WO2020083386A1 - 含介孔材料的聚烯烃催化剂组分及其制备方法和应用 - Google Patents

含介孔材料的聚烯烃催化剂组分及其制备方法和应用 Download PDF

Info

Publication number
WO2020083386A1
WO2020083386A1 PCT/CN2019/113373 CN2019113373W WO2020083386A1 WO 2020083386 A1 WO2020083386 A1 WO 2020083386A1 CN 2019113373 W CN2019113373 W CN 2019113373W WO 2020083386 A1 WO2020083386 A1 WO 2020083386A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous material
weight
component
catalyst component
polyolefin catalyst
Prior art date
Application number
PCT/CN2019/113373
Other languages
English (en)
French (fr)
Inventor
亢宇
吕新平
刘东兵
郭子芳
刘红梅
徐世媛
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US17/288,071 priority Critical patent/US20210380730A1/en
Priority to EP19875702.3A priority patent/EP3872100A4/en
Priority to CN201980068497.1A priority patent/CN113166302A/zh
Publication of WO2020083386A1 publication Critical patent/WO2020083386A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6421Titanium tetrahalides with organo-aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/027Polymers

Definitions

  • the invention relates to the technical field of heterogeneous catalytic olefin polymerization.
  • the present invention relates to a method of preparing a polyolefin catalyst component, the polyolefin catalyst component prepared by the above method, and the use of the polyolefin catalyst component prepared by the above method in the polymerization reaction of an olefin monomer.
  • the present invention relates to a mesoporous material-containing polyolefin catalyst component, its preparation method and application.
  • Ti-Mg series Ziegler-Natta catalyst system is widely used in ethylene polymerization or copolymerization of ethylene and ⁇ -olefin. People are still conducting a lot of research. On the one hand, it is expected that the obtained catalyst has a sufficiently high polymerization activity, so that the catalyst has a high efficiency on the device and the residue in the polymer is as small as possible; The shape of the particles is as spherical as possible, and the content of fine polymer powder is small, which is conducive to continuous operation of industrial equipment for a long period.
  • the disadvantage of the supported catalyst is that the impregnation step may result in uneven loading of the surface active components of the support, and at the same time, the loading amount is limited due to the limitation of the specific surface area of the support, so that the increase in catalyst activity is limited.
  • US 5,290,745 discloses a method for preparing a catalyst component suitable for producing ethylene copolymers, in which a solution of a titanium trichloride component and magnesium dichloride in an electron donor solvent is combined with a solid particulate filler such as fumed silica The subsequent slurry is spray dried to provide a solid catalyst component.
  • an object of the present invention is to provide a thermally activated mesoporous material, wherein the thermal activation treatment averaged on the mesoporous material is performed under an inert atmosphere at a temperature of 300-900 ° C. for a time of 3-48 hours.
  • Another object of the present invention is to provide a method for preparing a polyolefin catalyst component.
  • the method includes the following steps:
  • the thermally activated mesoporous material carrier (iia) is impregnated with a solution containing a magnesium component and then impregnated with a solution containing a titanium component,
  • the solution containing the titanium component is immersed and then the solution containing the magnesium component is immersed, or
  • the solution containing both the titanium component and the magnesium component is co-impregnated to obtain the slurry to be sprayed ;
  • step (iii) The slurry to be sprayed from step (ii) is spray dried to obtain a solid polyolefin catalyst component.
  • Still another object of the present invention is to provide a polyolefin catalyst component, which comprises a thermally activated mesoporous material carrier and a magnesium component, a titanium component, and an optional electron donor component supported on the carrier.
  • Still another object of the present invention is to provide a method for polymerizing olefins, the method comprising: a) polymerizing an olefin monomer to provide a polyolefin in the presence of a polyolefin catalyst component and a cocatalyst of the present invention under polymerization conditions; b) Recycle the polyolefin.
  • the catalytic activity of the olefin catalyst component, and the molecular weight distribution and melt index of the polyolefin product obtained when the polyolefin catalyst component is used in olefin polymerization are further improved, and the polyolefin powder product obtained is spherical and has a uniform particle size .
  • the method for preparing a polyolefin catalyst component of the present invention can directly obtain a spherical polyolefin catalyst component in one step by a spray drying method, and the operation is simple.
  • the obtained spherical polyolefin catalyst component has a stable particle structure, high strength and is not easily broken, and the particle size is easy to adjust, the particle size distribution is uniform, the particle size distribution curve is narrow, and the fluidity is good.
  • Example 1 is an XRD spectrum of the eggshell mesoporous material A1 of Example 1;
  • 2A is a graph of the pore size distribution of the eggshell mesoporous material A1 of Example 1;
  • 3A is a scanning electron micrograph (500K magnification) of the eggshell mesoporous material A1 of Example 1;
  • 3B is a scanning electron micrograph (3000K) of the eggshell mesoporous material A1 of Example 1;
  • Example 5 is an X-ray diffraction (XRD) spectrum of spherical mesoporous silica A6 of Example 6;
  • Example 6 is a scanning electron micrograph of spherical mesoporous silica A6 of Example 6;
  • Example 7 is a scanning electron micrograph of the polyolefin catalyst Cat-6 prepared in Example 6;
  • Example 9 is a scanning electron micrograph of the polyolefin catalyst component prepared in Example 11.
  • Example 10 is an X-ray diffraction pattern of the hexagonal mesoporous material carrier of Example 16;
  • 11A is a graph of nitrogen adsorption-desorption of the hexagonal mesoporous material carrier of Example 16;
  • Example 11B is a pore size distribution diagram of the hexagonal mesoporous material carrier of Example 16;
  • Example 12 is a transmission electron micrograph of the hexagonal mesoporous material carrier of Example 16;
  • Example 13 is a scanning electron micrograph of the hexagonal mesoporous material carrier of Example 16.
  • Example 14 is a scanning electron micrograph of the polyolefin catalyst prepared in Example 16.
  • mesoporous material refers to a type of porous material with a pore size between 2-50 nm. Mesoporous materials generally have extremely high specific surface area, regular ordered channel structure and narrow pore size distribution. The mesoporous material preferably has an average pore diameter of about 2 to about 30 nm, more preferably about 2 to about 20 nm.
  • polymerization as used herein includes homopolymerization and copolymerization.
  • polymer as used herein includes homopolymers, copolymers and terpolymers.
  • catalyst component refers to a main catalyst component or procatalyst, which together with a conventional cocatalyst such as an aluminum alkyl and an optional external electron donor constitute a catalyst for olefin polymerization.
  • halogen refers to fluorine, chlorine, bromine and iodine.
  • the average particle size of the material is measured using a laser particle size distribution analyzer, and the specific surface area, pore volume, and average pore size are measured according to the nitrogen adsorption method.
  • the particle size refers to the particle size of the particulate material, where the particle size is represented by the diameter of the sphere when the particle material is a sphere, and the side length of the cube when the particle material is a cube, When the particulate material has an irregular shape, the particle size is expressed by the mesh size of the sieve that is able to screen out the particulate material.
  • the present invention provides a thermally activated mesoporous material, wherein the thermal activation treatment of the mesoporous material is performed in an inert atmosphere at a temperature of 300-900 ° C for a time of 3-48h.
  • the thermally activated mesoporous material of the present invention is suitable for the preparation of olefin polymerization catalyst components to provide novel olefin polymerization catalyst components with desired properties.
  • the thermally activated mesoporous material of the present invention can be obtained by thermally activating the mesoporous material.
  • the mesoporous material is a mesoporous silica particulate material.
  • the mesoporous material before the thermal activation treatment is selected from the group consisting of:
  • a mesoporous material with a two-dimensional hexagonal channel structure which has an average pore size of 4-15 nm, a specific surface area of 550-650 m 2 / g, a pore volume of 0.5-1.5 mL / g, and an average particle size of 0.5-15 ⁇ m ;
  • An eggshell-like mesoporous material with a two-dimensional hexagonal channel structure which has a pore volume of 0.5-1.5 mL / g, a specific surface area of 100-500 m 2 / g, an average pore size of 5-15 nm, and a 3-20 ⁇ m The average particle size;
  • a hexagonal mesoporous material with a cubic cage-like channel structure the crystal structure of which has a cubic center Im3m structure, and the average pore diameter of the hexagonal mesoporous material carrier is 4-15 nm, and the specific surface area is 450-550 m 2 / g, The pore volume is 0.5-1.5 mL / g and the average particle size is 0.5-10 ⁇ m.
  • the mesoporous materials that can be used in the present invention before thermal activation are known in the art and can be prepared by methods known per se.
  • the mesoporous material can be prepared by a method including the following steps:
  • Examples of useful silicon sources include, but are not limited to, ethyl orthosilicate, methyl orthosilicate, propyl orthosilicate, sodium orthosilicate, and silica sol, more preferably methyl orthosilicate or ethyl orthosilicate .
  • the mesoporous material can be prepared by the method (1) including the following steps:
  • the template agent is mixed and contacted with trimethylpentane and tetramethoxysilane as a silicon source to obtain a solution A;
  • step (1c) filtering and drying the mixture obtained in step (1b) to obtain a raw powder of eggshell mesoporous material
  • the conditions of the mixed contact include: a temperature of 10-60 ° C., a time of 0.2-100 h, and a pH of 1-6.
  • the pH value can be formed, for example, by adding hydrochloric acid, or provided by using a suitable buffer system.
  • the mixing contact is performed under stirring conditions.
  • the solution conditions may be aqueous solution conditions.
  • a buffer solution of acetic acid and sodium acetate with a pH of 1-6 may be used to form the solution conditions, and alcoholic reagents (such as methanol, ethanol, n-propanol, Isopropanol, etc.).
  • the dosage ratio of the template agent, the trimethylpentane and the tetramethoxysilane is 1: (1.2-20): (0.1-15); more preferably 1: (2- 12): (0.5-10).
  • the selection of the template is preferably such that the obtained raw powder of eggshell-shaped mesoporous material has a two-dimensional hexagonal channel distribution structure.
  • the templating agent is a triblock copolymer polyoxyethylene-polyoxypropylene-polyoxyethylene, such as EO 20 PO 70 EO 20 (which can be purchased from Aldrich, under the trade name P123).
  • the templating agent is polyoxyethylene-polyoxypropylene-polyoxyethylene
  • the number of moles of the templating agent is calculated according to the average molecular weight of polyoxyethylene-polyoxypropylene-polyoxyethylene.
  • the crystallization conditions include: a temperature of 30-150 ° C and a time of 4-72h.
  • the crystallization is carried out by hydrothermal crystallization.
  • the filtering process may include: after filtering, repeatedly washing with deionized water (the washing number may be 2-10), and then performing suction filtration.
  • the drying may be performed in a drying cabinet.
  • the drying conditions may include: a temperature of 110-150 ° C and a time of 3-6h.
  • the method of performing the mixed contact includes: under solution conditions, firstly contacting the template agent with trimethylpentane; and then contacting the first After the contact, the resulting mixture is subjected to a second contact with tetramethoxysilane.
  • the conditions of the first contact include: a temperature of 10-60 ° C, a time of 0.1-20h, and a pH of 1-6.
  • the conditions of the second contact include: a temperature of 10-60 ° C, a time of 0.1-80h, and a pH of 1-6.
  • the process of removing the template agent includes: calcining the raw powder of the eggshell mesoporous material at 300-600 ° C; preferably, the calcined The time is 8-36h, preferably 8-20 hours.
  • the method of removing the template agent is an alcohol washing method.
  • the process of removing the template includes: washing the raw powder of the mesoporous material with alcohol at a temperature of 50-120 ° C, such as 70-120 ° C or 90-120 ° C, and the washing time is 10- 40h.
  • useful alcohols include but are not limited to ethanol, propanol, isopropanol, n-butanol, 2-butanol.
  • the mesoporous material can be prepared by the method (2) including the following steps:
  • step (2c) filtering and drying the mixture obtained in step (2b) to obtain a raw powder of mesoporous material having a cubic core structure
  • the type of the template is not particularly limited, as long as the obtained mesoporous material raw powder can have a cubic core structure.
  • the templating agent is a triblock copolymer polyoxyethylene-polyoxypropylene-polyoxyethylene, such as EO 106 PO 70 EO 106 (available from Aldrich, trade name F127, number average molecular weight Mn is 12600) .
  • the template agent is polyoxyethylene-polyoxypropylene-polyoxyethylene
  • the number of moles of the template agent is calculated according to the average molecular weight of polyoxyethylene-polyoxypropylene-polyoxyethylene.
  • the acid agent may be various acidic aqueous solutions conventionally used in the art, for example, it may be at least one aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, and hydrobromic acid, preferably an aqueous solution of hydrochloric acid.
  • the amount of the acid agent is not particularly limited, and can be varied within a wide range. It is preferable that the pH of the mixing contact should be 1-6.
  • the contact conditions include: a temperature of 10-60 ° C, preferably 25-60 ° C, a time of 25 min or more, and a pH of 1-6.
  • the mixing contact is performed under stirring conditions.
  • the amount of the templating agent and the silicon source can be varied within a wide range, for example, the molar ratio of the amount of the templating agent and the silicon source can be 1: 200-300; preferably 1: 225-275.
  • the silicon source may be various silicon sources conventionally used in the art, preferably the silicon source is ethyl orthosilicate, methyl orthosilicate, propyl orthosilicate, ortho At least one of sodium silicate and silica sol is more preferably methyl orthosilicate or ethyl orthosilicate.
  • the crystallization conditions may include: a temperature of 30-150 ° C and a time of 10-72h.
  • the crystallization conditions include: a temperature of 90-120 ° C and a time of 10-40h.
  • the crystallization is carried out by hydrothermal crystallization.
  • the mesoporous material can be prepared by the method (3) including the following steps:
  • the type of the templating agent is not particularly limited, as long as the obtained mesoporous material raw powder has a two-dimensional hexagonal channel structure.
  • the templating agent may be a triblock copolymer polyoxyethylene-polyoxypropylene-polyoxyethylene, such as EO 20 PO 70 EO 20 (available from Aldrich, under the trade name P123).
  • the templating agent is polyoxyethylene-polyoxypropylene-polyoxyethylene
  • the number of moles of the templating agent is calculated according to the average molecular weight of polyoxyethylene-polyoxypropylene-polyoxyethylene.
  • the acid agent may be various acidic aqueous solutions conventionally used in the art, for example, it may be at least one aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, and hydrobromic acid, preferably an aqueous solution of hydrochloric acid.
  • the amount of the acid agent is not particularly limited, and can vary within a wide range. It is preferable that the pH value of the mixing contact should be 1-6.
  • the conditions of the mixed contact include: a temperature of 25-60 ° C., a time of 25 min or more, and a pH of 1-6.
  • the mixing contact is performed under stirring conditions.
  • the amount of the templating agent and the silicon source can be varied within a wide range, for example, the molar ratio of the amount of the templating agent and the silicon source can be 1: 10-90; It is preferably 1: 50-75.
  • the silicon source may be various silicon sources conventionally used in the art, preferably the silicon source is ethyl orthosilicate, methyl orthosilicate, propyl orthosilicate, ortho At least one of sodium silicate and silica sol is more preferably methyl orthosilicate or ethyl orthosilicate.
  • the crystallization conditions include: a temperature of 90-180 ° C and a time of 10-40h.
  • the crystallization is carried out by hydrothermal crystallization.
  • the crystallization condition is further preferably a temperature of 130-180 ° C.
  • the mesoporous material can be prepared by the method (4) including the following steps:
  • the crystallization mixture is subjected to crystallization conditions to provide a mixture containing raw powder of hexagonal mesoporous material having a cubic center Im3m structure;
  • the silicon source may be various silicon sources conventionally used in the art, preferably the silicon source is ethyl orthosilicate, methyl orthosilicate, propyl orthosilicate, ortho At least one of sodium silicate and silica sol is more preferably methyl orthosilicate or ethyl orthosilicate.
  • the process of preparing the raw powder of hexagonal mesoporous material with cubic center Im3m structure may include: mixing and contacting the template agent, potassium sulfate, acid agent and silicon source such as ethyl orthosilicate , And the resulting mixture is crystallized, filtered and dried.
  • the order of the mixing and contacting is not particularly limited, and the template agent, potassium sulfate, acid agent and silicon source may be mixed at the same time, or any two or three types may be mixed, and then other components are added to mix uniformly.
  • the template, potassium sulfate and acid are mixed first, and then a silicon source such as ethyl orthosilicate is added and mixed evenly.
  • the amounts of the template agent, potassium sulfate and silicon source such as ethyl orthosilicate can be varied within a wide range, for example, the template agent, potassium sulfate and silicon source such as ethyl orthosilicate
  • the molar ratio of the amount used may be 1: 100-800: 20-200, preferably 1: 150-700: 80-180, more preferably 1: 200-400: 100-150.
  • the template agent may be various conventional template agents in the art.
  • the number of moles of polyoxyethylene-polyoxypropylene-polyoxyethylene is calculated based on the average molecular weight of polyoxyethylene-polyoxypropylene-polyoxyethylene.
  • the acid agent may be various acidic aqueous solutions conventionally used in the art, for example, may be at least one aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, and hydrobromic acid, preferably an aqueous solution of hydrochloric acid.
  • the amount of the acid agent is not particularly limited, and can be varied within a wide range.
  • the pH of the mixture is 1-7.
  • the conditions of the mixed contact are not particularly limited.
  • the conditions of the mixed contact may include: a temperature of 25-60 ° C., a time of 10-240 min, and a pH value of 1-7.
  • the mixing contact is performed under stirring conditions.
  • the conditions of the crystallization are not particularly limited.
  • the crystallization conditions may include: a temperature of 25-100 ° C, preferably 25-60 ° C, more preferably 30-55 ° C; a time of 10-72h, preferably 10-40h.
  • the crystallization is carried out by hydrothermal crystallization.
  • the mesoporous material before the mesoporous material is used in the preparation of the catalyst component, in order to remove the hydroxyl groups and residual moisture present on the surface of the mesoporous material, the mesoporous material needs to be thermally activated.
  • the conditions of the thermal activation treatment may include: calcining the mesoporous material at a temperature of 300-900 ° C for 3-48h, preferably 3-24h, more preferably 7-10h under an inert atmosphere such as nitrogen or argon atmosphere .
  • the thermally activated treated mesoporous material of the present invention may be further treated with chlorine-containing silane.
  • useful chlorine-containing silanes include, but are not limited to: dichlorodimethoxysilane, monochlorotrimethoxysilane, dichlorodiethoxysilane, and monochlorotriethoxysilane.
  • the chlorine-containing silane treatment can be completed by stirring or grinding the heat-activated mesoporous material and the chlorine-containing silane in the presence or absence of other media such as an inert solvent, and the treatment temperature can be 20 -150 ° C, preferably 30-120 ° C, more preferably 40-100 ° C.
  • the treatment with chlorine-containing silane can be performed simultaneously with the ball milling treatment described later. That is, before or during the ball milling process, the chlorine-containing silane is added to the thermally activated treated mesoporous material in the ball milling tank.
  • the mesoporous material treated with chlorine-containing silane of the present invention has a contact angle of at least 40 °, preferably 50-150 °, more preferably 60-140 °, still more preferably 70-130 °.
  • the present invention provides a method for preparing a polyolefin catalyst component, the method comprising the following steps:
  • thermo activation treatment of the mesoporous material is performed in an inert atmosphere at a temperature of 300-900 ° C for 3-48h, preferably 3-24h, more preferably 7-10h time;
  • the thermally activated mesoporous material (iia) is impregnated with a solution containing a magnesium component and then impregnated with a solution containing a titanium component, (iib) contains The solution of the titanium component is immersed and then immersed with the solution containing the magnesium component, or (iic) co-impregnated with the solution containing both the titanium component and the magnesium component to obtain the slurry to be sprayed, with
  • step (iii) The slurry to be sprayed from step (ii) is spray dried to obtain a solid polyolefin catalyst component.
  • the method further includes: prior to step (ii), treating the thermally activated treated mesoporous material with chlorosilane, and / or performing the thermally activated treated mesoporous material Ball milling.
  • the chlorine-containing silane is selected from the group consisting of dichlorodimethoxysilane, monochlorotrimethoxysilane, dichlorodiethoxysilane, and monochlorotriethoxysilane.
  • the treatment of the thermally activated mesoporous material with chlorine-containing silane is performed as follows: under an inert atmosphere, the thermally activated mesoporous material and the chlorine-containing silane are together in a ball mill In the ball mill.
  • the specific operation methods and conditions of the ball milling process are based on the channel structure that does not damage or substantially does not damage the mesoporous material.
  • the ball milling process may be performed in a ball mill.
  • the diameter of the grinding ball in the ball mill can be 2-80mm, or 2-50mm, or 2-30mm, or 2-20mm, or 3-15mm, such as 2-3mm or 3-5mm.
  • the balls in the ball mill can have the same or different diameters.
  • the grinding balls in the ball mill have different diameters, of which the large ball (the diameter is greater than two-thirds of (maximum diameter-minimum diameter)) and the medium ball (the diameter is between two-thirds of (maximum diameter-minimum diameter) And between one-third) and small balls (diameter less than one-third of (maximum diameter-minimum diameter)) can be roughly 1: 2: 3.
  • the number of grinding balls can be reasonably selected according to the size of the ball grinding jar. For example, a ball grinding jar with a size of 50-150 mL can usually use 20-80 grinding balls; the material of the grinding ball can be agate, PTFE, etc., Agate is preferred.
  • the conditions of the ball mill include: the rotation speed of the ball mill can be 100-800r / min, preferably 200-700r / min, more preferably 300-500r / min, the temperature in the ball mill can be 15-100 ° C, and the time of the ball mill can be It is 0.1-100 hours.
  • the conditions of the ball milling treatment are such that the average particle diameter of the mesoporous material obtained by ball milling is less than 10 ⁇ m, for example in the range of 0.05-5 ⁇ m, preferably in the range of 0.1-3 ⁇ m, more preferably in the range of 0.1-2 ⁇ m .
  • the solution containing the magnesium component and / or the titanium component may be a solution containing the magnesium component and / or the titanium component in an organic solvent
  • the organic solvent may be an electron donor solvent, for example, selected From at least one of aliphatic or aromatic carboxylic acid alkyl esters, aliphatic ethers and cyclic ethers, preferably C 1 -C 4 saturated aliphatic carboxylic acid C 1 -C 4 alkyl esters, C 7 -C 8 At least one of alkyl esters of aromatic carboxylic acids, C 2 -C 6 aliphatic ethers and C 3 -C 4 cyclic ethers; more preferably methyl formate, ethyl formate, methyl acetate, ethyl acetate, At least one of butyl acetate, diethyl ether, hexyl ether, and tetrahydrofuran (THF); further preferably tetrahydrofuran.
  • THF te
  • the magnesium component and / or titanium component supported by the mesoporous material may be impregnated, and the magnesium component and / or titanium component may enter the mesoporous cavity by virtue of the capillary pressure of the pore structure of the carrier In the pores of the material, the magnesium component and / or titanium component will also be adsorbed on the surface of the mesoporous material until the magnesium component and / or titanium component reaches the adsorption equilibrium on the surface of the mesoporous material.
  • the impregnation treatment may be co-impregnation treatment or step impregnation treatment. In order to save preparation costs and simplify the experimental process, the impregnation treatment is preferably co-impregnation treatment.
  • the conditions of the dipping treatment may include: the dipping temperature is 25-100 ° C, preferably 40-80 ° C; the dipping time is 0.1-5h, preferably 1-4h.
  • the amount of the mesoporous material, magnesium component and titanium component is preferably such that, in the prepared polyolefin catalyst component, based on the total weight of the polyolefin catalyst component, the The content is 20-90% by weight, preferably 30-70% by weight, and the content of the magnesium component in terms of magnesium element is 1-50% by weight, preferably 1-30% by weight, more preferably 2-25% by weight , Still more preferably 3-20% by weight, the content of the titanium component in terms of titanium element is 1-50% by weight, preferably 1-30% by weight, more preferably 1-10% by weight, still more preferably 1-5 wt%.
  • the sum of the contents of the magnesium component and the titanium component (in terms of elements) is preferably 10-30% by weight, based on the total weight of the polyolefin catalyst component.
  • the weight ratio of the amount of the mesoporous material and the solution containing the magnesium component and / or the titanium component may be 1: 50-150, preferably 1: 75-120.
  • the amounts of the magnesium component and the titanium component are such that in the prepared polyolefin catalyst component, the magnesium component is calculated as magnesium element and the titanium component is calculated as titanium element
  • the molar ratio is 0.5-50: 1, preferably 2-30: 1, and more preferably 5-18: 1.
  • the magnesium component may be a magnesium compound having the general formula Mg (OR 1 ) m X 2-m , wherein R 1 is a hydrocarbon group having 2 to 20 carbon atoms, for example, C 2 -C 10 alkane Radical, X is a halogen atom, 0 ⁇ m ⁇ 2.
  • the magnesium component may be at least one of diethoxy magnesium, dipropoxy magnesium, dibutoxy magnesium, dioctoxy magnesium, magnesium dichloride, and magnesium dibromide.
  • the titanium component may be a titanium compound having the general formula Ti (OR 2 ) n X 4-n , wherein R 2 is a hydrocarbon group having 1 to 20 carbon atoms, for example, C 1 -C 10 alkane Radical, X is a halogen atom, 0 ⁇ n ⁇ 4, and / or titanium trichloride.
  • the titanium component may be at least one of tetraethyl titanate, tetramethyl titanate, tetrabutyl titanate, tetraisopropyl titanate, titanium trichloride, and titanium tetrachloride.
  • a magnesium component precursor that can be converted to the above magnesium component during the preparation of the catalyst component can be used in place of the magnesium component, and / or a catalyst component that can be used during the preparation of the catalyst component can be used.
  • the titanium component precursor converted into the above-mentioned titanium component replaces the titanium component.
  • the concentration of the magnesium component and the titanium component in the solution containing the magnesium component and / or the titanium component is not particularly limited.
  • the concentration of the magnesium component and the titanium component may be conventionally selected in the art.
  • the concentration of the magnesium component may be 0.1-1 mol / L, and the concentration of the titanium component may be 0.01-0.2 mol / L.
  • the inert gas is a gas that does not react with the raw materials and products, and may be, for example, nitrogen or at least one of group zero element gases in the periodic table, preferably nitrogen.
  • the spray drying can be carried out according to conventional methods.
  • the spray drying method may be selected from at least one of a pressure spray drying method, a centrifugal spray drying method, and a gas flow spray drying method.
  • the spray drying uses an air-flow spray drying method.
  • the spray drying can be performed in an atomizer.
  • the spray drying conditions may include: under a protective atmosphere of nitrogen or argon, the temperature of the air inlet is 100-150 ° C, the temperature of the air outlet is 100-120 ° C, and the carrier gas flow rate is 10-50 L / s.
  • the spray drying conditions are such that the average particle size of the prepared polyolefin catalyst component is 0.5-50 ⁇ m, preferably 3-25 ⁇ m or 1-20 ⁇ m or 0.5-20 ⁇ m or 5-30 ⁇ m, and the particle size distribution value ((D90 -D10) / D50) is 0.7-2.0, preferably 0.8-1.8, for example 0.85-0.95 or 1.7-1.8 or 1.6-1.7.
  • the steps (ii)-(iii) are performed as follows: Under an inert atmosphere, in a reactor equipped with agitation, the electron donor solvent tetrahydrofuran (THF) is added to control the reactor The temperature is 25-40 ° C. Magnesium chloride and titanium tetrachloride are added quickly when the stirring is turned on, and the system temperature is adjusted to 60-75 ° C for a constant temperature reaction for 1-5 hours until the magnesium chloride and titanium tetrachloride are all dissolved, resulting in magnesium chloride And organic solutions of titanium tetrachloride.
  • THF electron donor solvent
  • Magnesium chloride and titanium tetrachloride are added quickly when the stirring is turned on, and the system temperature is adjusted to 60-75 ° C for a constant temperature reaction for 1-5 hours until the magnesium chloride and titanium tetrachloride are all dissolved, resulting in magnesium chloride And organic solutions of titanium tetrachloride.
  • the organic solution containing magnesium dichloride and titanium tetrachloride with the mesoporous material, and control the ratio between the components to be 0.5-50 moles of magnesium relative to 1 mole of titanium, preferably 1-10 moles, the amount of electron donor solvent tetrahydrofuran (THF) is 0.5-200 moles, preferably 20-200 moles, and the reactor temperature is controlled at 60-75 ° C, and the reaction is stirred for 0.1-5 hours to obtain a uniform concentration Of the slurry to be sprayed.
  • the mesoporous material should be added in an amount sufficient to form a slurry suitable for spray molding.
  • the obtained slurry to be sprayed is introduced into a spray dryer, and under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 100-150 ° C, the temperature of the air outlet is 100-120 ° C, and the carrier gas flow rate is 10-50L / s To obtain spherical particles with an average particle size of 0.5-50 ⁇ m, preferably 3-25 ⁇ m or 1-20 ⁇ m or 0.5-20 ⁇ m.
  • a method for preparing a polyolefin catalyst component includes the following steps:
  • the thermally activated mesoporous material is impregnated with a solution containing a magnesium component to obtain a slurry to be sprayed;
  • step (iii) spray drying the slurry to be sprayed from step (ii) to obtain a composite carrier containing magnesium components and mesoporous materials;
  • the titanium component is supported on the composite carrier by an impregnation method to provide a solid polyolefin catalyst component.
  • the polyolefin catalyst component prepared by the above method has spherical or spherical-like morphological characteristics, so it is sometimes conveniently referred to as a spherical catalyst component.
  • spherical catalyst component as used herein means that the catalyst component has a spherical or spherical-like particle morphology, but the catalyst component is not required to have a perfect spherical morphology.
  • the catalyst component of the present invention has a high magnesium component and titanium component loading and a reasonable pore structure. When the catalyst component of the present invention is used in the polymerization of olefin monomers, the polymerization activity is higher, the obtained polymer particles have a good morphology, a narrow molecular weight distribution, and excellent fluidity.
  • the present invention provides a mesoporous material-containing polyolefin catalyst component prepared by the foregoing method.
  • the polyolefin catalyst component of the present invention comprises a heat activated mesoporous material carrier and a magnesium component and a titanium component supported on the carrier.
  • the mesoporous material, its thermal activation treatment, ball milling treatment, and optional chlorine-containing silane treatment are as described above, and the magnesium component and titanium component are as described above.
  • the polyolefin catalyst component of the present invention may further contain an electron donor component.
  • the electron donor component is derived from the electron donor solvent present in the slurry to be sprayed.
  • the polyolefin catalyst component of the present invention comprises a thermally activated mesoporous material, magnesium, titanium, halogen, and electron donor.
  • the content of the mesoporous material carrier is 20-90% by weight, preferably 30-70% by weight; the magnesium component is based on magnesium element
  • the content is 1-50% by weight, preferably 1-30% by weight, more preferably 2-25% by weight, still more preferably 3-20% by weight, and the content of the titanium component in terms of titanium element is 1-50 % By weight, preferably 1-30% by weight, more preferably 1-10% by weight, still more preferably 1-5% by weight.
  • the molar ratio of the magnesium component (calculated as magnesium element) and the titanium component (calculated as titanium element) is 0.5-50: 1, preferably 5-18: 1.
  • the polyolefin catalyst component of the present invention comprises the eggshell-like mesoporous material carrier described above.
  • the eggshell-shaped mesoporous material carrier has a special cubic core crystal structure, the mesoporous channel structure is uniformly distributed, the pore size is suitable, the pore volume is large, the mechanical strength is good, and the structure stability is good, which is particularly beneficial to magnesium and titanium.
  • the good dispersion of the active components on the surface of the carrier makes the prepared polyolefin catalyst components have the advantages of supported catalysts such as good dispersion of metal active components, high loading, less side reactions, simple post-treatment, etc.
  • the strong catalytic activity ensures that the supported catalyst component made of the eggshell-shaped mesoporous material carrier as a carrier has better catalytic activity in the polymerization reaction of olefin monomers, and significantly improves the conversion rate of the reaction raw materials.
  • the present invention by controlling the structural parameters of the eggshell-shaped mesoporous material carrier within the above range, it can be ensured that the eggshell-shaped mesoporous material carrier is not prone to agglomeration, and it is used as a load made of the carrier
  • the type catalyst component can improve the conversion rate of the reaction raw materials during the olefin polymerization reaction.
  • the specific surface area of the eggshell-shaped mesoporous material carrier is less than 100 m 2 / g and / or the pore volume is less than 0.5 mL / g, the catalytic activity of the supported catalyst component made of it as a carrier will be significantly reduced;
  • the specific surface area of the eggshell-shaped mesoporous material carrier is greater than 500 m 2 / g and / or the pore volume is greater than 1.5 mL / g, the supported catalyst prepared by using it as a carrier is prone to agglomeration during olefin polymerization , Thereby affecting the conversion rate of olefin monomers in olefin polymerization.
  • the eggshell-shaped mesoporous material carrier has a pore volume of 0.5-1.2 mL / g, a specific surface area of 150-350 m 2 / g, an average pore diameter of 7-12 nm, and an average particle diameter before ball milling of 3-20 ⁇ m ,
  • the average particle diameter after ball milling is 0.05-5 ⁇ m, preferably 0.1-3 ⁇ m, more preferably 0.1-2, which can ensure that the eggshell-shaped mesoporous material carrier has a larger pore size, a larger pore volume, and a larger specific surface area
  • Advantages which is more conducive to the good dispersion of magnesium and / or titanium active components on the surface of the eggshell-shaped mesoporous material carrier, and thus can ensure that the polyolefin catalyst component prepared therefrom has excellent catalytic performance, and thus obtained
  • the olefin monomer conversion rate is high and the obtained polymer particles have good morphology, narrow molecular weight distribution, and excellent flowability.
  • the polyolefin catalyst has a pore volume of 0.5-1 mL / g, a specific surface area of 120-300 m 2 / g, an average pore size of 7-12 nm, an average particle size of 3-25 ⁇ m, and a particle size distribution value ((D90 -D10) / D50) is 0.85-0.95.
  • the polyolefin catalyst component of the present invention comprises a mesoporous material carrier having a cubic center crystal structure and a magnesium component and a titanium component supported on the carrier, wherein the average of the mesoporous material carrier
  • the particle size is 0.05-5 ⁇ m, preferably 0.1-3 ⁇ m, more preferably 0.1-2, the specific surface area is 700-900 m 2 / g, the pore volume is 0.5-1 mL / g, and the average pore size is 1-5 nm.
  • the mesoporous material carrier has a special cubic core crystal structure, its mesoporous channel structure is evenly distributed, the pore size is suitable, the pore volume is large, the mechanical strength is good, and it has good structural stability, which is particularly beneficial to magnesium and titanium active groups
  • the good dispersion on the surface of the carrier makes the prepared polyolefin catalyst component have the advantages of supported catalyst components such as good dispersion of metal active components, high loading, less side reactions, simple post-treatment, etc.
  • the strong catalytic activity ensures that the prepared supported catalyst component has better catalytic activity in the polymerization reaction of olefin monomers, and significantly improves the conversion rate of the reaction raw materials.
  • the type catalyst component can improve the conversion rate of the reaction raw materials during the olefin polymerization reaction.
  • the specific surface area of the mesoporous material carrier is less than 700 m 2 / g and / or the pore volume is less than 0.5 mL / g, the catalytic activity of the supported catalyst component made of it as a carrier will be significantly reduced; when the When the specific surface area of the mesoporous material carrier is greater than 900 m 2 / g and / or the pore volume is greater than 1 mL / g, the supported catalyst component made of it as a carrier is likely to agglomerate during the olefin polymerization reaction, thereby affecting the olefin polymerization Conversion rate of olefin monomer in the reaction.
  • the mesoporous material carrier has an average particle size before ball milling of 3-9 ⁇ m, an average particle size after ball milling of 0.05-5 ⁇ m, preferably 0.1-3 ⁇ m, more preferably 0.1-2, and a specific surface area of 750-850 m 2 / g, the pore volume is 0.6-0.8mL / g, and the average pore size is 1.5-4.5nm, which can ensure that the mesoporous material carrier has the advantages of larger pore size, larger pore volume, and larger specific surface area, which is more conducive to
  • the active components of magnesium and titanium are well dispersed on the surface of the mesoporous material carrier, which in turn can ensure that the polyolefin catalyst component prepared therefrom has excellent catalytic performance, and thereby obtains a high conversion rate of olefin monomers and the resulting polymer Good particle morphology, narrow molecular weight distribution, excellent fluidity and other beneficial effects.
  • the average particle size of the polyolefin catalyst component is 3-25 ⁇ m
  • the specific surface area is 700-800 m 2 / g
  • the pore volume is 0.5-0.8 mL / g
  • the average pore size is 1.5-4.5 nm
  • the particle size distribution The value is 0.85-0.95.
  • the polyolefin catalyst component of the present invention comprises a mesoporous material carrier having a two-dimensional hexagonal channel structure and a magnesium component and a titanium component supported on the carrier, the average of the mesoporous material carrier
  • the pore diameter is 4-15 nm
  • the specific surface area is 550-650 m 2 / g
  • the pore volume is 0.5-1.5 mL / g
  • the average particle diameter is 0.05-5 ⁇ m, preferably 0.1-3 ⁇ m, more preferably 0.1-2.
  • the mesoporous material carrier has a special two-dimensional hexagonal channel structure, which is a good long-range ordered structure, the mesoporous material shows high strength under a wide temperature range and a large strain state .
  • the unique two-dimensional hexagonal channel structure of the mesoporous material combined with its narrow pore size distribution and uniform pore distribution, is conducive to the good dispersion of metal components on the surface of the carrier, so that the prepared polyolefin catalyst component has both
  • the advantages of supported catalysts such as good dispersion of magnesium and titanium active components, high loading, less side reactions, simple post-treatment, etc., and strong catalytic activity and higher stability, ensure that the supported catalyst The component has better catalytic activity when used in the polymerization reaction of olefin monomers, and significantly improves the conversion rate of the reaction raw materials.
  • the catalyst component can improve the conversion rate of the reaction raw materials during the olefin polymerization reaction.
  • the specific surface area of the mesoporous material is less than 550 m 2 / g and / or the pore volume is less than 0.5 mL / g, the catalytic activity of the supported catalyst component made of it as a carrier will be significantly reduced;
  • the specific surface area of the pore material is greater than 650 m 2 / g and / or the pore volume is greater than 1.5 mL / g, the supported catalyst component made of it as a carrier is likely to agglomerate during the olefin polymerization reaction, thereby affecting the olefin polymerization reaction Conversion rate of medium olefin monomers.
  • the average pore diameter of the mesoporous material is 4-12 nm, such as 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, and 12 nm, and any average pore diameter between the range composed of any two average pore diameters ,
  • the specific surface area is 580-620m 2 / g
  • the pore volume is 0.5-1mL / g
  • the average particle size before ball milling is 0.8-10 ⁇ m
  • the average pore diameter after ball milling is 0.05-5 ⁇ m, preferably 0.1-3 ⁇ m, more preferably 0.1-2, which can ensure that the mesoporous material has the advantages of larger pore size, larger pore volume, and larger specific surface area, which is more conducive to the good dispersion of magnesium and titanium active components on the surface of the mesoporous material, and It can ensure that the polyolefin catalyst component prepared therefrom has excellent catalytic performance,
  • the average pore size of the polyolefin catalyst component is 4-15 nm
  • the specific surface area is 520-600 m 2 / g
  • the pore volume is 0.6-1.4 mL / g
  • the average particle size is 1-20 ⁇ m
  • the particle size distribution value It is 1.7-1.8.
  • the polyolefin catalyst component of the present invention comprises a hexagonal mesoporous material carrier having a cubic cage structure and a magnesium component and a titanium component supported on the carrier, wherein the hexagonal mesoporous material
  • the crystal structure has a cubic center Im3m structure, the average pore size of the hexagonal mesoporous material is 4-15nm, the specific surface area is 450-550m 2 / g, the pore volume is 0.5-1.5mL / g, and the average particle size is 0.05- 5 ⁇ m, preferably 0.1-3 ⁇ m, more preferably 0.1-2 ⁇ m.
  • the hexagonal mesoporous material carrier has a special Im3m cubic core crystal structure, which is a non-closest packing method. This good long-range ordered structure makes the hexagonal mesoporous material in a wide temperature range and a large All strains show high strength.
  • the unique pore structure of the hexagonal mesoporous material is conducive to the good dispersion of magnesium and titanium active components on the surface of the carrier, making the prepared polyolefin catalyst component both
  • the advantages of supported catalysts such as good dispersion of metal active components, high loading, less side reactions, simple post-treatment, etc., it also has strong catalytic activity and high stability, ensuring that the supported catalyst group It is used in the polymerization reaction of olefin monomer to have better catalytic activity and significantly improve the conversion rate of the reaction raw materials.
  • the present invention by controlling the structural parameters of the hexagonal mesoporous material within the above range, it can be ensured that the hexagonal mesoporous material is not likely to agglomerate, and the supported catalyst component made of the hexagonal mesoporous material can be improved Conversion rate of reaction raw materials during olefin polymerization.
  • the specific surface area of the hexagonal mesoporous material is less than 450 m 2 / g and / or the pore volume is less than 0.5 mL / g, the catalytic activity of the supported catalyst component made of it as a carrier will be significantly reduced; when the When the specific surface area of the hexagonal mesoporous material is greater than 550m 2 / g and / or the pore volume is greater than 1.5mL / g, the supported catalyst component made of it as a carrier is likely to agglomerate during the olefin polymerization reaction, which affects the olefin Conversion rate of olefin monomer in polymerization.
  • the average pore diameter of the hexagonal mesoporous material is 4-12 nm, such as 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, and 12 nm, and any average between the ranges composed of any two average pore diameters Pore diameter, specific surface area is 480-520m 2 / g, pore volume is 0.5-1mL / g, the average particle diameter before ball milling is 0.8-8 ⁇ m, the average pore diameter after ball milling is 0.05-5 ⁇ m, preferably 0.1-3 ⁇ m, more It is preferably 0.1-2, which can ensure that the hexagonal mesoporous material has the advantages of larger pore size, larger pore volume, and larger specific surface area, which is more conducive to the active components of magnesium and titanium on the surface of the hexagonal mesoporous material Dispersion, which can ensure that the polyolefin catalyst component prepared therefrom has excellent catalytic
  • the average pore diameter of the polyolefin catalyst component is 4-15 nm
  • the specific surface area is 450-500 m 2 / g
  • the pore volume is 0.5-1 mL / g
  • the average particle diameter is 0.5-20 ⁇ m, preferably 0.8-15 ⁇ m
  • the particle size distribution value is 1.6-1.7.
  • the mesoporous material provides a considerable effective specific surface area so that the catalyst component prepared therefrom can have a greater proportion of effective catalysis Active center, thus showing high catalytic activity.
  • the mesoporous material has a suitable hardness, so it can be easily ground to a desired particle size to be used as a filler in the slurry to be spray dried.
  • the chlorine-containing silane treatment described in the present invention can change the surface properties of the mesoporous material, making the treated mesoporous material less likely to agglomerate and settle in the slurry to be spray-dried, thereby improving the The stability and operability of the slurry to be spray-dried made of the treated mesoporous material.
  • the present invention provides an olefin polymerization method, the method comprising: a) polymerizing an olefin monomer to provide a polyolefin in the presence of a polyolefin catalyst component and a cocatalyst of the present invention under polymerization conditions; And b) recover the polyolefin.
  • the reaction of the polyolefin catalyst component of the present invention for the polymerization of olefin monomers to prepare polyolefins includes homopolymerization of ethylene or copolymerization of ethylene with other ⁇ -olefins, where the ⁇ -olefins may be selected from propylene, 1-butene, At least one of 1-hexene, 1-octene, 1-pentene, 4-methyl-1-pentene.
  • the reaction conditions of the polymerization reaction are not particularly limited, and may be conventional olefin polymerization reaction conditions in the art.
  • the reaction may be carried out under an inert atmosphere, and the conditions of the polymerization reaction may include: a temperature of 10-100 ° C., a time of 0.5-5 h, and a pressure of 0.1-2 MPa; preferably, the conditions of the polymerization reaction may be Including: the temperature is 20-95 ° C, the time is 1-4h, and the pressure is 0.5-1.5MPa; further preferably, the temperature is 70-85 ° C, the time is 1-2h, and the pressure is 1-1.5MPa.
  • the pressure in the present invention refers to gauge pressure.
  • the polymerization reaction can be carried out in the presence of a solvent.
  • the solvent that can be used in the polymerization reaction is not particularly limited, and it may be hexane, for example.
  • the supported polyolefin catalyst component may be a supported polyethylene catalyst component, and the polymerization reaction is an ethylene polymerization reaction.
  • the method for polymerizing ethylene includes: polymerizing ethylene under the conditions of ethylene polymerization and in the presence of a catalyst and a cocatalyst; preferably, the cocatalyst is an alkyl aluminum compound.
  • the co-catalyst that can be used in the method of the present invention may be any co-catalyst commonly used in the art.
  • the promoter may be an aluminum alkyl compound represented by Formula I:
  • R may each be C 1 -C 8 , preferably C 1 -C 5 alkyl;
  • X may each be one of halogen atoms, preferably a chlorine atom;
  • n is 1, 2 or 3.
  • the C 1 -C 8 alkyl group may be methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, iso One or more of pentyl, tert-amyl, n-hexyl, n-octyl, 2-ethylhexyl and neopentyl.
  • the aluminum alkyl compound include but are not limited to: trimethyl aluminum, dimethyl aluminum chloride, triethyl aluminum, diethyl aluminum chloride, tri-n-propyl aluminum, di-n-propyl chloride Aluminum, tri-n-butyl aluminum, tri-sec-butyl aluminum, tri-tert-butyl aluminum, di-n-butyl aluminum chloride and diisobutyl aluminum chloride. Most preferably, the alkyl aluminum compound is triethyl aluminum.
  • the amount of the aluminum alkyl compound may also be a conventional choice in the art. Generally, the molar ratio of the catalyst component to the amount of the aluminum alkyl compound may be 1: 20-300.
  • the method for olefin polymerization may further include, after the polymerization reaction is completed, separating the final reaction mixture, thereby preparing polyolefin particle powder.
  • the triblock copolymer polyoxyethylene-polyoxypropylene-polyoxyethylene F127 was purchased from Aldrich, abbreviated as F127, the molecular formula is EO 106 PO 70 EO 106 , and the average molecular weight Mn is 12,600;
  • Triblock copolymer polyoxyethylene-polyoxypropylene-polyoxyethylene P123 was purchased from Aldrich Corporation, abbreviated as P123, molecular formula is EO 20 PO 70 EO 20 , the substance of the American Chemical Abstracts Registration Number 9003-11-6 , The average molecular weight Mn is 5800;
  • X-ray diffraction analysis was performed on an X-ray diffractometer model D8 Advance purchased from Bruker, AXS, Germany; scanning electron microscope analysis was performed on a scanning electron model XL-30 purchased from FEI, USA Performed on a microscope; the pore structure parameter analysis was carried out on an ASAP2020-M + C adsorption instrument purchased from the US Micromeritics company.
  • the specific surface area and pore volume of the sample were calculated using the BET method; the particle size distribution SPAN value of the sample was in the Malvin laser The particle size analyzer (Malvin UK) was used; the rotary evaporator was produced by the German IKA company and the model was RV10 digital; the content of each component of the polyolefin catalyst component was purchased at the wavelength of Axios-Advanced purchased from Panac Co. It was measured on a dispersive X-ray fluorescence spectrometer; spray drying was carried out on a B-290 spray dryer manufactured by Buchi, Switzerland.
  • the molecular weight distribution index (Mw / Mn) of polyolefin powder is measured by the method of PL-GPC220 gel permeation chromatograph produced by British Polymer Laboratories Ltd. according to ASTM D6474-99.
  • the melt index of polyolefin is determined by the method specified in ASTM D1238-99.
  • the particle size of the particulate material is measured using a scanning electron microscope.
  • This example is used to illustrate the polyolefin catalyst component and its preparation method.
  • the raw powder of eggshell mesoporous material is calcined in a muffle furnace at 550 ° C for 24 hours to remove the template agent to obtain a template-removed eggshell mesoporous material A1 with a particle size between 3 and 22 ⁇ m ; Then the eggshell mesoporous material A1 from which the template is removed is calcined at 400 ° C for 10h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl group and residual moisture of the eggshell mesoporous material A1, to obtain Heat activated eggshell mesoporous material B1.
  • the solution was cooled to 50 ° C, 6g of eggshell mesoporous material carrier C1 was added to the solution containing magnesium dichloride and titanium tetrachloride, and stirred for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed was introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer was controlled to 140 ° C., the temperature of the air outlet was 105 ° C., the carrier gas flow rate was 30 L / s, and spray drying was performed. Polyolefin catalyst component Cat-1 was obtained.
  • the eggshell mesoporous material A1 and polyolefin catalyst Cat-1 were characterized by XRD, scanning electron microscope, particle size analyzer and ASAP2020-M + C nitrogen adsorption instrument.
  • the magnesium content was 11.17% by weight and the titanium content was 2.55% by weight in terms of elements.
  • Figure 1 is the XRD spectrum of eggshell mesoporous material A1. It can be seen from the small-angle spectrum peaks appearing in the XRD spectrum that the XRD spectrum of the eggshell-shaped mesoporous carrier material A1 has a 2D hexagonal channel structure unique to the mesoporous material.
  • FIG. 2A is a graph of the pore size distribution of eggshell mesoporous material A1
  • FIG. 2B is a nitrogen adsorption / desorption isotherm of eggshell mesoporous material A1.
  • the eggshell mesoporous material A1 has a sharp type IV isotherm with a capillary condensation rate, and the isotherm has an H1 hysteresis loop, which This indicates that the sample has a uniform pore size distribution.
  • 3A and 3B are scanning electron micrographs (SEM) of eggshell mesoporous material A1 (magnifications are 500K and 3000K, respectively). It can be seen from the figure that the particle size of the sample is between 3-22 ⁇ m.
  • Figure 3 is an SEM scanning electron micrograph of the polyolefin catalyst component Cat-1. It can be seen from the figure that the microscopic morphology of the polyolefin catalyst component Cat-1 is spherical, and the particle size is in the order of microns, roughly in the range of 3-25 ⁇ m.
  • Table 1 shows the pore structure parameters of eggshell mesoporous material A1 and polyolefin catalyst Cat-1.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the solution was transferred to a polytetrafluoroethylene-lined reactor, crystallized at 100 ° C for 10h, and then filtered, washed, and dried to obtain raw eggshell mesoporous material powder.
  • the raw eggshell mesoporous material powder was calcined in a muffle furnace at 600 ° C for 8 hours to remove the template agent, to obtain a template-removed eggshell mesoporous material A2 with a particle size in the range of 3-12.5 ⁇ m .
  • the eggshell mesoporous material A2 from which the template agent has been removed is calcined at 500 ° C for 10 hours under the protection of nitrogen for thermal activation treatment, and the hydroxyl group and residual moisture of the eggshell mesoporous material A2 are removed to obtain heat.
  • the solution was cooled to 50 ° C, 3 g of eggshell mesoporous material carrier C2 was added to the solution containing magnesium dichloride and titanium tetrachloride, and the mixture was stirred and reacted for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 150 ° C, the temperature of the air outlet is 110 ° C, the flow rate of the carrier gas is 40L / s, and spray drying is performed. Polyolefin catalyst component Cat-2 was obtained.
  • the eggshell-shaped mesoporous material A2 and polyolefin catalyst Cat-2 were characterized by XRD, scanning electron microscope, particle size analyzer and ASAP2020-M + C nitrogen adsorption instrument.
  • the magnesium content is 15.39% by weight and the titanium content is 3.12% by weight in terms of elements.
  • Table 2 shows the pore structure parameters of eggshell mesoporous material A2 and polyolefin catalyst component Cat-2.
  • This example is used to illustrate the polyolefin catalyst of the present invention and its preparation method.
  • the solution was transferred to a polytetrafluoroethylene-lined reactor, crystallized at 40 ° C for 40h, and then filtered, washed, and dried to obtain the raw powder of eggshell mesoporous material.
  • the raw eggshell mesoporous material powder was calcined in a muffle furnace at 450 ° C for 36 hours to remove the template agent, to obtain a template-removed eggshell mesoporous material A3 with a particle size in the range of 5-16.2 ⁇ m .
  • the eggshell mesoporous material A3 from which the template was removed was calcined at 700 ° C for 8 hours under the protection of nitrogen for thermal activation treatment, and the hydroxyl group and residual moisture of the eggshell mesoporous material A3 were removed to obtain Heat activated eggshell mesoporous material B3.
  • the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 135 ° C, the temperature of the air outlet is 105 ° C, the flow rate of the carrier gas is 30L / s, and spray drying is performed to obtain Polyolefin catalyst component Cat-3.
  • the eggshell-shaped mesoporous material A3 and polyolefin catalyst component Cat-3 were characterized by XRD, scanning electron microscope, particle size analyzer and ASAP2020-M + C nitrogen adsorption instrument.
  • the magnesium content is 12.76% by weight and the titanium content is 2.85% by weight in terms of elements.
  • Table 3 shows the pore structure parameters of eggshell mesoporous material A3 and polyolefin catalyst component component Cat-3.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the polyolefin catalyst component Cat-4 was prepared according to the method of Example 2, except that 6.87 g diethoxy magnesium was used instead of 5.3 g magnesium dichloride as the magnesium component, and 1.4 g titanium trichloride was used instead of 1 mL of tetrachloride Titanium is used as the titanium component.
  • the eggshell mesoporous material A4 and polyolefin catalyst component Cat-4 were characterized by XRD, scanning electron microscope and nitrogen adsorption instrument.
  • the content of magnesium element is 21.43% by weight, and the content of titanium element is 1.22% by weight.
  • Table 4 shows the pore structure parameters of eggshell mesoporous material A4 and polyolefin catalyst component Cat-4.
  • This embodiment is used to illustrate the polyolefin catalyst component of the present invention and the preparation method thereof, in which the mesoporous material is treated with chlorine-containing silane.
  • the heat-activated eggshell mesoporous material B1 was milled according to the procedure described in Example 1, except that together with the eggshell mesoporous material B1, 1 g of dichlorodimethoxysilane was added to the 100 ml ball mill In the tank, a silane-modified, ball-milled eggshell mesoporous material carrier C5 is obtained.
  • the samples were characterized by contact angle and RDAX energy spectrum analysis. The characterization result is that the contact of the untreated mesoporous material sample is 20 °, and the contact angle of the mesoporous material after ball milling is 100 °.
  • the energy spectrum analysis shows that the untreated sample contains only Si and O, while the modified mesoporous material sample contains C, Cl, Si and O.
  • This comparative example is used to illustrate the reference polyolefin catalyst component and its preparation method.
  • silica gel Commercially available silica gel (Cabot Corporation's TS610 product, particle size 0.02-0.1 ⁇ m) was used as the carrier D1.
  • the silica gel carrier D1 was calcined under nitrogen protection at 400 ° C for 10 hours to remove hydroxyl groups and residual moisture, thereby obtaining a thermally activated silica gel carrier E1.
  • the polyolefin catalyst component was prepared according to the method described in Example 1, except that the same weight of the above activated silica gel carrier E1 was used instead of the eggshell mesoporous material carrier C1, thereby preparing a comparative catalyst component Cat-D -1.
  • the magnesium content was 15.3% by weight and the titanium content was 2.5% by weight in terms of elements.
  • This comparative example is used to illustrate the reference polyolefin catalyst component and its preparation method.
  • a polyolefin catalyst component was prepared according to the method described in Example 1, except that the same weight of alumina carrier was used instead of eggshell-like mesoporous material carrier C1, thereby preparing carrier D2 and polyolefin catalyst component Cat- D-2.
  • the magnesium content is 14.6% by weight and the titanium content is 1.8% by weight in terms of elements.
  • This comparative example is used to illustrate the reference polyolefin catalyst component and its preparation method.
  • the polyolefin catalyst was prepared according to the method described in Example 1, except that ball milling treatment and spray drying were not used, but directly filtered after impregnation treatment, washed with n-hexane 4 times, and dried at 75 ° C to prepare Polyolefin catalyst component Cat-D-3 was obtained.
  • the magnesium content is 11.14% by weight and the titanium content is 1.12% by weight in terms of elements.
  • This example is used to explain the method for preparing polyethylene by polymerizing ethylene using the polyolefin catalyst component of the present invention.
  • the polymerization of ethylene was used to prepare polyethylene according to the method described in Experimental Example 1, except that the polyolefin catalyst components Cat-2 to Cat-5 were used instead of the polyolefin catalyst component Cat-1.
  • the molecular weight distribution index, melt index MI 2.16 of the obtained polyethylene particle powder and the efficiency of the catalyst are listed in Table 5.
  • the polymerization of ethylene was used to prepare polyethylene according to the method described in Experimental Example 1, except that the polyolefin catalyst components Cat-D-1 to Cat-D-3 were used instead of the polyolefin catalyst component Cat-1.
  • the molecular weight distribution index, melt index MI 2.16 of the obtained polyethylene particle powder and the efficiency of the catalyst are listed in Table 5.
  • the polyolefin catalyst component prepared by using the eggshell-shaped mesoporous material carrier supporting the titanium component and the magnesium component has high catalytic activity, a large melt index of the polymer powder, and polymerization
  • the powder has a narrow molecular weight distribution.
  • the polymer particles obtained by the catalyst component of the present invention when used for catalyzing the polymerization of ethylene have good morphology and excellent fluidity.
  • the spherical polyolefin catalyst component can be directly obtained in one step by the spray drying method, and the operation is simple.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the mesoporous material raw powder with a cubic core structure is calcined in a muffle furnace at 400 ° C for 10 hours to remove the template agent, and a template-removed spherical mesoporous dioxide with a particle size in the range of 3-9 ⁇ m is obtained Silicon A6.
  • the spherical mesoporous silica A6 from which the template agent has been removed is calcined at 400 ° C for 10 h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl groups and residual moisture on the surface of the spherical mesoporous silica A6
  • thermally activated spherical mesoporous silica B6 To obtain thermally activated spherical mesoporous silica B6.
  • the solution was cooled to 50 ° C, 6 g of spherical mesoporous silica carrier C6 was added to the solution containing magnesium dichloride and titanium tetrachloride, and the reaction was stirred for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed was introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer was controlled to 140 ° C., the temperature of the air outlet was 105 ° C., the carrier gas flow rate was 30 L / s, and spray drying was performed. Polyolefin catalyst component Cat-6 was obtained.
  • the spherical mesoporous silica A6 and polyolefin catalyst component Cat-6 were characterized by XRD, scanning electron microscope, particle size analyzer and ASAP2020-M + C nitrogen adsorption instrument.
  • the magnesium content was 12.54% by weight and the titanium content was 2.95% by weight in terms of elements.
  • Fig. 5 is an X-ray diffraction (XRD) spectrum of spherical mesoporous silica A6, in which the abscissa is 2 ⁇ and the ordinate is intensity. It can be seen from the small angle peaks appearing in the XRD spectrum that the spherical mesoporous silica A6 has a cubic core channel structure unique to the mesoporous material SBA-16.
  • XRD X-ray diffraction
  • spherical mesoporous silica A6 is a SEM scanning electron micrograph of spherical mesoporous silica A6. It can be seen from the figure that the spherical mesoporous silica A6 is microspheres with a particle size of 3-9 ⁇ m, and its monodispersity is better.
  • Figure 7 is a scanning electron micrograph of the polyolefin catalyst component Cat-6. It can be seen from the figure that the polyolefin catalyst component Cat-6 is spherical and the particle size is in the order of micrometers.
  • Table 6 shows the pore structure parameters of spherical mesoporous silica A6 and polyolefin catalyst component Cat-6.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • template agent F127 2g was added to a solution containing 37% by weight of hydrochloric acid (2.9g) and water (56g), and stirred at 40 ° C until F127 was completely dissolved; then 9.09g (0.044mol) of ethyl orthosilicate was added to The above solution was stirred at 60 ° C for 20h. Then, the obtained solution was transferred to a polytetrafluoroethylene-lined reactor, crystallized at 120 ° C for 20 h, followed by filtration and washing with deionized water 4 times, followed by suction filtration and drying to obtain a cubic core The original powder of the mesoporous material of the structure.
  • the mesoporous material raw powder having a cubic core structure is calcined in a muffle furnace at 500 ° C for 15 hours to remove the template agent, and a template-removing spherical mesoporous silica A7 with a particle size of 4-8 ⁇ m is obtained . Then, the spherical mesoporous silica A7 from which the template agent has been removed is calcined at 500 ° C. for 10 h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl groups and residual moisture on the surface of the spherical mesoporous silica A7, The thermally activated spherical mesoporous silica B7 was obtained.
  • the solution was cooled to 50 ° C, 3 g of spherical mesoporous silica carrier C7 was added to the solution containing magnesium dichloride and titanium tetrachloride, and stirred for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 150 ° C, the temperature of the air outlet is 110 ° C, the flow rate of the carrier gas is 40L / s, and spray drying is performed. Polyolefin catalyst component Cat-7 was obtained.
  • the spherical mesoporous silica A7 and polyolefin catalyst Cat-7 were characterized by XRD, scanning electron microscope, particle size analyzer and ASAP2020-M + C nitrogen adsorption instrument.
  • the magnesium content is 18.73% by weight and the titanium content is 4.47% by weight in terms of elements.
  • Table 7 shows the pore structure parameters of spherical mesoporous silica A7 and polyolefin catalyst component Cat-7.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the mesoporous material raw powder having a cubic core structure is calcined in a muffle furnace at 500 ° C for 15 hours to remove the template agent, and the template agent-removing spherical mesoporous silica with a particle size of 3.5-8.5 ⁇ m is obtained A8. Then, the spherical mesoporous silica A8 from which the template was removed was calcined at 700 ° C for 8 hours under the protection of nitrogen for thermal activation treatment to remove the hydroxyl groups and residual moisture on the surface of the spherical mesoporous silica A8. The thermally activated spherical mesoporous silica B8 was obtained.
  • spherical mesoporous silica carrier C8 was added to the solution containing magnesium dichloride and titanium tetrachloride, and the reaction was stirred for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 135 ° C, the temperature of the air outlet is 105 ° C, the flow rate of the carrier gas is 30L / s, and spray drying is performed to obtain Polyolefin catalyst component Cat-8.
  • the spherical mesoporous silica A8 and polyolefin catalyst component Cat-8 were characterized by XRD, scanning electron microscope, particle size analyzer and ASAP2020-M + C nitrogen adsorption instrument.
  • the magnesium content is 13.09% by weight and the titanium content is 3.60% by weight in terms of elements.
  • Table 8 shows the pore structure parameters of spherical mesoporous silica A8 and polyolefin catalyst component Cat-8.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the polyolefin catalyst component Cat-9 was prepared according to the method described in Example 7, except that 6.87 g diethoxy magnesium was used instead of 5.3 g magnesium dichloride as the magnesium component, and 1.4 g titanium trichloride was used instead of 1 mL of Titanium chloride is used as the titanium component.
  • the spherical mesoporous silica A9 and polyolefin catalyst Cat-9 were characterized by XRD, scanning electron microscope and nitrogen adsorption.
  • the magnesium content is 22.32% by weight and the titanium content is 1.25% by weight in terms of elements.
  • Table 9 shows the pore structure parameters of spherical mesoporous silica A9 and polyolefin catalyst component Cat-9.
  • This embodiment is used to illustrate the polyolefin catalyst component of the present invention and its preparation method, in which the mesoporous material carrier is modified with chlorine-containing silane.
  • thermoly activated spherical mesoporous silica material B10 is given.
  • the ball milling treatment of the thermally activated mesoporous material B10 was carried out according to the procedure described in Example 6, except that together with the mesoporous material B10, 1 g of dichlorodimethoxysilane was added to the 100 ml ball mill jar to obtain a silane modification A spherical, ball-milled spherical mesoporous silica material carrier C10.
  • the samples were characterized by contact angle and RDAX energy spectrum analysis. The characterization result is that the contact of the untreated mesoporous material sample is 21 °, and the contact angle of the mesoporous material after ball milling is 102 °.
  • the energy spectrum analysis shows that the untreated sample contains only Si and O, while the modified mesoporous material sample contains C, Cl, Si and O.
  • This comparative example is used to illustrate the reference polyolefin catalyst component and its preparation method.
  • the polyolefin catalyst component was prepared according to the method of Example 6, except that instead of spray drying and ball milling treatment, it was directly filtered after the impregnation treatment, washed with n-hexane 4 times, and dried at 75 ° C to prepare Polyolefin catalyst component Cat-D-4 was obtained.
  • the magnesium content was 11.2% by weight and the titanium content was 1.3% by weight in terms of elements.
  • This example is used to explain the method for preparing polyethylene by using the polyolefin catalyst component of the present invention to polymerize ethylene
  • the polymerization of ethylene was used to prepare polyethylene according to the method described in Experimental Example 6, except that the polyolefin catalyst components Cat-7 to Cat-10 were used instead of the polyolefin catalyst component Cat-6, respectively.
  • the molecular weight distribution, melt index MI 2.16 and catalyst efficiency of the obtained polyethylene particle powder are shown in Table 10.
  • the polymerization of ethylene was used to prepare polyethylene according to the method described in Experimental Example 6, except that the polyolefin catalyst component Cat-D-4 was used instead of the polyolefin catalyst Cat-6.
  • the molecular weight distribution, melt index MI 2.16 and catalyst efficiency of the obtained polyethylene particle powder are shown in Table 10.
  • the polyolefin catalyst component prepared by using the spherical mesoporous silica carrier supporting the titanium component and the magnesium component has high catalytic activity, and the polymer powder has a large melt index.
  • the molecular weight distribution of the material is narrow.
  • the polymer component of the catalyst component of the present invention used to catalyze the polymerization of ethylene has good morphology and excellent fluidity.
  • the spherical polyolefin catalyst component can be directly obtained in one step by the spray drying method, and the operation is simple.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the original powder of the mesoporous material was washed with ethanol under reflux conditions for 24 hours to remove the template agent to obtain a mesoporous molecular sieve A11. Then, the product from which the template agent is removed is calcined at 400 ° C. for 10 h under the protection of nitrogen for thermal activation treatment to remove hydroxyl groups and residual moisture on the surface of the mesoporous material to obtain the thermally activated mesoporous material B11.
  • the material of the ball mill jar is PTFE
  • the material of the ball is agate
  • the diameter of the ball is 3-15mm
  • the number is 30,
  • the rotating speed of the ball milling tank is 400r / min.
  • the ball milling tank was closed, and the ball milling was performed at a temperature of 25 ° C. for 12 hours to obtain a ball milled mesoporous material carrier C11.
  • the solution was cooled to 50 ° C, 6.8 g of mesoporous material carrier C11 was added to the solution containing magnesium dichloride and titanium tetrachloride, and the reaction was stirred for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 140 °C, the temperature of the air outlet is 105 °C, the carrier gas flow rate is 30L / s, and spray drying is performed to obtain , Polyolefin catalyst component Cat-11.
  • the mesoporous material carrier C11 and polyolefin catalyst component Cat-11 were characterized by XRD, scanning electron microscope, particle size analyzer and nitrogen adsorption analyzer.
  • the magnesium content is 12.34% by weight and the titanium content is 2.16% by weight in terms of elements.
  • a is the XRD spectrum of mesoporous molecular sieve A11, the abscissa is 2 ⁇ , and the ordinate is intensity. It can be clearly seen from the XRD spectrum that the mesoporous molecular sieve A11 has diffraction peaks in the small angle region, indicating that the mesoporous molecular sieve A11 has a two-dimensional ordered hexagonal channel structure unique to the mesoporous material SBA-15.
  • FIG. 9 is a scanning electron micrograph of the polyolefin catalyst component Cat-11. It can be seen from the figure that the microscopic morphology of the polyolefin catalyst component Cat-11 is spherical and the particle size is in the order of micrometers.
  • Table 11 shows the pore structure parameters of mesoporous material carrier C11 and polyolefin catalyst component Cat-11.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the original powder of the mesoporous material was washed with ethanol under reflux conditions for 24 hours to remove the template agent, to obtain a mesoporous molecular sieve material A12. Then, the product from which the template agent is removed is calcined at 500 ° C. for 10 h under the protection of nitrogen for thermal activation treatment to remove hydroxyl groups and residual moisture on the surface of the mesoporous material to obtain the thermally activated mesoporous material B12.
  • the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 150 ° C, the temperature of the air outlet is 110 ° C, the flow rate of the carrier gas is 40L / s, and spray drying is performed.
  • Polyolefin catalyst component Cat-12 was obtained.
  • the mesoporous material carrier C2 and polyolefin catalyst component Cat-12 were characterized by XRD, scanning electron microscope, particle size analyzer and nitrogen adsorption analyzer.
  • the magnesium content is 10.53% by weight and the titanium content is 2.18% by weight in terms of elements.
  • Table 12 shows the pore structure parameters of mesoporous material carrier C12 and polyolefin catalyst component Cat-12.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the raw powder of the mesoporous material was washed with ethanol under reflux conditions for 24 hours to remove the template agent to obtain the mesoporous molecular sieve material A13. Then, the product from which the template agent is removed is calcined at 700 ° C. for 8 h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl group and residual moisture of the mesoporous material to obtain the thermally activated mesoporous material B13.
  • the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 135 ° C, the temperature of the air outlet is 105 ° C, the flow rate of the carrier gas is 30L / s, spray drying is performed Polyolefin catalyst component Cat-13.
  • the mesoporous material carrier C13 and polyolefin catalyst component Cat-13 were characterized by XRD, scanning electron microscope, particle size analyzer and nitrogen adsorption analyzer.
  • the magnesium content was 13.2% by weight and the titanium content was 2.95% by weight in terms of elements.
  • Table 13 shows the pore structure parameters of mesoporous material carrier C13 and polyolefin catalyst component Cat-13.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the polyolefin catalyst component Cat-14 was prepared according to the method of Example 12, except that 1.4 g of titanium trichloride was used instead of 1.1 mL of titanium tetrachloride as the titanium component.
  • the mesoporous material carrier C14 and polyolefin catalyst component Cat-14 were characterized by XRD, scanning electron microscope and nitrogen adsorption apparatus.
  • the magnesium content was 13.94% by weight and the titanium content was 2.22% by weight in terms of elements.
  • Table 14 shows the pore structure parameters of mesoporous material carrier C14 and polyolefin catalyst component Cat-14.
  • This embodiment is used to illustrate the polyolefin catalyst component of the present invention and its preparation method, in which the mesoporous material carrier is modified with chlorine-containing silane.
  • thermally activated mesoporous material B15 is given.
  • the ball milling treatment of the thermally activated mesoporous material B15 was performed according to the procedure described in Example 11, except that together with the mesoporous material B15, 1 g of dichlorodimethoxysilane was added to the 100 ml ball milling tank to obtain a silane modification Spherical, ball-milled spherical mesoporous silica material carrier C15.
  • the samples were characterized by contact angle and RDAX energy spectrum analysis. The characterization result is that the contact of the untreated mesoporous material sample is 20 °, and the contact angle of the mesoporous material after ball milling is 100 °.
  • the energy spectrum analysis shows that the untreated sample contains only Si and O, while the modified mesoporous material sample contains C, Cl, Si and O.
  • polyolefin catalyst component Cat-15 was prepared.
  • This comparative example is used to illustrate the reference polyolefin catalyst component and its preparation method.
  • the polyolefin catalyst was prepared according to the method of Example 11, except that instead of spray drying and ball milling treatment, it was directly filtered after the impregnation treatment, washed with n-hexane 4 times, and dried at 75 ° C to obtain poly Olefin catalyst component Cat-D-5.
  • the magnesium content was 12.9% by weight and the titanium content was 1.6% by weight in terms of elements.
  • This example is used to explain the method for preparing polyethylene by polymerizing ethylene using the polyolefin catalyst component of the present invention.
  • the polymerization of ethylene was used to prepare polyethylene according to the method of Experimental Example 11, except that the polyolefin catalyst components Cat-12 to Cat-15 were used instead of the polyolefin catalyst component Cat-11, respectively.
  • the molecular weight distribution (Mw / Mn), melt index MI 2.16 and catalyst efficiency of the obtained polyethylene particle powder are shown in Table 15.
  • the polymerization of ethylene was used to prepare polyethylene according to the method of Experimental Example 11, except that the polyolefin catalyst component Cat-D-5 was used instead of the polyolefin catalyst component Cat-11.
  • the molecular weight distribution (Mw / Mn), melt index MI 2.16 and catalyst efficiency of the obtained polyethylene particulate powder are listed in Table 15.
  • the polyolefin catalyst prepared by using the mesoporous material carrier supporting the titanium component and the magnesium component has high catalytic activity, a large melt index of the polymer powder, and a narrow molecular weight distribution of the polymer powder .
  • the polymer particles obtained by the catalyst component of the present invention when used for catalyzing the polymerization of ethylene have good morphology and excellent fluidity.
  • the spherical polyolefin catalyst can be directly obtained in one step by the spray drying method, and the operation is simple.
  • This example is used to illustrate the polyolefin catalyst component and its preparation method.
  • the hexagonal mesoporous material raw powder having a cubic center Im3m structure obtained above is calcined at 400 ° C for 10 hours, and the template agent is removed to obtain hexagonal mesoporous material A16. Then, the product from which the template agent is removed is calcined at 400 ° C for 10 hours under the protection of nitrogen for thermal activation treatment to remove the hydroxyl groups and residual moisture on the surface of the hexagonal mesoporous material to obtain the thermally activated hexagonal mesoporous material B16 .
  • the material of the ball mill jar is PTFE
  • the material of the ball mill is agate
  • the diameter of the ball mill is 3-15mm
  • the number is 30
  • the rotating speed of the ball mill is 400r / min.
  • the ball mill pot was closed, and the ball milled at a temperature of 25 ° C for 12 hours to obtain a ball milled hexagonal mesoporous material carrier C16.
  • the solution was cooled to 50 ° C., 6 g of hexagonal mesoporous material carrier C16 was added to the solution containing magnesium dichloride and titanium tetrachloride, and the reaction was stirred for 2 hours to prepare a uniform concentration of the slurry to be sprayed. Then, the obtained slurry to be sprayed was introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer was controlled to 140 ° C., the temperature of the air outlet was 105 ° C., the carrier gas flow rate was 30 L / s, and spray drying was performed. Polyolefin catalyst Cat-16 was obtained.
  • the hexagonal mesoporous material carrier C16 and polyolefin catalyst component Cat-16 were characterized by XRD, scanning electron microscope, particle size analyzer and nitrogen adsorption analyzer.
  • the magnesium content is 15.54% by weight and the titanium content is 2.73% by weight in terms of elements.
  • Fig. 11A is a nitrogen adsorption-desorption curve of the hexagonal mesoporous material carrier C16 (abscissa is the relative pressure, the unit is p / p0), and Fig. 11B is a pore size distribution diagram of the hexagonal mesoporous material carrier C16 (abscissa is the pore size, The unit is 0.1 nm). It can be seen from the pore size distribution diagram that the hexagonal mesoporous material carrier C16 has a narrow pore size distribution, and the pore channels are very uniform.
  • the nitrogen adsorption-desorption isotherm in Figure 11A indicates that the hexagonal mesoporous material carrier C16 is a typical IUPAC-defined type IV adsorption-desorption isotherm.
  • the sample has a H2 type hysteresis ring, which proves that the hexagonal mesoporous material carrier C16 has literature.
  • the mesoporous structure of the unique cubic cage structure is reported.
  • the desorption branch between the relative partial pressure of 0.4-0.5 also indicates that the material has a cage-like pore structure.
  • FIG. 12 is a transmission electron micrograph of hexagonal mesoporous material carrier C16.
  • the shape of the holes of the (100) crystal plane of the hexagonal mesoporous material carrier C16 can be clearly seen from FIG. 12, and it can be seen from the figure that the samples all have a cubic center Im3m structure.
  • FIG. 13 is a scanning electron micrograph of hexagonal mesoporous material carrier C16. It can be seen from the figure that the microscopic morphology of the hexagonal mesoporous material carrier C16 is hexagonal, and the particle size is in the order of micrometers.
  • Figure 14 is a scanning electron micrograph of the polyolefin catalyst component Cat-16. It can be seen from the figure that the microscopic morphology of the polyolefin catalyst component Cat-16 is spherical and the particle size is in the order of micrometers.
  • Table 16 shows the pore structure parameters of hexagonal mesoporous material carrier C16 and polyolefin catalyst Cat-16.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the raw powder of hexagonal mesoporous material having a cubic center Im3m structure obtained above was calcined at 600 ° C for 20 hours to remove the template agent to obtain hexagonal mesoporous material A17. Then, the product from which the template agent is removed is calcined at 500 ° C. for 10 h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl group and residual moisture of the hexagonal mesoporous material to obtain thermally activated hexagonal mesoporous material B17.
  • the material of the ball mill jar is Teflon
  • the material of the ball mill is agate
  • the diameter of the ball mill is 3-15mm
  • the number is 30
  • the rotating speed of the ball mill pot is 300r / min.
  • the ball mill pot was closed, and the ball milled at a temperature of 30 ° C for 12 hours to obtain a ball milled hexagonal mesoporous material carrier C17.
  • the solution was cooled to 50 ° C., 3 g of hexagonal mesoporous material carrier C17 was added to the solution containing magnesium dichloride and titanium tetrachloride, and the mixture was stirred and reacted for 2 hours to prepare a uniform slurry to be sprayed. Then, the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 150 ° C., the temperature of the air outlet is 110 ° C., and the carrier gas flow rate is 40 L / s. Polyolefin catalyst component Cat-17.
  • the hexagonal mesoporous material carrier C17 and polyolefin catalyst component Cat-17 were characterized by XRD, scanning electron microscope, particle size analyzer and nitrogen adsorption analyzer.
  • the magnesium content was 8.79% by weight and the titanium content was 3.12% by weight in terms of elements.
  • Table 17 shows the pore structure parameters of hexagonal mesoporous material carrier C17 and polyolefin catalyst Cat-17.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the raw powder of the hexagonal mesoporous material having a cubic center Im3m structure obtained above was calcined at 550 ° C for 24 hours, and the template agent was removed to obtain hexagonal mesoporous material A18. Then, the product from which the template agent is removed is calcined at 700 ° C. for 8 h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl group and residual moisture of the hexagonal mesoporous material to obtain the thermally activated hexagonal mesoporous material B18.
  • the ball milling tank rotates at 550r / min to close the ball milling tank, and the ball milling is performed for 10 hours at a temperature of 20 ° C in the ball milling tank to obtain the ball milled hexagonal mesoporous material carrier C18.
  • the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 135 ° C, the temperature of the air outlet is 105 ° C, the flow rate of the carrier gas is 30L / s, and spray drying is performed to obtain Polyolefin catalyst Cat-18.
  • the hexagonal mesoporous material carrier C18 and polyolefin catalyst component Cat-18 were characterized by XRD, scanning electron microscope, particle size analyzer and nitrogen adsorption analyzer.
  • the magnesium content was 18.7% by weight and the titanium content was 2.85% by weight in terms of elements.
  • Table 18 shows the pore structure parameters of hexagonal mesoporous material carrier C18 and polyolefin catalyst component Cat-18.
  • This example is used to illustrate the polyolefin catalyst component of the present invention and its preparation method.
  • the polyolefin catalyst Cat-19 was prepared according to the method of Example 17, except that 1.4 g of titanium trichloride was used instead of 1 mL of titanium tetrachloride as the titanium component.
  • the hexagonal mesoporous material carrier C19 and polyolefin catalyst component Cat-19 were characterized by XRD, scanning electron microscope and nitrogen adsorption apparatus.
  • the magnesium content was 24.43% by weight and the titanium content was 1.22% by weight in terms of elements.
  • Table 19 shows the pore structure parameters of hexagonal mesoporous material carrier C19 and polyolefin catalyst component Cat-19.
  • This example is used to illustrate the polyolefin catalyst component and its preparation method.
  • the hexagonal mesoporous material raw powder having a cubic center Im3m structure obtained above was calcined at 400 ° C for 10 hours to remove the template agent to obtain hexagonal mesoporous material A20. Then, the product from which the template agent is removed is calcined at 400 ° C. for 10 h under the protection of nitrogen for thermal activation treatment to remove the hydroxyl group and residual moisture of the hexagonal mesoporous material to obtain thermally activated hexagonal mesoporous material B20.
  • the material of the ball mill jar is polytetrafluoroethylene, and the material of the ball mill is agate.
  • the diameter is 3-15mm, the number is 30, and the rotation speed of the ball mill is 400r / min.
  • the ball milling tank was closed, and the ball milling was performed at a temperature of 25 ° C. for 12 hours to obtain a ball milled hexagonal mesoporous material carrier C20.
  • the sample was characterized by contact angle and RDAX energy spectrum analysis. The characterization result is that the contact of the untreated sample is 20 °, and the contact angle after ball milling is 100 °.
  • the untreated samples contained only Si and O, while the modified samples contained C, Cl, Si, and O.
  • the obtained slurry to be sprayed is introduced into a spray dryer, under the protection of N 2 , the temperature of the air inlet of the spray dryer is controlled to 140 °C, the temperature of the air outlet is 105 °C, the carrier gas flow rate is 30L / s, and spray drying is performed to obtain Polyolefin catalyst Cat-20.
  • This comparative example is used to illustrate the reference polyolefin catalyst component and its preparation method.
  • the polyolefin catalyst was prepared according to the method of Example 16, except that instead of spray drying and ball milling treatment, it was directly filtered after the impregnation treatment, washed with n-hexane 4 times, and dried at 75 ° C to obtain poly Olefin catalyst component Cat-D-6.
  • the magnesium content is 13.6% by weight and the titanium content is 1.5% by weight in terms of elements.
  • This example is used to explain the method for preparing polyethylene by polymerizing ethylene using the polyolefin catalyst component of the present invention.
  • the polymerization of ethylene was used to prepare polyethylene according to the method of Experimental Example 16, except that the polyolefin catalyst components Cat-17 to Cat-20 were used instead of the polyolefin catalyst component Cat-16.
  • the molecular weight distribution, melt index MI 2.16 and catalyst efficiency of the obtained polyethylene particle powder are shown in Table 20.
  • the polymerization of ethylene was used to prepare polyethylene according to the method of Experimental Example 16, except that the polyolefin catalyst component Cat-D-6 was used instead of the polyolefin catalyst component Cat-16.
  • the molecular weight distribution, melt index MI 2.16 and catalyst efficiency of the obtained polyethylene particle powder are shown in Table 20.
  • the polyolefin catalyst component prepared by using the mesoporous material carrier supporting the titanium component and the magnesium component has high catalytic activity, and the melt index of the polymer powder is relatively large.
  • the molecular weight distribution is narrow.
  • the polymer particles obtained by the catalyst component of the present invention when used for catalyzing the polymerization of ethylene have good morphology and excellent fluidity.
  • the spherical polyolefin catalyst can be directly obtained in one step by the spray drying method, and the operation is simple.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及非均相催化烯烃聚合反应技术领域,公开了一种聚烯烃催化剂及其制备方法和应用。所述制备聚烯烃催化剂的方法包括:(i)提供热活化处理过的介孔材料,所述热活化处理在300-900℃的温度下进行3-48h的时间;(ii)在惰性气氛下,将所述热活化处理过的介孔材料(iia)用含有镁组分的溶液进行浸渍处理和然后用含有钛组分的溶液进行浸渍处理,(iib)用含有钛组分的溶液进行浸渍处理和然后用含有镁组分的溶液进行浸渍处理,或者(iic)用含有钛组分和镁组分二者的溶液进行共浸渍处理,以得到待喷浆料,和(iii)将得自步骤(ii)的所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。采用本发明提供的方法制备的聚烯烃催化剂在用于烯烃聚合反应时,具有较高的催化效率,并且能够得到分子量分布较窄、熔融指数较优的聚烯烃产品。

Description

含介孔材料的聚烯烃催化剂组分及其制备方法和应用
相关申请的交叉参考
本申请要求2018年10月26日提交的201811261730.1、201811261755.1和2018年11月30日提交的201811459565.0、201811457344.X的优先权,通过引用并且为了所有的目的将所述文件整体结合在本申请中。
技术领域
本发明涉及非均相催化烯烃聚合反应技术领域。具体地,本发明涉及制备聚烯烃催化剂组分的方法、由上述方法制备的聚烯烃催化剂组分以及由上述方法制备的聚烯烃催化剂组分在烯烃单体聚合反应中的应用。更具体地,本发明涉及含介孔材料的聚烯烃催化剂组分及其制备方法和应用。
背景技术
目前,Ti-Mg系Ziegler-Natta催化剂体系被广泛用于乙烯聚合或乙烯与α-烯烃共聚合。人们仍在进行大量的研究,一方面期望得到的催化剂具备足够高的聚合活性,使催化剂在装置上具备较高的效率同时在聚合物中残留尽量少;另一方面希望所得聚合物颗粒分布均匀,颗粒形态尽可能为类球形,聚合物细粉含量少,以利于工业装置长周期连续运转。为了得到良好的颗粒形态,技术人员常采用负载的方法制备催化剂,例如将催化活性组分浸渍在颗粒载体材料上,如多孔的无机载体材料如二氧化硅或有机颗粒载体材料。如US4293673,US4303771,US4302565,US4302566,EP0835887A2公开了将镁化合物、钛化合物负载在无机载体上制备催化剂。在这样的方法中,载体的形态将决定最终催化剂的形态,并且因此这样的方法对载体的形态和表面性质要求较高,导致催化剂制备成本增加。另外,负载型催化剂的缺点是浸渍步骤可能会导致载体表面活性组分负载不均匀,同时由于载体比表面积的局限性导致负载量受到限制,从而催化剂活性的提高受到限制。
US5,290,745公开了一种适合生产乙烯共聚物的催化剂组分的制备方法,其中三氯化钛组分和二氯化镁在给电子体溶剂中的溶液与固体颗粒填料如热解法二氧化硅合并后的浆料被喷雾干燥,以提供固体催化剂组分。
尽管大量文献公开了多孔无机氧化物材料在聚烯烃催化剂组分的制备中的应用,现 有技术中未公开过介孔材料如硅系介孔材料在聚烯烃催化剂组分的制备中的应用。
仍需要提供具有高的催化活性且颗粒形态良好的聚烯烃催化剂组分。
发明概述
为了克服现有技术遇到的问题,本发明人进行了勤勉的研究。结果发现,采用具有高的比表面积和相对窄的孔径分布的介孔材料如硅系介孔材料作为载体(或填料),并且通过优化的制备方法,可以提供显示希望的性能尤其是高催化活性的聚烯烃催化剂组分,由此完成了本发明。
因此,本发明的一个目的是提供热活化处理过的介孔材料,其中对介孔材料平均平均的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h的时间。
本发明的另一个目的是提供制备聚烯烃催化剂组分的方法,该方法包括以下步骤:
(i)提供热活化处理过的介孔材料载体,其中对介孔材料的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h的时间;
(ii)在惰性气氛下,将所述热活化处理过的介孔材料载体(iia)用含有镁组分的溶液进行浸渍处理和然后用含有钛组分的溶液进行浸渍处理,(iib)用含有钛组分的溶液进行浸渍处理和然后用含有镁组分的溶液进行浸渍处理,或者(iic)用含有钛组分和镁组分二者的溶液进行共浸渍处理,以得到待喷浆料;和
(iii)将得自步骤(ii)的所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。
本发明的又一个目的是提供聚烯烃催化剂组分,其包含热活化处理过的介孔材料载体和负载在所述载体上的镁组分、钛组分以及任选的给电子体组分。
本发明的再一个目的是提供烯烃聚合方法,该方法包括:a)在聚合反应条件下,在本发明的聚烯烃催化剂组分和助催化剂存在下,使烯烃单体聚合以提供聚烯烃;和b)回收所述聚烯烃。
本发明人在研究中发现,采用介孔材料作为聚烯烃催化剂组分的载体并且通过优化的方法制备聚烯烃催化剂组分,可以有效提高催化剂组分的活性组分的负载量,进而提高所得聚烯烃催化剂组分的催化活性,而且将该聚烯烃催化剂组分用于烯烃聚合反应中时所得聚烯烃产品的分子量分布和熔融指数得到进一步改善,且所得聚烯烃粉料产品为球形且粒径均匀。
此外,本发明的制备聚烯烃催化剂组分的方法通过喷雾干燥法能够一步直接得到球 形聚烯烃催化剂组分,操作简便。所得球形聚烯烃催化剂组分粒子结构稳定,强度高不易破碎,且粒径容易调节、粒径分布均匀且粒径分布曲线窄,流动性好。
本发明的其他特征和优点将在下文中详细说明。
附图简要说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是实施例1的鸡蛋壳状介孔材料A1的XRD谱图;
图2A是实施例1的鸡蛋壳状介孔材料A1的孔径分布曲线图;
图2B是实施例1的鸡蛋壳状介孔材料A1的氮气吸脱附等温线;
图3A是实施例1的鸡蛋壳状介孔材料A1的扫描电镜图(倍率500K);
图3B是实施例1的鸡蛋壳状介孔材料A1的扫描电镜图(倍率3000K);
图4是实施例1的聚烯烃催化剂Cat-1的扫描电镜图;
图5是实施例6的球形介孔二氧化硅A6的X-射线衍射(XRD)谱图;
图6是实施例6的球形介孔二氧化硅A6的扫描电镜图;
图7是实施例6制备的聚烯烃催化剂Cat-6的扫描电镜图;
图8是实施例11的介孔分子筛的X-射线衍射图谱;
图9是实施例11制备的聚烯烃催化剂组分的扫描电镜图;
图10是实施例16的六方介孔材料载体的X-射线衍射图谱;
图11A是实施例16的六方介孔材料载体的氮气吸附-脱附曲线图;
图11B是实施例16的六方介孔材料载体的孔径分布图;
图12是实施例16的六方介孔材料载体的透射电镜图;
图13是实施例16的六方介孔材料载体的扫描电镜图;
图14是实施例16制备的聚烯烃催化剂的扫描电镜图。
优选实施方案的描述
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和其间的单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本文中使用的术语“介孔材料”是指孔径介于2-50nm的一类多孔材料。介孔材料一般具有极高的比表面积、规则有序的孔道结构和狭窄的孔径分布。所述介孔材料优选具有约2-约30nm,更优选约2-约20nm的平均孔径。
本文中使用的术语“聚合”包括均聚和共聚。本文中使用的术语“聚合物”包括均聚物、共聚物和三元共聚物。
本文中使用的术语“催化剂组分”是指主催化剂组分或前催化剂,其与常规的助催化剂如烷基铝和任选的外给电子体一起构成用于烯烃聚合的催化剂。
本文中使用的术语“卤素”是指氟、氯、溴和碘。
在本文中,除非另外指明,材料的平均粒径采用激光粒度分布仪测得,比表面积、孔体积和平均孔径根据氮气吸附法测得。在本文中,除非另外指明,粒径是指颗粒材料的颗粒尺寸,其中当颗粒材料为球体时则粒径用球体的直径表示,当颗粒材料为立方体时则粒径用立方体的边长表示,当颗粒材料为不规则的形状时则粒径用恰好能够筛分出该颗粒材料的筛网的网孔尺寸表示。
在第一方面,本发明提供了热活化处理过的介孔材料,其中对介孔材料的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h的时间。如前面提到的,本发明的热活化处理过的介孔材料适合用于烯烃聚合催化剂组分的制备,以提供具有希望的性能的新型烯烃聚合催化剂组分。
本发明的热活化处理过的介孔材料可以通过对介孔材料进行热活化处理获得。原则上,对可用于本发明的介孔材料没有特殊的限制。但是,优选地,所述介孔材料是介孔二氧化硅颗粒材料。在一些实施方案中,热活化处理处理前的所述介孔材料选自下组:
a)具有二维六方孔道结构的介孔材料,其具有4-15nm的平均孔径,550-650m 2/g的比表面积,0.5-1.5mL/g的孔体积,和0.5-15μm的平均粒径;
b)具有二维六方孔道结构的鸡蛋壳状介孔材料,其具有0.5-1.5mL/g的孔体积,100-500m 2/g的比表面积,5-15nm的平均孔径,和3-20μm的平均粒径;
c)具有立方体心结构的球形介孔二氧化硅,其具有2-9μm的平均粒径,700-900m 2/g的比表面积,0.5-1mL/g的孔体积为,和1-5nm的平均孔径;和
d)具有立方笼状孔道结构的六方介孔材料,其晶体结构具有立方体心的Im3m结构,并且所述六方介孔材料载体的平均孔径为4-15nm,比表面积为450-550m 2/g,孔体积为0.5-1.5mL/g,平均粒径为0.5-10μm。
可用于本发明的热活化前的介孔材料是本领域已知的,并且可以通过本质上已知的 方法制备。
在一些实施方案中,所述介孔材料可以通过包括以下步骤的方法制备:
(a)提供包含硅源和模板剂的结晶混合物;
(b)使所述结晶混合物经历晶化条件,以形成介孔材料;和
(c)回收所述介孔材料。
有用的硅源的实例包括但不限于正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶,更优选为正硅酸甲酯或正硅酸乙酯。
在一些具体的实施方案中,所述介孔材料可以通过包括以下步骤的方法(1)制备:
(1a)在溶液条件下,将模板剂与三甲基戊烷和作为硅源的四甲氧基硅烷进行混合接触以得到溶液A;
(1b)使所述溶液A经历晶化条件,以提供含鸡蛋壳状介孔材料原粉的混合物;
(1c)将得自步骤(1b)的混合物过滤和干燥,得到鸡蛋壳状介孔材料原粉;和
(1d)将所述鸡蛋壳状介孔材料原粉进行脱模板剂处理。
根据本发明,在步骤(1a)中,所述混合接触的条件包括:温度为10-60℃,时间为0.2-100h,pH为1-6。所述pH值例如可以通过加入盐酸来形成,或者通过采用合适的缓冲体系来提供。为了更有利于各物质间的均匀混合,根据本发明一种优选的实施方式,所述混合接触在搅拌条件下进行。
根据本发明,在步骤(1a)中,所述溶液条件可以为水溶液条件。优选地,为了有利于所述模板剂的溶解,可以采用pH值为1-6的乙酸和乙酸钠的缓冲溶液来形成溶液条件,并且加入例如醇类试剂(例如甲醇、乙醇、正丙醇、异丙醇等)。
优选地,所述模板剂、所述三甲基戊烷和所述四甲氧基硅烷的用量重量比为1:(1.2-20):(0.1-15);更优选为1:(2-12):(0.5-10)。
根据本发明,在步骤(1a)中,所述模板剂的选择优选使得得到的鸡蛋壳状介孔材料原粉具有二维六方孔道分布结构。优选地,所述模板剂为三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯,例如EO 20PO 70EO 20(其可以购自Aldrich公司,商品名为P123)。当所述模板剂为聚氧乙烯-聚氧丙烯-聚氧乙烯时,所述模板剂的摩尔数根据聚氧乙烯-聚氧丙烯-聚氧乙烯的平均分子量计算得到。
优选地,在步骤(1b)中,所述晶化的条件包括:温度为30-150℃,时间为4-72h。根据一种优选的实施方式,所述晶化通过水热晶化法来实施。
优选地,在步骤(1c)中,所述过滤的过程可以包括:在过滤之后,用去离子水反 复洗涤(洗涤次数可以为2-10),然后进行抽滤。
优选地,在步骤(1c)中,所述干燥可以在干燥箱中进行。所述干燥的条件可以包括:温度为110-150℃,时间为3-6h。
根据本发明一种优选的实施方式,在步骤(1a)中,进行所述混合接触的方法包括:在溶液条件下,先将模板剂与三甲基戊烷进行第一接触;然后将第一接触后所得混合物与四甲氧基硅烷进行第二接触。优选地,所述第一接触的条件包括:温度为10-60℃,时间为0.1-20h,pH值为1-6。优选地,所述第二接触的条件包括:温度为10-60℃,时间为0.1-80h,pH值为1-6。
根据本发明,在步骤(1d)中,所述脱除模板剂处理的过程包括:在300-600℃下,将所述鸡蛋壳状介孔材料原粉进行煅烧;优选地,所述煅烧的时间为8-36h,优选8-20小时。
或者,在步骤(1d)中,所述脱除模板剂处理的方法为醇洗法。例如,所述脱模板剂处理的过程包括:在50-120℃,例如70-120℃或者90-120℃的温度下,将所述介孔材料原粉用醇进行洗涤,洗涤时间为10-40h。有用的醇的实例包括但不限于乙醇、丙醇、异丙醇、正丁醇、2-丁醇。
在一些具体的实施方案中,所述介孔材料可以通过包括以下步骤的方法(2)制备:
(2a)在模板剂的存在下,将硅源与酸剂进行混合接触,以提供结晶混合物;
(2b)使所述结晶混合物经历晶化条件,以提供含具有立方体心结构的介孔材料原粉的混合物;
(2c)将得自步骤(2b)的混合物过滤和干燥,得到具有立方体心结构的介孔材料原粉;和
(2d)将所述具有立方体心结构的介孔材料原粉进行脱模板剂处理。
在本发明的方法(2)中,所述模板剂的种类没有特别的限定,只要可以使得到的介孔材料原粉具有立方体心结构即可。优选地,所述模板剂为三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯,例如EO 106PO 70EO 106(可以购自Aldrich公司,商品名F127,数均分子量Mn为12600)。当所述模板剂为聚氧乙烯–聚氧丙烯–聚氧乙烯时,所述模板剂的摩尔数根据聚氧乙烯–聚氧丙烯–聚氧乙烯的平均分子量计算得到。
根据本发明,所述酸剂可以为本领域常规使用的各种酸性水溶液,例如可以为盐酸、硫酸、硝酸和氢溴酸中的至少一种水溶液,优选为盐酸水溶液。
所述酸剂的用量没有特别的限定,可以在较大范围内变动,优选使得所述混合接触 的pH值为1-6即可。
优选地,在步骤(2a)中,所述接触的条件包括:温度为10-60℃,优选25-60℃,时间为25min以上,pH为1-6。为了更有利于各物质间的均匀混合,根据本发明一种优选的实施方式,所述混合接触在搅拌条件下进行。
在本发明中,所述模板剂和所述硅源的用量可以在较大范围内变动,例如所述模板剂和所述硅源用量的摩尔比可以为1:200-300;优选为1:225-275。
在本发明方法(2)中,所述硅源可以为本领域常规使用的各种硅源,优选所述硅源为正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶中的至少一种,更优选为正硅酸甲酯或正硅酸乙酯。
根据本发明一种优选的实施方式,所述在模板剂的存在下,将硅源与酸剂进行混合接触的过程包括:将模板剂三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯F127加入到盐酸的水溶液中,按摩尔投料比三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯F127:水:氯化氢=1:9000-15000:100-500,在25-60℃温度下搅拌至溶解,然后再向上述所得溶液中加入硅源正硅酸乙酯,所述正硅酸乙酯的用量按摩尔投料比为三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯F127:正硅酸乙酯=1:225-275,在25-60℃温度下搅拌25分钟以上。
根据本发明,所述晶化的条件可以包括:温度为30-150℃,时间为10-72h,优选地,所述晶化的条件包括:温度为90-120℃,时间为10-40h。根据一种优选的实施方式,所述晶化通过水热晶化法来实施。
回收所述具有立方体心结构的介孔材料原粉的操作(包括过滤、干燥和脱模板剂处理)如上面针对方法(1)所描述的。
在一些具体的实施方案中,所述介孔材料可以通过包括以下步骤的方法(3)制备:
(3a)在模板剂的存在下,将硅源与酸剂进行混合接触,以提供结晶混合物;
(3b)使所述结晶混合物经历晶化条件,以提供含具有二维六方孔道结构的介孔材料原粉的混合物;
(3c)将所述含具有二维六方孔道结构的介孔材料原粉的混合物过滤和干燥,得到介孔材料原粉;和
(3d)将所述介孔材料原粉进行脱模板剂处理。
根据本发明,在步骤(3a)中,所述模板剂的种类没有特别的限定,只要使得到的介孔材料原粉具有二维六方的孔道结构即可。优选地,所述模板剂可以为三嵌段共聚物 聚氧乙烯-聚氧丙烯-聚氧乙烯,例如EO 20PO 70EO 20(可以购自Aldrich公司,商品名为P123)。当所述模板剂为聚氧乙烯-聚氧丙烯-聚氧乙烯时,所述模板剂的摩尔数根据聚氧乙烯-聚氧丙烯-聚氧乙烯的平均分子量计算得到。
所述酸剂可以为本领域常规使用的各种酸性水溶液,例如可以为盐酸、硫酸、硝酸和氢溴酸中的至少一种水溶液,优选为盐酸水溶液。
所述酸剂的用量没有特别的限定,可以在较大范围内变动,优选使得所述混合接触的pH值为1-6即可。
优选地,在步骤(3a)中,所述混合接触的条件包括:温度为25-60℃,时间为25min以上,pH为1-6。为了更有利于各物质间的均匀混合,根据本发明一种优选的实施方式,所述混合接触在搅拌条件下进行。
在本发明方法(3)中,所述模板剂和所述硅源的用量可以在较大范围内变动,例如所述模板剂和所述硅源用量的摩尔比可以为1:10-90;优选为1:50-75。
在本发明方法(3)中,所述硅源可以为本领域常规使用的各种硅源,优选所述硅源为正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶中的至少一种,更优选为正硅酸甲酯或正硅酸乙酯。
根据本发明一种优选的实施方式,所述在模板剂的存在下,将硅源与酸剂进行混合接触的过程包括:将模板剂三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123加入到盐酸的水溶液中,按摩尔投料比三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123:水:氯化氢=1:9000-15000:100-500,在25-60℃温度下搅拌至溶解,然后再向上述所得溶液中加入硅源正硅酸乙酯,所述正硅酸乙酯的用量按摩尔投料比为三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123:正硅酸乙酯=1:50-75,在25-60℃温度下搅拌25分钟以上。
优选地,所述晶化的条件包括:温度为90-180℃,时间为10-40h。根据一种优选的实施方式,所述晶化通过水热晶化法来实施。为了保障可以得到孔径足够大的介孔分子筛材料,所述晶化的条件进一步优选为温度为130-180℃。
回收所述具有二维六方孔道结构的介孔材料原粉的操作(包括过滤、干燥和脱模板剂处理)如上面针对方法(1)所描述的。
在一些具体的实施方案中,所述介孔材料可以通过包括以下步骤的方法(4)制备:
(4a)将模板剂、硫酸钾、酸剂和硅源进行混合接触,以提供结晶混合物;
(4b)使所述结晶混合物经历晶化条件,以提供含具有立方体心Im3m结构的六方介孔材料原粉的混合物;
(4c)过滤并干燥,得到具有立方体心Im3m结构的六方介孔材料原粉;和
(4d)将所述六方介孔材料原粉进行脱模板剂处理。
在本发明方法(4)中,所述硅源可以为本领域常规使用的各种硅源,优选所述硅源为正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶中的至少一种,更优选为正硅酸甲酯或正硅酸乙酯。
根据本发明的一些优选实施方案,制备所述具有立方体心Im3m结构的六方介孔材料原粉的过程可以包括:将模板剂、硫酸钾、酸剂和硅源如正硅酸乙酯进行混合接触,并将得到的混合物进行晶化、过滤和干燥。所述混合接触的顺序没有特别的限定,可以将模板剂、硫酸钾、酸剂和硅源同时进行混合,也可以将任意两种或三种混合,再加入其他组分混合均匀。根据一种优选的实施方式,先将模板剂、硫酸钾和酸剂混合均匀,然后再加入硅源如正硅酸乙酯并混合均匀。
在本发明方法(4)中,所述模板剂、硫酸钾和硅源如正硅酸乙酯的用量可以在较大范围内变动,例如模板剂、硫酸钾和硅源如正硅酸乙酯用量的摩尔比可以为1:100-800:20-200,优选为1:150-700:80-180,更优选为1:200-400:100-150。
在本发明方法(4)中,所述模板剂可以为本领域常规的各种模板剂。例如,所述模板剂可以为三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯,例如Synperonic F108(可以购自Fuka公司,分子式为EO 132PO 60EO 132,平均分子量M n=14600)。聚氧乙烯-聚氧丙烯-聚氧乙烯的摩尔数根据聚氧乙烯-聚氧丙烯-聚氧乙烯的平均分子量计算得到。
在本发明方法(4)中,所述酸剂可以为本领域常规使用的各种酸性水溶液,例如可以为盐酸、硫酸、硝酸和氢溴酸中的至少一种水溶液,优选为盐酸水溶液。
所述酸剂的用量没有特别的限定,可以在较大范围内变动,优选使得所述混合物的pH值为1-7即可。
本发明对所述混合接触的条件没有特别的限定。例如,所述混合接触的条件可以包括:温度为25-60℃,时间为10-240min,pH值为1-7。为了更有利于各物质间的均匀混合,根据本发明一种优选的实施方式,所述混合接触在搅拌条件下进行。
根据本发明一种优选的实施方式,模板剂、硫酸钾、酸剂和硅源如正硅酸乙酯进行混合接触的过程包括:将模板剂三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯F108加入到盐酸的水溶液中,按摩尔投料比三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯F108:硫酸钾:水:氯化氢=1:200-400:10000-30000:100-900,在25-60℃温度下搅拌至溶解,然后再向上述所得溶液中加入硅源如正硅酸乙酯,所述硅源的用量按摩尔投料比为三嵌 段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯F108:硅源=1:100-150,在25-60℃温度下搅拌10-240min。
在本发明方法(4)中,所述晶化的条件没有特别的限定。例如,所述晶化的条件可以包括:温度为25-100℃,优选25-60℃,更优选为30-55℃;时间为10-72h,优选为10-40h。根据一种优选的实施方式,所述晶化通过水热晶化法来实施。
回收所述具有立方体心Im3m结构的六方介孔材料原粉的操作(包括过滤、干燥和脱模板剂处理)如上面针对方法(1)所描述的。
根据本发明,在将所述介孔材料用于催化剂组分的制备前,为了脱除所述介孔材料表面存在的羟基和残存水分,需要对所述介孔材料进行热活化处理。所述热活化处理的条件可以包括:在惰性气氛如氮气或氩气气氛下,将所述介孔材料在300-900℃的温度下煅烧3-48h,优选3-24h,更优选7-10h。
在一些实施方案中,本发明的热活化处理过的介孔材料可以进一步用含氯硅烷处理。有用的含氯硅烷的实例包括但不限于:二氯二甲氧基硅烷、一氯三甲氧基硅烷、二氯二乙氧基硅烷和一氯三乙氧基硅烷。
所述含氯硅烷处理可以通过将所述热活化处理过的介孔材料与所述含氯硅烷在有或没有其它介质如惰性溶剂存在的情况下一起搅拌或研磨来完成,处理温度可以在20-150℃的范围内,优选在30-120℃的范围内,更优选在40-100℃的范围内。
方便地,所述用含氯硅烷处理可以与后面描述的球磨处理同时进行。即,在球磨处理之前或者过程中,将所述含氯硅烷加入到在球磨罐中的所述热活化处理过的介孔材料中。
本发明的用含氯硅烷处理过的所述介孔材料具有至少40°,优选50-150°,更优选60-140°,仍更优选70-130°的接触角。
在第二方面,本发明提供了制备聚烯烃催化剂组分的方法,该方法包括以下步骤:
(i)提供热活化处理过的介孔材料,其中对介孔材料的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h,优选3-24h,更优选7-10h的时间;
(ii)在惰性气氛下,将所述热活化处理过的介孔材料(iia)用含有镁组分的溶液进行浸渍处理和然后用含有钛组分的溶液进行浸渍处理,(iib)用含有钛组分的溶液进行浸渍处理和然后用含有镁组分的溶液进行浸渍处理,或者(iic)用含有钛组分和镁组分二者的溶液进行共浸渍处理,以得到待喷浆料,和
(iii)将得自步骤(ii)的所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂 组分。
在一些实施方案中,所述方法还包括:在步骤(ii)之前,用含氯硅烷处理所述热活化处理过的介孔材料,和/或对所述热活化处理过的介孔材料进行球磨处理。
在一些实施方案中,所述含氯硅烷选自下组:二氯二甲氧基硅烷、一氯三甲氧基硅烷、二氯二乙氧基硅烷和一氯三乙氧基硅烷。
用含氯硅烷处理的操作如前所述。在一些实施方案中,所述用含氯硅烷处理所述热活化处理过的介孔材料如下进行:在惰性气氛下,将所述热活化处理过的介孔材料和含氯硅烷一起在球磨罐中球磨。
在本发明中,所述球磨处理的具体操作方法和条件以不破坏或基本不破坏所述介孔材料的孔道结构为准。本领域技术人员可以根据上述原则选择各种合适的条件来实施本发明。具体地,所述球磨处理可以在球磨机中进行。球磨机中磨球的直径可以为2-80mm,或者2-50mm,或者2-30mm,或者2-20mm,或者3-15mm,例如2-3mm或者3-5mm。球磨机中的磨球可以具有相同或不同的直径。通常,球磨机中的磨球具有不同的直径,其中大球(直径大于(最大直径-最小直径)的三分之二)、中球(直径介于(最大直径-最小直径)的三分之二和三分之一之间)和小球(直径小于(最大直径-最小直径)的三分之一)的数目比可以大致为1:2:3。磨球的数量可以根据球磨罐的大小进行合理地选择,例如大小为50-150mL的球磨罐通常可以使用20-80个磨球;所述磨球的材质可以是玛瑙、聚四氟乙烯等,优选为玛瑙。所述球磨的条件包括:球磨罐的转速可以为100-800r/min,优选200-700r/min,更优选300-500r/min,球磨罐内的温度可以为15-100℃,球磨的时间可以为0.1-100小时。优选地,所述球磨处理的条件使得球磨得到的介孔材料的平均粒径小于10μm,例如在0.05-5μm的范围内,优选在0.1-3μm的范围内,更优选在0.1-2μm的范围内。
根据本发明,所述含有镁组分和/或钛组分的溶液可以为含有镁组分和/或钛组分在有机溶剂中的溶液,所述有机溶剂可以为给电子体溶剂,例如选自脂族或芳香羧酸的烷基酯、脂族醚和环醚中的至少一种,优选为C 1-C 4饱和脂族羧酸的C 1-C 4烷基酯、C 7-C 8芳香羧酸的烷基酯、C 2-C 6脂族醚和C 3-C 4环醚中的至少一种;更优选为甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯、乙酸丁酯、乙醚、己醚和四氢呋喃(THF)中的至少一种;进一步优选为四氢呋喃。
根据本发明,所述介孔材料负载镁组分和/或钛组分可以采用浸渍的方式,依靠所述载体的孔道结构的毛细压力使镁组分和/或钛组分进入所述介孔材料的孔道内,同时镁 组分和/或钛组分还会在所述介孔材料的表面吸附,直到镁组分和/或钛组分在所述介孔材料的表面达到吸附平衡。所述浸渍处理可以为共浸渍处理,也可以为分步浸渍处理。为了节约制备成本,简化实验工艺,所述浸渍处理优选为共浸渍处理。优选地,所述浸渍处理的条件可以包括:浸渍温度为25-100℃,优选为40-80℃;浸渍时间为0.1-5h,优选为1-4h。
根据本发明,所述介孔材料、镁组分和钛组分的用量优选使得制备的聚烯烃催化剂组分中,以所述聚烯烃催化剂组分的总重量为基准,所述介孔材料的含量为20-90重量%,优选为30-70重量%,所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%。镁组分和钛组分(以元素计)的含量的和优选为10-30重量%,基于所述聚烯烃催化剂组分的总重量计。
优选地,步骤(ii)中,所述介孔材料、含有镁组分和/或钛组分的溶液的用量的重量比可以为1:50-150,优选为1:75-120。
优选地,步骤(ii)中,所述镁组分和所述钛组分的用量使得制备的聚烯烃催化剂组分中,所述镁组分以镁元素计和钛组分以钛元素计的摩尔比为0.5-50:1,优选为2-30:1,更优选为5-18:1。
根据本发明,所述镁组分可以为通式为Mg(OR 1) mX 2-m的镁化合物,其中,R 1为碳原子数为2-20的烃基,例如C 2-C 10烷基,X是卤素原子,0≤m≤2。例如,所述镁组分可以为二乙氧基镁、二丙氧基镁、二丁氧基镁、二辛氧基镁、二氯化镁和二溴化镁中的至少一种。
根据本发明,所述钛组分可以为通式为Ti(OR 2) nX 4-n的钛化合物,其中,R 2为碳原子数为1-20的烃基,例如C 1-C 10烷基,X是卤素原子,0≤n≤4,和/或三氯化钛。例如,所述钛组分可以为钛酸四乙酯、钛酸四甲酯、钛酸四丁酯、钛酸四异丙酯、三氯化钛和四氯化钛中的至少一种。
在本发明方法的一些实施方案中,可以使用能够在催化剂组分制备过程中转化为上述镁组分的镁组分前驱体代替所述镁组分,和/或使用能够在催化剂组分制备过程中转化为上述钛组分的钛组分前驱体代替所述钛组分。
根据本发明,对所述含有镁组分和/或钛组分的溶液中镁组分和钛组分的浓度没有特别的限定。例如,所述镁组分和钛组分的浓度可以为本领域的常规选择。例如,所述镁 组分的浓度可以为0.1-1mol/L,所述钛组分的浓度可以为0.01-0.2mol/L。
根据本发明,所述浸渍处理过程中,所述惰性气体为不与原料和产物发生反应的气体,例如可以为氮气或元素周期表中第零族元素气体中的至少一种,优选为氮气。
根据本发明,所述喷雾干燥可以根据常规方法实施。例如,喷雾干燥方法可以选自压力喷雾干燥法、离心喷雾干燥法和气流式喷雾干燥法中的至少一种。根据本发明一种优选的实施方式,所述喷雾干燥采用气流式喷雾干燥法。所述喷雾干燥可以在雾化器中进行。所述喷雾干燥的条件可以包括:在氮气或氩气保护气氛下进行,进风口温度为100-150℃,出风口温度为100-120℃,载气流量为10-50L/s。优选地,所述喷雾干燥的条件使得制备的聚烯烃催化剂组分的平均粒径为0.5-50μm,优选3-25μm或者1-20μm或者0.5-20μm或者5-30μm,粒径分布值((D90-D10)/D50)为0.7-2.0,优选0.8-1.8,例如0.85-0.95或者1.7-1.8或者1.6-1.7。
根据本发明一种优选的实施方式,所述步骤(ii)-(iii)如下进行:在惰性气氛下,在装有搅拌的反应器中,加入给电子体溶剂四氢呋喃(THF),控制反应器温度为25-40℃,在搅拌开启时迅速加入氯化镁和四氯化钛,将系统温度调至60-75℃恒温反应1-5小时,直至氯化镁和四氯化钛全部溶解,得到含有二氯化镁和四氯化钛的有机溶液。将所述含有二氯化镁和四氯化钛的有机溶液与所述介孔材料混合,控制各组分之间的比例为,相对于1摩尔钛元素,镁元素量为0.5-50摩尔,优选为1-10摩尔,给电子体溶剂四氢呋喃(THF)的量为0.5-200摩尔,优选为20-200摩尔,并控制反应器温度为60-75℃,搅拌反应0.1-5小时,制得浓度均一的待喷浆料。所述介孔材料的加入量应当足够多,以形成适合于喷雾成型的淤浆液。然后将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为100-150℃,出风口温度为100-120℃,载气流量为10-50L/s,得到平均粒径为0.5-50μm,优选3-25μm或者1-20μm或者0.5-20μm的球形颗粒。
以下技术方案也已经被想到:
制备聚烯烃催化剂组分的方法,该方法包括以下步骤:
(i)提供热活化处理过的介孔材料,其中对介孔材料的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h的时间;
(ii)在惰性气氛下,将所述热活化处理过的介孔材料用含有镁组分的溶液进行浸渍处理,以得到待喷浆料;
(iii)将得自步骤(ii)的所述待喷浆料进行喷雾干燥,以得到含有镁组分和介孔 材料的复合载体;和
(iv)通过浸渍法在所述复合载体上负载钛组分,以提供固体聚烯烃催化剂组分。
该技术方案的各步骤的操作和条件与上面所述类似。
采用上述方法制备的聚烯烃催化剂组分具有球形或类球形的形貌特征,因此有时方便地称为球形催化剂组分。本文中使用的术语“球形催化剂组分”是指所述催化剂组分具有球形或类球形的颗粒形态,但不要求所述催化剂组分具有完美的球形形态。本发明的催化剂组分具有高的镁组分和钛组分负载量和合理的孔道结构。本发明的催化剂组分在用于烯烃单体聚合时,聚合活性更高,得到的聚合物颗粒形态好、分子量分布较窄,具有优异的流动性。
在第三方面,本发明提供了由前述方法制得的含介孔材料的聚烯烃催化剂组分。
在一些实施方案中,本发明的聚烯烃催化剂组分包含热活化过的介孔材料载体和负载在所述载体上的镁组分和钛组分。所述介孔材料、其热活化处理、球磨处理和任选的含氯硅烷处理如前所述,并且所述镁组分和钛组分如前所述。
本发明的聚烯烃催化剂组分可以还包含给电子体组分。在一些实施方案中,所述给电子体组分来源于在待喷浆料中存在的给电子体溶剂。
在一些实施方案中,本发明的聚烯烃催化剂组分包含热活化过的介孔材料、镁、钛、卤素和给电子体。
根据本发明,基于所述聚烯烃催化剂组分的总重量计,所述介孔材料载体的含量为20-90重量%,优选为30-70重量%;所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%。
优选地,在所述聚烯烃催化剂组分中,所述镁组分(以镁元素计)和钛组分(以钛元素计)的摩尔比为0.5-50:1,优选为5-18:1。
在一些实施方案中,本发明的聚烯烃催化剂组分包含前面所述的鸡蛋壳状介孔材料载体。所述鸡蛋壳状介孔材料载体具有特殊的立方体心晶体结构,其介孔孔道结构分布均匀、孔径大小适宜、孔容大、机械强度好,具有良好的结构稳定性,特别有利于镁和钛活性组分在载体表面的良好分散,使得制得的聚烯烃催化剂组分既具有负载型催化剂的优点如金属活性组分分散性好、负载量高、副反应少、后处理简单等,又具有较强的催化活性,确保将所述鸡蛋壳状介孔材料载体用作载体制成的负载型催化剂组分用于烯烃单体聚合反应中具有更好催化活性,显著提高反应原料的转化率。
根据本发明,通过将所述鸡蛋壳状介孔材料载体的结构参数控制在上述范围之内,可以确保所述鸡蛋壳状介孔材料载体不易发生团聚,并且将其用作载体制成的负载型催化剂组分可以提高烯烃聚合反应过程中的反应原料转化率。当所述鸡蛋壳状介孔材料载体的比表面积小于100m 2/g和/或孔体积小于0.5mL/g时,将其用作载体制成的负载型催化剂组分的催化活性会显著降低;当所述鸡蛋壳状介孔材料载体的比表面积大于500m 2/g和/或孔体积大于1.5mL/g时,将其用作载体制成的负载型催化剂在烯烃聚合反应过程中容易发生团聚,从而影响烯烃聚合反应中烯烃单体的转化率。
优选地,所述鸡蛋壳状介孔材料载体的孔体积为0.5-1.2mL/g,比表面积为150-350m 2/g,平均孔径为7-12nm,球磨前的平均粒径为3-20μm,球磨后的平均粒径为0.05-5μm,优选0.1-3μm,更优选0.1-2,这样可以保证所述鸡蛋壳状介孔材料载体具有孔径较大、孔体积较大、比表面积较大的优点,从而更有利于镁和/或钛活性组分在所述鸡蛋壳状介孔材料载体表面良好分散,进而可以保证由其制备的聚烯烃催化剂组分具有优异的催化性能,并由此获得烯烃单体转化率高以及得到的聚合物颗粒形态好、分子量分布较窄、具有优异的流动性等有益效果。
优选地,所述聚烯烃催化剂的孔体积为0.5-1mL/g,比表面积为120-300m 2/g,平均孔径为7-12nm,平均粒径为3-25μm,粒径分布值((D90-D10)/D50)为0.85-0.95。
在一些实施方案中,本发明的聚烯烃催化剂组分包含具有立方体心晶体结构的介孔材料载体和负载在所述载体上的镁组分和钛组分,其中所述介孔材料载体的平均粒径为0.05-5μm,优选0.1-3μm,更优选0.1-2,,比表面积为700-900m 2/g,孔体积为0.5-1mL/g,平均孔径为1-5nm。
由于所述介孔材料载体具有特殊的立方体心晶体结构,其介孔孔道结构分布均匀、孔径大小适宜、孔容大、机械强度好,具有良好的结构稳定性,特别有利于镁和钛活性组分在载体表面的良好分散,使得制得的聚烯烃催化剂组分既具有负载型催化剂组分的优点如金属活性组分分散性好、负载量高、副反应少、后处理简单等,又具有较强的催化活性,确保将所制成的负载型催化剂组分用于烯烃单体聚合反应中具有更好催化活性,显著提高反应原料的转化率。
根据本发明,通过将所述具有立方体心晶体结构的介孔材料载体的结构参数控制在上述范围之内,可以确保所述介孔材料载体不易发生团聚,并且将其用作载体制成的负载型催化剂组分可以提高烯烃聚合反应过程中的反应原料转化率。当所述介孔材料载体的比表面积小于700m 2/g和/或孔体积小于0.5mL/g时,将其用作载体制成的负载型催化剂 组分的催化活性会显著降低;当所述介孔材料载体的比表面积大于900m 2/g和/或孔体积大于1mL/g时,将其用作载体制成的负载型催化剂组分在烯烃聚合反应过程中容易发生团聚,从而影响烯烃聚合反应中烯烃单体的转化率。
优选地,所述介孔材料载体的球磨前平均粒径为3-9μm,球磨后的平均粒径为0.05-5μm,优选0.1-3μm,更优选0.1-2,比表面积为750-850m 2/g,孔体积为0.6-0.8mL/g,平均孔径为1.5-4.5nm,这样可以保证所述介孔材料载体具有孔径较大、孔体积较大、比表面积较大的优点,从而更有利于镁和钛活性组分在所述介孔材料载体表面良好分散,进而可以保证由其制备的聚烯烃催化剂组分具有优异的催化性能,并由此获得烯烃单体转化率高以及得到的聚合物颗粒形态好、分子量分布较窄、具有优异的流动性等有益效果。
优选地,所述聚烯烃催化剂组分的平均粒径为3-25μm,比表面积为700-800m 2/g,孔体积为0.5-0.8mL/g,平均孔径为1.5-4.5nm,粒径分布值为0.85-0.95。
在一些实施方案中,本发明的聚烯烃催化剂组分包含具有二维六方孔道结构的介孔材料载体和负载在所述载体上的镁组分和钛组分,所述介孔材料载体的平均孔径为4-15nm,比表面积为550-650m 2/g,孔体积为0.5-1.5mL/g,平均粒径为0.05-5μm,优选0.1-3μm,更优选0.1-2。
由于所述介孔材料载体具有特殊的二维六方孔道结构这种良好的长程有序结构,使得所述介孔材料在很宽的温度范围和很大的应变状态下都表现出很高的强度。另外,所述介孔材料特有的二维六方孔道结构配合其较窄的孔径分布和均匀的孔道分布,有利于金属组分在载体表面的良好分散,使得制得的聚烯烃催化剂组分既具有负载型催化剂的优点如镁和钛活性组分分散性好、负载量高、副反应少、后处理简单等,又具有较强的催化活性和较高的稳定性,确保将所述负载型催化剂组分用于烯烃单体聚合反应中时具有更好催化活性,显著提高反应原料的转化率。
根据本发明,通过将所述具有二维六方孔道结构的介孔材料的结构参数控制在上述范围之内,可以确保所述介孔材料不易发生团聚,并且将其用作载体制成的负载型催化剂组分可以提高烯烃聚合反应过程中的反应原料转化率。当所述介孔材料的比表面积小于550m 2/g和/或孔体积小于0.5mL/g时,将其用作载体制成的负载型催化剂组分的催化活性会显著降低;当所述介孔材料的比表面积大于650m 2/g和/或孔体积大于1.5mL/g时,将其用作载体制成的负载型催化剂组分在烯烃聚合反应过程中容易发生团聚,从而影响烯烃聚合反应中烯烃单体的转化率。
优选地,所述介孔材料的平均孔径为4-12nm,例如4nm、5nm、6nm、7nm、8nm、9nm、10nm、11nm和12nm,以及任意两个平均孔径构成的范围之间的任意平均孔径,比表面积为580-620m 2/g,孔体积为0.5-1mL/g,球磨处理前的平均粒径为0.8-10μm,球磨处理后的平均孔径为0.05-5μm,优选0.1-3μm,更优选0.1-2,这样可以保证所述介孔材料具有孔径较大、孔体积较大、比表面积较大的优点,从而更有利于镁和钛活性组分在所述介孔材料表面良好分散,进而可以保证由其制备的聚烯烃催化剂组分具有优异的催化性能,并由此获得烯烃单体转化率高以及得到的聚合物颗粒形态好、分子量分布窄、具有优异的流动性等有益效果。
优选地,所述聚烯烃催化剂组分的平均孔径为4-15nm,比表面积为520-600m 2/g,孔体积为0.6-1.4mL/g,平均粒径为1-20μm,粒径分布值为1.7-1.8。
在一些实施方案中,本发明的聚烯烃催化剂组分包含具有立方笼状孔道结构的六方介孔材料载体和负载在所述载体上的镁组分和钛组分,其中所述六方介孔材料的晶体结构具有立方体心的Im3m结构,所述六方介孔材料的平均孔径为4-15nm,比表面积为450-550m 2/g,孔体积为0.5-1.5mL/g,平均粒径为0.05-5μm,优选0.1-3μm,更优选0.1-2μm。
所述六方介孔材料载体具有特殊的Im3m立方体心晶体结构,是一种非最紧密堆积方式,这种良好的长程有序结构使得所述六方介孔材料在很宽的温度范围和很大的应变状态下都表现出很高的强度。另外,所述六方介孔材料特有的孔穴结构配合其较窄的孔径分布和均匀的孔道分布,有利于镁和钛活性组分在载体表面的良好分散,使得制得的聚烯烃催化剂组分既具有负载型催化剂的优点如金属活性组分分散性好、负载量高、副反应少、后处理简单等,又具有较强的催化活性和较高的稳定性,确保将所述负载型催化剂组分用于烯烃单体聚合反应中具有更好催化活性,显著提高反应原料的转化率。
根据本发明,通过将所述六方介孔材料的结构参数控制在上述范围之内,可以确保所述六方介孔材料不易发生团聚,并且将其用作载体制成的负载型催化剂组分可以提高烯烃聚合反应过程中的反应原料转化率。当所述六方介孔材料的比表面积小于450m 2/g和/或孔体积小于0.5mL/g时,将其用作载体制成的负载型催化剂组分的催化活性会显著降低;当所述六方介孔材料的比表面积大于550m 2/g和/或孔体积大于1.5mL/g时,将其用作载体制成的负载型催化剂组分在烯烃聚合反应过程中容易发生团聚,从而影响烯烃聚合反应中烯烃单体的转化率。
优选地,所述六方介孔材料的平均孔径为4-12nm,例如4nm、5nm、6nm、7nm、 8nm、9nm、10nm、11nm和12nm,以及任意两个平均孔径构成的范围之间的任意平均孔径,比表面积为480-520m 2/g,孔体积为0.5-1mL/g,球磨处理前的平均粒径为0.8-8μm,球磨处理后的平均孔径为0.05-5μm,优选0.1-3μm,更优选0.1-2,这样可以保证所述六方介孔材料具有孔径较大、孔体积较大、比表面积较大的优点,从而更有利于镁和钛活性组分在所述六方介孔材料表面良好分散,进而可以保证由其制备的聚烯烃催化剂组分具有优异的催化性能,并由此获得烯烃单体转化率高以及得到的聚合物颗粒形态好、堆密度较低、具有优异的流动性等有益效果。
优选地,所述聚烯烃催化剂组分的平均孔径为4-15nm,比表面积为450-500m 2/g,孔体积为0.5-1mL/g,平均粒径为0.5-20μm,优选为0.8-15μm,粒径分布值为1.6-1.7。
不受任何理论限制,据信由于具有合适大小且分布较窄的孔径,所述介孔材料提供了相当大的有效比表面积,使得由其制得的催化剂组分可以具有更大比例的有效催化活性中心,从而显示高的催化活性。而且,所述介孔材料具有合适的硬度,因此可以被容易地球磨成希望的颗粒大小以用作待喷雾干燥浆料中的填料。另外,本发明中所描述的含氯硅烷处理能够改变所述介孔材料的表面性能,使得所述处理过的介孔材料在待喷雾干燥浆料中不容易附聚和沉降,由此改善由所述处理过的介孔材料制成的待喷雾干燥浆料的稳定性和可操作性。
在第四方面,本发明提供了烯烃聚合方法,该方法包括:a)在聚合反应条件下,在本发明的聚烯烃催化剂组分和助催化剂存在下,使烯烃单体聚合以提供聚烯烃;和b)回收所述聚烯烃。
本发明所述聚烯烃催化剂组分用于烯烃单体聚合制备聚烯烃的反应包括乙烯的均聚或乙烯与其他α-烯烃的共聚合,其中α-烯烃可以选自丙烯、1-丁烯、1-己烯、1-辛烯、1-戊烯、4-甲基-1-戊烯中的至少一种。
根据本发明,所述聚合反应的反应条件没有特别的限定,可以为本领域常规的烯烃聚合反应条件。例如,所述反应可以在惰性气氛下进行,所述聚合反应的条件可以包括:温度为10-100℃,时间为0.5-5h,压力为0.1-2MPa;优选地,所述聚合反应的条件可以包括:温度为20-95℃,时间为1-4h,压力为0.5-1.5MPa;进一步优选地,温度为70-85℃,时间为1-2h,压力为1-1.5MPa。
本发明所述压力指的是表压。
在本发明中,所述聚合反应可以在溶剂存在下进行。对所述聚合反应中可以使用的 溶剂没有特别地限定,其例如可以为己烷。
在一种具体的实施方式中,所述负载型聚烯烃催化剂组分可以为负载型聚乙烯催化剂组分,所述聚合反应为乙烯聚合反应。所述乙烯聚合的方法包括:在乙烯聚合反应的条件下,在催化剂和助催化剂存在下,使乙烯进行聚合反应;优选地,所述助催化剂为烷基铝化合物。
可用于本发明方法中的助催化剂可以是任何本领域中常用的助催化剂。例如,所述助催化剂可以是式I所示的烷基铝化合物:
AlR nX (3-n)  式I
式I中,R可以各自为C 1-C 8,优选C 1-C 5的烷基;X可以各自为卤素原子中的一种,优选为氯原子;n为1、2或3。
优选地,所述C 1-C 8的烷基可以为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、正己基、正辛基、2-乙基己基和新戊基中的一种或多种。
所述烷基铝化合物的具体实例包括但不限于:三甲基铝、二甲基氯化铝、三乙基铝、二乙基氯化铝、三正丙基铝、二正丙基氯化铝、三正丁基铝、三仲丁基铝、三叔丁基铝、二正丁基氯化铝和二异丁基氯化铝。最优选地,所述烷基铝化合物为三乙基铝。
所述烷基铝化合物的用量也可以为本领域常规的选择。一般地,所述催化剂组分与烷基铝化合物用量的摩尔比可以为1:20-300。
在本发明中,所述烯烃聚合的方法还可以包括,在聚合反应结束后,对最终的反应混合物进行分离,从而制得聚烯烃颗粒粉料。
以下将通过实施例对本发明进行举例说明,但是本发明不局限于此。
在以下实施例和对比例中:
三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯F127购自Aldrich公司,简写为F127,分子式为EO 106PO 70EO 106,平均分子量Mn为12600;
三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123购自Aldrich公司,简写为P123,分子式为EO 20PO 70EO 20,在美国化学文摘的登记号为9003-11-6的物质,平均分子量Mn为5800;
聚氧乙烯-聚氧丙烯-聚氧乙烯Synperonic F108购自Fuka公司,分子式为EO 132PO 60EO 132,平均分子量Mn=14600。
以下实施例和对比例中,X射线衍射分析在购自德国Bruker AXS公司的型号为D8  Advance的X射线衍射仪上进行;扫描电镜分析在购自美国FEI公司的型号为XL-30的扫描电子显微镜上进行;孔结构参数分析在购自美国Micromeritics公司生产的ASAP2020-M+C型吸附仪上进行,样品的比表面积和孔体积计算采用BET方法;样品的粒径分布SPAN值在马尔文激光粒度仪(英国马尔文公司)上进行;旋转蒸发仪为德国IKA公司生产,型号为RV10 digital;聚烯烃催化剂组分的各组分含量在购自荷兰帕纳科公司型号为Axios-Advanced的波长色散X射线荧光光谱仪上测定;喷雾干燥在购自瑞士Buchi公司生产的B-290型喷雾干燥仪上进行。
聚烯烃粉料的分子量分布指数(Mw/Mn)采用英国Polymer Laboratories Ltd.生产的PL-GPC220型凝胶渗透色谱仪按ASTM D6474-99规定的方法进行测定。
聚烯烃的熔融指数采用ASTM D1238-99规定的方法进行测定。
颗粒材料的粒径采用扫描电镜测定。
实施例1
本实施例用于说明聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将1.0克三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123和1.69克乙醇加入到28mL的pH值为4.4的乙酸和乙酸钠的缓冲溶液中,在15℃搅拌至聚氧乙烯-聚氧丙烯-聚氧乙烯P123完全溶解;然后将6g的三甲基戊烷加入到上述溶液中,15℃下搅拌8h后将2.13克四甲氧基硅烷加入到上述溶液中,在15℃搅拌20h后将溶液转移到聚四氟乙烯内衬的反应釜中,在60℃下晶化24h,然后经过滤、去离子水洗涤、干燥后得到鸡蛋壳状介孔材料原粉。将所述鸡蛋壳状介孔材料原粉在550℃在马弗炉中煅烧24h,脱除模板剂,得到粒径介于3和22μm之间的脱除模板剂的鸡蛋壳状介孔材料A1;然后将脱除模板剂的鸡蛋壳状介孔材料A1在氮气的保护下,在400℃下煅烧10h进行热活化处理,脱除所述鸡蛋壳状介孔材料A1的羟基和残存水分,得到热活化的鸡蛋壳状介孔材料B1。
取10g上述热活化的鸡蛋壳状介孔材料B1放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径介于3和15mm之间,数量为30个(其中大(直径大于11mm)、中(直径介于7和11mm之间)和小(直径小于7mm)的磨球的数目比大致为1:2:3),封闭球磨罐。在球磨罐内温度为25℃、球磨罐转速为400r/min下球磨12h,得到10g研磨过的鸡蛋壳状介孔材料载体C1。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃给电子体溶剂。控制反应器温度为30℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛,将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将6g鸡蛋壳状介孔材料载体C1加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为140℃,出风口温度为105℃,载气流量为30L/s,进行喷雾干燥,得到聚烯烃催化剂组分Cat-1。
用XRD、扫描电镜、粒度仪和ASAP2020-M+C型氮气吸附仪对鸡蛋壳状介孔材料A1和聚烯烃催化剂Cat-1进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-1中,以元素计,镁的含量为11.17重量%,钛的含量为2.55重量%。
图1为鸡蛋壳状介孔材料A1的XRD谱图。由XRD谱图出现的小角度谱峰可知,鸡蛋壳状介孔材载体料A1的XRD谱图具有介孔材料所特有的2D的六方孔道结构。
图2A为鸡蛋壳状介孔材料A1的孔径分布曲线图,图2B为鸡蛋壳状介孔材料A1的氮气吸脱附等温线。从所述孔径分布曲线图和氮气吸脱附等温线谱图可以看出,所述鸡蛋壳状介孔材料A1具有尖锐的毛细管冷凝速率的Ⅳ型等温线,该等温线拥有H1滞后环,这表明样品具有均一的孔径尺寸分布。
图3A和图3B均为鸡蛋壳状介孔材料A1的扫描电镜图(SEM)(放大倍率分别为500K和3000K)。由图可以看出,样品的粒径在3-22μm之间。
图3是聚烯烃催化剂组分Cat-1的SEM扫描电镜图。由图可知,聚烯烃催化剂组分Cat-1的微观形貌图为球形,粒径大小为微米级别,大致在3-25μm的范围内。
表1为鸡蛋壳状介孔材料A1和聚烯烃催化剂Cat-1的孔结构参数。
表1
Figure PCTCN2019113373-appb-000001
由表1的数据可以看出,鸡蛋壳状介孔材料A1在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到鸡蛋壳状介孔材料A1的内部。
实施例2
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将1.0克三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123和1.84克乙醇加入到28mL的pH值为5的乙酸和乙酸钠的缓冲溶液中,在40℃搅拌至聚氧乙烯-聚氧丙烯-聚氧乙烯完全溶解;然后将9.12g的三甲基戊烷加入到上述溶液中,40℃下搅拌6h后将3.04克四甲氧基硅烷加入到上述溶液中。在40℃搅拌15h后,将溶液转移到聚四氟乙烯内衬的反应釜中,在100℃下晶化10h,然后经过滤、洗涤、干燥后得到鸡蛋壳状介孔材料原粉。将所述鸡蛋壳状介孔材料原粉在600℃在马弗炉中煅烧8h,脱除模板剂,得到粒径在3-12.5μm范围内的脱除模板剂的鸡蛋壳状介孔材料A2。然后将脱除模板剂的鸡蛋壳状介孔材料A2在氮气的保护下,在500℃下煅烧10h进行热活化处理,脱除所述鸡蛋壳状介孔材料A2的羟基和残存水分,得到热活化的鸡蛋壳状介孔材料B2。
取10g上述热活化的鸡蛋壳状介孔材料B2放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为300r/min。封闭球磨罐。在球磨罐内温度为30℃下球磨12h,得10g球磨过的鸡蛋壳状介孔材料载体C2。
(2)聚烯烃催化剂的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃,控制反应器温度为30℃。在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛,将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将3g鸡蛋壳状介孔材料载体C2加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为150℃,出风口温度为110℃,载气流量为40L/s,进行喷雾干燥,得到聚烯烃催化剂组分Cat-2。
用XRD、扫描电镜、粒度仪和ASAP2020-M+C型氮气吸附仪对鸡蛋壳状介孔材料A2和聚烯烃催化剂Cat-2进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-2中,以元素计,镁的含量为15.39重量%,钛的含量为3.12重量%。
表2为鸡蛋壳状介孔材料A2和聚烯烃催化剂组分Cat-2的孔结构参数。
表2
Figure PCTCN2019113373-appb-000002
由表2的数据可以看出,鸡蛋壳状介孔材料A2在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到鸡蛋壳状介孔材料A2的内部。
实施例3
本实施例用于说明本发明的聚烯烃催化剂及其制备方法。
(1)载体的制备
将1.0克三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯P123和2.76克乙醇加入到28mL的pH值为3的乙酸和乙酸钠的缓冲溶液中,在15℃搅拌至聚氧乙烯-聚氧丙烯-聚氧乙烯完全溶解。然后将5.7g的三甲基戊烷加入到上述溶液中,15℃下搅拌8h后将2.13克四甲氧基硅烷加入到上述溶液中。在40℃搅拌10h后,将溶液转移到聚四氟乙烯内衬的反应釜中,在40℃下晶化40h,然后经过滤、洗涤、干燥后,得到鸡蛋壳状介孔材料原粉。将所述鸡蛋壳状介孔材料原粉在450℃在马弗炉中煅烧36h,脱除模板剂,得到粒径在5-16.2μm范围内的脱除模板剂的鸡蛋壳状介孔材料A3。然后,将脱除模板剂的鸡蛋壳状介孔材料A3在氮气的保护下,在700℃下煅烧8h进行热活化处理,脱除所述鸡蛋壳状介孔材料A3的羟基和残存水分,得到热活化的鸡蛋壳状介孔材料B3。
取10g上述热活化的鸡蛋壳状介孔材料B3放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为550r/min。封闭球磨罐,在球磨罐内温度为20℃下球磨10h,得10g球磨过的鸡蛋壳状介孔材料载体C3。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃,控制反应器温度为40℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。在40℃下,将4.5g鸡蛋壳状介孔材料载体C3加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应 2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为135℃,出风口温度为105℃,载气流量为30L/s,喷雾干燥,得到聚烯烃催化剂组分Cat-3。
用XRD、扫描电镜、粒度仪和ASAP2020-M+C型氮气吸附仪对鸡蛋壳状介孔材料A3和聚烯烃催化剂组分Cat-3进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-3中,以元素计,镁的含量为12.76重量%,钛的含量为2.85重量%。
表3为鸡蛋壳状介孔材料A3和聚烯烃催化剂组分组分Cat-3的孔结构参数。
表3
Figure PCTCN2019113373-appb-000003
由表3的数据可以看出,鸡蛋壳状介孔材料A3在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到鸡蛋壳状介孔材料A3的内部。
实施例4
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
按照实施例2的方法制备聚烯烃催化剂组分Cat-4,不同的是,使用6.87g二乙氧基镁替代5.3g二氯化镁作为镁组分,使用1.4g三氯化钛替代1mL四氯化钛作为钛组分。
用XRD、扫描电镜和氮气吸附仪对鸡蛋壳状介孔材料A4和聚烯烃催化剂组分Cat-4进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-4中,以元素计,镁元素的含量为21.43重量%,钛元素的含量为1.22重量%。
表4为鸡蛋壳状介孔材料A4和聚烯烃催化剂组分Cat-4的孔结构参数。
表4
Figure PCTCN2019113373-appb-000004
Figure PCTCN2019113373-appb-000005
由表4的数据可以看出,鸡蛋壳状介孔材料A4在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到鸡蛋壳状介孔材料A4的内部。
实施例5
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法,其中介孔材料用含氯硅烷处理。
(1)载体的制备
鸡蛋壳状介孔材料的制备和热活化如实施例1中所述,给出热活化的鸡蛋壳状介孔材料B1。
按照实施例1中所描述的程序进行热活化的鸡蛋壳状介孔材料B1的球磨处理,只是与所述鸡蛋壳状介孔材料B1一起添加1g二氯二甲氧基硅烷至所述100ml球磨罐中,得到硅烷改性的、球磨过的鸡蛋壳状介孔材料载体C5。通过接触角和RDAX能谱分析对样品进行表征。表征结果为未经处理的介孔材料样品接触较为20°,球磨后介孔材料的接触角为100°。能谱分析表明未经过处理的样品只含有Si和O,而经过改性处理的介孔材料样品则含有C、Cl、Si和O。
(2)聚烯烃催化剂组分的制备
按照实施例1中所描述的程序,但是使用介孔材料载体C5代替介孔材料载体C1,制备得到聚烯烃催化剂组分Cat-5。
对比例1
本对比例用于说明参比的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将商购的硅胶(Cabot Corporation公司牌号为TS610的产品,粒径为0.02-0.1μm)作为载体D1。将硅胶载体D1在氮气保护下400℃煅烧10h,以脱除羟基和残存水分,从而得到经热活化的硅胶载体E1。
(2)聚烯烃催化剂组分的制备
按照实施例1中描述的方法制备聚烯烃催化剂组分,所不同的是,采用相同重量的上述活化的硅胶载体E1代替鸡蛋壳状介孔材料载体C1,从而制得对比催化剂组分 Cat-D-1。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-D-1中,以元素计,镁的含量为15.3重量%,钛的含量为2.5重量%。
对比例2
本对比例用于说明参比的聚烯烃催化剂组分及其制备方法。
按照实施例1中描述的方法制备聚烯烃催化剂组分,不同的是,使用相同重量的氧化铝载体代替鸡蛋壳状介孔材料载体C1,从而分别制得载体D2和聚烯烃催化剂组分Cat-D-2。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-D-2中,以元素计,镁的含量为14.6重量%,钛的含量为1.8重量%。
对比例3
本对比例用于说明参比的聚烯烃催化剂组分及其制备方法。
按照实施例1中描述的方法制备聚烯烃催化剂,不同的是,未采用球磨处理和喷雾干燥,而是在浸渍处理后直接过滤,并用正己烷进行洗涤4次,在75℃烘干,从而制得聚烯烃催化剂组分Cat-D-3。
通过X射线荧光分析得出,在本实施例所得到的催化剂Cat-D-3中,以元素计,镁的含量为11.14重量%,钛的含量为1.12重量%。
实验实施例1
本实施例用于说明采用本发明的聚烯烃催化剂组分进行乙烯聚合制备聚乙烯的方法。
将2L的不锈钢高压聚合釜中的气氛用氮气和乙烯各置换三次。将1L己烷,1mmol三乙基铝和约20mg催化剂组分Cat-1加入到所述聚合釜中,然后将温度提高到85℃,加入氢气至0.28MPa,然后用乙烯将体系总压维持在1.0MPa进行聚合反应。反应2小时后,停止加入乙烯,降温、泄压,取出聚乙烯粉料进行称重。计算催化剂活性,测试聚乙烯粉料的分子量分布指数、熔融指数MI 2.16以及催化剂的效率,结果列于表5中。
实验实施例2-5
按照实验实施例1中描述的方法进行乙烯聚合制备聚乙烯,不同的是,分别采用聚 烯烃催化剂组分Cat-2~Cat-5代替聚烯烃催化剂组分Cat-1。所得聚乙烯颗粒粉料的分子量分布指数、熔融指数MI 2.16以及催化剂的效率列于表5中。
实验对比例1-3
按照实验实施例1中描述的方法进行乙烯聚合制备聚乙烯,不同的是,分别采用聚烯烃催化剂组分Cat-D-1~Cat-D-3代替聚烯烃催化剂组分Cat-1。所得聚乙烯颗粒粉料的分子量分布指数、熔融指数MI 2.16以及催化剂的效率列于表5中。
表5
Figure PCTCN2019113373-appb-000006
从表5的结果可以看出,采用所述鸡蛋壳状介孔材料载体负载钛组分和镁组分制备的聚烯烃催化剂组分,催化活性高,聚合物粉料的熔融指数较大,聚合物粉料的分子量分布窄。而且,本发明催化剂组分用于催化乙烯聚合时得到的聚合物颗粒形态好,具有优异的流动性。此外,采用本发明的方法制备负载型催化剂,通过喷雾干燥法能够一步直接得到球形聚烯烃催化剂组分,操作简便。
实施例6
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将2g模板剂F127加入到含有37重量%的盐酸(2.9g)和水(56g)的溶液中,在40℃搅拌至F127完全溶解;之后将8.2g(0.04mol)正硅酸乙酯加入到上述溶液中,在40℃ 下搅拌45min,然后将得到的溶液转移至聚四氟乙烯内衬的反应釜中,在100℃下晶化24h,接着进行过滤和并用去离子水洗涤4次,然后进行抽滤和干燥,得到具有立方体心结构的介孔材料原粉。将所述具有立方体心结构的介孔材料原粉在马弗炉中在400℃下煅烧10h,脱除模板剂,得到粒径在3-9μm范围内的脱除模板剂的球形介孔二氧化硅A6。然后,将脱除模板剂的球形介孔二氧化硅A6在氮气的保护下,在400℃下煅烧10h进行热活化处理,以脱除所述球形介孔二氧化硅A6表面的羟基和残存水分,得到热活化的球形介孔二氧化硅B6。
取10g上述热活化的球形介孔二氧化硅B6放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为400r/min。封闭球磨罐,在球磨罐内温度为25℃下球磨12h,得到球磨过的球形介孔二氧化硅载体C6。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃给电子体溶剂,控制反应器温度为30℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将6g球形介孔二氧化硅载体C6加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为140℃,出风口温度为105℃,载气流量为30L/s,进行喷雾干燥,得到聚烯烃催化剂组分Cat-6。
用XRD、扫描电镜、粒度仪和ASAP2020-M+C型氮气吸附仪对球形介孔二氧化硅A6和聚烯烃催化剂组分Cat-6进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-6中,以元素计,镁的含量为12.54重量%,钛的含量为2.95重量%。
图5是球形介孔二氧化硅A6的X-射线衍射(XRD)谱图,其中,横坐标为2θ,纵坐标为强度。从XRD谱图中出现的小角度谱峰可知,所述球形介孔二氧化硅A6具有介孔材料SBA-16所特有的立方体心孔道结构。
图6是球形介孔二氧化硅A6的SEM扫描电镜图。由图可知,所述球形介孔二氧化硅A6为粒径为3-9μm的微球,其单分散性较好。
图7是聚烯烃催化剂组分Cat-6的扫描电镜图。由图可知,聚烯烃催化剂组分Cat-6为球形,粒径大小为微米级别。
表6为球形介孔二氧化硅A6和聚烯烃催化剂组分Cat-6的孔结构参数。
表6
Figure PCTCN2019113373-appb-000007
由表6的数据可以看出,球形介孔二氧化硅A6在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到球形介孔二氧化硅A1的内部。
实施例7
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将2g模板剂F127加入到含有37重量%的盐酸(2.9g)和水(56g)的溶液中,在40℃搅拌至F127完全溶解;之后将9.09g(0.044mol)正硅酸乙酯加入到上述溶液中,在60℃下搅拌20h。然后,将得到的溶液转移至聚四氟乙烯内衬的反应釜中,在120℃下晶化20h,接着进行过滤和并用去离子水洗涤4次,然后进行抽滤和干燥,得到具有立方体心结构的介孔材料原粉。将所述具有立方体心结构的介孔材料原粉在马弗炉中在500℃下煅烧15h,脱除模板剂,得到粒径为4-8μm的脱除模板剂的球形介孔二氧化硅A7。然后,将脱除模板剂的球形介孔二氧化硅A7在氮气的保护下,在500℃下煅烧10h进行热活化处理,脱除所述球形介孔二氧化硅A7表面的羟基和残存水分,得到热活化的球形介孔二氧化硅B7。
取10g上述热活化的球形介孔二氧化硅B7放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为300r/min。封闭球磨罐,在球磨罐内温度为30℃下球磨12h,得到球磨过的球形介孔二氧化硅载体C7。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃,控制反应器温度为30℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至 50℃,将3g球形介孔二氧化硅载体C7加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为150℃,出风口温度为110℃,载气流量为40L/s,进行喷雾干燥,得到聚烯烃催化剂组分Cat-7。
用XRD、扫描电镜、粒度仪和ASAP2020-M+C型氮气吸附仪对球形介孔二氧化硅A7和聚烯烃催化剂Cat-7进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-7中,以元素计,镁的含量为18.73重量%,钛的含量为4.47重量%。
表7为球形介孔二氧化硅A7和聚烯烃催化剂组分Cat-7的孔结构参数。
表7
Figure PCTCN2019113373-appb-000008
由表7的数据可以看出,球形介孔二氧化硅A7在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到球形介孔二氧化硅A7的内部。
实施例8
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将2g模板剂F127加入到含有37重量%的盐酸(2.9g)和水(56g)的溶液中,在40℃搅拌至F127完全溶解;之后,将7.44g(0.036mol)正硅酸乙酯加入到上述溶液中,在50℃下搅拌24h。然后,将得到的溶液转移至聚四氟乙烯内衬的反应釜中,在90℃下晶化36h,接着进行过滤和并用去离子水洗涤4次,然后进行抽滤和干燥,得到具有立方体心结构的介孔材料原粉。将所述具有立方体心结构的介孔材料原粉在马弗炉中在500℃下煅烧15h,脱除模板剂,得到粒径为3.5-8.5μm的脱除模板剂的球形介孔二氧化硅A8。然后,将脱除模板剂的球形介孔二氧化硅A8在氮气的保护下,在700℃下煅烧8h进行热活化处理,脱除所述球形介孔二氧化硅A8表面的羟基和残存水分,得到热活化的球形介孔二氧化硅B8。
取10g上述热活化的球形介孔二氧化硅B8放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为550r/min。封闭球磨罐,在球磨罐内温度为20℃下球磨10h,得到球磨过的球形介孔二氧化硅载体C8。
(2)聚烯烃催化剂的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃,控制反应器温度为40℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。在40℃下,将4.5g球形介孔二氧化硅载体C8加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为135℃,出风口温度为105℃,载气流量为30L/s,喷雾干燥,得到聚烯烃催化剂组分Cat-8。
用XRD、扫描电镜、粒度仪和ASAP2020-M+C型氮气吸附仪对球形介孔二氧化硅A8和聚烯烃催化剂组分Cat-8进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-8中,以元素计,镁的含量为13.09重量%,钛的含量为3.60重量%。
表8为球形介孔二氧化硅A8和聚烯烃催化剂组分Cat-8的孔结构参数。
表8
Figure PCTCN2019113373-appb-000009
由表8的数据可以看出,球形介孔二氧化硅A8在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到球形介孔二氧化硅A8的内部。
实施例9
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
按照实施例7中描述的方法制备聚烯烃催化剂组分Cat-9,不同的是,使用6.87g二乙氧基镁替代5.3g二氯化镁作为镁组分,使用1.4g三氯化钛替代1mL四氯化钛作为钛组 分。
用XRD、扫描电镜和氮气吸附仪对球形介孔二氧化硅A9和聚烯烃催化剂Cat-9进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-9中,以元素计,镁的含量为22.32重量%,钛的含量为1.25重量%。
表9为球形介孔二氧化硅A9和聚烯烃催化剂组分Cat-9的孔结构参数。
表9
Figure PCTCN2019113373-appb-000010
由表9的数据可以看出,球形介孔二氧化硅A9在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到球形介孔二氧化硅A9的内部。
实施例10
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法,其中介孔材料载体用含氯硅烷改性。
(1)载体的制备
球形介孔二氧化硅材料的制备和热活化如实施例6中所述,给出热活化的球形介孔二氧化硅材料B10。
按照实施例6中所描述的程序进行热活化的介孔材料B10的球磨处理,只是与所述介孔材料B10一起添加1g二氯二甲氧基硅烷至所述100ml球磨罐中,得到硅烷改性的、球磨过的球形介孔二氧化硅材料载体C10。通过接触角和RDAX能谱分析对样品进行表征。表征结果为未经处理的介孔材料样品接触较为21°,球磨后介孔材料的接触角为102°。能谱分析表明未经过处理的样品只含有Si和O,而经过改性处理的介孔材料样品则含有C、Cl、Si和O。
(2)聚烯烃催化剂组分的制备
按照实施例6中所描述的程序,但是使用介孔材料载体C10代替介孔材料载体C6,制备得到聚烯烃催化剂组分Cat-10。
对比例4
本对比例用于说明参比的聚烯烃催化剂组分及其制备方法。
按照实施例6的方法制备聚烯烃催化剂组分,不同的是,未采用喷雾干燥和球磨处理,而是在浸渍处理后直接过滤,并用正己烷进行洗涤4次,在75℃烘干,从而制得聚烯烃催化剂组分Cat-D-4。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-D-4中,以元素计,镁的含量为11.2重量%,钛的含量为1.3重量%。
实验实施例6
本实施例用于说明采用本发明的聚烯烃催化剂组分进行乙烯聚合制备聚乙烯的方法
将2L的不锈钢高压聚合釜中的气氛用氮气和乙烯各置换三次。将1L己烷,1mmol三乙基铝和约20mg催化剂组分Cat-6加入到所述聚合釜中,然后将温度提高到85℃,加入氢气至0.28MPa,然后用乙烯将体系总压维持在1.0MPa进行聚合反应。反应2小时后,停止加入乙烯,降温、泄压,取出聚乙烯粉料进行称重。计算催化剂活性,测试聚乙烯粉料的分子量分布指数、熔融指数MI 2.16以及催化剂的效率,结果列于表10中。
实验实施例7-10
按照实验实施例6中描述的方法进行乙烯聚合制备聚乙烯,不同的是,分别采用聚烯烃催化剂组分Cat-7~Cat-10代替聚烯烃催化剂组分Cat-6。所得聚乙烯颗粒粉料的分子量分布、熔融指数MI 2.16以及催化剂的效率列于表10中。
实验对比例4
按照实验实施例6中描述的方法进行乙烯聚合制备聚乙烯,不同的是,采用聚烯烃催化剂组分Cat-D-4代替聚烯烃催化剂Cat-6。所得聚乙烯颗粒粉料的分子量分布、熔融指数MI 2.16以及催化剂的效率列于表10中。
表10
Figure PCTCN2019113373-appb-000011
Figure PCTCN2019113373-appb-000012
从表10的结果可以看出,采用球形介孔二氧化硅载体负载钛组分和镁组分制备的聚烯烃催化剂组分,催化活性高,聚合物粉料的熔融指数较大,聚合物粉料的分子量分布窄。而且,本发明催化剂组分用于催化乙烯聚合得到的聚合物颗粒形态好,具有优异的流动性。此外,采用本发明的方法制备负载型催化剂,通过喷雾干燥法能够一步直接得到球形聚烯烃催化剂组分,操作简便。
实施例11
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将4g(0.0007mol)模板剂P123加入到含有37重量%的盐酸(16.4mL)和水(128mL)的溶液中,在40℃搅拌至P123完全溶解。之后,将8.86g(0.042mol)正硅酸乙酯加入到上述溶液中,在40℃下搅拌24h。然后,将得到的溶液转移至聚四氟乙烯内衬的反应釜中,在150℃下晶化24h,接着进行过滤和并用去离子水洗涤4次,然后进行抽滤和干燥,得到介孔材料原粉。将所述介孔材料原粉用乙醇在回流条件下洗涤24h,脱除模板剂,得到介孔分子筛A11。然后,将脱除模板剂的产物在氮气的保护下,在400℃下煅烧10h进行热活化处理,脱除所述介孔材料表面的羟基和残存水分,得到热活化后的介孔材料B11。
取10g上述热活化后的介孔材料B11放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为400r/min。封闭球磨罐,在球磨罐内温度为25℃下球磨12h,得到球磨过的介孔材料载体C11。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入140mL的四氢呋喃给电子体溶剂。控制反应器温度为30℃,在搅拌开启时迅速加入6g二氯化镁和1.1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶 液冷却至50℃,将6.8g介孔材料载体C11加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为140℃,出风口温度为105℃,载气流量为30L/s,进行喷雾干燥得到,聚烯烃催化剂组分Cat-11。
用XRD、扫描电镜、粒度仪和氮气吸附仪对介孔材料载体C11和聚烯烃催化剂组分Cat-11进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-11中,以元素计,镁的含量为12.34重量%,钛的含量为2.16重量%。
图8是X-射线衍射图谱,其中,a为介孔分子筛A11的XRD谱图,横坐标为2θ,纵坐标为强度。从XRD谱图中可以明显地看出介孔分子筛A11在小角区出现衍射峰,说明所述介孔分子筛A11具有介孔材料SBA-15所特有的二维有序的六方孔道结构。
图9是聚烯烃催化剂组分Cat-11的扫描电镜图。由图可知,聚烯烃催化剂组分Cat-11的微观形貌为球形,粒径大小为微米级别。
表11为介孔材料载体C11和聚烯烃催化剂组分Cat-11的孔结构参数。
表11
Figure PCTCN2019113373-appb-000013
由表11的数据可以看出,介孔材料载体C11在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到介孔材料载体C11的内部。
实施例12
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将4g(0.0007mol)模板剂P123加入到含有37重量%的盐酸(16.4mL)和水(128mL)的溶液中,在40℃搅拌至P123完全溶解。之后,将10.9g(0.0525mol)正硅酸乙酯加入到上述溶液中,在40℃下搅拌24h。然后,将得到的溶液转移至聚四氟乙烯内衬的反应釜中,在180℃下晶化20h,接着进行过滤和并用去离子水洗涤4次,然后进行抽滤和干 燥,得到介孔材料原粉。将所述介孔材料原粉用乙醇在回流条件下洗涤24h,脱除模板剂,得到介孔分子筛材料A12。然后,将脱除模板剂的产物在氮气的保护下,在500℃下煅烧10h进行热活化处理,脱除所述介孔材料表面的羟基和残存水分,得到热活化后的介孔材料B12。
取10g上述热活化后的介孔材料B12放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为300r/min。封闭球磨罐,在球磨罐内温度为30℃下球磨12h,得球磨过的介孔材料载体C12。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入140mL的四氢呋喃,控制反应器温度为30℃,在搅拌开启时迅速加入6g二氯化镁和1.1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将3.5g介孔材料载体C12加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为150℃,出风口温度为110℃,载气流量为40L/s,进行喷雾干燥,得到聚烯烃催化剂组分Cat-12。
用XRD、扫描电镜、粒度仪和氮气吸附仪对介孔材料载体C2和聚烯烃催化剂组分Cat-12进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-12中,以元素计,镁的含量为10.53重量%,钛的含量为2.18重量%。
表12为介孔材料载体C12和聚烯烃催化剂组分Cat-12的孔结构参数。
表12
Figure PCTCN2019113373-appb-000014
由表12的数据可以看出,介孔材料载体C12在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到介孔材料载体C12的内部。
实施例13
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将4g(0.0007mol)模板剂P123加入到含有37重量%的盐酸(16.4mL)和水(128mL)的溶液中,在40℃搅拌至P123完全溶解。之后,将7.27g(0.035mol)正硅酸乙酯加入到上述溶液中,在50℃下搅拌20h,然后将得到的溶液转移至聚四氟乙烯内衬的反应釜中,在175℃下晶化22h,接着进行过滤和并用去离子水洗涤4次,然后进行抽滤和干燥,得到介孔材料原粉。将所述介孔材料原粉用乙醇在回流条件下洗涤24h,脱除模板剂,得到介孔分子筛材料A13。然后将脱除模板剂的产物在氮气的保护下,在700℃下煅烧8h进行热活化处理,脱除所述介孔材料的羟基和残存水分,得到热活化后的介孔材料B13。
取10g上述热活化后的介孔材料B13放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为550r/min。封闭球磨罐,在球磨罐内温度为20℃下球磨10h,得球磨过的介孔材料载体C13。
(2)聚烯烃催化剂的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入140mL的四氢呋喃,控制反应器温度为40℃,在搅拌开启时迅速加入6g二氯化镁和1.1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。在40℃下,将5.1g介孔材料载体C13加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为135℃,出风口温度为105℃,载气流量为30L/s,喷雾干燥,得到聚烯烃催化剂组分Cat-13。
用XRD、扫描电镜、粒度仪和氮气吸附仪对介孔材料载体C13和聚烯烃催化剂组分Cat-13进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-13中,以元素计,镁的含量为13.2重量%,钛的含量为2.95重量%。
表13为介孔材料载体C13和聚烯烃催化剂组分Cat-13的孔结构参数。
表13
Figure PCTCN2019113373-appb-000015
由表13的数据可以看出,介孔材料载体C13在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到介孔材料载体C13的内部。
实施例14
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
按照实施例12的方法制备聚烯烃催化剂组分Cat-14,不同的是,使用1.4g三氯化钛替代1.1mL四氯化钛作为钛组分。
用XRD、扫描电镜和氮气吸附仪对介孔材料载体C14和聚烯烃催化剂组分Cat-14进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-14中,以元素计,镁的含量为13.94重量%,钛的含量为2.22重量%。
表14为介孔材料载体C14和聚烯烃催化剂组分Cat-14的孔结构参数。
表14
Figure PCTCN2019113373-appb-000016
由表14的数据可以看出,介孔材料载体C14在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到介孔材料载体C14的内部。
实施例15
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法,其中介孔材料载体用含氯硅烷改性。
(1)载体的制备
介孔材料的制备和热活化如实施例11中所述,给出热活化的介孔材料B15。
按照实施例11中所描述的程序进行热活化的介孔材料B15的球磨处理,只是与所述介孔材料B15一起添加1g二氯二甲氧基硅烷至所述100ml球磨罐中,得到硅烷改性的、球磨过的球形介孔二氧化硅材料载体C15。通过接触角和RDAX能谱分析对样品进行表征。表征结果为未经处理的介孔材料样品接触较为20°,球磨后介孔材料的接触角为100°。能谱分析表明未经过处理的样品只含有Si和O,而经过改性处理的介孔材料样品则含有C、Cl、Si和O。
(2)聚烯烃催化剂组分的制备
按照实施例11中所描述的程序,但是使用介孔材料载体C15代替介孔材料载体C11,制备得到聚烯烃催化剂组分Cat-15。
对比例5
本对比例用于说明参比的聚烯烃催化剂组分及其制备方法。
按照实施例11的方法制备聚烯烃催化剂,不同的是,未采用喷雾干燥和球磨处理,而是在浸渍处理后直接过滤,并用正己烷进行洗涤4次,在75℃烘干,从而制得聚烯烃催化剂组分Cat-D-5。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-D-5中,以元素计,镁的含量为12.9重量%,钛的含量为1.6重量%。
实验实施例11
本实施例用于说明采用本发明的聚烯烃催化剂组分进行乙烯聚合制备聚乙烯的方法。
将2L的不锈钢高压聚合釜中的气氛用氮气和乙烯各置换三次。将1L己烷,1mmol三乙基铝和约20mg催化剂组分Cat-11加入到所述聚合釜中,然后将温度提高到85℃,加入氢气至0.28MPa,然后用乙烯将体系总压维持在1.0MPa进行聚合反应。反应2小时后,停止加入乙烯,降温、泄压,取出聚乙烯粉料进行称重。计算催化剂活性,测试聚乙烯粉料的分子量分布指数、熔融指数MI 2.16以及催化剂的效率,结果列于表15中。
实验实施例12-15
按照实验实施例11的方法进行乙烯聚合制备聚乙烯,不同的是,分别采用聚烯烃催化剂组分Cat-12~Cat-15代替聚烯烃催化剂组分Cat-11。所得聚乙烯颗粒粉料的分子量 分布(Mw/Mn)、熔融指数MI 2.16以及催化剂的效率列于表15中。
实验对比例5
按照实验实施例11的方法进行乙烯聚合制备聚乙烯,不同的是采用聚烯烃催化剂组分Cat-D-5代替聚烯烃催化剂组分Cat-11。所得聚乙烯颗粒粉料的分子量分布(Mw/Mn)、熔融指数MI2.16以及催化剂的效率列于表15中。
表15
Figure PCTCN2019113373-appb-000017
从表15的结果可以看出,采用介孔材料载体负载钛组分和镁组分制备的聚烯烃催化剂,催化活性高,聚合物粉料的熔融指数较大,聚合物粉料的分子量分布窄。而且,本发明催化剂组分用于催化乙烯聚合时得到的聚合物颗粒形态好,具有优异的流动性。此外,采用本发明的方法制备负载型催化剂,通过喷雾干燥法能够一步直接得到球形聚烯烃催化剂,操作简便。
实施例16
本实施例用于说明聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将2g(1.4×10 -4mol)模板剂F108、5.24g(0.03mol)的K 2SO 4与60g当量浓度为2(2N)的盐酸溶液在38℃下搅拌至F108完全溶解。
将4.2g(0.02mol)的正硅酸乙酯加入到上述溶液中,在38℃搅拌15min,在38℃静置晶化24h。
然后向上述混合溶液中加入100g去离子水稀释,接着进行过滤,并用去离子水洗涤4次,然后抽滤得到具有立方体心Im3m结构的六方介孔材料原粉。
将上述得到的具有立方体心Im3m结构的六方介孔材料原粉在400℃下煅烧10h,脱除模板剂,得到六方介孔材料A16。然后将脱除模板剂的产物在氮气的保护下,在400℃下煅烧10h进行热活化处理,脱除所述六方介孔材料表面的羟基和残存水分,得到热活化后的六方介孔材料B16。
取10g上述热活化后的六方介孔材料B16放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为400r/min。封闭球磨罐,在球磨罐内温度为25℃下球磨12h,得到球磨过的六方介孔材料载体C16。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃给电子体溶剂,控制反应器温度为30℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将6g六方介孔材料载体C16加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为140℃,出风口温度为105℃,载气流量为30L/s,进行喷雾干燥,得到聚烯烃催化剂Cat-16。
用XRD、扫描电镜、粒度仪和氮气吸附仪对六方介孔材料载体C16和聚烯烃催化剂组分Cat-16进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-16中,以元素计,镁的含量为15.54重量%,钛的含量为2.73重量%。
图10是所述六方介孔材料载体C16的X-射线衍射图谱,其中横坐标为2θ,纵坐标为强度。从XRD谱图中可以明显地看出六方介孔材料载体C16在小角区出现1个与立方体心Im3m相符的(110)面的衍射峰(2θ=0.6°)和(200)面的衍射肩峰(2θ=1.2°)。(110)面的衍射峰强度高、峰形窄,说明六方介孔材料载体C16具有很好的长程有序结构,这和文献报道的FDU-6介孔材料XRD谱图相一致(Chengzhong Yu,Bozhi Tian,Jie Fan,Galen D.Stucky,Dongyuan Zhao,J.Am.Chem.Soc.2002,124,4556-4557),除此之外(200)面的衍射肩峰(2θ=1.2°)的位置完全有别于六方或层状结构。
图11A是六方介孔材料载体C16的氮气吸附-脱附曲线图(横坐标为相对压力,单位为p/p0),图11B是六方介孔材料载体C16的孔径分布图(横坐标为孔径,单位为0.1nm)。由孔径分布图可以看出六方介孔材料载体C16具有窄孔径分布,并且孔道非常均匀。图 11A中氮吸附脱-附等温线表明六方介孔材料载体C16是典型的IUPAC定义的第IV类吸附-脱附等温线,样品具有H2型滞后环,证明了六方介孔材料载体C16具有文献报道的特有的立方笼形结构的介孔结构。在相对分压0.4-0.5之间的脱附分支亦表明该材料具有笼状的孔穴结构。
图12是六方介孔材料载体C16的透射电镜图。从图12中可清楚看到六方介孔材料载体C16的(100)晶面的孔的形状,由图可知样品均具有立方体心的Im3m结构。
图13是六方介孔材料载体C16的扫描电镜图。由图可知,六方介孔材料载体C16的微观形貌为六方形,粒径大小为微米级别。
图14是聚烯烃催化剂组分Cat-16的扫描电镜图。由图可知,聚烯烃催化剂组分Cat-16的微观形貌图为球形,粒径大小为微米级别。
表16为六方介孔材料载体C16和聚烯烃催化剂Cat-16的孔结构参数。
表16
Figure PCTCN2019113373-appb-000018
由表16的数据可以看出,六方介孔材料载体C16在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到六方介孔材料载体C16的内部。
实施例17
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将1.46g(1×10 -4mol)模板剂F108、6.96g(0.04mol)的K 2SO 4与60g当量浓度为2(2N)的盐酸溶液在38℃下搅拌至F108完全溶解。
将3.1g(0.015mol)的正硅酸乙酯加入到上述溶液中,在38℃搅拌15min,在40℃静置晶化20h。
然后向上述混合溶液中加入100g去离子水稀释,接着进行过滤,并用去离子水洗涤4次,然后抽滤得到具有立方体心Im3m结构的六方介孔材料原粉。
将上述得到的具有立方体心Im3m结构的六方介孔材料原粉在600℃下煅烧20h,脱 除模板剂,得到六方介孔材料A17。然后将脱除模板剂的产物在氮气的保护下,在500℃下煅烧10h进行热活化处理,脱除所述六方介孔材料的羟基和残存水分,得到热活化后的六方介孔材料B17。
取10g上述热活化后的六方介孔材料B17放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为300r/min。封闭球磨罐,在球磨罐内温度为30℃下球磨12h,得球磨过的六方介孔材料载体C17。
(2)聚烯烃催化剂组分的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃,控制反应器温度为30℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将3g六方介孔材料载体C17加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为150℃,出风口温度为110℃,载气流量为40L/s,进行喷雾干燥得到聚烯烃催化剂组分Cat-17。
用XRD、扫描电镜、粒度仪和氮气吸附仪对六方介孔材料载体C17和聚烯烃催化剂组分Cat-17进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-17中,以元素计,镁的含量为8.79重量%,钛的含量为3.12重量%。
表17为六方介孔材料载体C17和聚烯烃催化剂Cat-17的孔结构参数。
表17
Figure PCTCN2019113373-appb-000019
由表17的数据可以看出,六方介孔材料载体C17在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到六方介孔材料载体C17的内部。
实施例18
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将1.46g(1×10 -4mol)模板剂F108、3.48g(0.02mol)的K 2SO 4与60g当量浓度为2(2N)的盐酸溶液在35℃下搅拌至F108完全溶解。
将3.1g(0.015mol)的正硅酸乙酯加入到上述溶液中,在35℃搅拌15min,在50℃静置晶化18h。
然后向上述混合溶液中加入100g去离子水稀释,接着进行过滤,并用去离子水洗涤4次,然后抽滤得到具有立方体心Im3m结构的六方介孔材料原粉。
将上述得到的具有立方体心Im3m结构的六方介孔材料原粉在550℃下煅烧24h,脱除模板剂,得到六方介孔材料A18。然后将脱除模板剂的产物在氮气的保护下,在700℃下煅烧8h进行热活化处理,脱除所述六方介孔材料的羟基和残存水分,得到热活化后的六方介孔材料B18。
取10g上述热活化后的六方介孔材料B18放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为550r/min封闭球磨罐,在球磨罐内温度为20℃下球磨10h,得球磨过的六方介孔材料载体C18。
(2)聚烯烃催化剂的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃,控制反应器温度为40℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。在40℃下,将4.5g六方介孔材料载体C18加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为135℃,出风口温度为105℃,载气流量为30L/s,喷雾干燥,得到聚烯烃催化剂Cat-18。
用XRD、扫描电镜、粒度仪和氮气吸附仪对六方介孔材料载体C18和聚烯烃催化剂组分Cat-18进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-18中,以元素计,镁的含量为18.7重量%,钛的含量为2.85重量%。
表18为六方介孔材料载体C18和聚烯烃催化剂组分Cat-18的孔结构参数。
表18
Figure PCTCN2019113373-appb-000020
由表18的数据可以看出,六方介孔材料载体C18在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到六方介孔材料载体C18的内部。
实施例19
本实施例用于说明本发明的聚烯烃催化剂组分及其制备方法。
按照实施例17的方法制备聚烯烃催化剂Cat-19,不同的是,使用1.4g三氯化钛替代1mL四氯化钛作为钛组分。
用XRD、扫描电镜和氮气吸附仪对六方介孔材料载体C19和聚烯烃催化剂组分Cat-19进行表征。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-19中,以元素计,镁的含量为24.43重量%,钛的含量为1.22重量%。
表19为六方介孔材料载体C19和聚烯烃催化剂组分Cat-19的孔结构参数。
表19
Figure PCTCN2019113373-appb-000021
由表19的数据可以看出,六方介孔材料载体C19在负载镁组分和钛组分之后,比表面积和孔体积均有所减小,这说明在负载反应过程中镁组分和钛组分进入到六方介孔材料载体C19的内部。
实施例20
本实施例用于说明聚烯烃催化剂组分及其制备方法。
(1)载体的制备
将2g(1.4×10 -4mol)模板剂F108、5.24g(0.03mol)的K 2SO 4与60g当量浓度为2(2N)的盐酸溶液在38℃下搅拌至F108完全溶解。
将4.2g(0.02mol)的正硅酸乙酯加入到上述溶液中,在38℃搅拌15min,在38℃静置晶化24h。
然后向上述混合溶液中加入100g去离子水稀释,接着进行过滤,并用去离子水洗涤4次,然后抽滤得到具有立方体心Im3m结构的六方介孔材料原粉。
将上述得到的具有立方体心Im3m结构的六方介孔材料原粉在400℃下煅烧10h,脱除模板剂,得到六方介孔材料A20。然后将脱除模板剂的产物在氮气的保护下,在400℃下煅烧10h进行热活化处理,脱除所述六方介孔材料的羟基和残存水分,得到热活化后的六方介孔材料B20。
取10g上述热活化后的六方介孔材料B20和1克二氯二甲氧基硅烷放入100ml球磨罐中,其中,球磨罐的材质为聚四氟乙烯,磨球材质为玛瑙,磨球的直径为3-15mm,数量为30个,球磨罐转速为400r/min。封闭球磨罐,在球磨罐内温度为25℃下球磨12h,得到球磨过的六方介孔材料载体C20。通过接触角和RDAX能谱分析对该样品进行表征。表征结果为未经处理的样品接触较为20°,球磨后接触角为100°。进行能谱分析,未经过处理的样品只含有Si和O,而经过改性处理的样品则含有C、Cl、Si和O。
(2)聚烯烃催化剂的制备
向经过N 2吹排并保持N 2气氛的装有搅拌装置的反应器中,加入130mL的四氢呋喃给电子体溶剂中,控制反应器温度为30℃,在搅拌开启时迅速加入5.3g二氯化镁和1mL四氯化钛。将系统温度调至70℃恒温反应4小时,得到含有二氯化镁和四氯化钛的溶液。将溶液冷却至50℃,将6g六方介孔材料载体C20加入到所述含有二氯化镁和四氯化钛的溶液中,搅拌反应2小时,制得浓度均一的待喷浆料。然后,将得到的待喷浆料引入喷雾干燥器,在N 2保护下,控制喷雾干燥器进风口温度为140℃,出风口温度为105℃,载气流量为30L/s,进行喷雾干燥得到聚烯烃催化剂Cat-20。
对比例6
本对比例用于说明参比的聚烯烃催化剂组分及其制备方法。
按照实施例16的方法制备聚烯烃催化剂,不同的是,未采用喷雾干燥和球磨处理,而是在浸渍处理后直接过滤,并用正己烷进行洗涤4次,在75℃烘干,从而制得聚烯烃催化剂组分Cat-D-6。
通过X射线荧光分析得出,在本实施例所得到的催化剂组分Cat-D-6中,以元素计,镁的含量为13.6重量%,钛的含量为1.5重量%。
实验实施例16
本实施例用于说明采用本发明的聚烯烃催化剂组分进行乙烯聚合制备聚乙烯的方法。
在2L的不锈钢高压聚合釜中,用氮气和乙烯各置换三次,将1L己烷,1mmol三乙基铝和约20mg催化剂组分Cat-16加入到2L不锈钢搅拌釜中,然后将温度提高到85℃,加入氢气至0.28MPa,然后用乙烯将体系总压维持在1.0MPa进行聚合反应,反应2小时后,停止加入乙烯,降温、泄压,取出聚乙烯粉料称重,计算催化剂活性,测试聚乙烯粉料的堆积密度,熔融指数MI 2.16以及催化剂的效率,结果列于表20中。
实验实施例17-20
按照实验实施例16的方法进行乙烯聚合制备聚乙烯,不同的是,分别采用聚烯烃催化剂组分Cat-17~Cat-20代替聚烯烃催化剂组分Cat-16。所得聚乙烯颗粒粉料的分子量分布、熔融指数MI 2.16以及催化剂的效率列于表20中。
实验对比例6
按照实验实施例16的方法进行乙烯聚合制备聚乙烯,不同的是采用聚烯烃催化剂组分Cat-D-6代替聚烯烃催化剂组分Cat-16。所得聚乙烯颗粒粉料的分子量分布、熔融指数MI 2.16以及催化剂的效率列于表20中。
表20
Figure PCTCN2019113373-appb-000022
从表20的结果可以看出,采用介孔材料载体负载钛组分和镁组分制备的聚烯烃催化剂组分,催化活性高,,聚合物粉料的熔融指数较大,聚合物粉料的分子量分布窄。而且,本发明催化剂组分用于催化乙烯聚合时得到的聚合物颗粒形态好,具有优异的流动性。此外,采用本发明的方法制备负载型催化剂,通过喷雾干燥法能够一步直接得到球形聚烯烃催化剂,操作简便。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (27)

  1. 热活化处理过的介孔材料,其中对介孔材料的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h的时间。
  2. 权利要求1所述的热活化处理过的介孔材料,其中所述介孔材料选自下组:
    a)具有二维六方孔道结构的介孔材料,其具有4-15nm的平均孔径,550-650m 2/g的比表面积,和0.5-1.5mL/g的孔体积,
    b)具有二维六方孔道结构的鸡蛋壳状介孔材料,其具有0.5-1.5mL/g的孔体积,100-500m 2/g的比表面积,和5-15nm的平均孔径;
    c)具有立方体心结构的球形介孔二氧化硅,其具有700-900m 2/g的比表面积,0.5-1mL/g的孔体积为,和1-5nm的平均孔径;和
    d)具有立方笼状孔道结构的六方介孔材料,其晶体结构具有立方体心的Im3m结构,并且所述六方介孔材料的平均孔径为4-15nm,比表面积为450-550m 2/g,孔体积为0.5-1.5mL/g。
  3. 权利要求1或2所述的热活化处理过的介孔材料,其具有至少40°,优选50-150°,更优选60-140°,仍更优选70-130°的接触角。
  4. 权利要求3所述的热活化处理过的介孔材料,其通过用含氯硅烷对热活化处理过的介孔材料进行处理获得。
  5. 权利要求4所述的热活化处理过的介孔材料,其中所述含氯硅烷选自下组:二氯二甲氧基硅烷、一氯三甲氧基硅烷、二氯二乙氧基硅烷和一氯三乙氧基硅烷。
  6. 制备聚烯烃催化剂组分的方法,该方法包括以下步骤:
    (i)提供热活化处理过的介孔材料,其中对介孔材料的热活化处理在惰性气氛下在300-900℃的温度下进行3-48h的时间;
    (ii)在惰性气氛下,将所述热活化处理过的介孔材料(iia)用含有镁组分的溶液进行浸渍处理和然后用含有钛组分的溶液进行浸渍处理,(iib)用含有钛组分的溶液进行浸渍处理和然后用含有镁组分的溶液进行浸渍处理,或者(iic)用含有钛组分和镁组分二者的溶液进行共浸渍处理,以得到待喷浆料;和
    (iii)将得自步骤(ii)的所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。
  7. 权利要求6所述的方法,该方法还包括:
    在步骤(ii)之前,用含氯硅烷处理所述热活化处理过的介孔材料,和/或对所述热活化处理过的介孔材料进行球磨处理。
  8. 权利要求7所述的方法,其中所述含氯硅烷选自下组:二氯二甲氧基硅烷、一氯三甲氧基硅烷、二氯二乙氧基硅烷和一氯三乙氧基硅烷。
  9. 权利要求7或8所述的方法,其中所述用含氯硅烷处理所述热活化处理过的介孔材料如下进行:在惰性气氛下,将所述热活化处理过的介孔材料和含氯硅烷一起在球磨罐中球磨。
  10. 权利要求6所述的方法,其中所述介孔材料载体选自下组:
    a)具有二维六方孔道结构的介孔材料,其具有4-15nm的平均孔径,550-650m 2/g的比表面积,0.5-1.5mL/g的孔体积,和0.5-15μm的平均粒径;
    b)具有二维六方孔道结构的鸡蛋壳状介孔材料,其具有0.5-1.5mL/g的孔体积,100-500m 2/g的比表面积,5-15nm的平均孔径,和3-20μm的平均粒径;
    c)具有立方体心结构的球形介孔材料,其具有2-9μm的平均粒径,700-900m 2/g的比表面积,0.5-1mL/g的孔体积为,和1-5nm的平均孔径;和
    d)具有立方笼状孔道结构的六方介孔材料,其晶体结构具有立方体心的Im3m结构,并且所述六方介孔材料的平均孔径为4-15nm,比表面积为450-550m 2/g,孔体积为0.5-1.5mL/g,平均粒径为0.5-10μm。
  11. 权利要求6所述的方法,其中该方法如下进行:
    (a)在模板剂的存在下,将硅源与酸剂进行混合接触,并将混合接触后得到的混合物依次进行晶化、过滤和干燥,得到介孔材料原粉;
    (b)将所述介孔材料原粉依次进行脱模板剂处理、热活化处理和球磨处理,得到处理过的介孔材料载体;
    (c)在惰性气氛下,将所述处理过的介孔材料载体在含有镁组分和钛组分的溶液中进行浸渍处理,得到待喷浆料;和
    (d)将所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。
  12. 权利要求11所述的方法,其具有以下特征中至少之一:
    -在步骤(a)中,所述混合接触的条件包括:温度为25-60℃,时间为25min以上,pH为1-6;
    -在步骤(a)中,所述模板剂为三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯EO 20PO 70EO 20
    -在步骤(a)中,所述酸剂为盐酸、硫酸、硝酸和氢溴酸中的至少一种,优选盐酸;
    -在步骤(a)中,所述硅源为正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶中的至少一种,更优选为正硅酸乙酯;
    -在步骤(a)中,所述模板剂和所述硅源的摩尔比为1:(10-90);
    -在步骤(a)中,所述晶化的条件包括:温度为90-180℃,时间为10-40h;
    -在步骤(b)中,所述脱模板剂处理的过程包括:在90-120℃下,将所述介孔材料原粉用醇进行洗涤,洗涤时间为10-40h;
    -在步骤(b)中,所述球磨处理的条件包括:球磨罐转速为100-800,优选300-500r/min,球磨罐内的温度为15-100℃,球磨的时间为0.1-100h;
    -在步骤(b)中,在所述球磨处理过程中引入含氯硅烷改性剂;
    -在步骤(c)中,所述浸渍的条件包括:浸渍温度为25-100℃,浸渍时间为0.1-5h;
    -所述处理过的介孔材料载体、镁组分、钛组分的用量使得制备的聚烯烃催化剂组分中,以所述聚烯烃催化剂组分的总重量为基准,所述处理过的介孔材料载体的含量为20-90重量%,优选为30-70重量%;所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%;
    -在步骤(d)中,所述喷雾干燥的条件包括:在氮气气氛,100-150℃的进风口温度,100-120℃的出风口温度,和10-50L/s的载气流量。
  13. 权利要求6所述的方法,其中该方法如下进行:
    (a)在溶液条件下,将模板剂与三甲基戊烷和四甲氧基硅烷进行混合接触以得到溶液A,并将所述溶液A进行依次进行晶化、过滤和干燥,得到鸡蛋壳状介孔材料原粉;
    (b)将所述鸡蛋壳状介孔材料原粉进行脱模板剂处理、热活化处理和球磨处理,得到鸡蛋壳状介孔材料载体;
    (c)在惰性气氛下,将所述鸡蛋壳状介孔材料载体在含有镁组分和钛组分的溶液中进行浸渍处理,得到待喷浆料;和
    (d)将所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。
  14. 权利要求13所述的方法,其具有以下特征中至少之一:
    -在步骤(a)中,所述混合接触的条件包括:温度为10-60℃,时间为0.2-100h,pH值为1-6;
    -所述模板剂、所述三甲基戊烷和所述四甲氧基硅烷的重量比为1:(1.2-20): (0.1-15);
    -所述模板剂为三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯EO 20PO 70EO 20
    -所述晶化的条件包括:温度为30-150℃,时间为4-72h;
    -在步骤(b)中,所述脱模板剂处理的过程包括:在300-600℃下,在含氧气氛中,将所述鸡蛋壳状介孔材料原粉进行煅烧8-36h;
    -在步骤(b)中,在所述球磨处理过程中引入含氯硅烷改性剂;
    -在步骤(c)中,所述浸渍的条件包括:浸渍温度为25-100℃,浸渍时间为0.1-5h;
    -所述鸡蛋壳状介孔材料载体、镁组分和钛组分的用量使得制备的聚烯烃催化剂组分中,以所述聚烯烃催化剂组分的总重量为基准,所述鸡蛋壳状介孔材料载体的含量为20-90重量%,优选为30-70重量%;所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%;
    -在步骤(d)中,所述喷雾干燥的条件包括:在氮气保护气氛下进行,进风口温度为100-150℃,出风口温度为100-120℃,载气流量为10-50L/s。
  15. 权利要求6所述的方法,其中该方法如下进行:
    (a)在模板剂的存在下,将硅源与酸剂进行混合接触,并将混合接触后得到的混合物依次进行晶化、过滤和干燥,得到具有立方体心结构的介孔材料原粉;
    (b)将所述介孔材料原粉进行脱模板剂处理、热活化处理和球磨处理,得到球形介孔材料载体;
    (c)在惰性气氛下,将所述球形介孔材料载体在含有镁组分和钛组分的溶液中进行浸渍处理,得到待喷浆料;,和
    (d)将所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。
  16. 权利要求15所述的方法,其具有以下特征中至少之一:
    -在步骤(a)中,所述模板剂和所述硅源用量的摩尔比为1:200-300;
    -所述模板剂为三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯EO 106PO 70EO 106
    -所述硅源包括正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶中的至少一种,更优选为正硅酸乙酯;
    -所述混合接触的条件包括:温度为25-60℃,时间为25min以上,pH为1-6;
    -所述晶化的条件包括:温度为30-150℃,时间为10-72h;
    -在步骤(b)中,所述脱模板剂处理的过程包括:在300-600℃下,在含氧气氛下,将所述具有立方体心结构的介孔材料原粉进行煅烧8-20h;
    -所述球磨处理的条件包括:球磨罐的转速为100-800r/min,优选300-500r/min,球磨罐内的温度为15-100℃,球磨的时间为0.1-100h;
    -在步骤(b)中,在所述球磨处理过程中引入含氯硅烷改性剂;
    -在步骤(c)中,所述浸渍的条件包括:浸渍温度为25-100℃,浸渍时间为0.1-5h;
    -所述球形介孔二氧化硅载体、镁组分和钛组分的用量使得制备的聚烯烃催化剂组分中,以所述聚烯烃催化剂组分的总重量为基准,所述球形介孔二氧化硅载体的含量为20-90重量%,优选为30-70重量%;所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%;
    -在步骤(d)中,所述喷雾干燥的条件包括:在氮气保护气氛下进行,进风口温度为100-150℃,出风口温度为100-120℃,载气流量为10-50L/s。
  17. 权利要求6所述的方法,其中该方法如下进行:
    (a)将模板剂、硫酸钾、酸剂和硅源进行混合接触,并将得到的混合物进行晶化、过滤和干燥,得到具有立方体心Im3m结构的六方介孔材料原粉;
    (b)将所述六方介孔材料原粉依次进行脱模板剂处理、热活化处理和球磨处理,得到六方介孔材料载体;
    (c)在惰性气体存在下,将所述六方介孔材料载体在含有镁组分和钛组分的溶液中进行浸渍处理,得到待喷浆料;和
    (d)将所述待喷浆料进行喷雾干燥,以得到固体聚烯烃催化剂组分。
  18. 权利要求17所述的方法,其具有以下特征中至少之一:
    -在步骤(a)中,所述模板剂、硫酸钾和硅源的摩尔比为1:100-800:20-200;
    -所述模板剂为三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯EO 132PO 60EO 132
    -所述硅源为正硅酸乙酯、正硅酸甲酯、正硅酸丙酯、正硅酸钠和硅溶胶中的至少一种,更优选为正硅酸乙酯;
    -所述酸剂为盐酸、硫酸、硝酸和氢溴酸中的至少一种,优选盐酸;
    -所述混合接触的条件包括:温度为25-60℃,时间为10-240min,pH值为1-7;
    -所述晶化的条件包括:温度为25-60℃,时间为10-72h;
    -在步骤(b)中,所述脱模板剂处理的过程包括:在300-600℃下,在含氧气氛下,将所述六方介孔材料原粉进行煅烧8-20h;
    -所述球磨处理的条件包括:球磨罐的转速为100-800r/min,优选300-500r/min,球磨罐内的温度为15-100℃,球磨的时间为0.1-100h;
    -在步骤(b)中,在所述球磨处理过程中引入含氯硅烷改性剂;
    -在步骤(c)中,所述浸渍的条件包括:浸渍温度为25-100℃,浸渍时间为0.1-5h;
    -所述六方介孔材料载体、镁组分和钛组分的用量使得制备的聚烯烃催化剂组分中,以所述聚烯烃催化剂组分的总重量为基准,所述六方介孔材料载体的含量为20-90重量%,优选为30-70重量%;所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%;
    -在步骤(d)中,所述喷雾干燥的条件包括:在氮气保护气氛下进行,进风口温度为100-150℃,出风口温度为100-120℃,载气流量为10-50L/s。
  19. 由权利要求6-18中任意一项所述的方法制得的聚烯烃催化剂组分。
  20. 聚烯烃催化剂组分,其包含热活化处理过的介孔材料载体和负载在所述载体上的镁组分、钛组分以及任选的给电子体组分。
  21. 权利要求20所述的聚烯烃催化剂组分,其中所述介孔材料载体选自下组:
    具有二维六方孔道结构的介孔材料载体,其具有4-15nm的平均孔径,550-650m 2/g的比表面积,0.5-1.5mL/g的孔体积,和0.05-5μm,优选0.1-3μm,更优选0.1-2μm的平均粒径;
    具有二维六方孔道结构的鸡蛋壳状介孔材料载体,其具有0.5-1.5mL/g的孔体积,100-500m 2/g的比表面积,5-15nm的平均孔径,和0.05-5μm,优选0.1-3μm,更优选0.1-2μm的平均粒径;
    具有立方体心结构的球形介孔载体载体,其具有0.05-5μm,优选0.1-3μm,更优选0.1-2μm的平均粒径,700-900m 2/g的比表面积,0.5-1mL/g的孔体积为,和1-5nm的平均孔径;和
    具有立方笼状孔道结构的六方介孔材料载体,其晶体结构具有立方体心的Im3m结构,并且所述六方介孔材料载体的平均孔径为4-15nm,比表面积为450-550m 2/g,孔体积为0.5-1.5mL/g,平均粒径为0.05-5μm,优选0.1-3μm,更优选0.1-2μm。
  22. 权利要求20或21所述的聚烯烃催化剂组分,其中所述介孔材料载体具有至少 40°,优选50-150°,更优选60-140°,仍更优选70-130°的接触角。
  23. 权利要求22所述的聚烯烃催化剂组分,其中所述介孔材料载体含有连接到其上的含氯硅烷改性剂。
  24. 权利要求23所述的聚烯烃催化剂组分,其中所述含氯硅烷改性剂选自下组:二氯二甲氧基硅烷、一氯三甲氧基硅烷、二氯二乙氧基硅烷和一氯三乙氧基硅烷。
  25. 权利要求20所述的聚烯烃催化剂组分,其中,以所述聚烯烃催化剂组分的总重量为基准,所述介孔材料载体的含量为20-90重量%,优选为30-70重量%;所述镁组分以镁元素计的含量为1-50重量%,优选为1-30重量%,更优选为2-25重量%,仍更优选为3-20重量%,所述钛组分以钛元素计的含量为1-50重量%,优选为1-30重量%,更优选为1-10重量%,仍更优选为1-5重量%。
  26. 权利要求20所述的聚烯烃催化剂组分,其中
    -所述聚烯烃催化剂组分的平均孔径为4-15nm,比表面积为520-600m 2/g,孔体积为0.6-1.4mL/g,平均粒径为1-20μm,粒径分布值为1.7-1.8;
    -所述聚烯烃催化剂的孔体积为0.5-1mL/g,比表面积为120-300m 2/g,平均孔径为7-12nm,平均粒径为3-25μm,粒径分布值为0.85-0.95;
    -所述聚烯烃催化剂的平均粒径为3-25μm,比表面积为700-800m 2/g,孔体积为0.5-0.8mL/g,平均孔径为1.5-4.5nm,粒径分布值为0.85-0.95;或者
    所述聚烯烃催化剂的平均孔径为4-15nm,比表面积为450-500m 2/g,孔体积为0.5-1mL/g,平均粒径为0.5-20μm,粒径分布值为1.6-1.7。
  27. 烯烃聚合方法,该方法包括:a)在聚合反应条件下,在权利要求19-26中任意一项所述的聚烯烃催化剂组分和助催化剂存在下,使烯烃单体聚合以提供聚烯烃;和b)回收所述聚烯烃。
PCT/CN2019/113373 2018-10-26 2019-10-25 含介孔材料的聚烯烃催化剂组分及其制备方法和应用 WO2020083386A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/288,071 US20210380730A1 (en) 2018-10-26 2019-10-25 Polyolefin catalyst component containing mesoporous material, preparation method therefor and use thereof
EP19875702.3A EP3872100A4 (en) 2018-10-26 2019-10-25 MESOPOROUS MATERIAL CONTAINING POLYOLEFIN CATALYST COMPONENT, PROCESS FOR ITS PREPARATION AND ITS USE
CN201980068497.1A CN113166302A (zh) 2018-10-26 2019-10-25 含介孔材料的聚烯烃催化剂组分及其制备方法和应用

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811261730.1 2018-10-26
CN201811261755 2018-10-26
CN201811261755.1 2018-10-26
CN201811261730 2018-10-26
CN201811459565.0 2018-11-30
CN201811457344.X 2018-11-30
CN201811457344 2018-11-30
CN201811459565 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020083386A1 true WO2020083386A1 (zh) 2020-04-30

Family

ID=70330923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113373 WO2020083386A1 (zh) 2018-10-26 2019-10-25 含介孔材料的聚烯烃催化剂组分及其制备方法和应用

Country Status (4)

Country Link
US (1) US20210380730A1 (zh)
EP (1) EP3872100A4 (zh)
CN (1) CN113166302A (zh)
WO (1) WO2020083386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754798A (zh) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 类球形超大孔介孔材料和聚烯烃催化剂及其制备方法以及烯烃聚合方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063592A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种聚烯烃催化剂及其制备方法与应用

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293673A (en) 1978-12-28 1981-10-06 Union Carbide Corporation Spheroidal polymerization catalyst, process for preparing, and use for ethylene polymerization
US4302566A (en) 1978-03-31 1981-11-24 Union Carbide Corporation Preparation of ethylene copolymers in fluid bed reactor
US4302565A (en) 1978-03-31 1981-11-24 Union Carbide Corporation Impregnated polymerization catalyst, process for preparing, and use for ethylene copolymerization
US4303771A (en) 1978-12-14 1981-12-01 Union Carbide Corporation Process for the preparation of high density ethylene polymers in fluid bed reactor
US5290745A (en) 1992-08-10 1994-03-01 Union Carbide Chemicals & Plastics Technology Corporation Process for producing ethylene polymers having reduced hexane extractable content
EP0835887A2 (en) 1994-06-20 1998-04-15 Borealis Polymers Oy Procatalyst for ethylene polymer production, method for its preparation and use
EP1205493A1 (en) * 2000-11-14 2002-05-15 ATOFINA Research Polymerisation catalyst systems and their preparation
CN102040688A (zh) * 2009-10-23 2011-05-04 中国石油化工股份有限公司 一种负载茂金属的六方介孔材料在乙烯聚合中的应用
CN102049300A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种负载茂金属催化剂的球状介孔材料、及制法
CN102451760A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 一种负载型催化剂及其制备方法和乙酸乙酯的制备方法
CN102476803A (zh) * 2010-11-29 2012-05-30 国家纳米科学中心 一种表面改性有序介孔二氧化硅复合材料及其制备方法
CN102731687A (zh) * 2011-03-31 2012-10-17 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
CN102952213A (zh) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法和应用
CN102952209A (zh) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法和应用
CN102952218A (zh) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 一种烯烃聚合方法
CN103349923A (zh) * 2013-06-25 2013-10-16 北京工业大学 一种氮硅烷改性介孔分子筛/pdms杂化复合膜的制备方法及应用
CN103586079A (zh) * 2012-08-14 2014-02-19 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN104250322A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种用于乙烯聚合反应的催化剂组分及其催化剂
CN105749976A (zh) * 2016-03-14 2016-07-13 上海师范大学 一种疏水性手性有机金属钌功能化的介孔硅球的制备方法
WO2016195870A1 (en) * 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Heterophasic copolymers and sequential polymerization
CN107417824A (zh) * 2016-05-24 2017-12-01 中国石油化工股份有限公司 一种乙烯聚合的方法和聚乙烯
CN107417831A (zh) * 2016-05-24 2017-12-01 中国石油化工股份有限公司 一种乙烯聚合的方法和聚乙烯
CN107840913A (zh) * 2016-09-20 2018-03-27 中国石油化工股份有限公司 球形小粒径介孔复合材料和负载型催化剂及其制备方法
CN109382132A (zh) * 2017-08-07 2019-02-26 中国石油化工股份有限公司 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109382130A (zh) * 2017-08-07 2019-02-26 中国石油化工股份有限公司 复合材料及其制备方法和催化剂及其制备方法和应用及丙烷脱氢制丙烯的方法
CN110496618A (zh) * 2018-05-17 2019-11-26 中国石油化工股份有限公司 异丁烷脱氢催化剂及其制备方法以及异丁烷脱氢制异丁烯的方法
CN110496635A (zh) * 2018-05-17 2019-11-26 中国石油化工股份有限公司 异丁烷脱氢催化剂及其制备方法以及异丁烷脱氢制异丁烯的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453143B (zh) * 2010-10-19 2014-04-02 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
CN102952217B (zh) * 2011-08-25 2014-08-27 中国石油化工股份有限公司 一种烯烃聚合方法
CN102992341B (zh) * 2012-11-19 2015-10-28 吉林大学 一种沸石分子筛的疏水改性处理方法
CN103816933B (zh) * 2014-02-13 2016-05-11 中国石油大学(北京) 一种脱氢催化材料及其制备方法和应用

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302566A (en) 1978-03-31 1981-11-24 Union Carbide Corporation Preparation of ethylene copolymers in fluid bed reactor
US4302565A (en) 1978-03-31 1981-11-24 Union Carbide Corporation Impregnated polymerization catalyst, process for preparing, and use for ethylene copolymerization
US4303771A (en) 1978-12-14 1981-12-01 Union Carbide Corporation Process for the preparation of high density ethylene polymers in fluid bed reactor
US4293673A (en) 1978-12-28 1981-10-06 Union Carbide Corporation Spheroidal polymerization catalyst, process for preparing, and use for ethylene polymerization
US5290745A (en) 1992-08-10 1994-03-01 Union Carbide Chemicals & Plastics Technology Corporation Process for producing ethylene polymers having reduced hexane extractable content
EP0835887A2 (en) 1994-06-20 1998-04-15 Borealis Polymers Oy Procatalyst for ethylene polymer production, method for its preparation and use
EP1205493A1 (en) * 2000-11-14 2002-05-15 ATOFINA Research Polymerisation catalyst systems and their preparation
CN102040688A (zh) * 2009-10-23 2011-05-04 中国石油化工股份有限公司 一种负载茂金属的六方介孔材料在乙烯聚合中的应用
CN102049300A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种负载茂金属催化剂的球状介孔材料、及制法
CN102451760A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 一种负载型催化剂及其制备方法和乙酸乙酯的制备方法
CN102476803A (zh) * 2010-11-29 2012-05-30 国家纳米科学中心 一种表面改性有序介孔二氧化硅复合材料及其制备方法
CN102731687A (zh) * 2011-03-31 2012-10-17 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
CN102952213A (zh) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法和应用
CN102952209A (zh) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法和应用
CN102952218A (zh) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 一种烯烃聚合方法
CN103586079A (zh) * 2012-08-14 2014-02-19 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN103349923A (zh) * 2013-06-25 2013-10-16 北京工业大学 一种氮硅烷改性介孔分子筛/pdms杂化复合膜的制备方法及应用
CN104250322A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种用于乙烯聚合反应的催化剂组分及其催化剂
WO2016195870A1 (en) * 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Heterophasic copolymers and sequential polymerization
CN105749976A (zh) * 2016-03-14 2016-07-13 上海师范大学 一种疏水性手性有机金属钌功能化的介孔硅球的制备方法
CN107417824A (zh) * 2016-05-24 2017-12-01 中国石油化工股份有限公司 一种乙烯聚合的方法和聚乙烯
CN107417831A (zh) * 2016-05-24 2017-12-01 中国石油化工股份有限公司 一种乙烯聚合的方法和聚乙烯
CN107840913A (zh) * 2016-09-20 2018-03-27 中国石油化工股份有限公司 球形小粒径介孔复合材料和负载型催化剂及其制备方法
CN109382132A (zh) * 2017-08-07 2019-02-26 中国石油化工股份有限公司 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109382130A (zh) * 2017-08-07 2019-02-26 中国石油化工股份有限公司 复合材料及其制备方法和催化剂及其制备方法和应用及丙烷脱氢制丙烯的方法
CN110496618A (zh) * 2018-05-17 2019-11-26 中国石油化工股份有限公司 异丁烷脱氢催化剂及其制备方法以及异丁烷脱氢制异丁烯的方法
CN110496635A (zh) * 2018-05-17 2019-11-26 中国石油化工股份有限公司 异丁烷脱氢催化剂及其制备方法以及异丁烷脱氢制异丁烯的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CATALYST PREPARATION PROCESS TECHNOLOGY", 30 June 2004, CHINA PETROCHEMICAL PRESS, ISBN: 7-80164-568-5, article ZHANG, JIGUANG: " Effect of Spray Drying Molding Conditions on Catalyst Performance", pages: 227 - 234, XP009527396 *
CHENGZHONG YUBOZHI TIANJIE FANGALEN D. STUCKYDONGYUAN ZHAO, J. AM. CHEM. SOC., vol. 124, 2002, pages 4556 - 4557
See also references of EP3872100A4
YU, CHENGZHONG ET AL.: "Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 124, no. 17, 2 April 2002 (2002-04-02), pages 4556 - 4557, XP055707961, ISSN: 0002-7863 *
ZHAO QILONG; SHEN JIAN; YUAN XINGDONG; YANG LINA: "Recent Progress of Mesoporous Silica SBA~ 15 Materials", GUANGZHOU CHEMICAL INDUSTRY, vol. 33, no. 1, 28 February 2005 (2005-02-28), pages 12 - 15,6, XP009527392, ISSN: 1001-9677 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754798A (zh) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 类球形超大孔介孔材料和聚烯烃催化剂及其制备方法以及烯烃聚合方法
WO2021243936A1 (zh) 2020-06-05 2021-12-09 中国石油化工股份有限公司 类球形超大孔介孔材料和包含其的聚烯烃催化剂

Also Published As

Publication number Publication date
CN113166302A (zh) 2021-07-23
EP3872100A1 (en) 2021-09-01
US20210380730A1 (en) 2021-12-09
EP3872100A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP4553986B2 (ja) 砕け易い噴霧乾燥した凝集化キャリヤ、かかるキャリヤの製造法及びその上に担持されたオレフィン重合触媒
CN105440168B (zh) 球形蒙脱石介孔复合载体和负载型聚乙烯催化剂及其制备方法和应用
WO2020083386A1 (zh) 含介孔材料的聚烯烃催化剂组分及其制备方法和应用
JP4767416B2 (ja) 砕けやすい噴霧乾燥した凝集担体およびその上に担持されたオレフィン重合触媒の製造方法
CN106467582B (zh) 大孔二维直通孔道的球形复合载体和含有聚乙烯催化剂的复合材料以及其制备方法和应用
CN106467579B (zh) 大孔二维双孔道球形复合载体和含有聚乙烯催化剂的复合材料及它们的制备方法和应用
Anbia et al. Enhanced hydrogen sorption on modified MIL-101 with Pt/CMK-3 by hydrogen spillover effect
Du et al. Insights into deactivation mechanism of Cu–ZnO catalyst in hydrogenolysis of glycerol to 1, 2-propanediol
CN106467581B (zh) 三孔硅胶载体和负载型聚乙烯催化剂及其制备方法和应用
CN102039199B (zh) 粘土催化剂载体及其制备方法与应用
US20140031195A1 (en) Anionic gold-hydroxo complex solution and process for producing material loaded with gold nanoparticles
CN106632760B (zh) 一种球形含铝介孔复合材料和负载型催化剂及其制备方法和应用以及乙烯聚合的方法
JP2008502759A (ja) オレフィンの重合及び/又は共重合用クロム系触媒の製造法
CN111100223B (zh) 利用喷雾干燥法制备的聚烯烃催化剂和及其制备方法和应用
WO2021243936A1 (zh) 类球形超大孔介孔材料和包含其的聚烯烃催化剂
Guo et al. Silylated layered double hydroxide nanosheets prepared by a large-scale synthesis method as hosts for intercalation of metal complexes
CN107840912B (zh) 一种乙烯聚合的方法和聚乙烯
RU2786576C2 (ru) Компонент катализатора для полиолефинов, содержащий мезопористый материал, способ его получения и его применение
CN107417828B (zh) 球形复合材料和负载型聚乙烯催化剂以及它们的制备方法
CN108003261B (zh) 一种乙烯聚合的方法和聚乙烯
CN107417820B (zh) 球形硅藻土介孔复合材料和负载型催化剂及其制备方法
CN107417824B (zh) 一种乙烯聚合的方法和聚乙烯
CN107417831B (zh) 一种乙烯聚合的方法和聚乙烯
JP2013523996A (ja) チーグラー−ナッタ型触媒の作製方法
CN107999115B (zh) 负载型茂金属催化剂及其制备方法和应用和丙烯酸甲酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875702

Country of ref document: EP

Effective date: 20210526