチル-1,3,5-トリメチル-1,3,5-トリエトキシ-1,3,5-トリシラシクロヘキサンを混合させてもよい。更に、絶縁性を有する接合層の疎水性改善のためにメチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン等を混合させてもよい。これらの化合物はエッチング選択性の制御の為に混合させてもよい。
 接合材料を含む溶液は、極性溶媒(D)以外の溶媒を含んでいてもよく、例えば、ノルマルヘキサンなどが挙げられる。
 また、接合材料を含む溶液は、例えば電気特性改善のために、フタル酸、安息香酸など、又はこれらの誘導体を含有してもよい。
 また、接合材料を含む溶液は、例えば銅の腐食を抑制するため、ベンゾトリアゾール又はその誘導体を含有していてもよい。
 接合材料を含む溶液のpHとしては、特に限定されず、2.0以上12.0以下であることが好ましい。
 また、添加剤(C)として酸(C-1)を用いる場合、酸(C-1)と化合物(A)との混合物と、架橋剤(B)と、を混合することが好ましい。すなわち、化合物(A)と架橋剤(B)とを混合する前に、化合物(A)と酸(C-1)とを予め混合しておくことが好ましい。これにより、化合物(A)と架橋剤(B)とを混合した際に、接合材料を含む溶液の白濁及びゲル化(ゲル化すると組成物の透明化に時間がかかる場合があり、好ましくない)を好適に抑制することができる。
 また、添加剤(C)として塩基(C-2)を用いる場合、塩基(C-2)と架橋剤(B)との混合物と、化合物(A)と、を混合することが好ましい。すなわち、化合物(A)と架橋剤(B)とを混合する前に、架橋剤(B)と塩基(C-2)とを予め混合しておくことが好ましい。これにより、化合物(A)と架橋剤(B)とを混合した際に、接合材料を含む溶液の白濁及びゲル化(ゲル化すると組成物の透明化に時間がかかる場合があり、好ましくない)を好適に抑制することができる。
 第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を付与する方法としては、例えば、蒸着重合、CVD(化学蒸着)法、ALD(原子層堆積)法等の気相成膜法、ディッピング法、スプレー法、スピンコート法、バーコート法等の塗布法などが挙げられる。塗布法により、接合材料を付与する場合、前述の接合材料を含む溶液を付与することが好ましい。例えば、ミクロンサイズの膜厚を有する膜を形成する場合、バーコート法を用いることが好ましく、ナノサイズ(数nm~数百nm)の膜厚を有する膜を形成する場合、スピンコート法を用いることが好ましい。なお、接合材料の膜厚は、接合層の意図する厚さに応じて適宜調整すればよい。
 例えば、スピンコート法による接合材料を付与する方法としては特に限定されず、例えば、第1の基板をスピンコーターで回転させながら、第1の基板の表面に接合材料を含む溶液を滴下し、次いで第1の基板の回転数を上げて乾燥させる方法を用いることができる。
 スピンコート法による接合材料を付与する方法において、基板の回転数、接合材料を含む溶液の滴下量及び滴下時間、乾燥時の基板の回転数などの諸条件については特に制限はなく、形成する接合材料の厚さなどを考慮しながら適宜調整すればよい。
 接合材料が付与された基板について、付与された余分な接合材料を除去するために、接合材料が付与された基板を洗浄してもよい。洗浄方法は、極性溶媒等のリンス液によるウェット洗浄、プラズマクリーニングなどが挙げられる。
<電極上の接合材料を除去する工程>
 本開示の基板積層体の製造方法は、電極を形成する工程を備える場合、接合材料を付与する工程の後かつ接合層を形成する工程の前に、電極上の接合材料を除去する工程を更に備えていてもよい。これにより、電極表面上に付与された接合材料が除去され、電極を露出させることができる。電極表面上に付与された接合材料の除去方法としては、フライカット法、化学的機械研磨法(CMP)、プラズマドライエッチング等が挙げられる。除去方法は、1つの方法を単独で用いてもよいし、2つ以上の方法を併用してもよい。例えば、フライカット法では、サーフェースプレーナー(DFS8910(株式会社ディスコ製))等を使用することができる。CMPを用いる場合、スラリとしては、例えば、一般的に樹脂の研磨に用いられるシリカ又はアルミナが配合されたスラリ、金属の研磨に用いられる過酸化水素及びシリカが配合されたスラリ等を用いてもよい。プラズマドライエッチングを用いる場合、フルオロカーボンプラズマ、酸素プラズマ等を用いてもよい。
<接合層を形成する工程(第2工程)>
 本開示の基板積層体の製造方法は、前記表面上に付与された前記接合材料を硬化して23℃における複合弾性率が10GPa以下である接合層を形成する工程(第2工程)を備える。第2工程では、例えば、基板の表面上に付与された接合材料を加熱等により硬化させて接合層を形成する。このとき、接合材料が熱硬化性化合物を含む場合、硬化温度以上の温度で接合材料を加熱することにより硬化される。
 第2工程では、前記表面上に付与された接合材料を100℃~450℃で加熱して硬化させることが好ましい。
 なお、前述の温度は、前記表面上に付与された接合材料の表面の温度を指す。
 接合材料を加熱することにより、接合材料を含む溶液中の溶媒が除去される。また、接合材料中の成分が反応して硬化物が得られ、その硬化物を含む接合層が形成される。
 前記温度は、150℃~450℃が好ましく、180℃~400℃がより好ましい。
 また、第2工程にて加熱が行われるときの圧力には特に制限はなく、絶対圧17Pa超大気圧以下が好ましい。
 前記絶対圧は、1000Pa以上大気圧以下がより好ましく、5000Pa以上大気圧以下が更に好ましく、10000Pa以上大気圧以下が特に好ましい。
 第2工程における加熱は、炉又はホットプレートを用いた通常の方法により行うことができる。炉としては、例えば、アペックス社製のSPX-1120、光洋サーモシステム株式会社製のVF-1000LP等を用いることができる。
 また、第2工程における加熱は、大気雰囲気下で行ってもよく、不活性ガス(窒素ガス、アルゴンガス、ヘリウムガス等)雰囲気下で行ってもよい。
 第2工程における加熱時間については特に制限はなく、例えば3時間以下であり、1時間以下が好ましい。加熱の時間の下限には特に制限はなく、例えば5分間とすることができる。
 第2工程の時間を短縮させる目的で、前記表面上に付与された接合材料に紫外線(UV)照射を行ってもよい。紫外線としては波長170nm~230nmの紫外光、波長222nmエキシマ光、波長172nmエキシマ光などが好ましい。また不活性ガス雰囲気下で紫外線照射を行うことが好ましい。
 接合材料が硬化しているかどうかは、例えば、特定の結合及び構造のピーク強度をFT-IR(フーリエ変換赤外分光法)で測定して確認すればよい。特定の結合及び構造としては、架橋反応により発生する結合及び構造等が挙げられる。
 例えば、アミド結合、イミド結合、シロキサン結合、テトラヒドロナフタレン構造、オキサゾール環構造等が形成された場合に、接合材料が硬化していると判断でき、これらの結合、構造等に由来するピーク強度をFT-IRで測定して確認すればよい。
 アミド結合は、約1650cm-1及び約1520cm-1の振動ピークの存在で確認することができる。
 イミド結合は、約1770cm-1及び約1720cm-1の振動ピークの存在で確認することができる。
 シロキサン結合は、1000cm-1~1080cm-1の間の振動ピークの存在で確認することができる。
 テトラヒドロナフタレン構造は、1500cm-1の間の振動ピークの存在で確認することができる。
 オキサゾール環構造は、約1625cm-1及び約1460cm-1の振動ピークの存在で確認することができる。
 接合材料を硬化してなる接合層は、シロキサン結合と、アミド結合及びイミド結合の少なくとも一方とを有することが好ましい。
 接合材料を硬化してなる接合層の硬化率は、例えば、基板に付与する前の接合材料、第3工程前の接合層、及び第3工程後の接合層にて、特定の結合及び構造のピーク強度(イミド、アミド等のように複数のピークを有する場合はそれらピーク強度の合計)をFT-IR(フーリエ変換赤外分光法)で測定し、ピーク強度の増加率又は減少率を求めて確認してもよい。なお、シロキサン結合等の様にピーク分離が困難な帯状のピークを有する場合、最大のピーク強度を採用すればよい。
 具体的には、硬化反応により特定の結合及び構造が発生する場合、ピーク強度の増加率を以下の式により算出し、その算出した値を接合層の硬化率としてもよい。
 ピーク強度の増加率(接合層の硬化率)=[(第3工程前の接合層の特定の結合及び構造のピーク強度)/(第3工程にて300℃1時間加熱した後の接合層の特定の結合及び構造のピーク強度)]×100
 なお、バックグラウンド信号除去については通常の方法により行えばよい。また、必要に応じてFT-IR測定は透過法又は反射法により行うことができる。
 前述のピーク強度の増加率では、ピーク強度の増加生じる結合及び構造が複数存在する場合、ピーク強度を複数のピーク強度の合計強度と読み替えてもよい。
 接合層の硬化率は、アラインメントのずれをより好適に抑制する点から、70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが更に好ましく、90%以上であることが特に好ましく、93%以上であることがより一層好ましい。また、接合層の硬化率は、100%であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよい。なお、ここでいう接合層の硬化率は、接合層を形成する工程後かつ第1の基板と第2の基板とを接合する工程前の、接合層の硬化率を意味する。
 接合層の表面におけるシリコン量は、20原子%以下であることが好ましく、15原子%以下であることがより好ましく、10原子%以下であることが更に好ましい。
 接合層の表面におけるシリコン量はX線光電子分光装置(XPS)による原子比測定で評価できる。具体的には、XPSであるAXIS-NOVA(KRATOS社製)を用い、ワイドスペクトルにおいて検出された各元素の合計量を100%としたときの、ナロースペクトルのピーク強度から、原子比を測定することができる。
 接合層の23℃における複合弾性率は、ボイドの発生を好適に抑制する点から、8GPa以下が好ましく、6GPa以下がより好ましい。また、接合層の23℃における複合弾性率は、アラインメントのずれを好適に抑制する点から、0.1GPa以上が好ましく、1GPa以上がより好ましい。
 第1の基板上に形成された接合層は、後述する仮固定した積層体(以下、「仮固定基板積層体」とも称する。)、及び基板積層体における第1の基板と第2の基板との接合強度を高める点から、接合層の表面に化学的結合を形成し得る官能基を有していることが好ましい。このような官能基としては、例えば、アミノ基、エポキシ基、ビニル基、シラノール基(Si-OH基)等が挙げられ、耐熱性の点から、シラノール基が好ましい。これらの官能基は、接合層形成後に表面処理により形成してもよく、シランカップリング剤処理等により形成してもよい。あるいは、これらの官能基を含む化合物を接合材料中に混合させてもよい。
 第1の基板及び第2の基板の少なくとも一方に形成される接合層は、表面にSi-OH基を有することが好ましい。接合層の表面がSi-OH基を有することにより、第1の基板及び第2の基板を接合する際に、後述の仮固定が低温で可能となりやすくなる。更に、接合工程後に第1の基板と第2の基板との界面の接合強度を大きくすることが可能となる。第1の基板と第2の基板との接合界面の表面エネルギーは2.5(J/m)以上であることが好ましい。
 接合層の表面がSi-OH基を有するか否かは、飛行時間型二次イオン質量分析法(TOF-SIMS)による接合層の表面分析で評価できる。具体的には、TOF-SIMSであるPHI nanoTOFII(アルバック・ファイ株式会社)を用い、質量電荷比(m/Z)45のピークの有無から、接合層の表面がSi-OH基を有するか否かを評価できる。
<電極上の接合層を除去する工程>
 本開示の基板積層体の製造方法は、電極を形成する工程を備える場合、接合層を形成する工程の後かつ第1の基板と第2の基板とを接合する工程の前に、電極上の接合層を除去する工程を更に備えていてもよい。これにより、電極表面上の接合層が除去され、電極を露出させることができる。電極表面上の接合層の除去方法としては、フライカット法、化学的機械研磨法(CMP)、プラズマドライエッチング等が挙げられる。除去方法は、1つの方法を単独で用いてもよいし、2つ以上の方法を併用してもよい。例えば、フライカット法では、サーフェースプレーナー(DFS8910(株式会社ディスコ製))等を使用することができる。CMPを用いる場合、スラリとしては、例えば、一般的に樹脂の研磨に用いられるシリカ又はアルミナが配合されたスラリ、金属の研磨に用いられる過酸化水素及びシリカが配合されたスラリ等を用いてもよい。プラズマドライエッチングを用いる場合、フルオロカーボンプラズマ、酸素プラズマ等を用いてもよい。
 電極表面上の接合層を除去し、電極を露出させた場合、必要に応じて、電極表面の酸化物の還元処理を行ってもよい。還元処理方法としては、ギ酸などの酸雰囲気中で基板を100℃~300℃で加熱する方法、水素雰囲気中で基板を加熱する方法等がある。これらの処理は後述する接合工程(第3工程)と同時に行ってもよい。
 接合層を形成後、接合層の表面を平坦化してもよい。平坦化する方法としては、フライカット法、化学的機械研磨法(CMP)等が挙げられる。平坦化する方法は、1つの方法を単独で用いてもよいし、2つ以上の方法を併用してもよい。
 後述するように、第1の基板及び第2の基板を仮固定した後に接合する場合、接合層の表面粗度(Ra)は1.2nm以下であることが好ましい。
 接合層の表面粗度は走査型プローブ顕微鏡(SPM)による形態観察で評価できる。具体的には、SPMであるSPA400(日立ハイテクノロジーズ製)を用い、ダイナミックフォースマイクロスコープモードにて、3μm×3μm角領域で測定を行うことで表面粗度が求められる。
 必要に応じて、接合層の表面を洗浄してもよい。洗浄方法は、リンス液によるウェット洗浄、プラズマクリーニング等が挙げられる。
<第1の基板と第2の基板とを接合する工程(第3工程)>
 本開示の基板積層体の製造方法は、形成された前記接合層を介して前記第1の基板と前記第2の基板とを接合する工程(第3工程)を備える。第3工程では、例えば、第2工程にて形成された接合層を介して第1の基板と第2の基板とを接触させて積層体とする。その後、第1の基板と第2の基板とを接合させる。必要に応じてこの積層体を加熱して第1の基板と第2の基板とを接合させる。なお、第1の基板及び第2の基板に接合層をそれぞれ形成した場合、第1の基板及び第2の基板の接合層が形成された面同士を接合させることが好ましい。
 第1の基板と第2の基板とを接触させて積層体とした後、第1の基板と第2の基板とを仮固定する工程を有していてもよい。すなわち、第1の基板と第2の基板とを仮固定してから接合してもよい。第1の基板と第2の基板との仮固定は、室温以上100℃以下の低温で行うことが好ましい。
 第1の基板及び第2の基板がシリコン基板を有する場合、第1の基板及び第2の基板を仮固定した状態での両基板の接合界面の表面エネルギーは、第1の基板と第2の基板とを接合する工程における取り扱いのしやすさ、アラインメントずれ(接合位置ずれ)抑制、異物混入の抑制等の点から、0.05J/m以上であることが好ましく、0.1J/m以上であることがより好ましく、0.15J/m以上であることが更に好ましい。
 仮固定基板積層体の接合界面の表面エネルギー(接合強度)は、非特許文献M.P.Maszara, G.Goetz, A.Cavigila, and J.B.Mckitterick, Journal of Applied Physics, 64 (1988) 4943-4950. の手法に従って、ブレード挿入試験で求めることができる。仮固定基板積層体の接合界面に、厚さ0.1mm~0.3mmのブレードを挿入し、赤外線光源と赤外線カメラにて、ブレード刃先から積層体が剥離した距離の測定を行う。その後、以下に式に基づいて表面エネルギーを求めればよい。
 γ=3×10×t ×E×t/(32×L×E×t
 ここで、γは表面エネルギー(J/m)、tはブレード厚さ(m)、Eは第1の基板及び第2の基板に含まれるシリコン基板のヤング率(GPa)、tは第1の基板及び第2の基板の厚さ(m)、Lはブレード刃先からの積層体剥離距離(m)を表す。
 第3工程にて、第1の基板と前記第2の基板とを接合するときの圧力は特に制限はなく、絶対圧10-4Pa超大気圧以下が好ましい。
 また、前記絶対圧は、10-3Pa以上大気圧以下がより好ましく、100Pa以上大気圧以下が更に好ましく、1000Pa以上大気圧以下が特に好ましい。
 第3工程にて第1の基板と前記第2の基板とを接合するとき、大気雰囲気下で行ってもよく、不活性ガス(窒素ガス、アルゴンガス、ヘリウムガス等)雰囲気下で行ってもよい。
 第3工程では、接合層を介して第1の基板と第2の基板とを接触させた状態にて接合層を100℃~450℃で加熱することが好ましい。
 なお、前述の温度は、第1の基板又は第2の基板の、接合層が形成された面の温度を指す。
 前記温度は、100℃~400℃が好ましく、150℃~300℃がより好ましい。
 第3工程における加熱は、炉又はホットプレートを用いた通常の方法により行うことができる。
 また、第3工程における加熱は、大気雰囲気下で行ってもよく、不活性ガス(窒素ガス、アルゴンガス、ヘリウムガス等)雰囲気下で行ってもよい。
 第3工程における加熱時間については特に制限はなく、例えば3時間以下であり、1時間以下が好ましい。加熱の時間の下限には特に制限はなく、例えば5分間とすることができる。
 第3工程では、第1の基板と第2の基板との接合強度を高める点から、接合層を介して第1の基板と第2の基板とを接触させた状態の積層体を加圧してもよい。加圧は、加熱と同時に行ってもよい。
 前記積層体を加圧するときの圧力は特に制限はなく、0.1MPa以上10MPa以下が好ましく、0.1MPa以上5MPa以下がより好ましい。加圧装置としては、例えば、株式会社東洋精機製作所 製のTEST MINI PRESS等を用いればよい。
<官能基を形成する工程(表面処理工程)>
 本開示の基板積層体の製造方法は、第1の基板及び第2の基板の少なくとも一方の、接合層と接触する側の面、好ましくは第1の基板及び第2の基板の、接合層と接触する側の面に表面処理を行うことにより、水酸基、エポキシ基、カルボキシ基、アミノ基、及びメルカプト基からなる群より選ばれる少なくとも1種の官能基を形成する工程(「表面処理工程」とも称する。)を更に備えていてもよい。これにより、基板同士の接合強度を高くできる傾向にある。
 表面処理としては、例えば、プラズマ処理、薬品処理、UVオゾン処理等のオゾン処理などが挙げられる。
 水酸基は、第1の基板及び第2の基板の表面に、プラズマ処理、薬品処理、UVオゾン処理等のオゾン処理などの表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 水酸基は、第1の基板又は第2の基板に含まれる、Si、Al、Ti、Zr、Hf、Fe、Ni、Cu、Ag、Au、Ga、Ge、Sn、Pd、As、Pt,Mg、In、Ta及びNbからなる群から選ばれる少なくとも1種の元素と結合した状態で存在することが好ましい。中でも、第1の基板及び第2の基板の少なくとも一方の接合層が形成される側の面は、水酸基を含むシラノール基を有することがより好ましい。
 エポキシ基は、第1の基板及び第2の基板の表面に、エポキシシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 カルボキシ基は、第1の基板及び第2の基板の表面に、カルボキシシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 アミノ基は、第1の基板及び第2の基板の表面に、アミノシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 メルカプト基は、第1の基板及び第2の基板の表面に、メルカプトシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 また、第1の基板及び第2の基板の両方に接合層が形成されている場合、基板積層体の接合強度を高める点から、接合層の少なくとも一方の表面に前述の表面処理を施してもよい。
 また、基板積層体の接合強度を高める点から、第1の基板及び第2の基板の少なくとも一方の接合材料が付与される面にシランカップリング剤等のプライマーを成膜してもよく、第1の基板及び第2の基板の両方に接合層が形成されている場合、接合層の少なくとも一方の表面にシランカップリング剤等のプライマーを成膜してもよい。
 基板積層体における前記接合層の厚さは、0.001μm~8.0μmであることが好ましく、0.01μm~6.0μmであることがより好ましく、0.03μm~5.0μmであることが更に好ましい。接合層の厚さが0.001μm以上であることにより、基板同士の接合強度を高めることができる。接合層の厚さが8.0μm以下であることにより、大面積の基板に接合層を形成した場合に接合層の厚さバラつきを抑えることができる。
 基板積層体における前記接合層の厚さは、第1の基板及び第2の基板の少なくとも一方の接合層側の表面に電極が設けられている場合、接合強度の向上及び接合層の厚さバラつきの抑制の点から、0.01μm~8.0μmであることが好ましく、0.03μm~6.0μmであることがより好ましく、0.05μm~5.0μmであることが更に好ましい。
 基板積層体における前記接合層の厚さは、第1の基板及び第2の基板の接合層側の表面に電極が設けられていない場合、接合強度の向上及び接合層の厚さバラつきの抑制の点から、0.001μm以上1.0μm未満であることが好ましく、0.01μm~0.8μmであることがより好ましく、0.03μm~0.6μmであることが更に好ましい。
 基板積層体における、第1の基板と第2の基板との接合界面の表面エネルギーは、2J/m以上であることが好ましく、2.1J/m以上であることがより好ましく、2.5(J/m)以上であることが更に好ましい。
 接合層に含まれる硬化物は、耐熱性に優れる点から、アミド結合及びイミド結合の少なくとも一方を有することが好ましく、イミド結合を有することがより好ましい。
 接合層は、ナトリウム及びカリウムの含有量がそれぞれ元素基準で10質量ppb以下であることが好ましい。ナトリウム又はカリウムの含有量がそれぞれ元素基準で10質量ppb以下であれば、トランジスタの動作不良など半導体装置の電気特性に不都合が発生することを抑制できる。
 本開示の基板積層体では、第1の基板及び第2の基板の少なくとも一方は、接合層側の面の反対側の面に、更に別の基板が積層されていてもよい。別の基板の好ましい材質は、第1の基板及び第2の基板の好ましい材質と同様である。別の基板の材質は、第1の基板及び第2の基板の少なくとも一方と同じであっても異なっていてもよい。
 本開示の基板積層体では、第2工程の後又は第3工程の後に、必要に応じて、第1の基板及び第2の基板の少なくとも一方に薄化加工(バックグラインディング、又は裏面研削)を行ってもよい。
 また、基板積層体では、第2工程の後又は第3工程の後に、必要に応じて、ダイシング加工を行い、基板を個片化してもよい。例えば、ダイシング加工では、ダイサー(DAD6340(株式会社ディスコ製))等を使用することができる。
(基板積層体の積層構造の例)
 以下に、各用途における基板積層体の積層構造の例を示す。
 MEMSパッケージング用;Si/接合層/Si、SiO/接合層/Si、SiO/接合層/SiO、Cu/接合層/Cu、
 マイクロ流路用;PDMS/接合層/PDMS、PDMS/接合層/SiO
 CMOSイメージセンサー用;SiO/接合層/SiO、Si/接合層/Si、SiO/接合層/Si、
 シリコン貫通ビア(TSV)用;SiO(Cu電極付き)/接合層/SiO(Cu電極付き)、Si(Cu電極付き)/接合層/Si(Cu電極付き)、
 光学デバイス用;(InGaAlAs、InGaAs、InP、GaAs)/接合層/Si、
LED用;(InGaAlAs、GaAs、GaN)/接合層/Si、(InGaAlAs、GaAs、GaN)/接合層/SiO、(InGaAlAs、GaAs、GaN)/接合層/(Au、Ag、Al)、(InGaAlAs、GaAs、GaN)/接合層/サファイア。
〔積層体〕
 本開示の積層体は、基板と、前記基板上に形成された接合層と、を備え、前記接合層は、接合材料を硬化してなり、23℃における複合弾性率が10GPa以下である。前述の積層体を接合層を介して別の基板と接合することにより、前述の本開示の基板積層体の製造方法と同様、ボイドの発生及びアラインメントのずれが抑制された基板積層体を得ることができる。本開示の積層体にて用いる基板、及び前述の別の基板の好ましい構成としては、前述の第1の基板及び第2の基板と同様であるため、その説明を省略する。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下において、「水」としては、超純水(Millipore社製Milli-Q水、抵抗18MΩ・cm(25℃)以下)を使用した。
 各評価は次の方法で行った。
<架橋構造>
 接合層の架橋構造をFT-IR(フーリエ変換赤外分光法)で測定した。用いた分析装置は以下のとおりである。
~FT-IR分析装置~
 赤外吸収分析装置(DIGILAB Excalibur(DIGILAB社製))
~測定条件~
 IR光源:空冷セラミック、
 ビームスプリッター:ワイドレンジKBr、
 検出器:ペルチェ冷却DTGS、
 測定波数範囲:7500cm-1~400cm-1
 分解能:4cm-1
 積算回数:256、
 バックグラウンド:Siベアウェハ使用、
 測定雰囲気:N(10L/min)、
 IR(赤外線)の入射角:72°(=Siのブリュースター角)
~判断条件~
 イミド結合は1770cm-1、1720cm-1の振動ピークの存在で判断した。シロキサン結合は1000cm-1~1080cm-1の間の振動ピークの存在で判断した。アミド結合は、1650cm-1、1520cm-1の振動ピークの存在で判断した。
<複合弾性率の測定>
 各実施例及び各比較例で準備した測定サンプルについて、ナノインデンテーター(商品名TI-950 Tribo Indenter、Hysitron社製、Berkovich型圧子)を用い、試験深さ20nmの条件にて23℃における除荷-変位曲線を測定し、参考文献(Handbook of Micro/nano Tribology (second Edition)、Bharat Bhushan編、CRCプレス社)の計算手法に従い、最大負荷及び最大変位から、23℃における複合弾性率を計算により求めた。
 なお、ここで、複合弾性率は下記式(1)により定義される。式(1)中、Eは複合弾性率を表し、Eは圧子のヤング率を表し、1140GPaであり、νは圧子のポアソン比を表し、0.07であり、E及びνはそれぞれ試料のヤング率及びポアソン比を表す。
Figure JPOXMLDOC01-appb-M000008
<表面粗度(Ra)の測定>
 走査型プローブ顕微鏡(SPM)であるSPA400(日立ハイテクノロジーズ製)を用い、ダイナミックフォースマイクロスコープモードにて、3μm×3μm角領域で測定を行った。
<水滴接触角の測定>
 23℃、湿度50%の条件で、固液界面解析システム(DropMaster500画像処理式、協和界面科学株式会社製)を使用して、水の静的接触角を測定した。
<硬化率の算出>
 形成された接合層について、300℃1時間加熱の前後にてFT-IR測定を行い、前述の式により硬化率を計算した。
<接合層の表面におけるシリコン量測定>
 X線光電子分光装置(XPS) AXIS-NOVA(KRATOS社製)を用い、ワイドスペクトルにおいて検出された各元素の合計量を100%としたときの、各元素のナロースペクトルのピーク強度から、原子比を測定することで接合層の表面におけるシリコン量を測定した。
<接合層の表面におけるシラノール基有無の評価>
 飛行時間型二次イオン質量分析法(TOF-SIMS)PHI nanoTOFII(アルバック・ファイ株式会社)を用い、質量電荷比(m/Z)45のピークの有無から、接合層の表面がSi-OH基を有するか否かを評価した。
<ボイド幅の測定>
 基板積層体を超音波顕微鏡で観察することにより、Cu配線パターン周辺のボイド幅の測定を行った。ボイド幅は、Cu配線パターンの直線部分周辺の4箇所について、ボイド幅(Cu配線パターンの端部からのボイド幅)を求め、その算術平均値とした。
<表面エネルギーの測定>
 非特許文献M.P.Maszara, G.Goetz, A.Cavigila, and J.B.Mckitterick, Journal of Applied Physics, 64 (1988) 4943-4950. の手法に従って、仮固定基板積層体又は得られた基板積層体の、接合界面の表面エネルギー(接合強度)をブレード挿入試験で測定した。仮固定基板積層体又は基板積層体の接合界面に、厚さ0.1mm~0.3mmのブレードを挿入し、赤外線光源と赤外線カメラにて、ブレード刃先から積層体又は基板積層体が剥離した距離を測定し、その後、以下に式に基づいて表面エネルギーを測定した。
 γ=3×10×t ×E×t/(32×L×E×t
 ここで、γは表面エネルギー(J/m)、tはブレード厚さ(m)、Eは第1の基板及び第2の基板に含まれるシリコン基板のヤング率(GPa)、tは第1の基板及び第2の基板の厚さ(m)、Lはブレード刃先からの積層体又は基板積層体の剥離距離(m)を表す。
[実施例1]
<接合材料を含む溶液の調製>
 接合材料を含む溶液を調製した。詳細は以下に示すとおりである。
 接合材料として、3-アミノプロピルジエトキシメチルシラン(3APDES;(3-Aminopropyl)diethoxymethylsilane)2gの加水分解物、及びピロメリット酸ハーフエステル(一般式(B-1)におけるRがエチル基)1.6gを準備した。これらを水、エタノール及び1-プロパノールの混合溶液(水:エタノール:1-プロパノール=31.3:31.7:33.4、質量比)96.4gに加え、接合材料を含む溶液を調製した。
<基板の準備>
 シリコン基板(直径100mm)上に、テトラエトキシシラン(TEOS)をプリカーサーとしたプラズマCVD法にて形成したSiO膜(厚さ500nm、複合弾性率70GPa)が形成された第1の基板(SiO面の表面粗度(Ra)0.17nm、水滴接触角10°以下)と、シリコン基板(直径100mm)上に同様の方法でSiO膜(厚さ500nm、複合弾性率70GPa、SiO面の表面粗度(Ra)0.17nm、水滴接触角10°以下)を形成し、かつSiO膜上にCu配線パターン(線幅0.1mm、高さ20nm)が形成された第2の基板を準備した。
<接合層の形成>
 前述のようにして準備した第1の基板をSiO膜が形成された面が鉛直上側になるようにスピンコーターの上にのせ、調製した接合材料を含む溶液2.0mLを10秒間一定速度で滴下し、23秒間保持した後、4000rpm(rpmは回転速度)で1秒間、600rpmで30秒間回転させた後、2000rpmで10秒間回転させて乾燥させた。これにより、第1の基板上に接合材料を付与した。接合材料が付与された第1の基板を窒素雰囲気下、400℃で10分間加熱した。これにより、シロキサン結合及びイミド結合を有する接合層(厚さ64nm)を形成した。 
<複合弾性率の測定>
 接合層及びSiO膜の複合弾性率を以下のようにして測定した。まず、接合材料は実施例1と同様の手法により、3APDESを10質量%、ピロメリット酸ハーフエステルを8質量%とした組成物を調製、シリコン基板にスピン塗布、400℃で10分間加熱することにより測定サンプルを準備した。接合材料の厚さは660nmであった。SiO膜は、シリコン基板上にテトラエトキシシラン(TEOS)をプリカーサーとしたプラズマCVD法により形成し、測定サンプルを準備した。SiO膜の厚さは500nmであった。準備した測定サンプルについて、前述のようにして複合弾性率を計算により求めた。接合層の複合弾性率は4.2GPaであった。
 実施例1の接合層について、表面粗度(Ra)は0.30nm、水滴接触角は70°、硬化率は95%以上、表面のシリコン量は7.9原子%であった。接合層の表面にてシラノール基が存在すること(TOF-SIMSピークカウント数3×10-4)を確認した。
<基板積層体の製造>
 前述のようにして形成された接合層を介して第1の基板と第2の基板とを接触させ、減圧条件下で熱プレス装置を用い、室温から250℃に昇温した後、30分間、1.65MPaの条件で熱圧着を行った。その後冷却することにより、第1の基板、接合層及び第2の基板からなる基板積層体を製造した。
 実施例1にて得られた基板積層体のボイド幅は、3mmであった。また、基板積層体の第1の基板と第2の基板との接合界面の表面エネルギーは、2.12J/mであった。
[比較例1]
<基板積層体の製造>
 実施例1と同様にして第1の基板及び第2の基板を準備した。
 第1の基板のSiO膜の表面におけるシリコン量は33原子%であった。第1の基板のSiO膜の表面にてシラノール基が存在すること(TOF-SIMSピークカウント数1×10-5)を確認した。
 第1の基板に接合材料を付与せずに、SiO膜(厚さ500nm、複合弾性率70GPa)が形成された面同士が対面するように第1の基板と第2の基板とを接触させ、減圧条件下で熱プレス装置を用い、室温から250℃に昇温した後、30分間、1.65MPaの条件で熱圧着を行った。その後冷却することにより、第1の基板及び第2の基板からなる基板積層体を製造した。
<ボイド幅の測定>
 比較例1にて得られた基板積層体を実施例1にて得られた基板積層体と同様にしてボイド幅を測定した。
 比較例1にて得られた基板積層体のボイド幅は、16mmであった。また、比較例1にて得られた基板積層体の第1の基板と第2の基板との接合界面の表面エネルギーは、0.16J/mであった。
[実施例2]
 実施例1にて調製した接合材料を含む溶液を使用した。
 シリコン基板上に、テトラエトキシシラン(TEOS)をプリカーサーとしたプラズマCVD法にて形成したSiO膜(厚さ500nm、複合弾性率70GPa)が形成された第1の基板と、シリコン基板上に同様の方法でSiO膜(厚さ500nm、複合弾性率70GPa)が形成された第2の基板を準備した。そして、第1の基板及び第2の基板におけるSiO膜中にアラインメント精度測定用のパターンを形成した。具体的には、図1に示すように、第1の基板1に十字型のアラインメントマーク2を形成し、かつ第2の基板3に前述の十字型のアラインメントマーク2に対応するアラインメントマーク4を形成した。
 実施例1と同様にして第1の基板に接合材料を付与した後、第1の基板を窒素雰囲気下、400℃で10分間加熱することにより接合層を形成し、第1の基板及び第2の基板のアラインメントマークが整合するように接合層を介して第1の基板と第2の基板とを接触させ、実施例1と同様にして基板積層体を製造した。
 実施例2における第1の基板上に形成された接合層について、硬化率、複合弾性率、表面におけるシリコン量、表面におけるシラノール基の有無、表面粗度(Ra)及び水滴接触角は、実施例1における第1の基板上に形成された接合層と同じであった。
 実施例2にて得られた基板積層体の、第1の基板と第2の基板との接合界面の表面エネルギーは実施例1にて得られた基板積層体と同じであった。
<アラインメントずれ量の測定>
 実施例2にて得られた基板積層体を赤外線顕微鏡で観察することにより、アラインメントずれ量の測定を行った。具体的には、図2に示すように、2方向のアラインメントずれ量であるΔx及びΔyをそれぞれ求め、Δx+Δyをアラインメントずれ量とした。
 実施例2にて得られた基板積層体のアラインメントずれ量は、5μm未満であった。
 なお、接合材料としてベンゾシクロブテンを含む溶液を硬化せずに乾燥させた状態(Bステージ状態)で基板同士を貼り付けた場合には、20μm~40μmほどのアラインメントのずれが生じることが知られている(非特許文献3:Microsystem Technology誌、2015年、21巻、1633―1641頁)。
 実施例1、2の結果から、ボイドの発生及びアラインメントのずれが抑制された基板積層体を製造可能であることが分かった。
[実施例3]
<接合材料を含む溶液の調製>
 接合材料を含む溶液を調製した。詳細は以下に示すとおりである。
 接合材料として、3-アミノプロピルジエトキシメチルシラン(3APDES;(3-Aminopropyl)diethoxymethylsilane)9gの加水分解物、及びピロメリット酸ハーフエステル(一般式(B-1)におけるRがエチル基)7.3gを準備した。これらを水、エタノール及び1-プロパノールの混合溶液(水:エタノール:1-プロパノール=31.3:64.7:4.0、質量比)28.7gに加え、接合材料を含む溶液を調製した。
<基板の準備>
 シリコン基板上に、実施例1と同様の方法でSiO膜(厚さ100nm)を形成し、更にその上に円柱状の銅電極(直径22μm、高さ2.8μm、ピッチ40μm)を形成し、50mm×50mmの大きさに切断した第1の基板及び第2の基板を準備した。
<接合層の形成>
 前述のようにして準備した第1の基板を銅電極が形成された面が鉛直上側になるようにスピンコーターの上にのせ、調製した接合材料を含む溶液2.0mLを10秒間一定速度で滴下し、23秒間保持した後、2000rpmで1秒間、600rpmで30秒間回転させた後、2000rpmで10秒間回転させて乾燥させた。これにより、第1の基板上に接合材料を付与した。接合材料が付与された第1の基板を窒素雰囲気下、200℃で30分間加熱した。これにより、シロキサン結合及びイミド結合を有する接合層(銅電極が形成されていない領域のSiO膜上の厚さ2.6μm、複合弾性率6.5GPa)を形成した。銅電極上にも接合材料が付着した。
 同様にして第2の基板表面に接合層(銅電極が形成されていない領域のSiO膜上の厚さ2.6μm、複合弾性率6.5GPa)を形成した。
 第1の基板及び第2の基板上に形成された接合層の、接合層の表面におけるシリコン量及びシラノール基の有無は実施例1と同様であった。
<銅電極の露出>
 前記第1の基板及び第2の基板の、接合層が形成された面を、サーフェースプレーナー(DFS8910(株式会社ディスコ製))を用いてフライカット処理を行い、銅電極を露出させた。フライカット処理後の接合層のSiO膜上の厚さは約1.2μmであり、SiO膜上の銅電極の厚さは約1.2μmであった。
<基板積層体の製造>
 前述のようにして加工した第1の基板及び第2の基板の接合層同士を接触させ、室温から250℃に昇温した後、5分間、10MPaの条件で熱圧着を行った。その後冷却することにより、第1の基板、接合層及び第2の基板からなる基板積層体を製造した。
<硬化率の算出>
 前述の<接合層の形成>にて第1の基板に形成された接合層について、実施例1と同様にして硬化率を計算すると95%以上であった。
<基板間のボイド有無の判定>
 実施例3にて製造された基板積層体を切断し、基板積層体の断面を走査型電子顕微鏡にて観察し、基板間のボイドの有無を判定した。
 実施例3にて得られた基板積層体の断面には、ボイドは確認されなかった。
[実施例4]
<接合材料を含む溶液の調製>
 接合材料を含む溶液を調製した。詳細は以下に示すとおりである。
 接合材料として、3-アミノプロピルジエトキシメチルシラン(3APDES;(3-Aminopropyl)diethoxymethylsilane)3.15gの加水分解物、及び4,4‘-オキシジフタル酸ハーフエステル(一般式(B-1)におけるRがエチル基)3.3gを準備した。これらを水、エタノール及び1-プロパノールの混合溶液(水:エタノール:1-プロパノール=26.4:25.5:48.1、質量比)14.55gに加え、接合材料を含む溶液を調製した。
<基板の準備>
 シリコン基板上に、熱酸化膜であるSiO膜(厚さ100nm)を形成し、更にその上に円柱状の銅電極(直径22μm、高さ2.8μm、ピッチ40μm)を形成し、50mm×50mmの大きさに切断した第1の基板及び第2の基板を準備した。
<接合層の形成>
 前述のようにして準備した第1の基板を銅電極が形成された面が鉛直上側になるようにスピンコーターの上にのせ、調製した接合材料を含む溶液2.0mLを10秒間一定速度で滴下し、23秒間保持した後、2000rpmで1秒間、600rpmで30秒間回転させた後、2000rpmで10秒間回転させて乾燥させた。これにより。第1の基板上に接合材料を付与した。接合材料が付与された第1の基板を窒素雰囲気下、200℃で30分間加熱した。これにより、シロキサン結合及びイミド結合を有する接合層(銅電極が形成されていない領域のSiO膜上の厚さ2.8μm、複合弾性率5.8GPa)を形成した。銅電極上にも厚さ1.0μmの接合材料が形成された。
 同様にして第2の基板表面に接合層(銅電極が形成されていない領域のSiO膜上の厚さ2.8μm、複合弾性率5.8GPa)を形成した。表面のシリコン量は6.5原子%であった。接合層の表面にてシラノール基が存在すること(TOF-SIMSピークカウント数2×10-4)を確認した。
<銅電極の露出>
 前記第1の基板及び第2の基板の接合層が形成された面を、CMP装置(ARW―8C1MS(株式会社エム・エー・ティ製))を用いて、シリカ配合スラリ(COMPOL80(株式会社フジミインコーポレーテッド製))で研磨することにより、銅電極上の接合材料を除去し、銅電極を露出させ、CMP後の基板をCMP後洗浄液(CMP-B01(関東化学株式会社製))で洗浄した。CMP後の銅電極が形成されていない領域のSiO膜上の接合層の厚さは2.4μmであり、接合層の表面粗度(Ra)は0.60nmであった。また、接触式表面段差計(Profilometer P16+(KLAテンコール株式会社製))を用いて、接合層と露出した銅電極の段差を測定したところ、銅電極が接合層の表面よりも60nm凸となっていた。
 続いて、過酸化水素及びシリカが配合されたスラリで、銅電極の研磨を行い、CMP後の基板をCMP後洗浄液(CMP-B01(関東化学株式会社製))で洗浄した。CMP後の銅電極が形成されていない領域のSiO膜上の接合層の厚さは2.3μmであった。また、接触式表面段差計を用いて、接合層と露出した銅電極の段差を測定したところ、接合層の表面よりも銅電極が100nm凹となっていた。
 実施例4における<銅電極の露出>の銅電極及び接合層の状態を図3を用いて説明する。図3の(a)では、基板31上にSiO膜32及び銅電極33がこの順に形成されており、SiO膜32及び銅電極33の上に接合層34が形成されている。図3の(b)では、銅電極33上の接合材料が除去され、銅電極33が接合層34表面よりも60nm凸となる状態で露出している。図3の(c)では、銅電極33が研磨され、接合層34表面よりも銅電極33が100nm凹となる状態で露出している。
<基板積層体の製造>
 前述のようにして加工した第1の基板及び第2の基板の接合層同士を接触させ、大気圧条件下で熱プレス装置を用い、室温から250℃に昇温した後、1分間、5MPaの条件で熱圧着を行った。その後冷却することにより、第1の基板、接合層及び第2の基板からなる基板積層体を製造した。
<硬化率の算出>
 前述の<接合層の形成>にて第1の基板に形成された接合層について、実施例1と同様にして硬化率を計算すると95%以上であった。
<基板間のボイド有無の判定>
 実施例3と同様の方法で、基板間のボイドの有無を判定した。
 実施例4にて得られた基板積層体の断面には、ボイドは確認されなかった。
[実施例5]
<接合材料を含む溶液の調製>
 実施例1にて調製した接合材料を含む溶液を使用した。
<基板の準備>
 シリコン基板(直径100mm)上に、自然酸化膜であるSiO膜(厚さ2nm、表面粗度(Ra)0.09nm、水滴接触角10°以下)が形成された第1の基板及び第2の基板を準備した。いずれの基板に対してもUVオゾン処理により親水化処理を行った。
<接合層の形成>
 前述のようにして準備した第1の基板をスピンコーターの上にのせ、調製した接合材料を含む溶液2.0mLを10秒間一定速度で滴下し、13秒間保持した後、2000rpmで1秒間、600rpmで30秒間回転させた後、2000rpmで10秒間回転させて乾燥させた。これにより、第1の基板上に接合材料を付与した。接合材料が付与された第1の基板を窒素雰囲気下、400℃で10分間加熱した。これにより、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ103nm、複合弾性率4.2GPa、表面粗度(Ra)0.30nm、水滴接触角69°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例1と同様であった。
<仮固定基板積層体の製造>
 前述のようにして形成された接合層を介して第1の基板と、第2の基板とを大気下、室温(23℃)にて接触させ、第1の基板、接合層及び第2の基板からなる仮固定基板積層体を製造した。
<表面エネルギーの測定>
 前述の仮固定基板積層体の接合界面の表面エネルギーは0.24J/mであった。
<基板積層体の製造>
 前述のようにして形成された仮固定基板積層体を、400℃で30分間窒素雰囲気下で加熱することで第1の基板及び第2の基板を接合し、基板積層体を得た。
<表面エネルギーの測定>
 前述の基板積層体において、第1の基板と第2の基板の接合界面の表面エネルギー測定を行った結果、表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例6]
<接合材料を含む溶液の調製>
 3APDESの含有量を20質量%、ピロメリット酸ハーフエステルの含有量を16質量%とした以外は実施例1と同様に接合材料を含む溶液を調製した。
<接合層の形成>
 接合層の厚さを2.5μm、表面粗度(Ra)0.21nmとした以外は、実施例5と同様にして第1の基板上に接合層(硬化率95%以上、厚さ2.5μm、複合弾性率4.2GPa、水滴接触角69°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例1と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして第1の基板、接合層及び第2の基板からなる仮固定基板積層体を製造した。
 仮固定基板積層体の接合界面の表面エネルギーは1.2J/m2であった。
<基板積層体の製造>
 前述のようにして形成された仮固定基板積層体を、実施例5と同様にして第1の基板及び第2の基板を接合し、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例7]
<接合材料を含む溶液の調製>
 実施例1と同様にして接合材料を含む溶液を調製した。
<基板の準備>
 シリコン基板(直径100mm)上に、自然酸化膜であるSiO膜(厚さ2nm、表面粗度(Ra)0.09nm、水滴接触角10°以下)が形成された第1の基板、及び、シリコン基板(直径100mm)上にプラズマCVDで形成したSiCN膜(厚さ15nm、表面粗度(Ra)0.16nm、水滴接触角10°以下)が形成された第2の基板を準備した。いずれの基板に対してもUVオゾン処理により親水化処理を行った。
<接合層の形成>
 実施例5と同様にして第1の基板上に接合層(硬化率95%以上、厚さ103nm、複合弾性率4.2GPa、表面粗度(Ra)0.30nm、水滴接触角69°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例1と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして第1の基板、接合層及び第2の基板からなる仮固定基板積層体を製造した。
 仮固定基板積層体の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
<基板積層体の製造>
 前述のようにして形成された仮固定基板積層体を、実施例5と同様にして第1の基板及び第2の基板を接合し、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例8]
<接合材料を含む溶液の調製>
 実施例1と同様にして接合材料を含む溶液を調製した。
<基板の準備>
 シリコン基板(直径100mm)上に、自然酸化膜であるSiO膜(厚さ2nm、表面粗度(Ra)0.09nm、水滴接触角10°以下)が形成された第1の基板、及び、シリコン基板(直径100mm)上にプラズマCVDで形成した窒化ケイ素膜(厚さ150nm、表面粗度(Ra)0.68nm、水滴接触角10°以下)が形成された第2の基板を準備した。いずれの基板に対してもUVオゾン処理により親水化処理を行った。
<接合層の形成>
 実施例5と同様にして第1の基板上に接合層(硬化率95%以上、厚さ103nm、複合弾性率4.2GPa、表面粗度(Ra)0.30nm、水滴接触角69°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例1と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして第1の基板、接合層及び第2の基板からなる仮固定基板積層体を製造した。
 仮固定基板積層体の接合界面の表面エネルギーは2.2J/mであった。
<基板積層体の製造>
 前述のようにして形成された仮固定基板積層体を、実施例5と同様にして第1の基板及び第2の基板を接合し、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[比較例2]
<基板の準備>
 シリコン基板(直径100mm)上に、自然酸化膜であるSiO膜(厚さ2nm、表面粗度(Ra)0.09nm、水滴接触角10°以下)が形成された第1の基板、及び、シリコン基板(直径100mm)上にプラズマCVDで形成した窒化ケイ素膜(厚さ150nm、表面粗度(Ra)0.68nm、水滴接触角10°以下)が形成された第2の基板を準備した。いずれの基板に対してもUVオゾン処理により親水化処理を行った。
<仮固定基板積層体の製造>
 第1の基板にも第2の基板にも接合材料を付与せず、第1の基板のSiO膜面と第2の基板の窒化ケイ素膜面とを、大気下、室温(23℃)にて接触させ、第1の基板、接合層及び第2の基板からなる仮固定基板積層体の製造を試みたが、仮固定不可能であった。
<基板積層体の製造>
 第1の基板のSiO膜面と第2の基板の窒化ケイ素膜面とを接触させ、400℃で30分間、窒素雰囲気下で加熱したが、基板同士の接合はなされていなかった。
[比較例3]
<基板の準備>
 シリコン基板(直径100mm)上に、自然酸化膜であるSiO膜(厚さ2nm、表面粗度(Ra)0.09nm、水滴接触角10°以下)が形成された第1の基板、及び、シリコン基板(直径100mm)上にプラズマCVDで形成した窒化ケイ素膜(厚さ500nm、表面粗度(Ra)1.45nm、水滴接触角10°以下)が形成された第2の基板を準備した。いずれの基板に対してもUVオゾン処理により親水化処理を行った。
<仮固定基板積層体の製造>
 第1の基板にも第2の基板にも接合材料を付与せず、第1の基板のSiO膜面と第2の基板の窒化ケイ素膜面とを、大気下、室温(23℃)にて接触させ、第1の基板、接合層及び第2の基板からなる仮固定基板積層体の製造を試みたが、仮固定不可能であった。
<基板積層体の製造>
 第1の基板のSiO膜面と第2の基板の窒化ケイ素膜面とを接触させ、400℃で10分間、窒素雰囲気下で加熱したが、基板同士の接合はなされていなかった。
[実施例9]
<接合材料を含む溶液の調製>
 3APDESの含有量を20質量%、ピロメリット酸ハーフエステルの含有量を16質量%とした以外は実施例1と同様に接合材料を含む溶液を調製した。
<基板の準備>
 シリコン基板(直径100mm)上に、自然酸化膜であるSiO膜(厚さ2nm、表面粗度(Ra)0.09nm、水滴接触角10°以下)が形成された第1の基板及び第2の基板を準備した。いずれの基板に対してもUVオゾン処理により親水化処理を行った。
<接合層の形成>
 実施例5と同様にして第1の基板上に接合層(硬化率95%以上、厚さ2.5μm、複合弾性率4.2GPa、表面粗度(Ra)0.21nm、水滴接触角69°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例1と同様であった。
 上記で得られた、接合層が形成された第1の基板の、接合層を形成していない側の面に、ダイシングテープを貼り付けて固定した。ダイサー(株式会社ディスコ、DAD6340)を用いて、ダイシングテープに固定された接合層が形成された第1の基板を10mm×10mm角に個片化した。更に水でダイシングにより発生したパーティクルの洗浄を行った。
<仮固定基板積層体の製造>
 前述のようにして形成された接合層を介して第1の基板及び第2の基板のSiO膜形成面を大気下、室温(23℃)にて接触させ、第1の基板、接合層及び第2の基板からなる仮固定基板積層体を製造した。この工程では、個片化した、接合層が形成された第1の基板は、ダイシングテープに固定した状態で、第2の基板と接触させた。仮固定基板積層体を製造後、第1の基板の裏面に貼り付けられたダイシングテープを引き剥がして除去した。
<基板積層体の製造>
 前述のようにして形成された仮固定基板積層体を、室温から250℃に昇温した後、250℃で10分間、窒素雰囲気下で1MPaの条件で熱圧着を行った。その後冷却することにより、第1の基板及び第2の基板を接合し、基板積層体を得た。
<アラインメントずれ量の測定>
 実施例9にて得られた仮固定基板積層体及び基板積層体を光学顕微鏡で観察することにより、アラインメントずれ量の測定を行った。
 具体的には、図4(a)に示すように、仮固定基板積層体において、個片化された、接合層が形成された第1の基板の隣接する個片の頂点間距離(チップ間距離)a1,a2,a3及びa4を光学顕微鏡により測定した。図4(a)は、第2の基板43上に、接合層を介して第1の基板41を仮固定した仮固定基板積層体を、第1の基板41の接合層が形成された面とは反対側から見た図である。
 仮固定基板積層体を熱圧着して接合した後、同様に、図4(b)に示すように、基板積層体において、個片化された、接合層が形成された第1の基板の隣接する個片の頂点間距離(チップ間距離)b1,b2,b3及びb4を光学顕微鏡により測定した。図4(b)は、第2の基板43上に、接合層を介して第1の基板41を接合した基板積層体を、第1の基板41の接合層が形成された面とは反対側から見た図である。
 Δ1=a1-b1,Δ2=a2-b2,Δ3=a3-b3及びΔ4=a4-b4をそれぞれ求め、Δ1,Δ2,Δ3及びΔ4の絶対値をそれぞれアラインメントずれ量とした。
 同様に、接合層が形成された第1の基板の隣接する個片の頂点間距離の差Δ1,Δ2,Δ3及びΔ4の絶対値を前述と異なる7箇所で計測したところ、基板積層体のアラインメントずれ量は、7箇所とも1μm未満であった。
 実施例9の結果から、アラインメントのずれが抑制された基板積層体を製造可能であることが分かった。
[実施例10]
<接合材料を含む溶液の調製>
 実施例4と同様にして接合材料を含む溶液を調製した。
<基板の準備>
 実施例9と同様にして第1の基板及び第2の基板を準備した。
<接合層の形成>
 前述のようにして準備した第1の基板をスピンコーターの上にのせ、調製した接合材料を含む溶液2.0mLを10秒間一定速度で滴下し、23秒間保持した後、2000rpmで1秒間、600rpmで30秒間回転させた後、2000rpmで10秒間回転させて乾燥させた。これにより、第1の基板上に接合材料を付与した。接合材料が付与された第1の基板を窒素雰囲気下、200℃で30分間加熱した。これにより、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ2.8μm、複合弾性率5.8GPa、表面粗度(Ra)0.20nm)を形成した。
接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
 上記で得られた、接合層が形成された第1の基板を実施例9と同様にして個片化し、更にパーティクルの洗浄を行った。
<仮固定基板積層体の製造>
 実施例9と同様にして仮固定基板積層体を製造後、第1の基板の裏面に貼り付けられたダイシングテープを引き剥がして除去した。
<基板積層体の製造>
 実施例9と同様にして基板積層体を得た。
<アラインメントずれ量の測定>
 実施例9と同様にしてアラインメントずれ量の測定を行った。基板積層体のアラインメントずれ量は、7箇所とも1μm未満であった。
[実施例11]
<接合材料を含む溶液の調製>
 3-アミノプロピルジエトキシメチルシラン(3APDES;(3-Aminopropyl)diethoxymethylsilane)1.26gの加水分解物、及び4,4’-オキシジフタル酸ハーフエステル(一般式(B-1)におけるRがエチル基)1.32gを用いた以外は、実施例4と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 前述のようにして準備した第1の基板及び第2の基板を各々スピンコーターの上にのせ、調製した接合材料を含む溶液2.0mLを10秒間一定速度で滴下し、13秒間保持した後、2000rpmで1秒間、600rpmで30秒間回転させた後、2000rpmで10秒間回転させて乾燥させた。これにより、第1の基板上及び第2の基板上に接合材料をそれぞれ付与した。接合材料が付与された第1の基板及び第2の基板を窒素雰囲気下、400℃で10分間それぞれ加熱した。これにより、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ350nm、複合弾性率5.5GPa)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<銅電極の形成>
 第1の基板における接合層の表面に、スパッタリング成膜により厚さ100nm、直径2mm、ピッチ10mmの銅電極を形成した。
<チップの形成>
 接合層及び銅電極が形成された第1の基板、並びに接合層が形成された第2の基板を各々20mm×20mm角のチップに個片化した。
<仮固定基板積層体の製造>
 個片化した第1の基板における接合層の表面と、個片化した第2の基板における接合層の表面とを大気下、室温(23℃)にて接触させ、第1の基板、接合層及び第2の基板からなる仮固定基板積層体を製造した。
<基板積層体の製造>
 前述のようにして形成した仮固定基板積層体を、250℃で5分間、空気雰囲気下で2MPaの条件で熱圧着を行うことで、第1の基板及び第2の基板を接合し、基板積層体を得た。
<基板間のボイド有無の判定方法1>
 実施例11にて製造された基板積層体の基板間のボイドの有無を、赤外線顕微鏡で観察した。具体的には、半導体内部観察装置C9597-42U30(浜松ホトニクス株式会社製)及び赤外線顕微鏡MX63-IR(オリンパス株式会社製)を用いて、基板積層体の赤外線透過光を観察し、銅電極の端部から5mm以内のボイドの有無を確認した。
 この判定方法1では、実施例11にて得られた基板積層体にてボイドは観察されなかった(測定限界以下であった)。
<基板間のボイド有無の判定方法2>
 実施例11にて得られた基板積層体を切断し、基板積層体の断面を走査型電子顕微鏡にて観察し、基板間のボイドの有無を判定した。
 実施例11にて得られた基板積層体の断面には、ボイドは観測されなかった。
[比較例4]
<接合材料を含む溶液の調製>
 THE JOURNAL OF PHYSICAL CHEMISTRY C誌、2011年、115号、頁12981-12989のA2**法に従い、テトラエトキシシラン(TEOS)の加水分解物、及びシロキサン重合体を含むエタノール(EtOH)、水及び硝酸の混合溶液を得た後、TEOS(8.4質量%)、EtOH(12.9質量%)、1-プロパノール(1PrOH)(75質量%)、硝酸(HNO)(0.075質量%)となるように水、エタノール及び1-プロパノールを加えて、溶液を調製した。更に、エバポレーターを用いて、TEOS(50質量%)となるまで前記溶液の濃縮を行い、接合材料を含む溶液を調製した。1PrOH、EtOH及び硝酸におけるカッコ内の濃度は、濃縮前の溶液中における1PrOH、EtOH及び硝酸の濃度をそれぞれ表しており、以下の各実施例及び各比較例でも同様である。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例11と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ550nm、複合弾性率33.4GPa、水滴接触角44°、表面粗度(Ra)0.20nm)を形成した。
 接合層の表面におけるシリコン量は29.4原子%、シラノール基が存在すること(TOF-SIMSピークカウント数2×10-5)を確認した。
<銅電極の形成>
 実施例11と同様にして銅電極を形成した。
<チップの形成>
 実施例11と同様にして、前述の工程を経た第1の基板及び第2の基板を各々20mm×20mm角のチップに個片化した。
<仮固定基板積層体の製造>
 実施例11と同様にして仮固定基板積層体を製造した。
<基板積層体の製造>
 前述のようにして形成した仮固定基板積層体を、250℃で5分間、空気雰囲気下で2MPaの条件で熱圧着を行ったが、仮固定基板積層体から第1の基板と第2の基板とが剥離し、接合することはできなかった。接合面の凹凸が吸収できず、第1の基板と第2の基板とを接合できなかったことが理由と推測される。
[比較例5]
<接合材料を含む溶液の調製>
 THE JOURNAL OF PHYSICAL CHEMISTRY C誌、2011年、115号、頁12981-12989のA2**法に従い、ビストリエトキシシリルエタン(BTESE)の加水分解物、及びシロキサン重合体を含むエタノール(EtOH)、水及び硝酸(HNO)の混合溶液を得た後、BTESE(4.2質量%)、EtOH(6.8質量%)、1PrOH(88.9質量%)、HNO(0.075質量%)となるように水、エタノール及び1-プロパノールを加えて、溶液を調製した。更に、エバポレーターを用いて、BTESE(24質量%)となるまで前記溶液の濃縮を行い、接合材料を含む溶液を調製した。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例11と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ450nm、複合弾性率15.9GPa、水滴接触角45°、表面粗度(Ra)0.30nm)を形成した。
 接合層における表面のシリコン量は23.5原子%、シラノール基が存在すること(TOF-SIMSピークカウント数6×10-4)を確認した。
<銅電極の形成>
 実施例11と同様にして銅電極を形成した。
<チップの形成>
 実施例11と同様にして、前述の工程を経た第1の基板及び第2の基板を各々20mm×20mm角のチップに個片化した。
<仮固定基板積層体の製造>
 実施例11と同様にして仮固定基板積層体を製造した。
<基板積層体の製造>
 前述のようにして形成した仮固定基板積層体を、250℃で5分間、空気雰囲気下で2MPaの条件で熱圧着を行ったが、仮固定基板積層体から第1の基板と第2の基板が剥離し、接合することはできなかった。接合面の凹凸が吸収できず、第1の基板と第2の基板とを接合できなかったことが理由と推測される。
[実施例12]
<接合材料を含む溶液の調製>
 実施例4と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例11と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ1.5μm、複合弾性率5.5GPa)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<銅電極の形成>
 実施例11と同様にして銅電極を形成した。
<チップの形成>
 実施例11と同様にして、前述の工程を経た第1の基板及び第2の基板を各々20mm×20mm角のチップに個片化した。
<仮固定基板積層体の製造>
 実施例11と同様にして仮固定基板積層体を製造した。
<基板積層体の製造>
 実施例11と同様にして基板積層体を製造した。
<基板間のボイド有無の判定方法1>
 実施例12にて製造された基板積層体の基板間のボイドの有無を、実施例11と同様に赤外線顕微鏡で観察した。この判定方法1では、実施例12にて得られた基板積層体にてボイドは観察されなかった(測定限界以下であった)。
<基板間のボイド有無の判定方法2>
 実施例12にて製造された基板積層体を切断し、基板積層体の断面を走査型電子顕微鏡にて観察し、基板間のボイドの有無を判定した。
 実施例12にて得られた基板積層体の断面には、ボイドは観察されなかった。
[実施例13]
<接合材料を含む溶液の調製>
 実施例12と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例7と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例11と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ1.5μm、複合弾性率5.5GPa)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<銅電極の形成>
 実施例11と同様にして銅電極を形成した。
<チップの形成>
 実施例11と同様にして、前述の工程を経た第1の基板及び第2の基板を各々20mm×20mm角のチップに個片化した。
<仮固定基板積層体の製造>
 実施例11と同様にして仮固定基板積層体を製造した。
<基板積層体の製造>
 実施例11と同様にして基板積層体を製造した。
<基板間のボイド有無の判定方法1>
 実施例13にて製造された基板積層体の基板間のボイドの有無を、実施例11と同様に赤外線顕微鏡で観察した。この判定方法1では、実施例13にて得られた基板積層体には、ボイドは観察されなかった(測定限界以下であった)。
<基板間のボイド有無の判定方法2>
 実施例13にて製造された基板積層体を切断し、基板積層体の断面を走査型電子顕微鏡にて観察し、基板間のボイドの有無を判定した。
 実施例13にて得られた基板積層体の断面には、ボイドは観察されなかった。
[実施例14] 
<接合材料を含む溶液の調製>
 実施例12と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例8と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例11と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ1.5μm、複合弾性率5.5GPa)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<銅電極の形成>
 実施例11と同様にして銅電極を形成した。
<チップの形成>
 実施例11と同様にして、前述の工程を経た第1の基板及び第2の基板を各々20mm×20mm角のチップに個片化した。
<仮固定基板積層体の製造>
 実施例11と同様にして仮固定基板積層体を製造した。
<基板積層体の製造>
 実施例11と同様にして基板積層体を製造した。
<基板間のボイド有無の判定方法1>
 実施例14にて製造された基板積層体の基板間のボイドの有無を、実施例11と同様に赤外線顕微鏡で観察した。この判定方法1では、実施例14にて得られた基板積層体には、ボイドは観察されなかった(測定限界以下であった)。
<基板間のボイド有無の判定方法2>
 実施例14にて製造された基板積層体を切断し、基板積層体の断面を走査型電子顕微鏡にて観察し、基板間のボイドの有無を判定した。
 実施例14にて得られた基板積層体の断面には、ボイドは観察されなかった。
[実施例15]
<接合材料を含む溶液の調製>
 実施例4と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例11と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ2.8μm、複合弾性率5.5GPa)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして仮固定基板積層体を製造した。前述の仮固定基板積層体の接合界面の表面エネルギーは0.1J/mであった。
<基板積層体の製造>
 前述のようにして形成した仮固定基板積層体を、200℃で30分間、窒素雰囲気下で加熱することで、第1の基板及び第2の基板を接合し、基板積層体を得た。得られた基板積層体において、第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例16]
<接合材料を含む溶液の調製>
 3-アミノプロピルジエトキシメチルシラン(3APDES;(3-Aminopropyl)diethoxymethylsilane)0.42gの加水分解物、及び4,4’-オキシジフタル酸ハーフエステル(一般式(B-1)におけるRがエチル基)0.44gを用いた以外は、実施例4と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例10と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ140nm、複合弾性率5.8GPa)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして仮固定基板積層体を製造した。前述の仮固定基板積層体の接合界面の表面エネルギーは0.2J/mであった。
<基板積層体の製造>
 実施例15と同様にして、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例17]
<接合材料を含む溶液の調製>
 実施例16と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例5と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例5と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ140nm、複合弾性率5.5GPa、表面粗度(Ra)0.30nm、水滴接触角73°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして仮固定基板積層体を製造した。前述の仮固定基板積層体の接合界面の表面エネルギーは0.2J/mであった。
<基板積層体の製造>
 実施例15と同様にして、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例18]
<接合材料を含む溶液の調製>
 実施例16と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例7と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例5と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ140nm、複合弾性率5.5GPa、表面粗度(Ra)0.30nm、水滴接触角73°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして仮固定基板積層体を製造した。前述の仮固定基板積層体の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
<基板積層体の製造>
 実施例15と同様にして、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
[実施例19]
<接合材料を含む溶液の調製>
 実施例16と同様にして、接合材料を含む溶液を調製した。
<基板の準備>
 実施例8と同様にして、第1の基板及び第2の基板を準備した。
<接合層の形成>
 実施例5と同様にして、シロキサン結合及びイミド結合を有する接合層(硬化率95%以上、厚さ140nm、複合弾性率5.5GPa、表面粗度(Ra)0.30nm、水滴接触角73°)を形成した。
 接合層の表面におけるシリコン量、及びシラノール基の有無は実施例4と同様であった。
<仮固定基板積層体の製造>
 実施例5と同様にして仮固定基板積層体を製造した。前述の仮固定基板積層体の接合界面の表面エネルギーは0.9J/mであった。
<基板積層体の製造>
 実施例15と同様にして、基板積層体を得た。第1の基板と第2の基板の接合界面の表面エネルギーは2.5J/m以上(測定限界)であった。
 2018年10月26日に出願された日本国特許出願2018-202212号及び2019年5月30日に出願された日本国特許出願2019-101252号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  第1の基板及び第2の基板の少なくとも一方の表面上に、接合材料を付与する工程と、
     前記表面上に付与された前記接合材料を硬化して23℃における複合弾性率が10GPa以下である接合層を形成する工程と、
     形成された前記接合層を介して前記第1の基板と前記第2の基板とを接合する工程と、
     を備える基板積層体の製造方法。
  2.  前記接合層を形成する工程では、前記表面上に付与された前記接合材料を100℃~450℃で加熱して硬化させる請求項1に記載の基板積層体の製造方法。
  3.  前記第1の基板と前記第2の基板とを接合する工程では、前記接合層を介して前記第1の基板と前記第2の基板とを接触させた状態にて前記接合層を100℃~450℃で加熱して接合させる請求項1又は請求項2に記載の基板積層体の製造方法。
  4.  前記接合層を形成する工程後かつ前記第1の基板と前記第2の基板とを接合する工程前の、接合層の硬化率が70%以上である、請求項1~請求項3のいずれか1項に記載の基板積層体の製造方法。
  5.  前記接合層は、表面にシラノール基を有する、請求項1~請求項4のいずれか1項に記載の基板積層体の製造方法。
  6.  前記接合層が、シロキサン結合と、アミド結合及びイミド結合の少なくとも一方とを有する、請求項1~請求項5のいずれか1項に記載の基板積層体の製造方法。
  7.  前記第1の基板及び前記第2の基板の少なくとも一方の、前記接合層と接触する側の面に表面処理を行うことにより、水酸基を形成する工程を更に備える請求項1~請求項6のいずれか1項に記載の基板積層体の製造方法。
  8.  基板積層体における前記接合層の厚さは、0.001μm~8.0μmである請求項1~請求項7のいずれか1項に記載の基板積層体の製造方法。
  9.  基板積層体における、前記第1の基板と前記第2の基板との接合界面の表面エネルギーが2J/m以上である、請求項1~請求項8のいずれか1項に記載の基板積層体の製造方法。
  10.  前記接合層を形成する工程後に、前記接合層を介して前記第1の基板と前記第2の基板とを仮固定する工程をさらに備え、前記仮固定する工程後の前記第1の基板と前記第2の基板との接合界面の表面エネルギーは、0.05J/m以上である、請求項1~請求項9のいずれか1項に記載の基板積層体の製造方法。
  11.  前記接合材料を付与する工程の前に、前記第1の基板及び前記第2の基板の少なくとも一方の前記接合材料が付与される表面上に電極を形成する工程を更に備える請求項1~請求項10のいずれか1項に記載の基板積層体の製造方法。
  12.  前記接合材料を付与する工程の後かつ前記接合層を形成する工程の前に、前記電極上の接合材料を除去する工程を更に備える、請求項11に記載の基板積層体の製造方法。
  13.  前記接合層を形成する工程後かつ前記第1の基板と前記第2の基板とを接合する工程の前に、前記電極上の接合層を除去する工程を更に備える、請求項11に記載の基板積層体の製造方法。
  14.  前記接合層を形成する工程後かつ前記第1の基板と前記第2の基板とを接合する工程の前に、前記接合層が形成された表面に電極を形成する工程を更に備える、請求項1~請求項13のいずれか1項に記載の基板積層体の製造方法。
  15.  第1の基板と、
     前記第1の基板上に形成された接合層と、
     を備え、前記接合層は、接合材料を硬化してなり、23℃における複合弾性率が10GPa以下である積層体。
PCT/JP2019/040845 2018-10-26 2019-10-17 基板積層体の製造方法及び積層体 WO2020085183A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202103798VA SG11202103798VA (en) 2018-10-26 2019-10-17 Method of manufacturing substrate layered body and layered body
US17/284,833 US20210391292A1 (en) 2018-10-26 2019-10-17 Method of manufacturing substrate layered body and layered body
KR1020217011470A KR102582227B1 (ko) 2018-10-26 2019-10-17 기판 적층체의 제조 방법 및 적층체
EP19876881.4A EP3855477A4 (en) 2018-10-26 2019-10-17 METHOD FOR MAKING SUBSTRATE LAMINATE BODY AND LAMINATE BODY
JP2020553279A JP7162679B2 (ja) 2018-10-26 2019-10-17 基板積層体の製造方法及び積層体
CN201980069246.5A CN112889131A (zh) 2018-10-26 2019-10-17 基板层叠体的制造方法及层叠体
IL282337A IL282337A (en) 2018-10-26 2021-04-14 A method for producing a body made of substrate layers and a body made of layers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018202212 2018-10-26
JP2018-202212 2018-10-26
JP2019-101252 2019-05-30
JP2019101252 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020085183A1 true WO2020085183A1 (ja) 2020-04-30

Family

ID=70330604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040845 WO2020085183A1 (ja) 2018-10-26 2019-10-17 基板積層体の製造方法及び積層体

Country Status (9)

Country Link
US (1) US20210391292A1 (ja)
EP (1) EP3855477A4 (ja)
JP (1) JP7162679B2 (ja)
KR (1) KR102582227B1 (ja)
CN (1) CN112889131A (ja)
IL (1) IL282337A (ja)
SG (1) SG11202103798VA (ja)
TW (1) TW202037700A (ja)
WO (1) WO2020085183A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054839A1 (ja) * 2020-09-10 2022-03-17 三井化学株式会社 組成物、積層体及び積層体の製造方法
WO2022203020A1 (ja) * 2021-03-26 2022-09-29 昭和電工マテリアルズ株式会社 半導体装置の製造方法、半導体装置、集積回路要素、及び、集積回路要素の製造方法
WO2023032924A1 (ja) * 2021-09-06 2023-03-09 三井化学株式会社 半導体用の膜を形成するための組成物、積層体及び基板積層体
WO2023032923A1 (ja) * 2021-09-06 2023-03-09 三井化学株式会社 半導体用の膜を形成するための組成物、積層体及び基板積層体

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933120B1 (ja) 1968-06-21 1974-09-04
JPH04132258A (ja) 1990-09-25 1992-05-06 Nec Corp 半導体基板の接続体およびその接続方法
JPH0616809A (ja) 1991-09-21 1994-01-25 Hoechst Ag アルキル化ポリエチレンイミン誘導体およびその製造方法
JP2001123958A (ja) 1999-10-27 2001-05-08 Mikuni Adec Corp ダイアフラム式燃料ポンプ
JP2010226060A (ja) 2009-03-25 2010-10-07 Fujitsu Ltd 半導体装置とその製造方法
WO2010137711A1 (ja) 2009-05-29 2010-12-02 三井化学株式会社 半導体用シール組成物、半導体装置および半導体装置の製造方法
JP2013105803A (ja) * 2011-11-11 2013-05-30 Seiko Epson Corp 接合方法および接合体
JP2016047895A (ja) 2014-08-28 2016-04-07 株式会社ダイセル 半導体用接着剤組成物
JP2017082195A (ja) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 樹脂組成物、接合体及び半導体装置
JP2018202212A (ja) 2018-10-03 2018-12-27 株式会社三洋物産 遊技機
JP2019101252A (ja) 2017-12-04 2019-06-24 株式会社テラモト サインボード取付セット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137028C (zh) * 1998-11-20 2004-02-04 琳得科株式会社 压敏粘合片及其使用方法
JP2001081438A (ja) * 1999-09-14 2001-03-27 Sony Chem Corp 接続材料
JP2005327789A (ja) * 2004-05-12 2005-11-24 Sharp Corp ダイシング・ダイボンド兼用粘接着シートおよびこれを用いた半導体装置の製造方法
KR20110036961A (ko) * 2008-08-27 2011-04-12 히다치 가세고교 가부시끼가이샤 양면 접착 필름 및 이것을 사용한 전자 부품 모듈
JP5732815B2 (ja) * 2009-10-30 2015-06-10 日立化成株式会社 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、接着剤層付透明基板、及び半導体装置。
JP5899622B2 (ja) * 2011-02-08 2016-04-06 日立化成株式会社 半導体用粘接着シート、半導体用粘接着シートの製造方法、半導体ウエハ、半導体装置及び半導体装置の製造方法
JP5883333B2 (ja) * 2012-04-02 2016-03-15 日東電工株式会社 透明シートおよびその製造方法
CN107735854B (zh) * 2014-12-26 2020-12-15 汉高股份有限及两合公司 可烧结粘合材料及使用其的半导体装置
JP6460525B2 (ja) * 2015-01-30 2019-01-30 藤森工業株式会社 接着性樹脂層、接着性樹脂フィルム、積層体及び積層体の製造方法
TWI692517B (zh) * 2015-09-30 2020-05-01 日商富士軟片股份有限公司 暫時接著劑、積層體、積層體的製造方法、元件基板的製造方法及半導體元件的製造方法
CN108138013B (zh) * 2015-10-29 2021-02-19 东丽株式会社 临时粘合用层叠体膜、使用临时粘合用层叠体膜的基板加工体及层叠基板加工体的制造方法、以及使用它们的半导体器件的制造方法
JP6615722B2 (ja) * 2016-08-31 2019-12-04 富士フイルム株式会社 積層体の製造方法、仮接着用組成物、仮接着膜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933120B1 (ja) 1968-06-21 1974-09-04
JPH04132258A (ja) 1990-09-25 1992-05-06 Nec Corp 半導体基板の接続体およびその接続方法
JPH0616809A (ja) 1991-09-21 1994-01-25 Hoechst Ag アルキル化ポリエチレンイミン誘導体およびその製造方法
JP2001123958A (ja) 1999-10-27 2001-05-08 Mikuni Adec Corp ダイアフラム式燃料ポンプ
JP2010226060A (ja) 2009-03-25 2010-10-07 Fujitsu Ltd 半導体装置とその製造方法
WO2010137711A1 (ja) 2009-05-29 2010-12-02 三井化学株式会社 半導体用シール組成物、半導体装置および半導体装置の製造方法
JP2013105803A (ja) * 2011-11-11 2013-05-30 Seiko Epson Corp 接合方法および接合体
JP2016047895A (ja) 2014-08-28 2016-04-07 株式会社ダイセル 半導体用接着剤組成物
JP2017082195A (ja) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 樹脂組成物、接合体及び半導体装置
JP2019101252A (ja) 2017-12-04 2019-06-24 株式会社テラモト サインボード取付セット
JP2018202212A (ja) 2018-10-03 2018-12-27 株式会社三洋物産 遊技機

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. BAYRASHEVB. ZIAIE, SENSORS AND ACTUATORS A, vol. 103, 2003, pages 16 - 22
J. J. MCMAHONE. CHANS. H. LEER. J. GUTMANNJ.-Q. LU, PROCEEDINGS - ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, June 2008 (2008-06-01), pages 871 - 878
M.P. MASZARAG GOETZA. CAVIGILAJ.B. MCKITTERICK, JOURNAL OF APPLIED PHYSICS, vol. 64, 1988, pages 4943 - 4950
Q. Y. TONGU. M. GOSELE, ADVANCED MATERIAL, vol. 11, no. 17, 1999, pages 1409 - 1425
THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, 2011, pages 12981 - 12989
Z. SONGZ. TANL. LIUZ. WANG, MICROSYSTEM TECHNOLOGY, vol. 21, 2015, pages 1633 - 1641

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054839A1 (ja) * 2020-09-10 2022-03-17 三井化学株式会社 組成物、積層体及び積層体の製造方法
JPWO2022054839A1 (ja) * 2020-09-10 2022-03-17
CN115956098A (zh) * 2020-09-10 2023-04-11 三井化学株式会社 组合物、层叠体和层叠体的制造方法
JP7351019B2 (ja) 2020-09-10 2023-09-26 三井化学株式会社 組成物、積層体及び積層体の製造方法
WO2022203020A1 (ja) * 2021-03-26 2022-09-29 昭和電工マテリアルズ株式会社 半導体装置の製造方法、半導体装置、集積回路要素、及び、集積回路要素の製造方法
WO2023032924A1 (ja) * 2021-09-06 2023-03-09 三井化学株式会社 半導体用の膜を形成するための組成物、積層体及び基板積層体
WO2023032923A1 (ja) * 2021-09-06 2023-03-09 三井化学株式会社 半導体用の膜を形成するための組成物、積層体及び基板積層体

Also Published As

Publication number Publication date
KR102582227B1 (ko) 2023-09-22
IL282337A (en) 2021-05-31
JPWO2020085183A1 (ja) 2021-10-07
CN112889131A (zh) 2021-06-01
JP7162679B2 (ja) 2022-10-28
SG11202103798VA (en) 2021-05-28
EP3855477A4 (en) 2022-07-06
KR20210060571A (ko) 2021-05-26
US20210391292A1 (en) 2021-12-16
EP3855477A1 (en) 2021-07-28
TW202037700A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP7162679B2 (ja) 基板積層体の製造方法及び積層体
US11965109B2 (en) Semiconductor film composition, method for manufacturing semiconductor film composition, method for manufacturing semiconductor member, method for manufacturing semiconductor processing material, and semiconductor device
JP6781827B2 (ja) 基板積層体及び基板積層体の製造方法
WO2024010007A1 (ja) 基板積層体の製造方法及び基板積層体
WO2024029390A1 (ja) 基板積層体の製造方法及び半導体装置
JP7351019B2 (ja) 組成物、積層体及び積層体の製造方法
WO2023032923A1 (ja) 半導体用の膜を形成するための組成物、積層体及び基板積層体
WO2023032924A1 (ja) 半導体用の膜を形成するための組成物、積層体及び基板積層体
JP2021182621A (ja) 積層体、組成物及び積層体の製造方法
JP2023177917A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217011470

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020553279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019876881

Country of ref document: EP

Effective date: 20210421