WO2023032923A1 - 半導体用の膜を形成するための組成物、積層体及び基板積層体 - Google Patents

半導体用の膜を形成するための組成物、積層体及び基板積層体 Download PDF

Info

Publication number
WO2023032923A1
WO2023032923A1 PCT/JP2022/032438 JP2022032438W WO2023032923A1 WO 2023032923 A1 WO2023032923 A1 WO 2023032923A1 JP 2022032438 W JP2022032438 W JP 2022032438W WO 2023032923 A1 WO2023032923 A1 WO 2023032923A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
group
composition
forming
semiconductor
Prior art date
Application number
PCT/JP2022/032438
Other languages
English (en)
French (fr)
Inventor
靖剛 茅場
雄三 中村
孝志 河関
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023545564A priority Critical patent/JPWO2023032923A1/ja
Priority to KR1020247008433A priority patent/KR20240050367A/ko
Priority to EP22864505.7A priority patent/EP4391024A1/en
Priority to CN202280059769.3A priority patent/CN117941037A/zh
Publication of WO2023032923A1 publication Critical patent/WO2023032923A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present disclosure relates to compositions, laminates, and substrate laminates for forming films for semiconductors.
  • a bonding layer is formed by applying resin to the surfaces of the semiconductor substrates, followed by drying, heating, or the like, and the semiconductor substrates are bonded via the bonding layer. is assumed.
  • the semiconductor substrate on which the bonding layer is formed is likely to warp due to, for example, the difference between the coefficient of thermal expansion of the bonding layer and the coefficient of thermal expansion of the semiconductor substrate. If the generated warpage is large, there is a possibility that the semiconductor substrates will be misaligned when they are bonded to each other.
  • An object of the present invention is to provide a composition for forming a film, and a laminate and substrate laminate formed using the composition for forming a film for a semiconductor.
  • the molar ratio of the siloxane compound (A)/silane compound (B), which is the ratio of the content of the siloxane compound (A) to the content of the silane compound (B), is 0.01 or more and 100 or less.
  • ⁇ 7> The semiconductor film according to any one of ⁇ 1> to ⁇ 6>, wherein both ends of the main chain of the siloxane compound (A) are each independently a primary amino group or a secondary amino group.
  • composition to form Composition to form.
  • the relationship between the silicon atom and the nonpolar group bonded to the silicon atom satisfies the relationship of (nonpolar group)/Si ⁇ 2.0 in terms of molar ratio
  • ⁇ 1> A composition for forming a film for a semiconductor according to any one of ⁇ 7>.
  • ⁇ 9> A laminate obtained by laminating a bonding layer formed from the composition for forming a semiconductor film according to any one of ⁇ 1> to ⁇ 8> and a substrate.
  • ⁇ 12> The substrate lamination according to ⁇ 11>, wherein the first lamination region has two or more layers laminated in the lamination direction, and the second lamination region has two or more layers laminated in the lamination direction. body.
  • At least one of the first substrate and the second substrate is a semiconductor substrate containing at least one element selected from the group consisting of Si, Ga, Ge and As, ⁇ 10> to ⁇ 12>, the substrate laminate according to any one of the above.
  • a composition for forming a film for a semiconductor that can suppress warping of a substrate when a bonding layer is formed on the substrate and can form a bonding layer having high bonding strength between the substrates.
  • a laminate and a substrate laminate formed using the composition for forming a film for a semiconductor are provided.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. .
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • substrate laminate means a laminate having a structure in which two substrates are bonded via a bonding layer formed by the method for manufacturing a substrate laminate of the present disclosure. Note that the substrate laminate may have three or more substrates, and two substrates among the three or more substrates are bonded via a bonding layer formed by the method for manufacturing a substrate laminate of the present disclosure. may have a jointed structure.
  • composition for forming a film for a semiconductor comprises at least one of a primary amino group and a secondary amino group, a silicon atom, and a nonpolar group bonded to the silicon atom,
  • the total number of amino groups is two or more, and the relationship between the silicon atom and the nonpolar group bonded to the silicon atom satisfies the relationship of (nonpolar group)/Si ⁇ 1.8 in terms of molar ratio.
  • a siloxane compound (A) (hereinafter also simply referred to as “siloxane compound (A)”), at least one of a primary amino group and a secondary amino group, and a silicon atom, and is bonded to the silicon atom corresponding to the silicon atom
  • the composition for forming a film for a semiconductor of the present disclosure contains the siloxane compound (A), the silane compound (B) and the cross-linking agent (C) described above.
  • a composition for forming a film for a semiconductor is applied to a substrate such as a semiconductor substrate and a bonding layer is formed from the composition for forming a film for a semiconductor on the substrate, warping of the substrate can be prevented.
  • the bonding strength between the substrates is high. By suppressing the warpage of the substrate when forming the bonding layer, for example, it is possible to suppress misalignment when the substrates are bonded together.
  • Siloxane compound (A) A composition for forming a film for a semiconductor of the present disclosure comprises at least one of a primary amino group and a secondary amino group, a silicon atom, and a nonpolar group bonded to the silicon atom, A linear siloxane having a total of 2 or more amino groups and satisfying the relationship of (nonpolar group)/Si ⁇ 1.8 in molar ratio between the silicon atom and the nonpolar group bonded to the silicon atom. Contains compound (A).
  • a linear siloxane compound means that a siloxane bond (Si—O—Si bond) exists on a straight chain, and includes branched siloxane structures, cyclic siloxane structures, cage-like siloxane structures, and the like. means no compounds. Since the siloxane compound (A) is a linear siloxane compound, the siloxane compound (A) contributes to the formation of a flexible skeleton in the bonding layer formed by the reaction with the cross-linking agent (C) described later, and the bonding layer By improving the flexibility of the substrate, the warp of the substrate can be more suitably suppressed.
  • the fact that the siloxane compound (A) satisfies the relationship of (nonpolar group)/Si ⁇ 1.8 means that the nonpolar group bonded to the silicon atom is in a predetermined amount or more.
  • the nonpolar group contributes to a decrease in the crosslink density in the bonding layer formed by the reaction with the crosslinking agent (C) described later, and the flexibility of the bonding layer is improved, thereby suppressing the warpage of the substrate. be.
  • the siloxane compound (A) contains at least one of a primary amino group (—NH 2 group) and a secondary amino group (eg, —NHR a group; where R a represents an alkyl group), and the primary amino
  • the total number of groups and secondary amino groups is 2 or more.
  • the total number of primary amino groups and secondary amino groups is preferably 2 or more and 4 or less, more preferably 2 or 3, and preferably 2. More preferred.
  • the siloxane compound (A) has a tertiary amino group (e.g., —NR b R c group; where R b and R c are each independently representing an alkyl group) may or may not be included.
  • a tertiary amino group e.g., —NR b R c group; where R b and R c are each independently representing an alkyl group
  • the weight average molecular weight of the siloxane compound (A) is, for example, 200 or more and 2000 or less. From the viewpoint of facilitating a more flexible structure, the lower limit is preferably 200 or more, more preferably 230 or more, and even more preferably 240 or more. The upper limit is preferably 1,500 or less, more preferably 1,000 or less, and even more preferably 800 or less, from the viewpoint of facilitating formation of a film using the composition.
  • the weight average molecular weight refers to the weight average molecular weight in terms of polyethylene glycol measured by GPC (Gel Permeation Chromatography). Specifically, the weight average molecular weight was measured using an aqueous solution with a sodium nitrate concentration of 0.1 mol/L as a developing solvent, using an analyzer Shodex DET RI-101 and two types of analytical columns (Tosoh TSKgel G6000PWXL-CP and TSKgel G3000PWXL- CP) is used to detect the refractive index at a flow rate of 1.0 mL/min, and polyethylene glycol/polyethylene oxide is used as a standard product, and calculation is performed using analysis software (Empower3 manufactured by Waters).
  • GPC Gel Permeation Chromatography
  • the relationship between the silicon atom and the nonpolar group bonded to the silicon atom satisfies the relationship of (nonpolar group)/Si ⁇ 1.8 in terms of molar ratio.
  • non-polar groups bonded to silicon atoms include alkyl groups, aryl groups, and aralkyl groups.
  • Preferred alkyl groups include methyl group, ethyl group and propyl group
  • preferred aryl groups include phenyl group
  • preferred aralkyl groups include benzyl group.
  • nonpolar groups such as alkyl groups, aryl groups, and aralkyl groups are partially substituted with polar groups such as hydroxy groups and amino groups are not classified as nonpolar groups.
  • the siloxane bond (--Si--O--Si) is neither classified as a polar group nor a non-polar group bonded to the silicon atom of the siloxane compound (A).
  • the non-polar groups in the bonding layer formed by the reaction with the cross-linking agent (C) described later contribute to the decrease in the cross-linking density, and from the viewpoint of more preferably suppressing the warp of the substrate, It is preferable that (non-polar group)/Si ⁇ 2.0.
  • the upper limit of (nonpolar group)/Si may be, for example, (nonpolar group)/Si ⁇ 2.5 or (nonpolar group)/Si ⁇ 2.0.
  • (nonpolar group)/Si may be 2.0.
  • the amino group that is contained in the siloxane compound (A) and is a primary amino group or a secondary amino group is also referred to as a "specific amino group".
  • the siloxane compound (A) containing a specific amino group include, for example, a compound containing two or more primary amino groups and no secondary amino group, a compound containing no primary amino group and no secondary amino group.
  • Compounds containing two or more, and compounds containing at least one both primary and secondary amino groups are included.
  • the siloxane compound (A) suppresses an increase in crosslink density due to reaction with a crosslinker (C), which will be described later.
  • the main chain contains two or more specific amino groups, more preferably that the main chain contains two specific amino groups.
  • Primary amino groups are more preferred, and both ends of the main chain are particularly preferably primary amino groups.
  • the siloxane compound (A) preferably has two amino groups in its main chain.
  • the number of amino groups is preferably one or less, and the side chain preferably does not contain a specific amino group.
  • the siloxane compound (A) may be, for example, a compound represented by the following general formula (A-1).
  • each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group
  • each R 2 independently represents a divalent linking group
  • each R 3 independently represents a non- represents a polar group
  • j represents an integer of 1 or more and 10 or less
  • Substituents of the alkyl group in R 1 each independently include a hydroxy group, an alkoxy group, a cyano group, a carboxylic acid group, a sulfonic acid group, a halogen, and the like.
  • R 1 is preferably a hydrogen atom.
  • the divalent linking group for R 2 is each independently an alkylene group, a divalent link in which a hydrogen atom in the alkylene group is substituted with another atom, a functional group, or the like. group, a divalent linking group obtained by substituting a methylene group in an alkylene group with -NH-, and the like.
  • the number of carbon atoms in the divalent linking group is, for example, preferably 1-20, preferably 2-10, more preferably 3-5.
  • the non-polar groups for R 3 each independently include an alkyl group, an aryl group, an aralkyl group, and the like.
  • Preferred alkyl groups include methyl group, ethyl group and propyl group, preferred aryl groups include phenyl group, and preferred aralkyl groups include benzyl group.
  • j is 1 or more and 10 or less, and the lower limit of j is 1 or more from the viewpoint of suitably forming a bonding layer having a flexible skeleton that suitably contributes to suppressing warpage of the substrate.
  • the upper limit of j is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less, from the viewpoint of facilitating formation of a uniform coating with little phase separation.
  • the number of atoms in the longest linear chain (excluding hydrogen atoms) of the siloxane compound (A) is preferably 7 or more and 50 or less, for example.
  • the number of atoms in the longest linear chain (excluding hydrogen atoms) is preferably 8 or more, more preferably 10 or more, from the viewpoint of suitably forming a bonding layer having a flexible skeleton that suitably contributes to suppressing warpage of the substrate. is more preferred.
  • the upper limit of the number of atoms in the longest straight chain (excluding hydrogen atoms) is preferably 30 or less, more preferably 20 or less.
  • R 1 when R 1 is an alkyl group, the longest straight chain is an atom of R 1 -N-R 2 -Si-(O-Si) j -R 2 -N-R 1 and the longest linear chain when R 1 is a hydrogen atom is the number of atoms of NR 2 -Si-(O-Si) j -R 2 -N.
  • the siloxane compound (A) may be, for example, a compound represented by the following general formula (A-2).
  • each R 1 independently represents a hydrogen atom or an optionally substituted alkyl group
  • each R 3 independently represents a nonpolar group
  • i represents an integer of 0 to 4.
  • j represents an integer of 1 or more and 10 or less.
  • each i is preferably an integer of 0 to 2, more preferably 0 or 1, even more preferably 0.
  • Preferred embodiments of R 1 , R 3 and j in general formula (A-2) are the same as preferred embodiments of R 1 , R 3 and j in general formula (A-1).
  • a siloxane compound (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Silane compound (B) A composition for forming a film for a semiconductor of the present disclosure contains at least one of a primary amino group and a secondary amino group and a silicon atom, and the silicon atom and a nonpolar group bonded to the silicon atom It contains a silane compound (B) that satisfies the relationship of (nonpolar group)/Si ⁇ 1.8 in terms of molar ratio.
  • the relationship between the silicon atoms contained in the silane compound (B) and the nonpolar groups bonded to the silicon atoms in terms of the molar ratio (nonpolar group)/Si ⁇ 1.8, means that the number of silicon atoms and the It shows that the relationship of the number of nonpolar groups bonded to silicon atoms is (nonpolar group)/Si ⁇ 1.8.
  • the silane compound (B) satisfies the relationship of (nonpolar group)/Si ⁇ 1.8 means that the amount of nonpolar groups bonded to silicon atoms is less than a predetermined amount.
  • the bonding layer formed by the reaction with the cross-linking agent (C), which will be described later, has an improved glass transition temperature and excellent heat resistance. That is, since the composition for forming a film for a semiconductor of the present disclosure contains the silane compound (B), when a bonding layer is formed on the substrate, warping of the substrate is suppressed and bonding strength between the substrates is high. It is possible to achieve three properties at a high level: the formation of the bonding layer and the heat resistance due to the improvement in the glass transition temperature.
  • the silane compound (B) contains at least one of a primary amino group (--NH 2 group) and a secondary amino group (eg --NHR a group; where R a represents an alkyl group).
  • the total number of primary amino groups and secondary amino groups in the silane compound (B) is not particularly limited as long as it is 1 or more. Therefore, one or two is preferable, and one is more preferable.
  • the silane compound (B) has a tertiary amino group that is an amino group other than a primary amino group and a secondary amino group (eg, —NR b R c group; where R b and R c are each independently representing an alkyl group) may or may not be included.
  • a secondary amino group eg, —NR b R c group; where R b and R c are each independently representing an alkyl group
  • the number of silicon atoms in the silane compound (B) is not particularly limited as long as it is 1 or more.
  • the weight average molecular weight of the silane compound (B) is preferably from 130 to 10,000, more preferably from 130 to 5,000, even more preferably from 130 to 2,000.
  • the relationship between the silicon atom and the nonpolar group bonded to the silicon atom satisfies the relationship of (nonpolar group)/Si ⁇ 1.8 in terms of molar ratio.
  • the nonpolar group bonded to the silicon atom is the same as the nonpolar group in the siloxane compound (A).
  • (nonpolar group)/Si ⁇ 1.5 is preferable, and (nonpolar group)/Si ⁇ 1.0 is more preferable, from the viewpoint of further improving heat resistance.
  • the lower limit of (nonpolar group)/Si is not particularly limited, and for example, (nonpolar group)/Si ⁇ 0 may be satisfied.
  • the silane compound (B) preferably has a polar group bonded to the silicon atom.
  • the polar group undergoes hydrolysis and dehydration condensation to form a siloxane bond (-Si-O-Si). glass transition temperature) can be improved.
  • the polar group includes a functional group that can be converted to a hydroxy group by hydrolysis, and specifically includes an alkoxy group having 1 to 5 carbon atoms such as a hydroxy group, a methoxy group and an ethoxy group.
  • the siloxane bond (--Si--O--Si) is neither classified as a polar group nor a non-polar group bonded to the silicon atom of the silane compound (B).
  • the silane compound (B) may be, for example, a compound represented by the following general formula (B-1).
  • R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 each independently represent an optionally substituted alkylene group having 1 to 12 carbon atoms, an ether group or a carbonyl group, and the alkylene group having 1 to 12 carbon atoms which may be substituted represents the skeleton may further contain a carbonyl group, an ether group, or the like.
  • R 4 and R 5 each independently represent an optionally substituted alkylene group having 1 to 4 carbon atoms or a single bond.
  • Ar represents a divalent or trivalent aromatic ring.
  • X 1 represents hydrogen or an optionally substituted alkyl group having 1 to 5 carbon atoms.
  • X 2 represents hydrogen, a cycloalkyl group, a heterocyclic group, an aryl group, or an optionally substituted alkyl group having 1 to 5 carbon atoms, and the optionally substituted alkyl group having 1 to 5 carbon atoms is a skeleton may further contain a carbonyl group, an ether group, or the like.
  • a plurality of R 1 , R 2 , R 3 , R 4 , R 5 and X 1 may be the same or different.
  • p1 represents 0 or 1
  • q1 represents 2 or 3.
  • p1+q1 3.
  • n1 represents an integer of 1 to 3;
  • r1, s1, t1, u1, V1 and w1 each independently represent 0 or 1;
  • the substituents of the alkyl group and the alkylene group in R 1 , R 2 , R 3 , R 4 , R 5 , X 1 and X 2 are each independently an amino group and a hydroxy group. , an alkoxy group, a cyano group, a carboxylic acid group, a sulfonic acid group, a halogen, and the like.
  • Examples of the divalent or trivalent aromatic ring in Ar include a divalent or trivalent benzene ring.
  • the aryl group for X2 includes, for example, a phenyl group, a methylbenzyl group, a vinylbenzyl group and the like.
  • n1 is preferably 1 or 2, more preferably 1.
  • s1, t1, V1 and w1 are preferably zero.
  • silane compound (B) examples include N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N- (2-aminoethyl)-3-aminoisobutylmethyldimethoxysilane, N-(2-aminoethyl)-11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N -phenyl-3-aminopropyltrimethoxysilane, (aminoethylaminoethyl)phenyltriethoxysilane, methylbenzylaminoethylaminopropyltrimethoxysilane, benzylaminoethylaminopropyltriethoxysilane, 3-urei
  • the silane compound (B) may be, for example, a polymer containing a branched siloxane structure, a polymer containing a cyclic siloxane structure, a polymer containing a cage-like siloxane structure, or the like.
  • the cage-like siloxane structure is represented, for example, by the following formula (X).
  • the ratio of the siloxane compound (A) to the silane compound (B) is the ratio of the siloxane compound (A)/silane compound (B) is preferably 0.01 to 100, more preferably 0.05 to 20, in terms of molar ratio, from the viewpoint of suppressing warpage of the substrate when used as a bonding layer and balancing bonding strength. .1 to 10 is more preferred. From the viewpoint of more preferably suppressing the warp of the substrate, the lower limit of the molar ratio of the siloxane compound (A)/silane compound (B) is preferably 0.01 or more, more preferably 0.05 or more.
  • the upper limit of the molar ratio of the siloxane compound (A)/silane compound (B) is preferably 100 or less, more preferably 20 or less, and 10 It is more preferably 5 or less, and particularly preferably 5 or less.
  • the cross-linking agent (C) is a compound having a weight average molecular weight of 200 or more and 2000 or less.
  • the weight average molecular weight of the cross-linking agent (C) is preferably 200 or more and 1000 or less, more preferably 200 or more and 600 or less, and even more preferably 200 or more and 400 or less.
  • the cross-linking agent (C) preferably contains a ring structure in its molecule.
  • the ring structure includes an alicyclic structure, an aromatic ring structure, and the like.
  • the cross-linking agent (C) may contain a plurality of ring structures in the molecule, and the plurality of ring structures may be the same or different.
  • the alicyclic structure contained in the molecule of the cross-linking agent (C) is an alicyclic structure
  • the alicyclic structure includes, for example, an alicyclic structure having 3 to 8 carbon atoms, preferably an alicyclic structure having 4 to 6 carbon atoms. structure, and the ring structure may be saturated or unsaturated.
  • the alicyclic structure includes saturated alicyclic structures such as cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, and cyclooctane ring; cyclopropene ring, cyclobutene ring, cyclopentene ring, Examples include unsaturated alicyclic structures such as cyclohexene ring, cycloheptene ring and cyclooctene ring.
  • the aromatic ring structure contained in the molecule of the cross-linking agent (C) is an aromatic ring structure
  • the aromatic ring structure is not particularly limited as long as it is a ring structure exhibiting aromaticity.
  • benzene-based aromatic rings such as perylene rings, aromatic heterocycles such as pyridine rings and thiophene rings, and non-benzene-based aromatic rings such as indene rings and azulene rings.
  • the ring structure contained in the molecule of the cross-linking agent (C) is preferably, for example, at least one selected from the group consisting of a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a benzene ring and a naphthalene ring to form a semiconductor film. At least one of a benzene ring and a naphthalene ring is more preferable from the viewpoint of further increasing the heat resistance of the bonding layer obtained from the composition for bonding.
  • the cross-linking agent (C) may contain multiple ring structures in the molecule, and when the ring structure is benzene, it may contain a biphenyl structure, a benzophenone structure, a diphenyl ether structure, and the like.
  • the cross-linking agent (C) preferably contains fluorine atoms in the molecule, more preferably contains 1 to 6 fluorine atoms in the molecule, and contains 3 to 6 fluorine atoms in the molecule. More preferably, it contains
  • the cross-linking agent (C) may contain a fluoroalkyl group in the molecule, specifically a trifluoroalkyl group or a hexafluoroisopropyl group.
  • carboxylic acid compounds such as alicyclic carboxylic acid, benzenecarboxylic acid, naphthalenecarboxylic acid, diphthalic acid, and fluoroaromatic carboxylic acid
  • alicyclic carboxylic acid ester, benzenecarboxylic acid ester, naphthalene examples thereof include carboxylic acid ester compounds such as carboxylic acid esters, diphthalic acid esters, and fluoroaromatic ring carboxylic acid esters.
  • the cross-linking agent (C) is a carboxylic acid ester compound, so that the siloxane compound (A), the silane compound (B), etc. and the cross-linking agent in the composition Aggregation due to association with (C) is suppressed, aggregates and pits are reduced, and formation of a bonding layer with excellent smoothness and adjustment of the thickness of the bonding layer tend to be facilitated.
  • X is an alkyl group having 1 to 6 carbon atoms
  • X is a methyl group
  • an ethyl group, a propyl group, A butyl group or the like is preferable, and an ethyl group or a propyl group is preferable from the viewpoint of further suppressing aggregation due to association between the siloxane compound (A), the silane compound (B), etc. and the cross-linking agent (C) in the composition. .
  • carboxylic acid compound examples include, but are not limited to, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,3,5-cyclohexane Alicyclic carboxylic acids such as tricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid and 1,2,3,4,5,6-cyclohexanehexacarboxylic acid;1 Benzene such as , 2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, pyromellitic acid, 3,4′-biphthalic acid, p-phenylenebis(trimellitate acid), benzenepentacarboxylic acid, mellitic acid Carboxylic acid; 1,4,5,8-naphthalenetetracarboxylic acid, naphthalenecarbox
  • carboxylic acid ester compounds include compounds in which at least one carboxy group in the specific examples of the carboxylic acid compounds described above is substituted with an ester group.
  • carboxylic acid ester compounds include half-esterified compounds represented by the following general formulas (C-1) to (C-5).
  • R in the general formulas (C-1) to (C-5) is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and an ethyl group or a propyl group. more preferred.
  • Y in general formula (C-2) is a single bond, O, C ⁇ O, or C(CF 3 ) 2 , and from the viewpoint of the bonding strength of the bonding layer, preferably O, C ⁇ O, or C (CF 3 ) 2 .
  • the carboxylic acid ester compound is preferably a half-esterified compound represented by the general formula (C-2) in order to make the surface of the semiconductor film to be formed more smooth. A half-esterified compound in which Y in 2) is O is more preferred.
  • a half-esterified compound can be produced, for example, by mixing a carboxylic acid anhydride, which is an anhydride of the carboxylic acid compound described above, with an alcohol solvent and ring-opening the carboxylic acid anhydride.
  • COOX/amino group is preferably 0.1 or more and 5.0 or less, more preferably 0.1 or more and 3.0 or less, further preferably 0.3 or more and 2.5 or less, It is particularly preferable to be 0.4 or more and 2.2 or less.
  • the component having an amino group such as the siloxane compound (A) and the cross-linking agent (C ) and has a crosslinked structure such as amide, amideimide, or imide, and can suitably produce a bonding layer having excellent heat resistance and insulation.
  • the amino group is preferably 0.3 to 3.0, more preferably 0.5 to 2.0.
  • composition for forming a film for a semiconductor of the present disclosure may contain other amino group-containing components that are components containing an amino group as components other than the siloxane compound (A) and the cross-linking agent (C). .
  • amino group-containing components include the silane compound (B) described above, as well as acyclic aliphatic amines and cyclic amines.
  • Examples of acyclic aliphatic amines include aliphatic amines with a weight average molecular weight of 10,000 or more and 400,000 or less, and aliphatic diamines with a weight average molecular weight of 60 or more and 2,000 or less.
  • the aliphatic amine having a weight average molecular weight of 10,000 or more and 400,000 or less preferably contains at least one of a primary amino group and a secondary amino group.
  • Specific examples of aliphatic amines having a weight average molecular weight of 10,000 or more and 400,000 or less include ethyleneimine, propyleneimine, butyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine, trimethyleneimine, tetramethyleneimine, Polyalkyleneimine, which is a polymer of alkyleneimine such as pentamethyleneimine, hexamethyleneimine and octamethyleneimine; polyallylamine; and polyacrylamide.
  • Polyethyleneimine (PEI) is manufactured by known methods described in JP-B-43-8828, JP-B-49-33120, JP-A-2001-2123958, WO 2010/137711, etc. be able to.
  • Polyalkyleneimines other than polyethyleneimine can also be produced by the same method as for polyethyleneimine.
  • the polyalkyleneimine derivative (polyalkyleneimine derivative; particularly preferably polyethyleneimine derivative) is also preferable.
  • the polyalkyleneimine derivative is not particularly limited as long as it is a compound that can be produced using the above polyalkyleneimine.
  • polyalkyleneimine derivatives obtained by introducing an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) or an aryl group into a polyalkyleneimine, or obtained by introducing a crosslinkable group such as a hydroxyl group into a polyalkyleneimine Polyalkyleneimine derivatives and the like can be mentioned.
  • These polyalkyleneimine derivatives can be produced by a conventional method using the above polyalkyleneimine. Specifically, for example, it can be produced according to the method described in JP-A-6-016809.
  • the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less includes at least one of a primary amino group and a secondary amino group and a main chain containing carbon atoms, and the total of the primary amino group and the secondary amino group is It is preferably 2 or more, and the number of carbon atoms constituting the main chain is 2 or more and 180 or less.
  • the aliphatic diamine whose number of carbon atoms constituting the main chain is 2 or more and 180 or less, the aliphatic diamine is a flexible skeleton in the bonding layer formed by the reaction with the cross-linking agent (C) is formed, and the flexibility of the bonding layer is improved, thereby suppressing the warp of the substrate more preferably.
  • the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less is not limited to a compound whose main chain is composed only of carbon atoms, and some of the carbon atoms of the main chain are oxygen atoms, sulfur It may be substituted with a divalent or higher valent atom such as an atom, a functional group such as a carbonyl group, a secondary amino group, a tertiary amino group, an amide group, an ester group, or the like.
  • the aliphatic diamine having a weight-average molecular weight of 60 or more and 2000 or less suppresses an increase in crosslink density due to reaction with the crosslinker (C), and is suitable for a bonding layer having a flexible skeleton that suitably contributes to suppressing warping of the substrate.
  • the total number of primary amino groups and secondary amino groups in the main chain is 2 or more, and the total number of primary amino groups and secondary amino groups in the main chain is 2 More preferably, both ends of the main chain are independently primary amino groups or secondary amino groups, and particularly preferably both ends of the main chain are primary amino groups.
  • the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less preferably has two amino groups in the main chain, and from the viewpoint of suitably forming a bonding layer having a flexible skeleton that suitably contributes to suppressing warpage of the substrate. Therefore, the total number of primary amino groups and secondary amino groups in the side chain is preferably one or less, and the side chain preferably contains no primary amino group or secondary amino group.
  • the number of carbon atoms constituting the main chain of the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less is preferably 3 or more, and 5 or more, from the viewpoint of more preferably forming a bonding layer having a flexible skeleton. is more preferable, and 6 or more is even more preferable.
  • the number of carbon atoms constituting the main chain of the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less is preferably 100 or less, and 50 or less, from the viewpoint of obtaining a bonding layer with high thickness uniformity. is more preferable, and 20 or less is even more preferable.
  • the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less preferably does not contain a cyclic structure. Since the aliphatic diamine does not contain a cyclic structure such as a non-aromatic carbocyclic ring, an aromatic ring, or a heterocyclic ring (heterocyclic ring), a bonding layer having a flexible skeleton can be suitably formed. warpage is more suitably suppressed.
  • the weight average molecular weight of the aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less can be, for example, 60 or more and 1200 or less. From the viewpoint of more preferably forming a bonding layer having a flexible skeleton, it is preferably 80 or more, more preferably 100 or more, and even more preferably 130 or more. From the viewpoint of obtaining a bonding layer with high thickness uniformity, it is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less.
  • An aliphatic diamine having a weight average molecular weight of 60 or more and 2000 or less contains primary amino groups at both ends of the main chain, and the carbon chain or part of the carbon chain is substituted with atoms other than carbon atoms or functional groups
  • a compound having a main chain consisting of the structure is preferred.
  • Atoms other than carbon atoms include, for example, oxygen atoms and sulfur atoms.
  • Examples of functional groups that substitute part of the carbon chain include carbonyl groups, secondary amino groups, tertiary amino groups, amide groups, ester groups and the like.
  • aliphatic diamines having a weight average molecular weight of 60 or more and 2000 or less examples include trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodeca Compounds having a main chain consisting of a carbon chain such as methylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, 3,3′-diaminodiamine Examples thereof include compounds having a main chain composed of a structure in which a portion of the carbon chain such as propylamine and 1,2-bis(2-aminoethoxy)ethane is substituted with atoms other than carbon atoms or with a functional group. Aliphatic diamines having a weight average molecular weight of 60 or
  • Cyclic amines include alicyclic amines, aromatic ring amines, heterocyclic (heterocyclic) amines, and the like. Cyclic amines may contain multiple ring structures in the molecule, and the multiple ring structures may be the same or different. Cyclic amines are preferably aromatic ring amines because thermally more stable compounds can be easily obtained.
  • the cyclic amine is preferably an amine compound having a weight average molecular weight of 90 or more and 600 or less containing a ring structure in the molecule.
  • Examples of alicyclic amines include cyclohexylamine and dimethylaminocyclohexane.
  • Examples of aromatic ring amines include diaminodiphenyl ether, xylenediamine (preferably paraxylenediamine), diaminobenzene, diaminotoluene, methylenedianiline, dimethyldiaminobiphenyl, bis(trifluoromethyl)diaminobiphenyl, diaminobenzophenone, and diaminobenzanilide.
  • the heterocyclic ring of the heterocyclic amine includes a heterocyclic ring containing a sulfur atom as a heteroatom (e.g., thiophene ring), or a heterocyclic ring containing a nitrogen atom as a heteroatom (e.g., pyrrole ring, pyrrolidine ring, pyrazole ring, imidazole ring , 5-membered rings such as triazole ring; isocyanuric ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, triazine ring; 6-membered rings such as indole ring, indoline ring, quinoline ring, acridine ring, condensed rings such as naphthyridine ring, quinazoline ring, purine ring, quinoxaline ring, etc.).
  • heterocyclic amines containing nitrogen-containing heterocycles include melamine, ammeline, melam, melem, tris(4-aminophenyl)amine, and the like.
  • amine compounds containing both heterocyclic rings and aromatic rings include N2,N4,N6-tris(4-aminophenyl)-1,3,5-triazine-2,4,6-triamine and the like.
  • the ratio of the total number of other amino group-containing components excluding the silane compound (B) to the total number of the siloxane compound (A) and the silane compound (B) may have a molar ratio of, for example, 0 to 0.5. It may be 3, or it may be 0 to 0.1.
  • the composition for forming a film for a semiconductor of the present disclosure may contain a polar solvent (D).
  • the polar solvent (D) refers to a solvent having a dielectric constant of 5 or more at room temperature.
  • Specific examples of the polar solvent (D) include protic inorganic compounds such as water and heavy water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, Alcohols such as cyclohexanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, benzyl alcohol, diethylene glycol, triethylene glycol, glycerin; ethers such as tetrahydrofuran and dimethoxyethane; furfural, acetone, ethyl methyl ketone , Cyclohexane and other aldehydes and ketones; acetic anhydride
  • the polar solvent (D) preferably contains a protic solvent, more preferably water, and still more preferably ultrapure water.
  • the content of the polar solvent (D) in the composition for forming a semiconductor film is not particularly limited, and is, for example, 1.0% by mass or more and 99.99896% by mass or less with respect to the entire composition. 40% by mass or more and 99.99896% by mass or less.
  • the boiling point of the polar solvent (D) is preferably 150° C. or less from the viewpoint of volatilizing the polar solvent (D) by drying when forming the bonding layer and reducing the amount of residual solvent in the bonding layer. , 120° C. or lower.
  • the composition for forming a semiconductor film of the present disclosure contains a siloxane compound (A), a silane compound (B), a cross-linking agent (C), a polar solvent (D), and an additive (E).
  • the additive (E) include an acid (E-1) containing a carboxyl group and having a weight average molecular weight of 46 to 195, and a base (E-2) containing a nitrogen atom and having a weight average molecular weight of 17 to 120.
  • the acid (E-1) is an acid having a weight average molecular weight of 46 or more and 195 or less containing a carboxyl group.
  • the composition for forming a film for a semiconductor of the present disclosure contains an acid (E-1) as an additive (E), whereby the amino group and acid It is speculated that the formation of an ionic bond with the carboxyl group in (E-1) suppresses aggregation due to association between the siloxane compound (A), silane compound (B), etc. and the cross-linking agent (C). More specifically, the interaction between an ammonium ion derived from an amino group in a siloxane compound (A), a silane compound (B), etc.
  • the acid (E-1) is not particularly limited as long as it contains a carboxy group and has a weight average molecular weight of 46 or more and 195 or less, and examples thereof include monocarboxylic acid compounds, dicarboxylic acid compounds, and oxydicarboxylic acid compounds. More specifically, the acid (E-1) includes formic acid, acetic acid, malonic acid, oxalic acid, citric acid, benzoic acid, lactic acid, glycolic acid, glyceric acid, butyric acid, methoxyacetic acid, ethoxyacetic acid, phthalic acid, terephthalic acid, picolinic acid, salicylic acid, 3,4,5-trihydroxybenzoic acid and the like.
  • the content of the acid (E-1) in the composition for forming a semiconductor film is not particularly limited. and the total number of amino groups in the silane compound (B), or the amino groups in the siloxane compound (A), the amino groups in the silane compound (B), and other amino groups excluding the silane compound (B)
  • the ratio of the number of carboxy groups in the acid (E-1) to the total number of amino groups in the group-containing component (COOH/amino group) is preferably 0.01 or more and 10 or less, and 0.02 or more and 6 It is more preferably 0.5 or more and 3 or less.
  • the base (E-2) is a base containing a nitrogen atom and having a weight average molecular weight of 17 or more and 120 or less.
  • the composition for forming a film for a semiconductor of the present disclosure contains a base (E-2) as an additive (E), whereby the carboxy group in the cross-linking agent (C) and the amino group in the base (E-2) By forming an ionic bond with the group, it is presumed that aggregation due to association between the siloxane compound (A), the silane compound (B), etc. and the cross-linking agent (C) is suppressed.
  • the interaction between the carboxylate ion derived from the carboxyl group in the cross-linking agent (C) and the ammonium ion derived from the amino group in the base (E-2) causes the siloxane compound (A), the silane compound (B ) and the like and the carboxylate ions derived from the carboxyl group in the cross-linking agent (C) are stronger than each other, so aggregation is presumed to be suppressed.
  • each aspect disclosed regarding this invention is not limited at all by the said estimation.
  • the base (E-2) is not particularly limited as long as it contains a nitrogen atom and has a weight average molecular weight of 17 or more and 120 or less, and examples thereof include monoamine compounds and diamine compounds. More specifically, the base (E-2) includes ammonia, ethylamine, ethanolamine, diethylamine, triethylamine, ethylenediamine, N-acetylethylenediamine, N-(2-aminoethyl)ethanolamine, N-(2-amino ethyl) glycine and the like.
  • the content of the base (E-2) in the composition for forming a semiconductor film is not particularly limited, and for example, the base (E -2), the ratio of the number of nitrogen atoms (N/COOH) is preferably 0.5 or more and 5 or less, more preferably 0.9 or more and 3 or less.
  • the composition for forming a film for a semiconductor of the present disclosure includes tetraethoxysilane, tetramethoxysilane, silane, bistriethoxysilylethane, bistriethoxysilylmethane, bis(methyldiethoxysilyl)ethane, 1,1,3,3,5,5-hexaethoxy-1,3,5-trisilacyclohexane, 1,3, 5,7-tetramethyl-1,3,5,7-tetrahydroxylcyclosiloxane, 1,1,4,4-tetramethyl-1,4-diethoxydisylethylene, 1,3,5-trimethyl-1 , 3,5-trimethyl-1,3,5-triethoxy-1,3,5-trisilacyclohexane.
  • composition for forming a film for a semiconductor according to the present disclosure may contain methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, etc. for improving the hydrophobicity of the insulating bonding layer.
  • composition for forming a film for semiconductors of the present disclosure may contain these compounds for controlling etching selectivity.
  • composition for forming a film for a semiconductor of the present disclosure may contain a solvent other than the polar solvent (D), such as normal hexane.
  • composition for forming a film for a semiconductor according to the present disclosure may contain phthalic acid, benzoic acid, etc., or derivatives thereof, for improving electrical properties, for example.
  • composition for forming a film for a semiconductor of the present disclosure may contain benzotriazole or a derivative thereof, for example, to suppress corrosion of copper.
  • the pH of the composition for forming the semiconductor film of the present disclosure is not particularly limited, and is preferably 2.0 or more and 12.0 or less.
  • a method for producing a composition for forming a film for a semiconductor according to the present disclosure includes a mixing step of mixing a siloxane compound (A) and a cross-linking agent (C).
  • a silane compound (B), a polar solvent (D), an additive (E) and the like may be further mixed.
  • the timing of adding each component is not particularly limited.
  • At least one additive (E) selected from the group consisting of bases (E-2) may be added to the siloxane compound (A) or the cross-linking agent (C) in the mixing step.
  • the timing of adding the additive (E) is not particularly limited.
  • the mixing step includes the acid (E-1), the siloxane compound (A) (preferably, the siloxane compound (A) and the silane compound (B) (the same applies hereinafter) and the cross-linking agent (C). That is, it is preferable to mix the siloxane compound (A) and the acid (E-1) in advance before mixing the siloxane compound (A) and the cross-linking agent (C).
  • the siloxane compound (A) and the cross-linking agent (C) are mixed, the composition becomes cloudy and gels (for example, if gelled, it may take time for the composition to become transparent, which is not preferable). can be suitably suppressed.
  • the mixing step includes a mixture of the base (E-2) and the cross-linking agent (C) and the siloxane compound (A) (preferably, siloxane A mixture of the compound (A) and the silane compound (B) (the same shall apply hereinafter) is preferably mixed. That is, it is preferable to mix the cross-linking agent (C) and the base (E-2) in advance before mixing the siloxane compound (A) and the silane compound (B) with the cross-linking agent (C).
  • the siloxane compound (A) and the cross-linking agent (C) are mixed, the composition becomes cloudy and gels (for example, if gelled, it may take time for the composition to become transparent, which is not preferable). can be suitably suppressed.
  • the laminate of the present disclosure is obtained by laminating a bonding layer formed from the composition for forming a film for a semiconductor of the present disclosure and a substrate.
  • the above composition for forming a semiconductor film is used to form a bonding layer.
  • warping of the substrate is suppressed in the laminate of the present disclosure, and the bonding layer has excellent adhesion to the substrate.
  • the laminate of the present disclosure is used, for example, to bond a substrate included in the laminate to another member such as another substrate via a bonding layer.
  • the material of the substrate is not particularly limited, and may be one commonly used as a semiconductor substrate or the like.
  • the substrate is at least one selected from the group consisting of Si, Al, Ti, Zr, Hf, Fe, Ni, Cu, Ag, Au, Ga, Ge, Sn, Pd, As, Pt, Mg, In, Ta and Nb. It is preferred to contain the elements of the species.
  • Substrate materials include, for example, semiconductors: Si, InP, GaN, GaAs, InGaAs, InGaAlAs, SiC, oxides, carbides, nitrides: borosilicate glass (Pyrex (registered trademark)), quartz glass (SiO 2 ), Sapphire, ZrO2 , Si3N4 , AlN, Piezoelectric, Dielectric : BaTiO3 , LiNbO3 , SrTiO3 , Diamond, Metal: Al, Ti, Fe, Cu, Ag, Au, Pt, Pd, Ta, Nb etc.
  • semiconductors Si, InP, GaN, GaAs, InGaAs, InGaAlAs, SiC, oxides, carbides, nitrides: borosilicate glass (Pyrex (registered trademark)), quartz glass (SiO 2 ), Sapphire, ZrO2 , Si3N4 , AlN, Piezoelectric, Dielectric
  • the substrate material may also be polydimethylsiloxane (PDMS), epoxy resin, phenol resin, polyimide, benzocyclobutene resin, polybenzoxazole, or the like.
  • PDMS polydimethylsiloxane
  • epoxy resin epoxy resin
  • phenol resin phenol resin
  • polyimide polyimide
  • benzocyclobutene resin polybenzoxazole, or the like.
  • the substrate may have a multilayer structure.
  • Si is semiconductor memory, lamination of LSI, CMOS image sensor, MEMS sealing, optical device, LED, etc.
  • SiO2 is used for semiconductor memory, LSI lamination, MEMS encapsulation, microfluidic channels, CMOS image sensors, optical devices, LEDs, etc.
  • PDMS is a microchannel; InGaAlAs, InGaAs, InP optical devices; InGaAlAs, GaAs, GaN, LEDs and the like.
  • the thickness of the substrate is preferably 0.5 ⁇ m to 1 mm, more preferably 1 ⁇ m to 900 ⁇ m, even more preferably 2 ⁇ m to 900 ⁇ m.
  • the shape of the substrate is not particularly limited.
  • the substrate when it is a silicon substrate, it may be a silicon substrate on which an interlayer insulating layer (low-k film) is formed. may be formed.
  • the laminate of the present disclosure can be manufactured by a laminate manufacturing method including a step of applying a composition for forming a film for a semiconductor of the present disclosure on the surface of a substrate.
  • a process such as drying may be included.
  • Methods for applying the composition for forming the film for the semiconductor of the present disclosure on the surface of the substrate include, for example, vapor phase deposition polymerization, CVD (chemical vapor deposition) method, ALD (atomic layer deposition) method, and the like. Coating methods such as a film forming method, a dipping method, a spray method, a spin coating method, and a bar coating method can be used.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • Coating methods such as a film forming method, a dipping method, a spray method, a spin coating method, and a bar coating method can be used.
  • a film having a micron-sized film thickness it is preferable to use a bar coating method, and when forming a film having a nano-sized (several nm to several hundred nm) film thickness, a spin coating method is used. is preferred. Note that the film thickness of the composition for forming the semiconductor film may be appropriately adjusted according to the intended thickness of the bonding layer.
  • the method of applying a composition for forming a semiconductor film by spin coating is not particularly limited.
  • a composition for drying is dropped and then the number of revolutions of the substrate is increased to dry it.
  • the number of rotations of the substrate, the viscosity of the composition for forming a semiconductor film, the amount and time of dropping, and the substrate during drying Various conditions such as the number of revolutions are not particularly limited, and may be appropriately adjusted while considering the thickness of the composition for forming the semiconductor film to be formed.
  • the substrate to which the material has been applied may be washed.
  • the cleaning method include wet cleaning using a rinsing liquid such as a polar solvent, plasma cleaning, and the like.
  • the substrate may have an electrode on the surface to which the composition for forming a film for semiconductors is applied.
  • an electrode may be formed on the surface of the substrate to which the composition for forming the semiconductor film is applied before the composition for forming the semiconductor film is applied to the substrate.
  • the electrode may be formed in a convex shape on the surface of the substrate, may be formed in a state of penetrating the substrate, or may be formed in a state of being embedded in the substrate.
  • the electrode is used as the substrate. is preferably formed in a convex shape on the surface of the Even if the substrate surface has an electrode, the electrode on the substrate surface may have any shape if the composition for forming a semiconductor film is not applied to the surface of the substrate having the electrode.
  • an electrode may be formed on the surface on which the bonding layer is formed.
  • a hole for forming an electrode may be formed in the bonding layer by dry etching, and the electrode may be formed in the formed hole.
  • the composition for forming a semiconductor film has photosensitivity
  • the composition for forming a semiconductor film applied to a substrate is photolithographically formed with holes in which electrodes are formed, Accordingly, electrodes may be formed in the formed holes after a step of forming a bonding layer by drying, heating, or the like a composition for forming a film for a semiconductor.
  • Electroplating, electroless plating, sputtering, ink-jetting, and the like can be used as methods for forming the electrodes in forming the electrodes 1 to 3 described above.
  • the composition for forming the semiconductor film on the electrode When the composition for forming the semiconductor film on the electrode is applied, the composition for forming the semiconductor film on the electrode may be removed. As a result, the composition for forming a semiconductor film applied on the surface of the electrode is removed, and the electrode can be exposed.
  • methods for removing the composition for forming a film for semiconductor applied on the electrode surface include fly cutting, chemical mechanical polishing (CMP), plasma dry etching, and the like.
  • One removal method may be used alone, or two or more methods may be used in combination.
  • a surface planer DFS8910 (manufactured by Disco Co., Ltd.)
  • DFS8910 manufactured by Disco Co., Ltd.
  • the slurry may be, for example, a slurry containing silica or alumina, which is generally used for polishing resins, or a slurry containing hydrogen peroxide and silica, which is used for polishing metals. good.
  • fluorocarbon plasma, oxygen plasma, or the like may be used.
  • the oxide on the electrode surface may be reduced, if necessary.
  • a reduction treatment method there are a method of heating the substrate at 100° C. to 300° C. in an acid atmosphere such as formic acid, a method of heating the substrate in a hydrogen atmosphere, and the like.
  • the bonding layer formed on the substrate may be uncured, semi-cured, or cured.
  • the cured state of the bonding layer may be adjusted by the degree of drying, heating, or the like of the composition for forming a semiconductor film applied on the substrate.
  • the bonding layer may be cured.
  • a hardened bonding layer can be formed by heating a composition for forming a semiconductor film applied on the surface of the substrate. The heating conditions for forming the cured bonding layer will be described below.
  • the heating temperature of the composition for forming a semiconductor film applied on the surface of the substrate is preferably 100° C. to 450° C., more preferably 150° C. to 450° C., and 180° C. to It is more preferably 400°C.
  • the above-mentioned temperature refers to the temperature of the surface of the composition for forming a semiconductor film applied on the surface.
  • the solvent in the composition for forming a semiconductor film is removed by heating the composition for forming a semiconductor film.
  • the components in the composition for forming a semiconductor film react to obtain a cured product, and a bonding layer containing the cured product is formed.
  • the pressure when the composition for forming a film for semiconductor is heated there is no particular limitation on the pressure when the composition for forming a film for semiconductor is heated, and an absolute pressure of 17 Pa or higher than the atmospheric pressure is preferable.
  • the absolute pressure is more preferably 1000 Pa or higher and atmospheric pressure or lower, even more preferably 5000 Pa or higher and atmospheric pressure or lower, and particularly preferably 10000 Pa or higher and atmospheric pressure or lower.
  • Heating of the composition for forming a semiconductor film can be carried out by a conventional method using a furnace or a hot plate.
  • a furnace for example, SPX-1120 manufactured by Apex Co., Ltd., VF-1000LP manufactured by Koyo Thermo Systems Co., Ltd., or the like can be used.
  • the heating of the composition for forming a film for a semiconductor may be performed in an air atmosphere or in an inert gas (nitrogen gas, argon gas, helium gas, etc.) atmosphere.
  • the heating time of the composition for forming the semiconductor film applied on the surface of the substrate there is no particular limitation on the heating time of the composition for forming the semiconductor film applied on the surface of the substrate, and for example, it is 3 hours or less, preferably 1 hour or less.
  • the lower limit of the heating time is not particularly limited, and can be, for example, 5 minutes.
  • the composition for forming a semiconductor film applied on the surface of the substrate may be irradiated with ultraviolet (UV) rays.
  • ultraviolet rays ultraviolet light with a wavelength of 170 nm to 230 nm, excimer light with a wavelength of 222 nm, excimer light with a wavelength of 172 nm, and the like are preferable.
  • a composition for forming a film for a semiconductor is cured can be confirmed, for example, by measuring the peak intensity of specific bonds and structures by FT-IR (Fourier transform infrared spectroscopy).
  • Specific bonds and structures include bonds and structures generated by cross-linking reactions. For example, when an amide bond, an imide bond, or the like is formed, it can be determined that the composition for forming a semiconductor film is cured, and the peak intensity derived from these bonds, structures, etc. is measured by FT-IR. You can check it by measuring it.
  • Amide bonds can be identified by the presence of vibrational peaks at about 1650 cm ⁇ 1 and about 1520 cm ⁇ 1 .
  • Imido bonds can be identified by the presence of vibrational peaks at about 1770 cm ⁇ 1 and about 1720 cm ⁇ 1 .
  • the surface of the cured bonding layer may be flattened.
  • the flattening method includes a fly-cut method, a chemical mechanical polishing method (CMP), and the like.
  • CMP chemical mechanical polishing method
  • the planarization method one method may be used alone, or two or more methods may be used in combination.
  • the bonding layer formed on the substrate has a functional capable of forming a chemical bond on the surface of the bonding layer on the opposite side of the substrate from the viewpoint of increasing the bonding strength between the substrate and another member such as another substrate. It is preferable to have a group.
  • Such functional groups include, for example, amino groups, epoxy groups, vinyl groups, silanol groups (Si—OH groups) and the like, and silanol groups are preferred from the viewpoint of heat resistance.
  • These functional groups may be formed by surface treatment after formation of the bonding layer, or may be formed by treatment with a silane coupling agent or the like. Alternatively, compounds containing these functional groups may be mixed in the composition for forming films for semiconductors.
  • Whether or not the surface of the bonding layer has silanol groups can be evaluated by surface analysis of the bonding layer by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specifically, using TOF-SIMS PHI nanoTOF II (ULVAC-Phi, Inc.), the presence or absence of a peak with a mass-to-charge ratio (m/Z) of 45 was used to determine whether the surface of the bonding layer had silanol groups. can be evaluated.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the thickness of the bonding layer is preferably 0.001 ⁇ m to 8.0 ⁇ m, more preferably 0.01 ⁇ m to 6.0 ⁇ m, and even more preferably 0.03 ⁇ m to 5.0 ⁇ m.
  • the thickness of the bonding layer is 0.001 ⁇ m or more, the bonding strength can be increased when the substrate is bonded to another member via the bonding layer.
  • the thickness of the bonding layer is 8.0 ⁇ m or less, variation in the thickness of the bonding layer can be suppressed when the bonding layer is formed on a substrate having a large area.
  • the thickness of the bonding layer should be 0.01 ⁇ m to 8.0 ⁇ m from the viewpoint of improving the bonding strength and suppressing variations in the thickness of the bonding layer. , more preferably 0.03 ⁇ m to 6.0 ⁇ m, even more preferably 0.05 ⁇ m to 5.0 ⁇ m.
  • the thickness of the bonding layer is 0.001 ⁇ m or more and less than 1.0 ⁇ m from the viewpoint of improving the bonding strength and suppressing variations in the thickness of the bonding layer. is preferably 0.01 ⁇ m to 0.8 ⁇ m, and even more preferably 0.03 ⁇ m to 0.6 ⁇ m.
  • the content of sodium and potassium in the bonding layer is preferably 10 mass ppb or less on an elemental basis. If the content of sodium or potassium is 10 mass ppb or less on an elemental basis, it is possible to suppress the occurrence of problems in the electrical characteristics of the semiconductor device, such as malfunction of the transistor.
  • the substrate laminate of the present disclosure is formed by laminating a first substrate, a bonding layer formed from a composition for forming a semiconductor film of the present disclosure, and a second substrate in this order.
  • the first substrate and the second substrate are bonded via a bonding layer formed from the above composition for forming a film for a semiconductor.
  • the substrate laminate of the present disclosure may be formed, for example, by bonding the above-described laminate of the present disclosure including the substrate and the bonding layer, which is the first substrate, and the second substrate via the bonding layer. good.
  • first substrate and second substrate Preferred materials and configurations of the first substrate and the second substrate are not particularly limited, and are, for example, the same as the above-described preferred materials and configurations of the substrates used in the laminate of the present disclosure.
  • the materials and configurations of the first substrate and the second substrate may independently be the same or different.
  • the first substrate and the second substrate may have electrodes on the surface to which the composition for forming the semiconductor film is applied or on the surface facing the bonding layer.
  • Preferred configurations of the electrodes are the same as the preferred configurations of the electrodes in the laminate of the present disclosure described above.
  • at least one of the first substrate and the second substrate is selected from the group consisting of Si, Ga, Ge and As More preferably, it is a semiconductor substrate containing at least one element.
  • At least one of the first substrate and the second substrate may have another substrate laminated on the surface opposite to the bonding layer side surface.
  • Preferred materials for the further substrate are the same as preferred materials for the first and second substrates.
  • the material of the further substrate may be the same as or different from that of at least one of the first substrate and the second substrate.
  • the bonding layer disposed between the first substrate and the second substrate is preferably in a cured state.
  • the preferred form of the bonding layer in the substrate laminate of the present disclosure is the same as the preferred form of the bonding layer in the above-described laminate of the present disclosure, so description thereof will be omitted.
  • the substrate laminate of the present disclosure can be formed, for example, by the following method.
  • An example of a method for manufacturing a substrate laminate of the present disclosure includes a step of applying a composition for forming a film for a semiconductor of the present disclosure on at least one surface of a first substrate and a second substrate (hereinafter referred to as , also referred to as a “first step”); and a step of bonding the first substrate and the second substrate via a bonding layer formed from a composition for forming the semiconductor film ( hereinafter also referred to as a “second step”).
  • the preferred form of the first step is the same as the preferred form of the method of applying the composition for forming the film for a semiconductor of the present disclosure on the surface of the substrate in the laminate of the present disclosure described above.
  • a bonding layer is obtained by at least partially curing a composition for forming a film for a semiconductor provided on the surface of at least one of the first substrate and the second substrate by heating or the like.
  • the first substrate and the second substrate may be bonded via the bonding layer, or the first substrate, the uncured bonding layer, and the second substrate are laminated in this order and then laminated.
  • the uncured bonding layer may be cured by heating or the like to form the bonding layer.
  • Heating conditions for heating a composition for forming a film for a semiconductor provided on at least one surface of a first substrate and a second substrate, and heating a laminated uncured bonding layer The preferred heating conditions for each independently are the same as the preferred heating conditions for the composition for forming the film for semiconductor provided on the surface of the substrate in the laminate of the present disclosure described above.
  • An example of a method for manufacturing a substrate laminate according to the present disclosure is a surface of at least one of the first substrate and the second substrate that is in contact with the bonding layer, preferably the bonding of the first substrate and the second substrate.
  • a step of forming at least one functional group selected from the group consisting of a hydroxyl group, an epoxy group, a carboxyl group, an amino group, and a mercapto group by performing a surface treatment on the side that contacts the layer (“surface treatment step ) may be further provided. This tends to increase the bonding strength between the substrates.
  • surface treatment may be performed on the surface of the substrate that is in contact with the bonding layer.
  • Examples of surface treatment include plasma treatment, chemical treatment, and ozone treatment such as UV ozone treatment.
  • Hydroxyl groups can be provided on the surfaces of the first substrate and the second substrate by subjecting the surfaces to plasma treatment, chemical treatment, ozone treatment such as UV ozone treatment, or the like.
  • the hydroxyl group is Si, Al, Ti, Zr, Hf, Fe, Ni, Cu, Ag, Au, Ga, Ge, Sn, Pd, As, Pt, Mg, It preferably exists in a state of bonding with at least one element selected from the group consisting of In, Ta and Nb. Above all, it is more preferable that the surface of at least one of the first substrate and the second substrate on which the bonding layer is formed has a silanol group containing a hydroxyl group.
  • Epoxy groups can be provided on the surfaces of the first substrate and the second substrate by subjecting the surfaces to surface treatment such as silane coupling with epoxysilane.
  • Carboxy groups can be provided on the surfaces of the first substrate and the second substrate by subjecting the surfaces to surface treatment such as silane coupling with carboxysilane.
  • Amino groups can be provided on the surfaces of the first substrate and the second substrate by subjecting the surfaces to surface treatment such as silane coupling with aminosilane.
  • Mercapto groups can be provided on the surfaces of the first substrate and the second substrate by subjecting the surfaces to surface treatment such as silane coupling with mercaptosilane.
  • At least one surface of the bonding layer may be subjected to the above-described surface treatment in order to increase the bonding strength of the substrate laminate. good.
  • a primer such as a silane coupling agent is applied to the surface of at least one of the first substrate and the second substrate to which a composition for forming a semiconductor film is applied. may be formed, and when bonding layers are formed on both the first substrate and the second substrate, a primer such as a silane coupling agent may be deposited on at least one surface of the bonding layer. good.
  • the substrate laminate manufacturing method of the present disclosure after the second step, at least one of the first substrate and the second substrate is thinned (back-grinding or back-grinding) as necessary. It may further comprise a step of performing. Further, the example of the method for manufacturing a substrate laminate according to the present disclosure may further include, after the second step, a step of performing a dicing process to singulate the substrate, if necessary. For example, in the dicing process, a dicer (DAD6340 (manufactured by Disco Co., Ltd.)) or the like can be used.
  • DAD6340 manufactured by Disco Co., Ltd.
  • Examples of the laminate structure of the substrate laminate for each application are shown below.
  • a substrate stack of the present disclosure may comprise multiple stacks.
  • the substrate laminate of the present disclosure includes a first substrate, a bonding layer formed from the composition for forming the semiconductor film of the present disclosure, and a second substrate in this order.
  • a first lamination region formed by lamination, a second lamination region formed by laminating a first substrate, an electrode, and a second substrate in this order, and a plane direction orthogonal to the lamination direction , at least one first lamination region and at least one second lamination region may be arranged. That is, by providing a plurality of laminates in a plane direction orthogonal to the lamination direction, it is possible to obtain a substrate laminate in which a plurality of laminate regions are arranged according to the purpose.
  • the substrate laminate can have a structure in which two or more layers of laminates are laminated in the lamination direction as well as having a plurality of lamination regions in the plane direction.
  • the substrate laminate may have two or more layers stacked in the stacking direction in the first stacking region, and two or more layers in the stacking direction in the second stacking region.
  • BATDS 1,3-bis(3-aminopropyl)-tetramethyldisiloxane
  • ODAPehe was obtained by adding symmetrical oxydiphthalic anhydride (ODPA) in ethanol and heating to reflux for 4 hours until a clear liquid was obtained. Furthermore, it was confirmed by proton NMR that an ester group was formed in the produced ODPAehe. Ethanol was removed using an evaporator to produce a concentrated liquid until the concentration of the half-ester compound reached 70% to 75%, and this liquid was used as the cross-linking agent (C). 25 g of the silane compound (B) was added dropwise to 25 g of water, dissolved to a concentration of 50% by mass, and allowed to stand overnight at room temperature. After that, it was confirmed by proton NMR spectrum that ethoxysilane was hydrolyzed.
  • ODPA symmetrical oxydiphthalic anhydride
  • Examples 2 to 6 Compositions for forming films for semiconductors of Examples 2 to 6 were prepared in the same manner as in Example 1, using respective components so that the molar ratios shown in Table 1 were obtained.
  • aODPAehe in Table 1 means unsymmetrical oxydiphthalic acid ethyl half ester, and aODPAehe was produced by reacting unsymmetrical oxydiphthalic anhydride (aODPA) with ethanol. Ethanol was removed using an evaporator to produce a concentrated liquid until the concentration of the half-ester compound reached 70% to 75%.
  • BPDAehe in Table 1 means biphenyltetracarboxylic acid ethyl half ester, and BPDAehe was produced by reacting biphenyltetracarboxylic acid anhydride (BPDA) with ethanol. Ethanol was removed using an evaporator to produce a liquid in which the concentration of the half-ester compound reached 70% to 75%.
  • BPDA biphenyltetracarboxylic acid anhydride
  • Comparative Example 4 A semiconductor film of Comparative Example 4 was formed in the same manner as in Example 1, except that the silane compound (B) was not used. A composition was prepared for
  • ⁇ Formation of bonding layer> In order to form a bonding layer having a film thickness shown in Table 1 using the composition obtained in each example and each comparative example, water was added to the composition obtained in each example and each comparative example. to adjust the concentration.
  • a 4-inch diameter silicon substrate (silicon wafer) was prepared as a substrate for applying the composition after concentration adjustment. After treating the silicon wafer with UV (ultraviolet) ozone for 5 minutes, the silicon wafer was placed on a spin coater, and about 5 mL of the composition after concentration adjustment was dropped onto the silicon wafer.
  • the silicon wafer was then held for 13 seconds, then spun at 2000 rpm (rpm is rotation per minute) for 1 second, 600 rpm for 30 seconds, and spun at 2000 rpm for 10 seconds to dry. After standing overnight, the bonding layer was cured by further heating at 200° C. for 1 hour in an inert oven.
  • the composition obtained in Comparative Example 3 gelled and could not be formed into a film.
  • ⁇ Film thickness of bonding layer The film thickness of the bonding layer formed on the silicon wafer was measured. Specifically, the film thickness at the center of the silicon wafer, at a point 3 cm away from the center of the silicon wafer toward the orientation flat (orientation flat), and at a point 3 cm away from the center of the silicon wafer toward the opposite side of the orientation flat is measured by the contact method. It was measured with a film thickness meter. Table 1 shows the average value of the film thickness at three points.
  • E is the elastic modulus of the silicon wafer
  • t is the thickness of the silicon wafer
  • is Poisson's ratio of the silicon wafer
  • t_film is the thickness of the bonding layer.
  • ⁇ Measurement of surface energy of bonding interface> Water and 1-propanol were added to the composition obtained in each example and each comparative example to adjust the concentration so that the film thickness of the bonding layer on the silicon wafer was approximately 1 ⁇ m.
  • a bonding layer was formed on a silicon wafer, which was the first substrate, by the same method as described above, using the composition whose concentration was adjusted.
  • the concentration of 1-propanol contained in the composition whose concentration was adjusted was 20% by mass.
  • the coating film was dried for 1 minute on a hot plate heated to 125° C. instead of standing overnight and drying.
  • the surface energy (bonding strength) of the bonding interface of the substrate laminate was measured by a blade insertion test according to the method of non-patent document MP Maszara, G. Goetz, A. Cavigila, and JBMckitterick, Journal of Applied Physics, 64 (1988) 4943-4950.
  • a blade with a thickness of 0.1 mm to 0.3 mm is inserted into the bonding interface of the substrate laminate, and the infrared light source and infrared camera are used to measure the distance at which the substrate laminate is peeled off from the edge of the blade.
  • is the surface energy (J/m 2 )
  • tb is the blade thickness (m)
  • E is the Young's modulus (GPa) of the silicon wafers contained in the first substrate and the second substrate
  • t is the The thickness (m) of the first substrate and the second substrate
  • L represents the separation distance (m) of the substrate laminate from the blade edge.
  • Table 1 shows the results. "-" in Table 1 means that there is no data.
  • Example 1 it was possible to form a bonding layer with a lower residual stress than in Comparative Example 1, which does not contain the siloxane compound (A).
  • the glass transition temperature was higher than in Comparative Example 4, which did not contain the silane compound (B).
  • Comparative Example 2 it is presumed that cracks occurred because the residual stress in the bonding layer was too high.
  • Comparative Example 4 since the residual stress is too low, there is concern that the elastic modulus is too small, and misalignment is likely to occur. be.
  • Example 6 a bonding layer with reduced residual stress and excellent bonding strength could be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

1級アミノ基及び2級アミノ基から選ばれるアミノ基、ケイ素原子、及びケイ素原子に結合する非極性基を含む特定構造の線形のシロキサン化合物(A)と、1級アミノ基及び2級アミノ基から選ばれるアミノ基、ケイ素原子、及びケイ素原子に結合する非極性基を含む特定構造のシラン化合物(B)と、分子内に少なくとも-C(=O)OH基を含み、重量平均分子量が200以上2000以下である特定構造の架橋剤(C)と、を含む、半導体用の膜を形成するための組成物及びその応用。

Description

半導体用の膜を形成するための組成物、積層体及び基板積層体
 本開示は、半導体用の膜を形成するための組成物、積層体及び基板積層体に関する。
 電子機器の小型軽量化、高性能化が進行するに伴い、半導体チップ等の高集積化が求められている。しかし、回路の微細化ではその要求に十分に応えることは困難である。そこで、近年、複数枚の半導体基板(ウェハ)を縦に積層し、多層の三次元構造とすることにより高集積化する方法が提案されている。半導体基板(ウェハ)を積層する方法としては、基板同士の直接接合方法、接合材料を用いる方法等が提案されている(例えば、特開平4-132258号公報、特開2010-226060号公報、及び特開2016-47895号公報参照)。
 接合材料を用いて半導体基板同士を接合する場合、半導体基板の表面に樹脂を塗布し、次いで乾燥、加熱等することで接合層を形成し、接合層を介して半導体基板同士を接合することが想定される。このとき、接合層が形成された半導体基板にて接合層の熱膨張率と半導体基板の熱膨張率との差異等に基因する反りが発生しやすい。発生した反りが大きいと、半導体基板同士の接合時に位置ずれが生じるおそれがある。
 接合材料を用いて半導体基板同士を接合した場合、接合材料から形成される接合層の密着性が低いと接合後に半導体基板の剥離が生じたり、半導体基板の位置ずれが生じたりしやすくなる。
 以上の点から、半導体用の膜を形成するための組成物を用いて半導体基板等の基板に接合層を形成した際に基板の反りを抑制でき、さらに、基板同士の接合強度が高いことが望ましい。
 本発明の一態様は、上記に鑑みてなされたものであり、基板に接合層を形成した際に基板の反りを抑制でき、かつ基板同士の接合強度が高い接合層を形成可能な半導体用の膜を形成するための組成物、並びにこの半導体用の膜を形成するための組成物を用いて形成される積層体及び基板積層体を提供することを目的とする。
 前記課題を解決するための具体的手段は以下のとおりである。
<1> 1級アミノ基及び2級アミノ基の少なくとも一方、ケイ素原子並びに前記ケイ素原子に結合する非極性基を含み、1級アミノ基及び2級アミノ基の合計が2つ以上であり、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧1.8の関係を満たす線形のシロキサン化合物(A)と、
 1級アミノ基及び2級アミノ基の少なくとも一方並びにケイ素原子を含み、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si<1.8の関係を満たすシラン化合物(B)と、
 分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である)を3つ以上含み、3つ以上の-C(=O)OX基のうち、1つ以上6つ以下が-C(=O)OH基であり、重量平均分子量が200以上2000以下である架橋剤(C)と、
 を含む、半導体用の膜を形成するための組成物。
<2> 前記シラン化合物(B)の重量平均分子量は、130以上10000以下である<1>に記載の半導体用の膜を形成するための組成物。
<3> 半導体用の膜を形成するための組成物中に含まれるアミノ基を有する成分のアミノ基の合計数に対する前記架橋剤(C)中の-C(=O)OX基の数の比率であるCOOX/アミノ基は、0.1以上5.0以下である<1>又は<2>に記載の半導体用の膜を形成するための組成物。
<4> 前記シラン化合物(B)の含有量に対する前記シロキサン化合物(A)の含有量の比率であるシロキサン化合物(A)/シラン化合物(B)がモル比で0.01以上100以下である<1>~<3>のいずれか1つに記載の半導体用の膜を形成するための組成物。
<5> 前記シロキサン化合物(A)の重量平均分子量は、200以上2000以下である<1>~<4>のいずれか1つに記載の半導体用の膜を形成するための組成物。
<6> 前記架橋剤(C)は、前記3つ以上の-C(=O)OX基において、少なくとも1つのXが炭素数1以上6以下のアルキル基である、<1>~<5>のいずれか1つに記載の半導体用の膜を形成するための組成物。
<7> 前記シロキサン化合物(A)の主鎖の両末端がそれぞれ独立に1級アミノ基又は2級アミノ基である<1>~<6>のいずれか1つに記載の半導体用の膜を形成するための組成物。
<8> 前記シロキサン化合物(A)では、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧2.0の関係を満たす<1>~<7>のいずれか1つに記載の半導体用の膜を形成するための組成物。
<9> <1>~<8>のいずれか1つに記載の半導体用の膜を形成するための組成物から形成された接合層と、基板と、が積層されてなる積層体。
<10> 第1の基板と、<1>~<8>のいずれか1つに記載の半導体用の膜を形成するための組成物から形成された接合層と、第2の基板と、がこの順に積層されてなる基板積層体。
<11> 第1の基板と、<1>~<8>のいずれか1つに記載の半導体用の膜を形成するための組成物から形成された接合層と、第2の基板と、がこの順に積層されてなる第1の積層領域と、第1の基板と、電極と、第2の基板と、がこの順に積層されてなる第2の積層領域と、を備え、積層方向と直交する面方向に、少なくとも1つの第1の積層領域と、少なくとも1つの第2の積層領域とが配置されてなる基板積層体。
<12> 前記第1の積層領域が、前記積層方向に2層以上積層され、かつ、前記第2の積層領域が、積層方向に2層以上積層されている、<11>に記載の基板積層体。
<13> 前記第1の基板及び前記第2の基板の少なくとも一方は、Si、Ga、Ge及びAsからなる群より選択される少なくとも1種の元素を含む半導体基板である、<10>~<12>のいずれか1つに記載の基板積層体。
 本発明の一態様によれば、基板に接合層を形成した際に基板の反りを抑制でき、かつ基板同士の接合強度が高い接合層を形成可能な半導体用の膜を形成するための組成物、並びにこの半導体用の膜を形成するための組成物を用いて形成される積層体及び基板積層体を提供することができる。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「基板積層体」は、2つの基板が本開示の基板積層体の製造方法にて形成される接合層を介して接合された構造を有する積層体を意味する。なお、基板積層体は、3つ以上の基板を有していてもよく、3つ以上の基板の内の2つの基板が本開示の基板積層体の製造方法にて形成される接合層を介して接合された構造を有していてもよい。
[半導体用の膜を形成するための組成物]
 本開示の半導体用の膜を形成するための組成物は、1級アミノ基及び2級アミノ基の少なくとも一方、ケイ素原子並びに前記ケイ素原子に結合する非極性基を含み、1級アミノ基及び2級アミノ基の合計が2つ以上であり、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧1.8の関係を満たす線形のシロキサン化合物(A)(以下、単に「シロキサン化合物(A)」とも称する。)と、1級アミノ基及び2級アミノ基の少なくとも一方並びにケイ素原子を含み、前記ケイ素原子に対する前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si<1.8の関係を満たすシラン化合物(B)(以下、単に「シラン化合物(B)」とも称する。)と、分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である)を3つ以上含み、3つ以上の-C(=O)OX基のうち、1つ以上6つ以下が-C(=O)OH基であり、重量平均分子量が200以上2000以下である架橋剤(C)(以下、単に「架橋剤(C)」とも称する。)と、を含む。
 本開示の半導体用の膜を形成するための組成物は、前述のシロキサン化合物(A)、シラン化合物(B)及び架橋剤(C)を含む。これにより、半導体用の膜を形成するための組成物を半導体基板等の基板に付与して基板上に半導体用の膜を形成するための組成物から接合層を形成した際に基板の反りを抑制でき、さらに、基板同士の接合強度が高い。接合層を形成した際に基板の反りを抑制できることで、例えば、基板同士の接合時の位置ずれを抑制することができる。
(シロキサン化合物(A))
 本開示の半導体用の膜を形成するための組成物は、1級アミノ基及び2級アミノ基の少なくとも一方、ケイ素原子並びに前記ケイ素原子に結合する非極性基を含み、1級アミノ基及び2級アミノ基の合計が2以上であり、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧1.8の関係を満たす線形のシロキサン化合物(A)を含む。
 本開示において、線形のシロキサン化合物は、シロキサン結合(Si-O-Si結合)が直鎖上に存在することを意味し、分岐状シロキサン構造、環状シロキサン構造、かご状シロキサン構造等をいずれも含まない化合物を意味する。
 シロキサン化合物(A)が線形のシロキサン化合物であることにより、後述の架橋剤(C)との反応にて形成される接合層にてシロキサン化合物(A)が柔軟骨格の形成に寄与し、接合層の柔軟性が向上することにより、基板の反りがより好適に抑制される。
 シロキサン化合物(A)に含まれる前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧1.8とは、ケイ素原子の数に対する前記ケイ素原子に結合する非極性基の数の関係が(非極性基)/Si≧1.8であることを示す。
 さらに、シロキサン化合物(A)が(非極性基)/Si≧1.8の関係を満たすことは、ケイ素原子に結合する非極性基が所定量以上であることを意味する。これにより、後述の架橋剤(C)との反応にて形成される接合層において非極性基が架橋密度の低下に寄与し、接合層の柔軟性が向上することにより、基板の反りが抑制される。
 シロキサン化合物(A)は、1級アミノ基(-NH基)及び2級アミノ基(例えば、-NHR基;ここで、Rはアルキル基を表す)の少なくとも一方を含み、1級アミノ基及び2級アミノ基の合計が2つ以上である。シロキサン化合物(A)において、1級アミノ基及び2級アミノ基の合計は、2つ以上4つ以下であることが好ましく、2つ又は3つであることがより好ましく、2つであることがさらに好ましい。
 シロキサン化合物(A)は、1級アミノ基及び2級アミノ基以外のアミノ基である3級アミノ基(例えば、-NR基;ここで、R及びRは、それぞれ独立に、アルキル基を表す)を含んでいてもよく、含んでいなくてもよい。
 シロキサン化合物(A)の重量平均分子量は、例えば、200以上2000以下である。より柔軟な構造にしやすくする観点から、下限は200以上が好ましく、230以上がより好ましく、240以上であることがさらに好ましい。組成物を用いて被膜を形成させやすくする観点から、上限は1500以下が好ましく、1000以下がより好ましく、800以下がさらに好ましい。
 本開示において、重量平均分子量は、GPC(Gel Permeation Chromatography)法に
よって測定された、ポリエチレングリコール換算の重量平均分子量を指す。
 具体的には、重量平均分子量は、展開溶媒として硝酸ナトリウム濃度0.1mol/Lの水溶液を用い、分析装置Shodex DET RI-101及び2種類の分析カラム(東ソー製 TSKgel G6000PWXL-CP及びTSKgel G3000PWXL-CP)を用いて流速1.0mL/minで屈折率を
検出し、ポリエチレングリコール/ポリエチレンオキサイドを標準品として解析ソフト(Waters製 Empower3)にて算出される。
 シロキサン化合物(A)はケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧1.8の関係を満たす。ここで、ケイ素原子に結合する非極性基としては、例えば、アルキル基、アリール基、アラルキル基等が挙げられる。アルキル基としては、メチル基、エチル基、プロピル基等が好ましく、アリール基としてはフェニル基等が好ましく、アラルキル基としてはベンジル基等が好ましい。
 なお、本開示において、非極性基であるアルキル基、アリール基、アラルキル基等の一部がヒドロキシ基、アミノ基等の極性基で置換された構造は、非極性基には分類されない。シロキサン結合(-Si-О-Si)はシロキサン化合物(A)のケイ素原子に結合している極性基にも非極性基にも分類されない。
 シロキサン化合物(A)では、後述の架橋剤(C)との反応にて形成される接合層にて非極性基が架橋密度の低下に寄与して基板の反りをより好適に抑制する観点から、(非極性基)/Si≧2.0であることが好ましい。
 なお、(非極性基)/Siの上限は、例えば、(非極性基)/Si≦2.5であってもよく、(非極性基)/Si≦2.0であってもよい。
 一例として、(非極性基)/Si=2.0であってもよい。
 以下、シロキサン化合物(A)に含まれ、1級アミノ基又は2級アミノ基であるアミノ基を「特定のアミノ基」とも称する。特定のアミノ基を含むシロキサン化合物(A)としては、例えば、1級アミノ基を2つ以上含み、かつ2級アミノ基を含まない化合物、1級アミノ基を含まず、かつ2級アミノ基を2つ以上含む化合物、1級アミノ基及び2級アミノ基を両方とも少なくとも1つ含む化合物が挙げられる。
 シロキサン化合物(A)は、後述の架橋剤(C)との反応による架橋密度の上昇を抑制し、基板の反りの抑制に好適に寄与する柔軟骨格を有する接合層を好適に形成する観点から、主鎖中に2つ以上の特定のアミノ基を含むことが好ましく、主鎖中に2つの特定のアミノ基を含むことがより好ましく、主鎖の両末端がそれぞれ独立に1級アミノ基又は2級アミノ基であることがさらに好ましく、主鎖の両末端が1級アミノ基であることが特に好ましい。
 シロキサン化合物(A)は、主鎖にアミノ基が2つあることが好ましく、基板の反りの抑制に好適に寄与する柔軟骨格を有する接合層を好適に形成する観点から、側鎖での特定のアミノ基の数は1つ以下であることが好ましく、側鎖に特定のアミノ基を含まないことが好ましい。
 シロキサン化合物(A)は、例えば、下記一般式(A-1)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000001

 
 一般式(A-1)中、Rはそれぞれ独立に水素原子又は置換されていてもよいアルキル基を表し、Rはそれぞれ独立に2価の連結基を表し、Rはそれぞれ独立に非極性基を表し、jは1以上10以下の整数を表す。
 Rにおけるアルキル基の置換基としては、それぞれ独立に、ヒドロキシ基、アルコキシ基、シアノ基、カルボン酸基、スルホン酸基、ハロゲン等が挙げられる。
 一般式(A-1)中、Rは水素原子であることが好ましい。
 一般式(A-1)中、Rにおける2価の連結基としては、それぞれ独立に、アルキレン基、アルキレン基中の水素原子が他の原子、官能基等に置換されてなる2価の連結基、アルキレン基中のメチレン基が-NH-に置換されてなる2価の連結基等が挙げられる。2価の連結基における炭素数は、例えば、1~20であることが好ましく、2~10であることが好ましく、3~5であることがさらに好ましい。
 一般式(A-1)中、Rにおける非極性基としては、それぞれ独立に、アルキル基、アリール基、アラルキル基等が挙げられる。アルキル基としては、メチル基、エチル基、プロピル基等が好ましく、アリール基としてはフェニル基等が好ましく、アラルキル基としてはベンジル基等が好ましい。
 一般式(A-1)中、jは、1以上10以下であり、基板の反りの抑制に好適に寄与する柔軟骨格を有する接合層を好適に形成する観点から、jの下限は1以上であることが好ましい。相分離の少ない均一な被膜として形成させやすくする観点から、jの上限は、10以下であることが好ましく、5以下であることがより好ましく、3以下であることがさらに好ましい。
 シロキサン化合物(A)は、最長直鎖(水素原子は除く)の原子数は、例えば、7以上、50以下であることが好ましい。基板の反りの抑制に好適に寄与する柔軟骨格を有する接合層を好適に形成する観点から、最長直鎖(水素原子は除く)の原子数が8以上であることが好ましく、10以上であることがより好ましい。相分離の少ない均一な被膜として形成させやすくする観点から、最長直鎖(水素原子は除く)の原子数の上限は、30以下であることが好ましく、20以下であることがより好ましい。
 一般式(A-1)の場合、Rがアルキル基であるときの最長直鎖は、R-N-R-Si-(O-Si)-R-N-Rの原子の数であり、Rが水素原子であるときの最長直鎖は、N-R-Si-(O-Si)-R-Nの原子の数である。
 シロキサン化合物(A)は、例えば、下記一般式(A-2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000002
 一般式(A-2)中、Rはそれぞれ独立に水素原子又は置換されていてもよいアルキル基を表し、Rはそれぞれ独立に非極性基を表し、iは0~4の整数を表し、jは1以上10以下の整数を表す。
 一般式(A-2)中、iは、それぞれ独立に、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることがさらに好ましい。
 一般式(A-2)中のR、R及びjの好ましい態様は、一般式(A-1)中のR、R及びjの好ましい態様と同様である。
 シロキサン化合物(A)としては、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(一般式(A-2)において、Rは水素原子、Rはメチル基、i=0、j=1)、1,3-ビス(2-アミノエチルアミノ)プロピルテトラメチルジシロキサン(一般式(A-2)において、Rは水素原子、Rはメチル基、i=1、j=1)が挙げられる。
 シロキサン化合物(A)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(シラン化合物(B))
 本開示の半導体用の膜を形成するための組成物は、1級アミノ基及び2級アミノ基の少なくとも一方並びにケイ素原子を含み、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si<1.8の関係を満たすシラン化合物(B)を含む。
 シラン化合物(B)に含まれる前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si<1.8とは、ケイ素原子の数と、前記ケイ素原子に結合する非極性基の数の関係が(非極性基)/Si<1.8であることを示す。
 シラン化合物(B)が(非極性基)/Si<1.8の関係を満たすことは、ケイ素原子に結合する非極性基が所定量よりも少ないことを意味する。これにより、後述の架橋剤(C)との反応にて形成される接合層は、ガラス転移温度が向上して耐熱性に優れる。
 即ち、本開示の半導体用の膜を形成するための組成物が、シラン化合物(B)を含むことにより、基板に接合層を形成した際に基板の反りの抑制、基板同士の接合強度が高い接合層の形成、及びガラス転移温度の向上による耐熱性という3つの特性を高いレベルで達成することができる。
 シラン化合物(B)は、1級アミノ基(-NH基)及び2級アミノ基(例えば、-NHR基;ここで、Rはアルキル基を表す)の少なくとも一方を含む。
 シラン化合物(B)での1級アミノ基及び2級アミノ基の合計は1つ以上であれば特に限定されず、例えば、後述の架橋剤(C)との反応による架橋密度上昇を抑制する観点から、1つ又は2つであることが好ましく、1つであることがより好ましい。
 シラン化合物(B)は、1級アミノ基及び2級アミノ基以外のアミノ基である3級アミノ基(例えば、-NR基;ここで、R及びRは、それぞれ独立に、アルキル基を表す)を含んでいてもよく、含まなくてもよい。
 シラン化合物(B)におけるケイ素原子の数は1以上であれば特に限定されず、例えば、1又は2であってもよく、1であってもよい。
 シラン化合物(B)の重量平均分子量は、130以上10000以下であることが好ましく、130以上5000以下であることがより好ましく、130以上2000以下であることがさらに好ましい。
 シラン化合物(B)はケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si<1.8の関係を満たす。ここで、ケイ素原子に結合する非極性基としては、シロキサン化合物(A)における非極性基と同様である。
 シラン化合物(B)では、耐熱性をより向上させる観点から、(非極性基)/Si≦1.5であることが好ましく、(非極性基)/Si≦1.0であることがより好ましい。
 なお、(非極性基)/Siの下限は特に限定されず、例えば、(非極性基)/Si≧0であってもよい。組成物を安定させやすくし、ゲル化し難くするため、(非極性基)/Si≧0.5であることが好ましく、(非極性基)/Si≧0.8であることがより好ましい。
 シラン化合物(B)は、接合層の耐熱性をより向上させる観点から、ケイ素原子に極性基が結合していることが好ましい。ケイ素原子に極性基が結合していることで、極性基が加水分解、脱水縮合等することによりシロキサン結合(-Si-О-Si)が形成され、膜の架橋性が高まることで耐熱性(ガラス転移温度)を向上できる。極性基としては、加水分解によりヒドロキシ基になり得る官能基が挙げられ、具体的にはヒドロキシ基、メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基等が挙げられる。シロキサン結合(-Si-О-Si)はシラン化合物(B)のケイ素原子に結合している極性基にも非極性基にも分類されない。
 シラン化合物(B)は、例えば、下記一般式(B-1)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000003
 一般式(B-1)中、Rは置換されていてもよい炭素数1~4のアルキル基を表す。R及びRはそれぞれ独立に、置換されていてもよい炭素数1~12のアルキレン基、エーテル基又はカルボニル基を表し、置換されていてもよい炭素数1~12のアルキレン基は、骨格にカルボニル基、エーテル基等をさらに含んでもよい。R及びRはそれぞれ独立に、置換されていてもよい炭素数1~4のアルキレン基又は単結合を表す。Arは2価又は3価の芳香環を表す。Xは水素又は置換されていてもよい炭素数1~5のアルキル基を表す。Xは水素、シクロアルキル基、ヘテロ環基、アリール基又は置換されていてもよい炭素数1~5のアルキル基を表し、置換されていてもよい炭素数1~5のアルキル基は、骨格にカルボニル基、エーテル基等をさらに含んでもよい。複数のR、R、R、R、R、Xは同じであっても異なっていてもよい。
 一般式(B-1)中、p1は0又は1を表し、q1は2又は3を表す。但し、p1+q1=3である。n1は1~3の整数を表し、r1、s1、t1、u1、V1及びw1はそれぞれ独立に0又は1を表す。
 一般式(B-1)中、R、R、R、R、R、X、Xにおけるアルキル基及びアルキレン基の置換基としては、それぞれ独立に、アミノ基、ヒドロキシ基、アルコキシ基、シアノ基、カルボン酸基、スルホン酸基、ハロゲン等が挙げられる。
 Arにおける2価又は3価の芳香環としては、例えば、2価又は3価のベンゼン環が挙
げられる。Xにおけるアリール基としては、例えば、フェニル基、メチルベンジル基、ビニルベンジル基等が挙げられる。
 n1は1又は2であることが好ましく、1であることがより好ましい。s1、t1、V1及びw1は0であることが好ましい。
 シラン化合物(B)の具体例としては、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルジメトキシメチルシラン、トリメトキシ[2-(2-ア
ミノエチル)-3-アミノプロピル]シラン、ジアミノメチルメチルジエトキシシラン、
メチルアミノメチルメチルジエトキシシラン、p-アミノフェニルトリメトキシシラン、N-メチルアミノプロピルトリエトキシシラン、N-メチルアミノプロピルメチルジエトキシシラン、(フェニルアミノメチル)メチルジエトキシシラン、アセトアミドプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス[(3-トリエトキシシリル)プロピル]アミン、ピペラジニルプロピルメチルジメトキシシラン、ビス[3-(トリエトキシシリル)プロピル]ウレア、ビス(メチルジエトキシシリルプロピル)アミン、2,2-ジメトキシー1,6-ジアザ―2-シラシクロオクタン、3,5-ジアミノ-N-(4-(トリエトキシシリル)フェニル)ベンズアミド、及びこれらの加水分解物;3-アミノプロピルジヒドロキシメチルシラン、3-アミノプロピルトリヒドロキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリヒドロキシシラン等が挙げられる。
 シラン化合物(B)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シラン化合物(B)は、例えば、分岐状シロキサン構造を含む重合体、環状シロキサン構造を含む重合体、かご状シロキサン構造を含む重合体等であってもよい。かご状シロキサン構造は、例えば、下記式(X)で表される。
Figure JPOXMLDOC01-appb-C000004
 本開示の半導体用の膜を形成するための組成物がシラン化合物(B)を含む場合、シラン化合物(B)に対するシロキサン化合物(A)の比率であるシロキサン化合物(A)/シラン化合物(B)は、接合層としたときの基板の反りの抑制及び接合強度のバランスの観点から、モル比で、0.01~100であることが好ましく、0.05~20であることがより好ましく、0.1~10であることがさらに好ましい。基板の反りをより好適に抑制する観点から、シロキサン化合物(A)/シラン化合物(B)の下限は、モル比で、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.1以上であることがさらに好ましく、1より大きいことが特に好ましい。接合強度又はガラス転移温度をより向上させる観点から、シロキサン化合物(A)/シラン化合物(B)の上限は、モル比で、100以下であることが好ましく、20以下であることがより好ましく、10以下であることがさらに好ましく、5以下であることが特に好ましい。
(架橋剤(C))
 本開示の半導体用の膜を形成するための組成物は、分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である)を3つ以上含み、3つ以上の-C(=O)OX基(以下、「COOX」とも称する。)のうち、1つ以上6つ以下が-C(=O)OH基(以下、「COOH」とも称する。)であり、重量平均分子量が200以上2000以下である架橋剤(C)を含む。
 本開示の組成物を部材に塗布して膜を形成する際、凝集体及びピットが少なく、平滑性の高い膜が得られる観点から、架橋剤(C)は、分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である。)を3つ以上含む化合物であり、分子内に-C(=O)OX基を3つ以上6つ以下含む化合物であってもよく、分子内に-C(=O)OX基を3つ又は4つ含む化合物であってもよい。耐熱性を高くする観点から、架橋剤(C)は、分子内に-C(=O)OX基を4つ以上6つ以下含む化合物であることが好ましい。吸湿量を少なくし、アウトガス量を少なくする観点から、架橋剤(C)は、分子内に-C(=O)OX基を4つ含む化合物であることが好ましい。
 架橋剤(C)において、-C(=O)OX基中のXとしては、水素原子又は炭素数1以上6以下のアルキル基が挙げられ、中でも、水素原子、メチル基、エチル基、プロピル基が好ましい。なお、架橋剤(C)の分子内に含まれる複数の-C(=O)OX基中のXは互いに同一であってもよく、異なっていてもよい。
 架橋剤(C)は、分子内にXが水素原子である-C(=O)OH基を1つ以上6つ以下含む化合物であり、分子内に-C(=O)OH基を1つ以上4つ以下含む化合物であることが好ましく、分子内に-C(=O)OH基を2つ以上4つ以下含む化合物であることがより好ましく、分子内に-C(=O)OH基を2つ又は3つ含む化合物であることがさらに好ましい。
 架橋剤(C)は、重量平均分子量が200以上2000以下の化合物である。架橋剤(C)の重量平均分子量は、200以上1000以下であることが好ましく、200以上600以下であることがより好ましく、200以上400以下であることがさらに好ましい。
 架橋剤(C)は、分子内に環構造を含むことが好ましい。環構造としては、脂環構造、芳香環構造等が挙げられる。また、架橋剤(C)は、分子内に複数の環構造を含んでいてもよく、複数の環構造は、互いに同じであっても異なっていてもよい。
 架橋剤(C)が分子内に含む環構造が脂環構造である場合の脂環構造としては、例えば、炭素数3以上8以下の脂環構造、好ましくは炭素数4以上6以下の脂環構造が挙げられ、環構造内は飽和であっても不飽和であってもよい。より具体的には、脂環構造としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等の飽和脂環構造;シクロプロペン環、シクロブテン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環等の不飽和脂環構造が挙げられる。
 架橋剤(C)が分子内に含む環構造が芳香環構造である場合の芳香環構造としては、芳香族性を示す環構造であれば特に限定されず、例えば、ベンゼン環、ナフタレン環、アントラセン環、ペリレン環等のベンゼン系芳香環、ピリジン環、チオフェン環等の芳香族複素環、インデン環、アズレン環等の非ベンゼン系芳香環等が挙げられる。
 架橋剤(C)が分子内に含む環構造としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環、ベンゼン環及びナフタレン環からなる群より選択される少なくとも1つが好ましく、半導体用の膜を形成するための組成物から得られる接合層の耐熱性をより高める観点から、ベンゼン環及びナフタレン環の少なくとも一方がより好ましい。
 前述したように、架橋剤(C)は、分子内に複数の環構造を含んでいてもよく、環構造がベンゼンの場合、ビフェニル構造、ベンゾフェノン構造、ジフェニルエーテル構造等を含んでいてもよい。
 架橋剤(C)は、分子内にフッ素原子を含むことが好ましく、分子内に1つ以上6つ以下のフッ素原子を含むことがより好ましく、分子内に3つ以上6つ以下のフッ素原子を含むことがさらに好ましい。例えば、架橋剤(C)は、分子内にフルオロアルキル基を含んでいてもよく、具体的には、トリフルオロアルキル基又はヘキサフルオロイソプロピル基を含んでいてもよい。
 さらに、架橋剤(C)としては、脂環カルボン酸、ベンゼンカルボン酸、ナフタレンカルボン酸、ジフタル酸、フッ化芳香環カルボン酸等のカルボン酸化合物;脂環カルボン
酸エステル、ベンゼンカルボン酸エステル、ナフタレンカルボン酸エステル、ジフタル酸エステル、フッ化芳香環カルボン酸エステル等のカルボン酸エステル化合物が挙げられる。なお、カルボン酸エステル化合物は、分子内にカルボキシ基(-C(=O)OH基)を含み、かつ、3つ以上の-C(=O)OX基において、少なくとも一つのXが炭素数1以上6以下のアルキル基(すなわち、エステル結合を含む)である化合物である。本開示の半導体用の膜を形成するための組成物では、架橋剤(C)がカルボン酸エステル化合物であることにより、組成物中におけるシロキサン化合物(A)、シラン化合物(B)等と架橋剤(C)との会合による凝集が抑制され、凝集体及びピットが少なくなり、かつ平滑性に優れる接合層の形成、接合層の厚さの調整等が容易となる傾向にある。
 前記カルボン酸化合物としては、-C(=O)OH基を4つ以下含む4価以下のカルボン酸化合物であることが好ましく、-C(=O)OH基を3つ又は4つ含む3価又は4価のカルボン酸化合物であることがより好ましい。
 前記カルボン酸エステル化合物としては、分子内にカルボキシ基(-C(=O)OH基)を1つ以上3つ以下含み、かつエステル結合を1つ以上3つ以下含む化合物であることが好ましく、分子内にカルボキシ基を1つ又は2つ含み、かつエステル結合を1つ又は2つ含む化合物であることがより好ましい。
 また、前記カルボン酸エステル化合物では、3つ以上の-C(=O)OX基において、Xが炭素数1以上6以下のアルキル基である場合、Xは、メチル基、エチル基、プロピル基、ブチル基等が好ましく、組成物中におけるシロキサン化合物(A)、シラン化合物(B)等と架橋剤(C)との会合による凝集をより抑制する観点から、エチル基又はプロピル基であることが好ましい。
 前記カルボン酸化合物の具体例としては、これらに限定されず、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸等の脂環カルボン酸;1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、ピロメリット酸、3,4’-ビフタル酸、P-フェニレンビス(トリメリテート酸)、ベンゼンペンタカルボン酸、メリト酸等のベンゼンカルボン酸;1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸等のナフタレンカルボン酸;3,3’,5,5’-テトラカルボキシジフェニルメタン、ビフェニル-3,3’,5,5’-テトラカルボン酸、ビフェニル-3,4’,5-トリカルボン酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸、4,4’-オキシジフタル酸、3,4’-オキシジフタル酸、1,3-ビス(フタル酸)テトラメチルジシロキサン、4,4’-(エチン-1,2-ジニル)ジフタル酸(4,4'-(Ethyne-1,2-diyl)diphthalic acid)、4,4‘-(1,4-フェニレンビス(オキシ))ジフタル酸(4,4'-(1,4-phenylenebis(oxy))diphthalic acid)、4,4’-([1,1’-ビフェニル]-4,4’-ジルビス(オキシ))ジフタル酸(4,4'-([1,1'-biphenyl]-4,4'-diylbis(oxy))diphthalic acid)、4,4’-((オキシビス(4,1-フェニレン))ビス(オキシ))ジフタル
酸(4,4'-((oxybis(4,1-phenylene))bis(oxy))diphthalic acid)等のジフタル酸;ペリレン-3,4,9,10-テトラカルボン酸等のペリレンカルボン酸;アントラセン-2,3,6,7-テトラカルボン酸等のアントラセンカルボン酸;4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸、9,9-ビス(トリフルオロメチル)-9H-キサンテン-2,3,6,7-テトラカルボン酸、1,4-ジトリフルオロメチルピロメリット酸等のフッ化芳香環カルボン酸が挙げられる。
 前記カルボン酸エステル化合物の具体例としては、前述のカルボン酸化合物の具体例における少なくとも1つのカルボキシ基がエステル基に置換された化合物が挙げられる。カルボン酸エステル化合物としては、例えば、下記一般式(C-1)~(C-5)で表されるハーフエステル化された化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005

 
 一般式(C-1)~(C-5)におけるRは、炭素数1以上6以下のアルキル基であり、中でもメチル基、エチル基、プロピル基、ブチル基が好ましく、エチル基、プロピル基がより好ましい。
 一般式(C-2)におけるYは、単結合、O、C=O、又はC(CFであり、接合層の接合強度の観点から、好ましくは、O、C=O、又はC(CFである。
 カルボン酸エステル化合物としては、形成される半導体用膜の表面をより平滑にしやすくするため、一般式(C-2)で表されるハーフエステル化された化合物あることが好ましく、一般式(C-2)におけるYがOであるハーフエステル化された化合物であることがさらに好ましい。
 ハーフエステル化された化合物は、例えば、前述のカルボン酸化合物の無水物であるカルボン酸無水物を、アルコール溶媒に混合し、カルボン酸無水物を開環させて生成することが可能である。
 半導体用の膜を形成するための組成物中における架橋剤(C)の含有量は、特に制限されない。例えば、半導体用の膜を形成するための組成物中に含まれるアミノ基を有する成
分のアミノ基の合計数に対する架橋剤(C)中の-C(=O)OX基の数の比率であるCOOX/アミノ基は、0.1以上5.0以下であることが好ましく、0.1以上3.0以下であることがより好ましく、0.3以上2.5以下であることがさらに好ましく、0.4以上2.2以下であることが特に好ましい。COOX/アミノ基が0.1以上5.0以下であることにより、半導体用の膜を形成するための組成物の加熱処理後にシロキサン化合物(A)等のアミノ基を有する成分と架橋剤(C)との間にアミド、アミドイミド、イミド等の架橋構造を有し、耐熱性及び絶縁性により優れた接合層を好適に製造することができる。
 なお、COOX/アミノ基におけるアミノ基は、-C(=O)OH基と反応し得るアミノ基を意味しており、1級アミノ基及び2級アミノ基の少なくとも一方を指す。
 半導体用の膜を形成するための組成物中に含まれるアミノ基を有する成分のアミノ基の合計数に対する架橋剤(C)中の-C(=O)OH基の数の比率であるCOOH/アミノ基は、組成物のゲル化を抑制する観点から、0.3~3.0であることが好ましく、0.5~2.0であることがより好ましい。
 なお、上記COOH/アミノ基におけるアミノ基は、-C(=O)OH基と反応し得るアミノ基を意味しており、1級アミノ基及び2級アミノ基の少なくとも一方を指す。
(他のアミノ基含有成分)
 本開示の半導体用の膜を形成するための組成物は、シロキサン化合物(A)及び架橋剤(C)以外の成分としてアミノ基を含む成分である他のアミノ基含有成分を含んでいてもよい。
 他のアミノ基含有成分としては、前述のシラン化合物(B)の他、非環式の脂肪族アミン、環式アミン等が挙げられる。
 非環式の脂肪族アミンとしては、重量平均分子量1万以上40万以下の脂肪族アミン、重量平均分子量が60以上2000以下である脂肪族ジアミン等が挙げられる。
 重量平均分子量1万以上40万以下の脂肪族アミンとしては、1級アミノ基及び2級アミノ基の少なくとも一方を含むことが好ましい。また、重量平均分子量1万以上40万以下の脂肪族アミンの具体例としては、エチレンイミン、プロピレンイミン、ブチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミン、トリメチレンイミン、テトラメチレンイミン、ペンタメチレンイミン、ヘキサメチレンイミン、オクタメチレンイミン等のアルキレンイミンの重合体であるポリアルキレンイミン;ポリアリルアミン;ポリアクリルアミドが挙げられる。
 ポリエチレンイミン(PEI)は、特公昭43-8828号公報、特公昭49-33120号公報、特開2001-2123958号公報、国際公開第2010/137711号パンフレット等に記載の公知の方法によって、製造することができる。ポリエチレンイミン以外のポリアルキレンイミンについても、ポリエチレンイミンと同様の方法により製造できる。
 重量平均分子量1万以上40万以下の脂肪族アミンとしては、上述したポリアルキレンイミンの誘導体(ポリアルキレンイミン誘導体;特に好ましくはポリエチレンイミン誘導体)であることもまた好ましい。ポリアルキレンイミン誘導体としては、上記ポリアルキレンイミンを用いて製造可能な化合物であれば特に制限はない。具体的には、ポリアルキレンイミンにアルキル基(好ましくは炭素数1~10のアルキル基)、アリール基を導入したポリアルキレンイミン誘導体、ポリアルキレンイミンに水酸基等の架橋性基を導入して得られるポリアルキレンイミン誘導体等を挙げることができる。
 これらのポリアルキレンイミン誘導体は、上記ポリアルキレンイミンを用いて通常行われる方法により製造することができる。具体的には例えば、特開平6-016809号公報等に記載の方法に準拠して製造することができる。
 重量平均分子量が60以上2000以下である脂肪族ジアミンとしては、1級アミノ基及び2級アミノ基の少なくとも一方並びに炭素原子を含む主鎖を含み、1級アミノ基及び2級アミノ基の合計が2つ以上であり、主鎖を構成する炭素原子の数が2以上180以下であることが好ましい。主鎖を構成する炭素原子の数が2以上180以下である前述の脂肪族ジアミンを用いることで、架橋剤(C)との反応にて形成される接合層にて当該脂肪族ジアミンが柔軟骨格の形成に寄与し、接合層の柔軟性が向上することにより、基板の反りがより好適に抑制される。
 本開示において、重量平均分子量が60以上2000以下である脂肪族ジアミンは、主鎖が炭素原子のみで構成されている化合物に限定されず、主鎖の炭素原子の一部が、酸素原子、硫黄原子等の2価以上の原子、カルボニル基、二級アミノ基、三級アミノ基、アミド基、エステル基等の官能基等で置換されていてもよい。
 重量平均分子量が60以上2000以下である脂肪族ジアミンは、架橋剤(C)との反応による架橋密度の上昇を抑制し、基板の反りの抑制に好適に寄与する柔軟骨格を有する接合層を好適に形成する観点から、主鎖中での1級アミノ基及び2級アミノ基の合計が2つ以上であることが好ましく、主鎖中での1級アミノ基及び2級アミノ基の合計が2つであることがより好ましく、主鎖の両末端がそれぞれ独立に1級アミノ基又は2級アミノ基であることがさらに好ましく、主鎖の両末端が1級アミノ基であることが特に好ましい。
 重量平均分子量が60以上2000以下である脂肪族ジアミンは、主鎖にアミノ基が2つあることが好ましく、基板の反りの抑制に好適に寄与する柔軟骨格を有する接合層を好適に形成する観点から、側鎖での1級アミノ基及び2級アミノ基の合計数は1つ以下であることが好ましく、側鎖に1級アミノ基及び2級アミノ基を含まないことが好ましい。
 重量平均分子量が60以上2000以下である脂肪族ジアミンの主鎖を構成する炭素原子の数は、柔軟骨格を有する接合層をより好適に形成する観点から、3以上であることが好ましく、5以上であることがより好ましく、6以上であることがさらに好ましい。重量平均分子量が60以上2000以下である脂肪族ジアミンの主鎖を構成する炭素原子の数は、厚さ均一性の高い接合層を得る観点から、100以下であることが好ましく、50以下であることがより好ましく、20以下であることがさらに好ましい。
 重量平均分子量が60以上2000以下である脂肪族ジアミンは、環式構造を含まないことが好ましい。非芳香族性の炭素環、芳香環、複素環(ヘテロ環)等の環式構造を前述の脂肪族ジアミンが含まないことにより、柔軟骨格を有する接合層を好適に形成することができ、基板の反りがより好適に抑制される。
 重量平均分子量が60以上2000以下である脂肪族ジアミンの重量平均分子量は、例えば、60以上1200以下にすることができる。柔軟骨格を有する接合層をより好適に形成する観点から、80以上であることが好ましく、100以上であることがより好ましく、130以上であることがさらに好ましい。厚さ均一性の高い接合層を得る観点から、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。
 重量平均分子量が60以上2000以下である脂肪族ジアミンは、主鎖の両末端に1級アミノ基を含み、炭素鎖、又は炭素鎖の一部が炭素原子以外の原子又は官能基で置換された構造からなる主鎖を有する化合物であることが好ましい。
 炭素原子以外の原子としては、例えば、酸素原子、硫黄原子等が挙げられる。
 炭素鎖の一部を置換する官能基としては、例えば、カルボニル基、二級アミノ基、三級アミノ基、アミド基、エステル基等が挙げられる。
 重量平均分子量が60以上2000以下である脂肪族ジアミンとしては、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン等の炭素鎖からなる主鎖を有する化合物、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、3,3’-ジアミノジプロピルアミン、1,2-ビス(2-アミノエトキシ)エタン等の炭素鎖の一部が炭素原子以外の原子又は官能基で置換された構造からなる主鎖を有する化合物等が挙げられる。
 重量平均分子量が60以上2000以下である脂肪族ジアミンは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 環式アミンとしては、脂環式アミン、芳香環アミン、複素環(ヘテロ環)アミン等が挙げられる。環式アミンは、分子内に複数の環構造を含んでいてもよく、複数の環構造は、同じであっても異なっていてもよい。環式アミンは、熱的に、より安定な化合物が得られやすいため、芳香環アミンであることが好ましい。
 環式アミンは、分子内に環構造を含む重量平均分子量90以上600以下のアミン化合物であることが好ましい。
 脂環式アミンとしては、例えば、シクロヘキシルアミン、ジメチルアミノシクロヘキサン等が挙げられる。
 芳香環アミンとしては、例えば、ジアミノジフェニルエーテル、キシレンジアミン(好ましくはパラキシレンジアミン)、ジアミノベンゼン、ジアミノトルエン、メチレンジアニリン、ジメチルジアミノビフェニル、ビス(トリフルオロメチル)ジアミノビフェニル、ジアミノベンゾフェノン、ジアミノベンズアニリド、ビス(アミノフェニル)フルオレン、ビス(アミノフェノキシ)ベンゼン、ビス(アミノフェノキシ)ビフェニル、ジカルボキシジアミノジフェニルメタン、ジアミノレゾルシン、ジヒドロキシベンジジン、ジアミノベンジジン、1,3,5-トリアミノフェノキシベンゼン、2,2’-ジメチルベンジジン、トリス(4-アミノフェニル)アミン等が挙げられる。
 複素環アミンの複素環としては、ヘテロ原子として硫黄原子を含む複素環(例えば、チオフェン環)、又は、ヘテロ原子として窒素原子を含む複素環(例えば、ピロール環、ピロリジン環、ピラゾール環、イミダゾール環、トリアゾール環等の5員環;イソシアヌル環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、トリアジン環等の6員環;インドール環、インドリン環、キノリン環、アクリジン環、ナフチリジン環、キナゾリン環、プリン環、キノキサリン環等の縮合環等)等が挙げられる。
 例えば、窒素を含有する複素環を含む複素環アミンとしては、メラミン、アンメリン、メラム、メレム、トリス(4-アミノフェニル)アミン等が挙げられる。
 さらに、複素環と芳香環の両方を含むアミン化合物としては、N2,N4,N6-トリス(4-アミノフェニル)-1,3,5-トリアジン-2,4,6-トリアミン等が挙げられる。
 本開示の半導体用の膜を形成するための組成物では、シロキサン化合物(A)及び前記シラン化合物(B)の合計数に対するシラン化合物(B)を除く他のアミノ基含有成分の合計数の比率(シラン化合物(B)を除く他のアミノ基含有成分/シロキサン化合物(A)及びシラン化合物(B))は、モル比で、例えば、0~0.5であってもよく、0~0.3であってもよく、0~0.1であってもよい。
(極性溶媒(D))
 本開示の半導体用の膜を形成するための組成物は、極性溶媒(D)を含んでいてもよい。ここで、極性溶媒(D)とは室温における比誘電率が5以上である溶媒を指す。極性溶媒(D)としては、具体的には、水、重水等のプロトン性無機化合物;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、イソペンチルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、2-メトキシエタノール、2-エトキシエタノール、ベンジルアルコール、ジエチレングリコール、トリエチレングリコール、グリセリン等のアルコール類;テトラヒドロフラン、ジメトキシエタン等のエーテル類;フルフラール、アセトン、エチルメチルケトン、シクロヘキサン等のアルデヒド・ケトン類;無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、ホルムアルデヒド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ヘキサメチルリン酸アミド等の酸誘導体;アセトニトリル、プロピオニトリル等のニトリル類;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド等の硫黄化合物が挙げられる。極性溶媒(D)としては、プロトン性溶媒を含むことが好ましく、水を含むことがより好ましく、超純水を含むことがさらに好ましい。
 半導体用の膜を形成するための組成物中における極性溶媒(D)の含有量は、特に限定されず、例えば、組成物全体に対して1.0質量%以上99.99896質量%以下であってもよく、40質量%以上99.99896質量%以下であってもよい。
 極性溶媒(D)の沸点としては、接合層を形成するときの乾燥により極性溶媒(D)を揮発させ、接合層中の残溶媒の量を少なくする観点から、150℃以下であることが好ましく、120℃以下であることがより好ましい。
(添加剤(E))
 本開示の半導体用の膜を形成するための組成物は、シロキサン化合物(A)、シラン化合物(B)、架橋剤(C)及び極性溶媒(D)のほかに添加剤(E)を含んでいてもよい。添加剤(E)としては、カルボキシ基を含む重量平均分子量46以上195以下の酸(E-1)、窒素原子を含む重量平均分子量17以上120以下の塩基(E-2)が挙げられる。
 酸(E-1)は、カルボキシ基を含む重量平均分子量46以上195以下の酸である。本開示の半導体用の膜を形成するための組成物は、添加剤(E)として酸(E-1)を含むことにより、シロキサン化合物(A)、シラン化合物(B)等におけるアミノ基と酸(E-1)におけるカルボキシ基とがイオン結合を形成することで、シロキサン化合物(A)、シラン化合物(B)等と架橋剤(C)との会合による凝集が抑制されると推測される。より詳細には、シロキサン化合物(A)、シラン化合物(B)等におけるアミノ基に由来するアンモニウムイオンと酸(E-1)におけるカルボキシ基に由来するカルボキシラートイオンとの相互作用(例えば、静電相互作用)が、シロキサン化合物(A)、シラン化合物(B)等におけるアミノ基に由来するアンモニウムイオンと架橋剤(C)におけるカルボキシ基に由来するカルボキシラートイオンとの相互作用よりも強いため、凝集が抑制されると推測される。なお、本発明に関して開示された各態様は上記推測によって何ら限定されない。
 酸(E-1)としては、カルボキシ基を含み、かつ重量平均分子量46以上195以下の化合物であれば特に限定されず、モノカルボン酸化合物、ジカルボン酸化合物、オキシジカルボン酸化合物等が挙げられる。より具体的には、酸(E-1)としては、ギ酸、酢酸、マロン酸、シュウ酸、クエン酸、安息香酸、乳酸、グリコール酸、グリセリン酸、酪酸、メトキシ酢酸、エトキシ酢酸、フタル酸、テレフタル酸、ピコリン酸、サリチル酸、3,4,5-トリヒドロキシ安息香酸等が挙げられる。
 本開示において、半導体用の膜を形成するための組成物中における酸(E-1)の含有量は、特に制限されず、例えば、シロキサン化合物(A)中のアミノ基、シロキサン化合物(A)中のアミノ基及びシラン化合物(B)中のアミノ基の合計数、又は、シロキサン化合物(A)中のアミノ基、シラン化合物(B)中のアミノ基及びシラン化合物(B)を除く他のアミノ基含有成分中のアミノ基の合計数に対する酸(E-1)中のカルボキシ基の数の比率(COOH/アミノ基)が、0.01以上10以下であることが好ましく、0.02以上6以下であることがより好ましく、0.5以上3以下がさらに好ましい。
 塩基(E-2)は、窒素原子を含む重量平均分子量17以上120以下の塩基である。本開示の半導体用の膜を形成するための組成物は、添加剤(E)として塩基(E-2)を含むことにより、架橋剤(C)におけるカルボキシ基と塩基(E-2)におけるアミノ基とがイオン結合を形成することで、シロキサン化合物(A)、シラン化合物(B)等と架橋剤(C)との会合による凝集が抑制されると推測される。より詳細には、架橋剤(C)におけるカルボキシ基に由来するカルボキシラートイオンと塩基(E-2)におけるアミノ基に由来するアンモニウムイオンとの相互作用が、シロキサン化合物(A)、シラン化合物(B)等におけるアミノ基に由来するアンモニウムイオンと架橋剤(C)におけるカルボキシ基に由来するカルボキシラートイオンとの相互作用よりも強いため、凝集が抑制されると推測される。なお、本発明に関して開示された各態様は上記推測によって何ら限定されない。
 塩基(E-2)としては、窒素原子を含み、かつ重量平均分子量17以上120以下の化合物であれば特に限定されず、モノアミン化合物、ジアミン化合物等が挙げられる。より具体的には、塩基(E-2)としては、アンモニア、エチルアミン、エタノールアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、N-アセチルエチレンジアミン、N-(2-アミノエチル)エタノールアミン、N-(2-アミノエチル)グリシン等が挙げられる。
 本開示において、半導体用の膜を形成するための組成物中における塩基(E-2)の含有量は、特に制限されず、例えば、架橋剤(C)中のカルボキシ基の数に対する塩基(E-2)中の窒素原子の数の比率(N/COOH)が、0.5以上5以下であることが好ましく、0.9以上3以下であることがより好ましい。
 本開示の基板積層体の接合層に絶縁性が求められる場合において、絶縁性又は機械強度改善の観点から、本開示の半導体用の膜を形成するための組成物は、テトラエトキシシラン、テトラメトキシシラン、ビストリエトキシシリルエタン、ビストリエトキシシリルメタン、ビス(メチルジエトキシシリル)エタン、1,1,3,3,5,5-ヘキサエトキシ-1,3,5-トリシラシクロヘキサン、1,3,5,7-テトラメチル―1,3,5,7-テトラヒドロキシルシクロシロキサン、1,1,4,4-テトラメチル-1,4-ジエトキシジシルエチレン、1,3,5-トリメチル-1,3,5-トリメチル-1,3,5-トリエトキシ-1,3,5-トリシラシクロヘキサンを含んでいてもよい。本開示の半導体用の膜を形成するための組成物は、絶縁性を有する接合層の疎水性改善のためにメチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン等を含んでいてもよい。本開示の半導体用の膜を形成するための組成物は、これらの化合物をエッチング選択性の制御の為に含んでいてもよい。
 本開示の半導体用の膜を形成するための組成物は、極性溶媒(D)以外の溶媒を含んでいてもよく、例えば、ノルマルヘキサン等が挙げられる。
 また、本開示の半導体用の膜を形成するための組成物は、例えば電気特性改善のために、フタル酸、安息香酸等、又はこれらの誘導体を含んでいてもよい。
 また、本開示の半導体用の膜を形成するための組成物は、例えば銅の腐食を抑制するため、ベンゾトリアゾール又はその誘導体を含んでいてもよい
 本開示の半導体用の膜を形成するための組成物のpHとしては、特に限定されず、2.0以上12.0以下であることが好ましい。
<半導体用の膜を形成するための組成物の製造方法>
 以下、本開示の半導体用の膜を形成するための組成物の製造方法について説明する。本開示の半導体用の膜を形成するための組成物の製造方法は、シロキサン化合物(A)と、架橋剤(C)と、を混合する混合工程を含む。混合工程では、さらに、シラン化合物(B)、極性溶媒(D)、添加剤(E)等を混合してもよい。各成分を添加するタイミングは特に限定されない。
 本開示の半導体用の膜を形成するための組成物の製造方法では、カルボキシ基を含む重量平均分子量46以上195以下の酸(E-1)及び窒素原子を含む重量平均分子量17以上120以下の塩基(E-2)からなる群より選ばれる少なくとも1種の添加剤(E)を、混合工程にてシロキサン化合物(A)又は架橋剤(C)に添加してもよい。添加剤(E)を添加するタイミングは特に限定されない。
 また、添加剤(E)として酸(E-1)を添加する場合、混合工程は、酸(E-1)、シロキサン化合物(A)(好ましくは、シロキサン化合物(A)及びシラン化合物(B)の混合物、以下同様。)と、架橋剤(C)と、を混合する工程であることが好ましい。すなわち、シロキサン化合物(A)と架橋剤(C)とを混合する前に、シロキサン化合物(A)と酸(E-1)とを予め混合しておくことが好ましい。これにより、シロキサン化合物(A)と架橋剤(C)とを混合した際に、組成物の白濁及びゲル化(例えば、ゲル化すると組成物の透明化に時間がかかる場合があり、好ましくない)を好適に抑制することができる。
 また、添加剤(E)として塩基(E-2)を添加する場合、混合工程は、塩基(E-2)と架橋剤(C)との混合物と、シロキサン化合物(A)(好ましくは、シロキサン化合物(A)及びシラン化合物(B)の混合物、以下同様。)と、を混合する工程であることが好ましい。すなわち、シロキサン化合物(A)及びシラン化合物(B)と架橋剤(C)とを混合する前に、架橋剤(C)と塩基(E-2)とを予め混合しておくことが好ましい。これにより、シロキサン化合物(A)と架橋剤(C)とを混合した際に、組成物の白濁及びゲル化(例えば、ゲル化すると組成物の透明化に時間がかかる場合があり、好ましくない)を好適に抑制することができる。
[積層体]
 本開示の積層体は、本開示の半導体用の膜を形成するための組成物から形成された接合層と、基板と、が積層されてなる。本開示の積層体では接合層を形成するために前述の半導体用の膜を形成するための組成物が用いられている。これにより、本開示の積層体では基板の反りが抑制されており、接合層は基板に対する密着性に優れる。
 本開示の積層体は、例えば、接合層を介して、積層体に含まれる基板と、他の基板等の他の部材とを接合するために用いられる。
(基板)
 基板の材質は、特に限定されず、半導体基板等として通常使用されるものであってもよい。
 基板は、Si、Al、Ti、Zr、Hf、Fe、Ni、Cu、Ag、Au、Ga、Ge、Sn、Pd、As、Pt、Mg、In、Ta及びNbからなる群から選ばれる少なくとも1種の元素を含むことが好ましい。基板の材質としては、例えば、半導体:Si、InP、GaN、GaAs、InGaAs、InGaAlAs、SiC、酸化物、炭化物、窒化物:ホウ素珪酸ガラス(パイレックス(登録商標))、石英ガラス(SiO)、サファイア、ZrO、Si、AlN、圧電体、誘電体:BaTiO、LiNbO、SrTiO、ダイヤモンド、金属:Al、Ti、Fe、Cu、Ag、Au、Pt、Pd、Ta、Nb等が挙げられる。
 基板の材質としては、他にもポリジメチルシロキサン(PDMS)、エポキシ樹脂、フェノール樹脂、ポリイミド、ベンゾシクロブテン樹脂、ポリベンゾオキサゾール等であってもよい。
 基板は、多層構造であってもよい。例えば、シリコン基板等の表面に酸化ケイ素、窒化ケイ素、SiCN(炭窒化ケイ素)等の無機物層が形成された構造、シリコン基板等の表面にポリイミド樹脂、ポリベンゾオキサゾール樹脂、エポキシ樹脂、サイクロテン(登録商標)等のベンゾシクロブテン樹脂等の有機物層が形成された構造、シリコン基板上に無機物及び有機物の複合体が形成された構造が挙げられる。
 材質に基づく基板の用途は、例えば以下の通りである。
 Siは、半導体メモリー、LSIの積層、CMOSイメージセンサー、MEMS封止、光学デバイス、LED等;
 SiOは、半導体メモリー、LSIの積層、MEMS封止、マイクロ流路、CMOSイメージセンサー、光学デバイス、LED等;
 PDMSは、マイクロ流路;
 InGaAlAs、InGaAs、InPは、光学デバイス;
 InGaAlAs、GaAs、GaNは、LED等。
 基板の厚さは、0.5μm~1mmであることが好ましく、1μm~900μmであることがより好ましく、2μm~900μmであることがさらに好ましい。
 基板の形状は特に制限されない。例えば、基板がシリコン基板の場合、層間絶縁層(Low-k膜)が形成されたシリコン基板であってもよく、また、シリコン基板には、微細な溝(凹部)、微細な貫通孔等が形成されていてもよい。
 例えば、基板の表面上に本開示の半導体用の膜を形成するための組成物を付与する工程を含む積層体の製造方法によって本開示の積層体を製造することができる。積層体の製造方法は、必要に応じて、半導体用の膜を形成するための組成物を付与する工程の後に、基板上に付与された半導体用の膜を形成するための組成物を加熱、乾燥等する工程を含んでいてもよい。
 基板の表面上に、本開示の半導体用の膜を形成するための組成物を付与する方法としては、例えば、蒸着重合、CVD(化学蒸着)法、ALD(原子層堆積)法等の気相成膜法、ディッピング法、スプレー法、スピンコート法、バーコート法等の塗布法等が挙げられる。塗布法により、半導体用の膜を形成するための組成物を付与する場合、溶液状態の半導体用の膜を形成するための組成物を付与することが好ましい。例えば、ミクロンサイズの膜厚を有する膜を形成する場合、バーコート法を用いることが好ましく、ナノサイズ(数nm~数百nm)の膜厚を有する膜を形成する場合、スピンコート法を用いることが好ましい。なお、半導体用の膜を形成するための組成物の膜厚は、接合層の意図する厚さに応じて適宜調整すればよい。
 例えば、スピンコート法による半導体用の膜を形成するための組成物を付与する方法としては特に限定されず、例えば、基板をスピンコーターで回転させながら、基板の表面に半導体用の膜を形成するための組成物を滴下し、次いで基板の回転数を上げて乾燥させる方法を用いることができる。
 スピンコート法による半導体用の膜を形成するための組成物を付与する方法において、基板の回転数、半導体用の膜を形成するための組成物の粘度、滴下量及び滴下時間、乾燥時の基板の回転数等の諸条件については特に制限はなく、形成する半導体用の膜を形成するための組成物の厚さ等を考慮しながら適宜調整すればよい。
 半導体用の膜を形成するための組成物が付与された基板について、付与された余分な半導体用の膜を形成するための組成物を除去するために、半導体用の膜を形成するための組成物が付与された基板を洗浄してもよい。洗浄方法は、極性溶媒等のリンス液によるウェット洗浄、プラズマクリーニング等が挙げられる。
<電極の形成1>
 基板は、半導体用の膜を形成するための組成物が付与される表面に電極を有していてもよい。例えば、基板に半導体用の膜を形成するための組成物が付与される前に、基板の半導体用の膜を形成するための組成物が付与される表面上に電極を形成してもよい。
 電極は、基板の表面上に凸状に形成されていてもよく、基板を貫通する状態で形成されていてもよく、基板に埋め込まれた状態で形成されていてもよい。
 半導体用の膜を形成するための組成物が付与される表面に電極を有し、さらに基板における電極を有する表面に半導体用の膜を形成するための組成物を付与する場合は、電極を基板の表面上に凸状に形成することが好ましい。基板表面に電極を有していても、基板における電極を有する表面に半導体用の膜を形成するための組成物を付与しない場合には、基板表面の電極はいかなる形状であってもよい。
<電極の形成2>
 基板に接合層が形成された後、接合層が形成された表面に電極を形成してもよい。例えば、接合層に電極が形成される孔をドライエッチングにより形成し、形成された孔に電極を形成してもよい。
<電極の形成3>
 半導体用の膜を形成するための組成物が感光性を有する場合、基板に付与された半導体用の膜を形成するための組成物にフォトリソグラフィで電極が形成される孔を形成し、必要に応じて半導体用の膜を形成するための組成物を乾燥、加熱等して接合層を形成する工程を経た後、形成された孔に電極を形成してもよい。
 電極の材料としては、例えば、銅、はんだ、すず、金、銀、アルミニウム等が挙げられる。
 前述の電極の形成1~3にて、電極の形成方法としては、電界めっき、無電解めっき、スパッタリング、インクジェット法等が挙げられる。
 電極上に半導体用の膜を形成するための組成物が付与されている場合、電極上の半導体用の膜を形成するための組成物を除去してもよい。これにより、電極表面上に付与された半導体用の膜を形成するための組成物が除去され、電極を露出させることができる。電極表面上に付与された半導体用の膜を形成するための組成物の除去方法としては、フライカット法、化学的機械研磨法(CMP)、プラズマドライエッチング等が挙げられる。除去方法は、1つの方法を単独で用いてもよいし、2つ以上の方法を併用してもよい。例えば、フライカット法では、サーフェースプレーナー(DFS8910(株式会社ディスコ製))等を使用することができる。CMPを用いる場合、スラリとしては、例えば、一般的に樹脂の研磨に用いられるシリカ又はアルミナが配合されたスラリ、金属の研磨に用いられる過酸化水素及びシリカが配合されたスラリ等を用いてもよい。プラズマドライエッチングを用いる場合、フルオロカーボンプラズマ、酸素プラズマ等を用いてもよい。
 電極表面上の接合層を除去し、電極を露出させた場合、必要に応じて、電極表面の酸化物の還元処理を行ってもよい。還元処理方法としては、ギ酸等の酸雰囲気中で基板を100℃~300℃で加熱する方法、水素雰囲気中で基板を加熱する方法等がある。
(接合層)
 本開示の積層体では、基板上に形成された接合層は、未硬化であってもよく、半硬化であってもよく、硬化されていてもよい。接合層の硬化状態は、基板上に付与された半導体用の膜を形成するための組成物を乾燥、加熱等する程度によって調整してもよい。
 本開示の積層体では、接合層は硬化されていてもよい。例えば、基板の表面上に付与された半導体用の膜を形成するための組成物を加熱等することにより、硬化した接合層を形成することができる。以下、硬化した接合層を形成する際の加熱条件について説明する。
 基板の表面上に付与された半導体用の膜を形成するための組成物の加熱温度は、100℃~450℃であることが好ましく、150℃~450℃であることがより好ましく、180℃~400℃であることがさらに好ましい。
 なお、前述の温度は、前記表面上に付与された半導体用の膜を形成するための組成物の表面の温度を指す。
 半導体用の膜を形成するための組成物を加熱することにより、半導体用の膜を形成するための組成物中の溶媒が除去される。また、半導体用の膜を形成するための組成物中の成分が反応して硬化物が得られ、その硬化物を含む接合層が形成される。
 また、半導体用の膜を形成するための組成物の加熱が行われるときの圧力には特に制限はなく、絶対圧17Pa超大気圧以下が好ましい。
 前記絶対圧は、1000Pa以上大気圧以下がより好ましく、5000Pa以上大気圧以下がさらに好ましく、10000Pa以上大気圧以下が特に好ましい。
 半導体用の膜を形成するための組成物の加熱は、炉又はホットプレートを用いた通常の方法により行うことができる。炉としては、例えば、アペックス社製のSPX-1120、光洋サーモシステム株式会社製のVF-1000LP等を用いることができる。
 また、半導体用の膜を形成するための組成物の加熱は、大気雰囲気下で行ってもよく、不活性ガス(窒素ガス、アルゴンガス、ヘリウムガス等)雰囲気下で行ってもよい。
 基板の表面上に付与された半導体用の膜を形成するための組成物の加熱時間については特に制限はなく、例えば3時間以下であり、1時間以下が好ましい。加熱の時間の下限には特に制限はなく、例えば5分間とすることができる。
 加熱時間を短縮させる目的で、基板の表面上に付与された半導体用の膜を形成するための組成物に紫外線(UV)照射を行ってもよい。紫外線としては波長170nm~230nmの紫外光、波長222nmエキシマ光、波長172nmエキシマ光等が好ましい。また不活性ガス雰囲気下で紫外線照射を行うことが好ましい。
 半導体用の膜を形成するための組成物が硬化しているかどうかは、例えば、特定の結合及び構造のピーク強度をFT-IR(フーリエ変換赤外分光法)で測定して確認すればよい。特定の結合及び構造としては、架橋反応により発生する結合及び構造等が挙げられる。
 例えば、アミド結合、イミド結合等が形成された場合に、半導体用の膜を形成するための組成物が硬化していると判断でき、これらの結合、構造等に由来するピーク強度をFT-IRで測定して確認すればよい。
 アミド結合は、約1650cm-1及び約1520cm-1の振動ピークの存在で確認することができる。
 イミド結合は、約1770cm-1及び約1720cm-1の振動ピークの存在で確認することができる。
 硬化された接合層の表面は平坦化されていてもよい。平坦化する方法としては、フライカット法、化学的機械研磨法(CMP)等が挙げられる。平坦化する方法は、1つの方法を単独で用いてもよいし、2つ以上の方法を併用してもよい。
 基板上に形成された接合層は、当該基板と、他の基板等の他の部材との接合強度を高める観点から、基板の反対側である接合層の表面に化学的結合を形成し得る官能基を有していることが好ましい。このような官能基としては、例えば、アミノ基、エポキシ基、ビニル基、シラノール基(Si-OH基)等が挙げられ、耐熱性の観点から、シラノール基が好ましい。これらの官能基は、接合層形成後に表面処理により形成してもよく、シランカップリング剤処理等により形成してもよい。あるいは、これらの官能基を含む化合物を半導体用の膜を形成するための組成物中に混合させてもよい。
 接合層の表面がシラノール基を有するか否かは、飛行時間型二次イオン質量分析法(TOF-SIMS)による接合層の表面分析で評価できる。具体的には、TOF-SIMSであるPHI nanoTOFII(アルバック・ファイ株式会社)を用い、質量電荷比(m/Z)が45であるピークの有無から、接合層の表面がシラノール基を有するか否かを評価できる。
 接合層の厚さは、0.001μm~8.0μmであることが好ましく、0.01μm~6.0μmであることがより好ましく、0.03μm~5.0μmであることがさらに好ましい。接合層の厚さが0.001μm以上であることにより、基板を接合層を介して他の部材と接合する際の接合強度を高めることができる。接合層の厚さが8.0μm以下であることにより、大面積の基板に接合層を形成した場合に接合層の厚さバラつきを抑えることができる。
 基板の接合層側の表面に電極が設けられている場合、接合強度の向上及び接合層の厚さバラつきの抑制の観点から、接合層の厚さは、0.01μm~8.0μmであることが好ましく、0.03μm~6.0μmであることがより好ましく、0.05μm~5.0μmであることがさらに好ましい。
 基板の接合層側の表面に電極が設けられていない場合、接合強度の向上及び接合層の厚さバラつきの抑制の観点から、接合層の厚さは、0.001μm以上1.0μm未満であることが好ましく、0.01μm~0.8μmであることがより好ましく、0.03μm~0.6μmであることがさらに好ましい。
 接合層は、ナトリウム及びカリウムの含有量がそれぞれ元素基準で10質量ppb以下であることが好ましい。ナトリウム又はカリウムの含有量がそれぞれ元素基準で10質量ppb以下であれば、トランジスタの動作不良等半導体装置の電気特性に不都合が発生することを抑制できる。
[基板積層体]
 本開示の基板積層体は、第1の基板と、本開示の半導体用の膜を形成するための組成物から形成された接合層と、第2の基板と、がこの順に積層されてなる。本開示の基板積層体では前述の半導体用の膜を形成するための組成物から形成された接合層を介して第1の基板と第2の基板とが接合されている。これにより、第1の基板と第2の基板との接合時の基板の位置ずれが抑制されており、第1の基板と第2の基板との密着性に優れる。
 本開示の基板積層体は、例えば、第1の基板である基板及び接合層を備える前述の本開示の積層体と、第2の基板とを接合層を介して接合することで形成してもよい。
(第1の基板及び第2の基板)
 第1の基板及び第2の基板の好ましい材質及び構成は、特に限定されず、例えば、前述の本開示の積層体に使用される基板の好ましい材質及び構成と同様である。第1の基板及び第2の基板の材質及び構成は、それぞれ独立に同じであってもよく、異なっていてもよい。第1の基板及び第2の基板は、半導体用の膜を形成するための組成物が付与される表面又は、接合層と対面する側の表面に電極を有していてもよい。電極の好ましい構成は、前述の本開示の積層体における電極の好ましい構成と同様である。
 既述のように、基板、Si、Al、Ti、Zr、Hf、Fe、Ni、Cu、Ag、Au、Ga、Ge、Sn、Pd、As、Pt、Mg、In、Ta及びNbからなる群から選ばれる少なくとも1種の元素を含むことが好ましく、本開示の積層体においては、1の基板及び前記第2の基板の少なくとも一方は、Si、Ga、Ge及びAsからなる群より選択される少なくとも1種の元素を含む半導体基板であることがより好ましい。
 本開示の基板積層体では、第1の基板及び第2の基板の少なくとも一方は、接合層側の面の反対側の面に、さらに別の基板が積層されていてもよい。別の基板の好ましい材質は、第1の基板及び第2の基板の好ましい材質と同様である。別の基板の材質は、第1の基板及び第2の基板の少なくとも一方と同じであっても異なっていてもよい。
(接合層)
 本開示の基板積層体では、第1の基板と第2の基板との間に配置された接合層は、硬化された状態であることが好ましい。他に、本開示の基板積層体における接合層の好ましい形態としては、前述の本開示の積層体における接合層の好ましい形態と同様であるため、その説明を省略する。
 本開示の基板積層体は、例えば以下の方法によって形成することができる。本開示の基板積層体の製造方法の一例は、第1の基板及び第2の基板の少なくとも一方の表面上に、本開示の半導体用の膜を形成するための組成物を付与する工程(以下、「第1工程」とも称する。)と、前記半導体用の膜を形成するための組成物から形成された接合層を介して前記第1の基板と前記第2の基板とを接合する工程(以下、「第2工程」とも称する。)と、を備える。
 第1工程の好ましい形態は、前述の本開示の積層体において、基板の表面上に、本開示の半導体用の膜を形成するための組成物を付与する方法の好ましい形態と同様である。
 第2工程では、第1の基板及び第2の基板の少なくとも一方の表面上に付与された半導体用の膜を形成するための組成物を加熱等により少なくとも一部硬化させた接合層とした後に当該接合層を介して第1の基板と第2の基板とを接合してもよく、あるいは、第1の基板と未硬化の接合層と第2の基板とをこの順に積層した後に、積層された未硬化の接合層を加熱等により硬化させて接合層を形成してもよい。
 第1の基板及び第2の基板の少なくとも一方の表面上に付与された半導体用の膜を形成するための組成物を加熱するときの加熱条件、及び、積層された未硬化の接合層を加熱するときの好ましい加熱条件は、それぞれ独立に、前述の本開示の積層体における基板の表面上に付与された半導体用の膜を形成するための組成物の好ましい加熱条件と同様である。
 本開示の基板積層体の製造方法の一例は、第1の基板及び第2の基板の少なくとも一方の、接合層と接触する側の面、好ましくは第1の基板及び第2の基板の、接合層と接触する側の面に表面処理を行うことにより、水酸基、エポキシ基、カルボキシ基、アミノ基、及びメルカプト基からなる群より選ばれる少なくとも1種の官能基を形成する工程(「表面処理工程」とも称する。)をさらに備えていてもよい。これにより、基板同士の接合強度を高くできる傾向にある。
 なお、前述の本開示の積層体において、基板の接合層と接触する側の面に表面処理が行われていてもよい。
 表面処理としては、例えば、プラズマ処理、薬品処理、UVオゾン処理等のオゾン処理等が挙げられる。
 水酸基は、第1の基板及び第2の基板の表面に、プラズマ処理、薬品処理、UVオゾン処理等のオゾン処理等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 水酸基は、第1の基板又は第2の基板に含まれる、Si、Al、Ti、Zr、Hf、Fe、Ni、Cu、Ag、Au、Ga、Ge、Sn、Pd、As、Pt、Mg、In、Ta及びNbからなる群から選ばれる少なくとも1種の元素と結合した状態で存在することが好ましい。中でも、第1の基板及び第2の基板の少なくとも一方の接合層が形成される側の面は、水酸基を含むシラノール基を有することがより好ましい。
 エポキシ基は、第1の基板及び第2の基板の表面に、エポキシシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 カルボキシ基は、第1の基板及び第2の基板の表面に、カルボキシシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 アミノ基は、第1の基板及び第2の基板の表面に、アミノシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 メルカプト基は、第1の基板及び第2の基板の表面に、メルカプトシランによるシランカップリング等の表面処理を行うことで、それらの表面にそれぞれ設けることができる。
 また、第1の基板及び第2の基板の両方に接合層が形成されている場合、基板積層体の接合強度を高める点から、接合層の少なくとも一方の表面に前述の表面処理を施してもよい。
 また、基板積層体の接合強度を高める点から、第1の基板及び第2の基板の少なくとも一方の半導体用の膜を形成するための組成物が付与される面にシランカップリング剤等のプライマーを成膜してもよく、第1の基板及び第2の基板の両方に接合層が形成されている場合、接合層の少なくとも一方の表面にシランカップリング剤等のプライマーを成膜してもよい。
 本開示の基板積層体の製造方法の一例は、第2工程の後、必要に応じて、第1の基板及び第2の基板の少なくとも一方に薄化加工(バックグラインディング、又は裏面研削)を行う工程をさらに備えていてもよい。
 また、本開示の基板積層体の製造方法の一例は、第2工程の後、必要に応じて、ダイシング加工を行い、基板を個片化する工程をさらに備えていてもよい。例えば、ダイシング加工では、ダイサー(DAD6340(株式会社ディスコ製))等を使用することができる。
(基板積層体の積層構造の例)
 以下に、各用途における基板積層体の積層構造の例を示す。
 MEMSパッケージング用;Si/接合層/Si、SiO/接合層/Si、SiO/接合層/SiO、Cu/接合層/Cu、
 マイクロ流路用;PDMS/接合層/PDMS、PDMS/接合層/SiO
 CMOSイメージセンサー用;SiO/接合層/SiO、Si/接合層/Si、SiO/接合層/Si、
 シリコン貫通ビア(TSV)用;SiO(Cu電極付き)/接合層/SiO(Cu電極付き)、Si(Cu電極付き)/接合層/Si(Cu電極付き)、
 光学デバイス用;(InGaAlAs、InGaAs、InP、GaAs)/接合層/Si、
 LED用;(InGaAlAs、GaAs、GaN)/接合層/Si、(InGaAlAs、GaAs、GaN)/接合層/SiO、(InGaAlAs、GaAs、GaN)/接合層/(Au、Ag、Al)、(InGaAlAs、GaAs、GaN)/接合層/サファイア。
 本開示の基板積層体は、複数の積層体を備えていてもよい。
 例えば、本開示の基板積層体は、第1の基板と、既述の本開示の半導体用の膜を形成するための組成物から形成された接合層と、第2の基板と、がこの順に積層されてなる第1の積層領域と、第1の基板と、電極と、第2の基板と、がこの順に積層されてなる第2の積層領域と、を備え、積層方向と直交する面方向に、少なくとも1つの第1の積層領域と、少なくとも1つの第2の積層領域とが配置されてなる基板積層体であってもよい。即ち、積層体を積層方向と直交する面方向に複数備えることで、目的に応じた複数の積層領域を配置して成る基板積層体とすることができる。
 また、基板積層体は、面方向に複数の積層領域を備えるのみならず、積層方向に複数の積層体を2層以上積層する構造を取ることができる。
 例えば、前記第1の積層領域が、前記積層方向に2層以上積層され、かつ、前記第2の積層領域が、積層方向に2層以上積層されている基板積層体とすることができる。
 このように、積層体における積層方向と直交する面方向、及び、積層体における積層方向に任意の数の積層体を配置することにより、目的とする三次元基板用途に適する基板積層体とすることができ、その応用範囲は広い。
 以下、本発明を実施例により具体的に説明するが、実施例は本発明の一態様を示したものであり、本発明はこれらの実施例に限定されるものではない。
 実施例において、特に断らない限り「%」は、「質量%」を表す。
 以下において、「水」としては、超純水(Millipore社製 Milli-Q水、抵抗18MΩ・cm(25℃)以下)を使用した。
[実施例1]
<半導体用の膜を形成するための組成物の調製>
 半導体用の膜を形成するための組成物を調製した。詳細は以下に示すとおりである。
 シロキサン化合物(A)である1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン(BATDS、下記一般式(A-2)で表される化合物(Rは水素原子、Rはメチル基、i=0、j=1))、シラン化合物(B)である3-アミノプロピルジエトキシメチルシラン(3APDES)及び架橋剤(C)である対称オキシジフタル酸エチルハーフエステル(ODPAehe)を準備した。
 ODAPeheは、エタノール中に対称オキシジフタル酸無水物(ODPA)を加えて、透明な液体が得られるまで4時間加熱還流することで得た。さらに、プロトンNMRにより、製造されたODPAeheにエステル基が形成されていることを確認した。エバポレーターを用いてエタノールの除去を行い、ハーフエステル化合物の濃度が70%~75%となるまで濃縮した液体を製造し、この液体を架橋剤(C)として使用した。
 シラン化合物(B)25gを水25gに滴下し、50質量%となるように溶解後、室温で一晩静置した。その後、プロトンNMRスペクトルでエトキシシランが加水分解されたことを確認した。次いで、表1に示す濃度となるように、配合液に水を加えて、シラン化合物(B)の濃度を調製した。さらに、表1中のモル比となるように、シロキサン化合物(A)にシラン化合物(B)の配合液を加え、続いて架橋剤(C)を加えて一晩室温で攪拌することで半導体用の膜を形成するための組成物を調製した。
Figure JPOXMLDOC01-appb-C000006
[実施例2~実施例6]
 表1に示すモル比となるように各成分を用い、実施例1と同様にして実施例2~実施例6の半導体用の膜を形成するための組成物を調製した。
 表1中のaODPAeheは、非対称オキシジフタル酸エチルハーフエステルを意味し、非対称オキシジフタル酸無水物(aODPA)をエタノールと反応させることでaODPAeheを製造した。エバポレーターを用いてエタノールの除去を行い、ハーフエステル化合物の濃度が70%~75%となるまで濃縮した液体を製造し、この液体を実施例5で架橋剤(C)として使用した。
 表1中のBPDAeheは、ビフェニルテトラカルボン酸エチルハーフエステルを意味し、BPDAeheは、ビフェニルテトラカルボン酸無水物(BPDA)をエタノールと反応させることでBPDAeheを製造した。エバポレーターを用いてエタノールの除去を行い、ハーフエステル化合物の濃度が70%~75%となるまで濃縮した液体を製造し、この液体を実施例6で架橋剤(C)として使用した。
[比較例1~比較例3]
 シロキサン化合物(A)を使用しなかった以外は実施例1と同様に表1に示すモル比となるように各成分を用い、実施例1と同様にして比較例1~比較例3の半導体用の膜を形成するための組成物を調製した。
 表1中のpXDAは、パラキシリレンジアミンを意味する。
[比較例4]
 シラン化合物(B)を使用しなかった以外は実施例1と同様に表1に示すモル比となるように各成分を用い、実施例1と同様にして比較例4の半導体用の膜を形成するための組成物を調製した。
<接合層の形成>
 各実施例及び各比較例にて得られた組成物を用いて表1に記載の膜厚の接合層を形成するため、各実施例及び各比較例にて得られた組成物に水を加えて濃度を調整した。濃度調整後の組成物を塗布する基板として4インチφシリコン基板(シリコンウェハ)を準備した。シリコンウェハをUV(紫外線)オゾンで5分間処理した後、シリコンウェハをスピンコーターの上にのせ、濃度調整後の組成物約5mLをシリコンウェハ上に滴下した。次いで、シリコンウェハを13秒間保持した後、2000rpm(rpmは1分間当たりの回転速度)で1秒間、600rpmで30秒間回転させ、そして2000rpmで10秒間回転させて乾燥させた。一晩静置後、さらに、イナートオーブン中、200℃で1時間加熱することで硬化した接合層を得た。
 なお、比較例3にて得られた組成物はゲル化してしまい、成膜することができなかった。
<接合層の膜厚>
 シリコンウェハ上に形成した接合層の膜厚を測定した。具体的には、シリコンウェハ中心、シリコンウェハ中心よりオリフラ(オリエンテーション・フラット)側へ3センチ離れた箇所、シリコンウェハ中心からオリフラとは逆側へ3センチ離れた箇所の膜厚を、接触式の膜厚計で測定した。表1には3点の膜厚の平均値を記載した。
<残留応力の測定>
 接合層の残留応力σを、レーザー式反り測定機DY-3000(神津精機社製)を用いて測定した接合層付きシリコンウェハの曲率X及び予め測定しておいた接合層なしシリコンウェハの曲率Yから、下記(式)により算出した。
 σ=〔E×t/((1-ν)×6×t_film)〕(1/X-1/Y) (式)
 接合層の残留応力σが大きいことは、基板の反りが大きく、基板同士の接合時の位置ずれが発生しやすいことを意味する。
 なお、上記式中、Eはシリコンウェハの弾性率、tはシリコンウェハの厚さ、νはシリコンウェハのポアソン比、t_filmは接合層の厚さを表す。
 なお、比較例2では、接合層のひび割れが生じており、接合層として使用できないため残留応力の算出を行わなかった。
 結果を表1に示す。 
<接合界面の表面エネルギーの測定>
 各実施例及び各比較例にて得られた組成物に水及び1-プロパノールを加えて、シリコンウェハ上での接合層の膜厚が凡そ1μmとなるように濃度の調整を行った。濃度の調整を行った組成物を用いて、前記と同じ手法により、第1の基板であるシリコンウェハ上に接合層を形成した。濃度調整を行った組成物中に含まれる1-プロパノールの濃度は20質量%である。また接合層の形成において、一晩静置及び乾燥の代わりに、125℃に加熱したホットプレート上で塗布膜の乾燥を1分実施した。
 上記で得た凡そ1μm厚の接合層側に、第2の基板であるシリコンウェハを室温で貼り合わせて仮固定した後、イナートオーブン中200℃で1時間加熱することで、第1の基板/接合層/第2の基板からなる基板積層体を製造した。
 非特許文献M.P.Maszara, G.Goetz, A.Cavigila, and J.B.Mckitterick, Journal of Applied Physics, 64 (1988) 4943-4950. の手法に従って、基板積層体の接合界面の表面エネルギー(接合強度)をブレード挿入試験で測定した。基板積層体の接合界面に、厚さ0.1mm~0.3mmのブレードを挿入し、赤外線光源と赤外線カメラにて、ブレード刃先から基板積層体が剥離した距離を測定し、その後、以下に式に基づいて表面エネルギーを測定した。
 γ=3×10×t ×E×t/(32×L×E×t
 ここで、γは表面エネルギー(J/m)、tはブレード厚さ(m)、Eは第1の基板及び第2の基板に含まれるシリコンウェハのヤング率(GPa)、tは第1の基板及び第2の基板の厚さ(m)、Lはブレード刃先からの基板積層体の剥離距離(m)を表す。
 結果を表1に示す。なお、 表1中の「-」は、データが無いことを意味する。
<ガラス転移温度の測定>
 各実施例及び各比較例にて残留応力測定時の接合層の形成に用いた組成物を樹脂フィルム上にアプリケーターを用いてギャップ250μmの条件で塗布し、窒素雰囲気中、200℃、1時間でベークすることで硬化させた。続いて樹脂フィルムから硬化させた膜を剥離し、膜厚が10μm~70μmの自立膜を得た。
 上記で得た自立膜の動的粘弾性特性を動的粘弾性測定装置RSA-III(TAインスツルメント社製)を用いて測定を行い、tanδピークよりガラス転移温度を求めた。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、実施例1~実施例6では、シロキサン化合物(A)を含まない比較例1よりも残留応力が低減された接合層を形成することができた。
 特に、実施例1~実施例5では、シラン化合物(B)を含まない比較例4よりもガラス転移温度が高かった。
 比較例2では、接合層の残留応力が高すぎたために、ひび割れが発生したと推測される。比較例4では、残留応力が低すぎるため、弾性率が小さくなりすぎて、位置ずれが生じやすくなることが懸念され、ガラス転移温度が低くなり、耐熱性が低下する可能性もあると推測される。一方、実施例6では、残留応力が低減され、かつ接合強度に優れた接合層を形成することができた。
 2021年9月6日に出願された日本国特許出願2021-144611の開示は参照により本開示に取り込まれる。
 本開示に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本開示中に参照により取り込まれる。

Claims (13)

  1.  1級アミノ基及び2級アミノ基の少なくとも一方、ケイ素原子並びに前記ケイ素原子に結合する非極性基を含み、1級アミノ基及び2級アミノ基の合計が2つ以上であり、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧1.8の関係を満たす線形のシロキサン化合物(A)と、
     1級アミノ基及び2級アミノ基の少なくとも一方並びにケイ素原子を含み、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si<1.8の関係を満たすシラン化合物(B)と、
     分子内に-C(=O)OX基(Xは、水素原子又は炭素数1以上6以下のアルキル基である)を3つ以上含み、3つ以上の-C(=O)OX基のうち、1つ以上6つ以下が-C(=O)OH基であり、重量平均分子量が200以上2000以下である架橋剤(C)と、
     を含む、半導体用の膜を形成するための組成物。
  2.  前記シラン化合物(B)の重量平均分子量は、130以上10000以下である請求項1に記載の半導体用の膜を形成するための組成物。
  3.  半導体用の膜を形成するための組成物中に含まれるアミノ基を有する成分のアミノ基の合計数に対する前記架橋剤(C)中の-C(=O)OX基の数の比率であるCOOX/アミノ基は、0.1以上5.0以下である請求項1又は請求項2に記載の半導体用の膜を形成するための組成物。
  4.  前記シラン化合物(B)の含有量に対する前記シロキサン化合物(A)の含有量の比率であるシロキサン化合物(A)/シラン化合物(B)がモル比で0.01以上100以下である請求項1又は請求項2に記載の半導体用の膜を形成するための組成物。
  5.  前記シロキサン化合物(A)の重量平均分子量は、200以上2000以下である請求項1又は請求項2に記載の半導体用の膜を形成するための組成物。
  6.  前記架橋剤(C)は、前記3つ以上の-C(=O)OX基において、少なくとも1つのXが炭素数1以上6以下のアルキル基である、請求項1又は請求項2に記載の半導体用の膜を形成するための組成物。
  7.  前記シロキサン化合物(A)の主鎖の両末端がそれぞれ独立に1級アミノ基又は2級アミノ基である請求項1又は請求項2に記載の半導体用の膜を形成するための組成物。
  8.  前記シロキサン化合物(A)では、前記ケイ素原子と、前記ケイ素原子に結合する非極性基との関係がモル比で(非極性基)/Si≧2.0の関係を満たす請求項1又は請求項2に記載の半導体用の膜を形成するための組成物。
  9.  請求項1又は請求項2に記載の半導体用の膜を形成するための組成物から形成された接合層と、基板と、が積層されてなる積層体。
  10.  第1の基板と、
     請求項1又は請求項2に記載の半導体用の膜を形成するための組成物から形成された接合層と、
     第2の基板と、
     がこの順に積層されてなる基板積層体。
  11.  第1の基板と、請求項1又は請求項2に記載の半導体用の膜を形成するための組成物から形成された接合層と、第2の基板と、がこの順に積層されてなる第1の積層領域と、
     第1の基板と、電極と、第2の基板と、がこの順に積層されてなる第2の積層領域と、
     を備え、
     積層方向と直交する面方向に、少なくとも1つの第1の積層領域と、少なくとも1つの第2の積層領域とが配置されてなる基板積層体。
  12.  前記第1の積層領域が、前記積層方向に2層以上積層され、かつ、前記第2の積層領域が、積層方向に2層以上積層されている、請求項11に記載の基板積層体。
  13.  前記第1の基板及び前記第2の基板の少なくとも一方は、Si、Ga、Ge及びAsからなる群より選択される少なくとも1種の元素を含む半導体基板である、請求項10に記載の基板積層体。
PCT/JP2022/032438 2021-09-06 2022-08-29 半導体用の膜を形成するための組成物、積層体及び基板積層体 WO2023032923A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023545564A JPWO2023032923A1 (ja) 2021-09-06 2022-08-29
KR1020247008433A KR20240050367A (ko) 2021-09-06 2022-08-29 반도체용의 막을 형성하기 위한 조성물, 적층체 및 기판 적층체
EP22864505.7A EP4391024A1 (en) 2021-09-06 2022-08-29 Composition for forming film for semiconductor, laminate, and substrate laminate
CN202280059769.3A CN117941037A (zh) 2021-09-06 2022-08-29 用于形成半导体用膜的组合物、层叠体和基板层叠体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144611 2021-09-06
JP2021-144611 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023032923A1 true WO2023032923A1 (ja) 2023-03-09

Family

ID=85412775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032438 WO2023032923A1 (ja) 2021-09-06 2022-08-29 半導体用の膜を形成するための組成物、積層体及び基板積層体

Country Status (6)

Country Link
EP (1) EP4391024A1 (ja)
JP (1) JPWO2023032923A1 (ja)
KR (1) KR20240050367A (ja)
CN (1) CN117941037A (ja)
TW (1) TW202323491A (ja)
WO (1) WO2023032923A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933120B1 (ja) 1968-06-21 1974-09-04
JPH04132258A (ja) 1990-09-25 1992-05-06 Nec Corp 半導体基板の接続体およびその接続方法
JPH0616809A (ja) 1991-09-21 1994-01-25 Hoechst Ag アルキル化ポリエチレンイミン誘導体およびその製造方法
JPH0940931A (ja) * 1995-08-02 1997-02-10 Hitachi Chem Co Ltd 耐熱性接着剤及び半導体装置
JP2010226060A (ja) 2009-03-25 2010-10-07 Fujitsu Ltd 半導体装置とその製造方法
WO2010137711A1 (ja) 2009-05-29 2010-12-02 三井化学株式会社 半導体用シール組成物、半導体装置および半導体装置の製造方法
JP2012123958A (ja) 2010-12-07 2012-06-28 Panasonic Corp 導光板及び照明装置
JP2012216836A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 三次元集積回路積層体
JP2016047895A (ja) 2014-08-28 2016-04-07 株式会社ダイセル 半導体用接着剤組成物
WO2017086361A1 (ja) * 2015-11-16 2017-05-26 三井化学株式会社 半導体用膜組成物、半導体用膜組成物の製造方法、半導体用部材の製造方法、半導体用工程材の製造方法及び半導体装置
JP2019206689A (ja) * 2018-05-29 2019-12-05 旭化成株式会社 樹脂組成物、及び硬化膜の製造方法
WO2020085183A1 (ja) * 2018-10-26 2020-04-30 三井化学株式会社 基板積層体の製造方法及び積層体
JP2020095111A (ja) * 2018-12-11 2020-06-18 日立化成株式会社 感光性樹脂組成物、並びにこれを用いた半導体用配線層及び半導体基板
JP2021144611A (ja) 2020-03-13 2021-09-24 アパテックジャパン株式会社 衣服サイズ推薦システム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933120B1 (ja) 1968-06-21 1974-09-04
JPH04132258A (ja) 1990-09-25 1992-05-06 Nec Corp 半導体基板の接続体およびその接続方法
JPH0616809A (ja) 1991-09-21 1994-01-25 Hoechst Ag アルキル化ポリエチレンイミン誘導体およびその製造方法
JPH0940931A (ja) * 1995-08-02 1997-02-10 Hitachi Chem Co Ltd 耐熱性接着剤及び半導体装置
JP2010226060A (ja) 2009-03-25 2010-10-07 Fujitsu Ltd 半導体装置とその製造方法
WO2010137711A1 (ja) 2009-05-29 2010-12-02 三井化学株式会社 半導体用シール組成物、半導体装置および半導体装置の製造方法
JP2012123958A (ja) 2010-12-07 2012-06-28 Panasonic Corp 導光板及び照明装置
JP2012216836A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 三次元集積回路積層体
JP2016047895A (ja) 2014-08-28 2016-04-07 株式会社ダイセル 半導体用接着剤組成物
WO2017086361A1 (ja) * 2015-11-16 2017-05-26 三井化学株式会社 半導体用膜組成物、半導体用膜組成物の製造方法、半導体用部材の製造方法、半導体用工程材の製造方法及び半導体装置
JP2019206689A (ja) * 2018-05-29 2019-12-05 旭化成株式会社 樹脂組成物、及び硬化膜の製造方法
WO2020085183A1 (ja) * 2018-10-26 2020-04-30 三井化学株式会社 基板積層体の製造方法及び積層体
JP2020095111A (ja) * 2018-12-11 2020-06-18 日立化成株式会社 感光性樹脂組成物、並びにこれを用いた半導体用配線層及び半導体基板
JP2021144611A (ja) 2020-03-13 2021-09-24 アパテックジャパン株式会社 衣服サイズ推薦システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. P. MASZARAG. GOETZA. CAVIGILAJ. B. MCKITTERICK, JOURNAL OF APPLIED PHYSICS, vol. 64, 1988, pages 4943 - 4950

Also Published As

Publication number Publication date
CN117941037A (zh) 2024-04-26
JPWO2023032923A1 (ja) 2023-03-09
KR20240050367A (ko) 2024-04-18
TW202323491A (zh) 2023-06-16
EP4391024A1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
JP7162679B2 (ja) 基板積層体の製造方法及び積層体
JP6781827B2 (ja) 基板積層体及び基板積層体の製造方法
JP7351019B2 (ja) 組成物、積層体及び積層体の製造方法
JP2023177917A (ja) 半導体装置およびその製造方法
WO2023032923A1 (ja) 半導体用の膜を形成するための組成物、積層体及び基板積層体
WO2023032924A1 (ja) 半導体用の膜を形成するための組成物、積層体及び基板積層体
TWI856982B (zh) 基板積層體的製造方法及積層體
WO2024166789A1 (ja) 半導体構造体及びその製造方法
WO2024177149A1 (ja) 半導体構造体及びその製造方法
WO2024177074A1 (ja) 基板積層体の製造方法
WO2024029390A1 (ja) 基板積層体の製造方法及び半導体装置
WO2024010007A1 (ja) 基板積層体の製造方法及び基板積層体
WO2024172044A1 (ja) 基板積層体の製造方法、積層体、及び基板積層体
WO2024177116A1 (ja) 樹脂層付き半導体チップの製造方法及び基板積層体の製造方法
WO2024162446A1 (ja) 半導体構造体及びその製造方法
TW202433619A (zh) 半導體結構體及其製造方法
TW202432357A (zh) 基板積層體的製造方法、積層體以及基板積層體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545564

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18688837

Country of ref document: US

Ref document number: 202280059769.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247008433

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022864505

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022864505

Country of ref document: EP

Effective date: 20240319

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202401495W

Country of ref document: SG