WO2020078052A1 - 对接货物容器的方法、装置、机器人和存储介质 - Google Patents

对接货物容器的方法、装置、机器人和存储介质 Download PDF

Info

Publication number
WO2020078052A1
WO2020078052A1 PCT/CN2019/095354 CN2019095354W WO2020078052A1 WO 2020078052 A1 WO2020078052 A1 WO 2020078052A1 CN 2019095354 W CN2019095354 W CN 2019095354W WO 2020078052 A1 WO2020078052 A1 WO 2020078052A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
cargo container
robot
marker
container
Prior art date
Application number
PCT/CN2019/095354
Other languages
English (en)
French (fr)
Inventor
胡镔
Original Assignee
北京极智嘉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京极智嘉科技有限公司 filed Critical 北京极智嘉科技有限公司
Priority to JP2020522002A priority Critical patent/JP6829793B2/ja
Publication of WO2020078052A1 publication Critical patent/WO2020078052A1/zh
Priority to US16/870,579 priority patent/US11300971B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07758Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag

Definitions

  • Embodiments of the present disclosure relate to the technical field of warehousing, for example, to a method, device, robot, and storage medium for docking cargo containers.
  • the cargo container is placed at a predetermined position, and a positioning auxiliary mark is pasted on the ground at the predetermined position (for example, a ground point vertically mapped with the center position of the cargo container) to identify the predetermined
  • the robot finds the location of the cargo container through the predetermined location and the pasted auxiliary positioning mark, and docks the cargo container from the bottom of the cargo container at the location of the cargo container, and automatically moves the cargo container after docking with the cargo container.
  • the actual placement position of the cargo container may deviate from the predetermined coordinate position (for example, translation, rotation within a certain angle, or both).
  • the positioning auxiliary marks are also pasted on the container. After the robot is aligned with the positioning auxiliary marks at the predetermined position, the positioning auxiliary marks on the cargo container are also searched back and forth around the positioning auxiliary marks according to a certain method to accurately dock with the cargo container, affecting the robot docking
  • the efficiency of the cargo container causes the robot to take longer to move the cargo container, and the efficiency of moving the cargo container decreases.
  • Embodiments of the present disclosure provide a method, apparatus, robot, and storage medium for docking a cargo container that overcome the above problems or at least partially solve the above problems, so as to improve the efficiency of docking the cargo container, thereby reducing the time for the robot to move the cargo container.
  • a method for docking a cargo container is provided in an embodiment of the present disclosure, which is executed by a robot.
  • the method includes:
  • a robot in an embodiment of the present disclosure.
  • the robot includes:
  • Marker recognition module and label recognition module are Marker recognition module and label recognition module
  • One or more processors are One or more processors;
  • Storage device configured to store one or more programs
  • the one or more programs are executed by the one or more processors, so that the one or more processors implement the method described in the foregoing embodiments.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the computer program is implemented. method.
  • an embodiment of the present disclosure also provides a robot, including:
  • the first sensor is configured to identify the container feet of the target cargo container during the robot driving into the bottom of the target cargo container;
  • the memory stores a computer program, and the computer program is executed by the processor The following operations are implemented:
  • the robot is controlled to drive into the bottom of the target cargo container according to the docking route and travel to the docking position, and the robot docks with the target cargo container at the docking position.
  • FIG. 1 is a schematic diagram of a system structure of a goods picking system provided in an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for docking a cargo container provided in an embodiment of the present disclosure
  • FIG. 3a is a schematic view of a top view of a robot driving toward the bottom of a cargo container provided in an embodiment of the present disclosure
  • 3b is a schematic diagram of a side-view robot driving into the bottom of a cargo container provided in an embodiment of the present disclosure
  • 3c is a schematic view of the docking of the side-view robot provided in the embodiment of the present disclosure at the bottom of the cargo container;
  • FIG. 3d is a schematic diagram of a top view robot docked at the bottom of a cargo container provided in an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for docking a cargo container provided in an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a device for docking a cargo container provided in an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a robot provided in an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a system structure of a goods picking system provided in an embodiment of the present disclosure.
  • a cargo picking system 100 includes: a robot 110, a control system 120, a cargo container area 130, and a workstation 140.
  • the cargo container area 130 is provided with multiple cargo containers 131, and one or more types of cargo are placed on the cargo container 131, for example Just like the shelves with multiple commodities seen in supermarkets, multiple cargo containers 131 are arranged in an array.
  • a plurality of workstations 140 may be provided on one side of the cargo container area 130, and the robot 110 may be a self-driving robot.
  • the control system 120 communicates with the robot 110 wirelessly, and the worker can work the control system 120 through the console 16. Under the control of the control system 120, the robot 110 performs the task of handling the cargo container.
  • the cargo container may include, but is not limited to, shelves and cages. Taking the cargo container 131 as a shelf as an example, the robot 110 can travel along the empty space in the shelf array (part of the passageway of the robot 110), move to the bottom of the shelf 131, use the lifting mechanism to lift the shelf 131, and transport it to The workstation 140 is assigned to.
  • the robot 110 may travel along an empty space in the cage car array (part of the passageway of the robot 110), move to the bottom of the cage car 131, and use the lifting mechanism to lift the cage
  • the cart 131 or the cage 131 is pulled by the hook mechanism, and the cage 131 is transported to the workstation 140 to which it is assigned.
  • the robot 110 may have a lifting mechanism or hook structure, and has an autonomous navigation function.
  • the robot 110 can travel to the bottom of the cargo container 131 and use the lifting mechanism to lift the entire cargo container 131 or use the hook structure to pull the entire
  • the cargo container 131 enables the cargo container 131 to move up and down with a lifting mechanism having a lifting function or to be pulled with a hook mechanism.
  • the robot 110 can locate and travel forward according to the two-dimensional code information captured by the camera, and can travel under the cargo container 131 prompted by the control system 120 according to the route determined by the control system 120.
  • the robot 110 carries the cargo container 131 to the workstation 140, and the picker 141 or the picking robot at the workstation 140 picks the cargo from the cargo container 131 and puts it in the tote box 150 for packaging.
  • the control system 120 is a software system that runs on a server and has data storage and information processing capabilities, and can be connected to a robot, a hardware input system, or other software systems through wireless or wired.
  • the control system 120 may include one or more servers, and may be a centralized control architecture or a distributed computing architecture.
  • the server includes a processor 1201 and a memory 1202, in which an order pool 1203 may be provided.
  • the robot 110 when the robot 110 moves a cargo container (for example, a shelf or a cage) in the warehouse, the robot 110 can search for the target cargo container at a predetermined position and The found target cargo containers are docked, and then the docked target cargo containers are moved.
  • a positioning auxiliary mark can also be added at the predetermined position, and the target cargo container can be quickly and accurately found and docked and moved by the positioning auxiliary mark.
  • the actual placement position of the target cargo container may deviate from the predetermined position.
  • the robot 110 cannot quickly find the target cargo container with the aid of the predetermined position and the positioning auxiliary mark at the predetermined position. Therefore, it is impossible to quickly dock with the target cargo container. Therefore, it is necessary to improve the docking method with the cargo container to improve the efficiency of docking the cargo container.
  • FIG. 2 is a schematic flowchart of a method for docking a cargo container provided in an embodiment of the present disclosure.
  • the embodiment of the present disclosure can be applied to a case where a robot moves one or more cargo containers located in a warehouse or beside a production line, for example, moving The scene of shelves and cage cars located in the warehouse or next to the production line.
  • the method can be performed by a device that docks the cargo container.
  • the device can be implemented in software and / or hardware.
  • the device can be integrated in any robot with network communication capabilities.
  • the robot can be a self-driving robot.
  • the method for docking a cargo container in the embodiment of the present disclosure may include:
  • Step 210 When traveling to the docking area of the target cargo container, adjust the traveling direction of the robot according to the position of the target marker on the target cargo container.
  • FIG. 3a is a schematic view of the top view of the robot driving toward the bottom of the cargo container provided in the embodiment of the present disclosure.
  • FIG. 3a shows the robot 310, the cargo container 311a when the offset does not occur, the cargo container 311b when the offset occurs, and traveling A path 312, a docking area 313, and a predetermined position 314 composed of a first predetermined position line 314a and a second predetermined position line 314b.
  • the robot 310 can accurately drive into the bottom of the cargo container 311a without offset with the traveling path 312 to dock with the cargo container 311a without offset, and After docking, the cargo container 311a when there is no deviation is moved to an appropriate position.
  • the target cargo container may include multiple target markers, and the target markers may be located at different positions of the target cargo container.
  • the target marker may be located at a different foot position on the bottom of the target cargo container, or at a predetermined position on the side of the target cargo container.
  • the target marker can be understood as a container mark for identifying the target cargo container.
  • the container mark may be a specific identifiable label provided on the cargo container, such as a two-dimensional code label, etc .; or, the container mark may be a container structural feature possessed by the cargo container itself, such as four different feet at the bottom of the cargo container The container leg structure of four container legs at a position or four container legs at four different leg positions at the bottom of a cargo container.
  • the placement accuracy of the cargo container or other reasons may cause the actual placement position and / or angle of the cargo container at a predetermined position to be offset.
  • the situation that the cargo container is shifted may include that the cargo container is displaced at a predetermined position by a distance and / or the angular position at the predetermined position is rotated by an angle.
  • the placement position and / or angle of the cargo container 311b at the predetermined position 314 when the offset occurs does not occur There may be a certain deviation between the placement position and / or angle of the cargo container 311a at the predetermined position 314 during the offset.
  • the target cargo container is the cargo container 311b when the deviation occurs
  • the cargo container 311b when the deviation occurs and the cargo container 311a when the deviation does not occur are arranged at different positions and / or angles at the predetermined position 314.
  • the robot 310 cannot travel directly to the bottom of the offset cargo container 311b according to the travel path 312 used when it reaches the cargo container 311a when there is no offset.
  • the robot 310 After the robot 310 reaches the predetermined location 314 according to the travel path 312, it is After a lot of trial and error in the vicinity of 314, it is possible to drive to the bottom of the cargo container 311b when the deviation occurs.
  • the robot 310 wastes a lot of time when docking with the target cargo container. Based on the above, in order to ensure that the robot 310 can quickly enter the bottom of the target cargo container, reach the docking position of the target cargo container and dock with the target cargo container, when the robot receives the docking instruction to dock the target cargo container, it can drive towards Traveling in the direction of the target cargo container, adjust the robot's travel direction according to the positions of multiple target markers on the target cargo container, so as to drive to the docking position at the bottom of the target cargo container and dock the cargo container according to the adjusted traveling direction operating.
  • the robot when adjusting the traveling direction of the robot, it is not necessarily that the robot immediately adjusts after receiving the docking instruction, and it can be adjusted after detecting that the robot travels to the docking area of the target cargo container.
  • the robot's driving direction can be adjusted immediately.
  • the travel direction of the robot is adjusted according to the position of the target marker provided on the target cargo container.
  • the docking area of the target cargo container may be determined according to a predetermined position where the target cargo container is to be placed, for example, the docking area of the target cargo container may be an area of a preset distance range centered on the predetermined position. Or, the docking area of the target cargo container can be determined according to the actual placement position of the target cargo container, for example, when it is detected that the distance between the robot and a marker of the target cargo container is less than the preset distance, it can be considered that the robot has reached The docking area of the target cargo container.
  • the robot when it is detected that the distance between the current position of the robot and the position of any predetermined marker of the target cargo container is less than a preset distance threshold, it indicates that the robot has traveled to the docking area of the target cargo container.
  • the robot can adjust the driving direction according to the position of the target marker on the target cargo container.
  • the robot can use the target The actual placement position and / or actual placement angle of the cargo container at the predetermined position is used to adjust the traveling direction of the robot.
  • the robot may determine the actual placement position and / or actual placement angle of the target cargo container at the predetermined position according to the positions of the multiple target markers on the target cargo container, and according to the target cargo container at the predetermined position The actual placement position and / or actual placement angle of the robot to adjust the direction of the robot.
  • the target cargo container may be a shelf that allows for fixed placement, or a cage cart equipped with universal wheels or other wheels.
  • Step 220 Drive into the bottom of the target cargo container according to the adjusted driving direction, and dock with the target cargo container at the bottom of the target cargo container.
  • FIG. 3b is a schematic diagram of the side-viewing robot driving into the bottom of the cargo container provided in the embodiment of the present disclosure.
  • the robot when the robot travels to the docking area, it can adjust the traveling direction of the robot according to the position of the target marker on the target cargo container, and drive into the bottom of the target cargo container according to the adjusted direction.
  • the robot may drive into the bottom of the cargo container according to the adjustment direction 315.
  • FIG. 3c is a schematic diagram of a side-view robot docked at the bottom of a cargo container provided in an embodiment of the present disclosure
  • FIG. 3c is a schematic diagram of a side-view robot docked at the bottom of a cargo container provided in an embodiment of the present disclosure.
  • 3d is a schematic diagram of a top-view robot docked at a bottom of a cargo container provided in an embodiment of the present disclosure.
  • the robot when the robot drives into the bottom of the target cargo container, the bottom of the cargo container can be docked with the cargo container, so that the robot can move the docked cargo container to the position where it needs to be moved.
  • the robot 310 when the robot 310 docks with the target cargo container 311 at the bottom of the target cargo container 311 (where the target cargo container may be a shelf or a cage), the robot 310 may be lifted by the lifting mechanism at the bottom of the cargo container 311 Lift the target cargo container 131 or use the hook mechanism to pull the target cargo container 131. It can be understood that the above-mentioned methods can all be used as a method of docking with the target cargo container 311.
  • the method for docking a cargo container includes: when driving to a docking area of a target cargo container, determining a reference position according to the position of a target marker on the target cargo container, and adjusting according to the reference position
  • the traveling direction of the robot drives into the bottom of the target cargo container according to the adjusted traveling direction and moves to the docking position with the target cargo container, and docks with the target cargo container at the docking position of the bottom of the target cargo container.
  • FIG. 4 is a schematic flowchart of another method for docking a cargo container provided in an embodiment of the present disclosure. Based on the foregoing embodiment, the embodiment of the present disclosure adjusts the robot according to the position of the target marker on the target cargo container The steps of the driving direction are optimized, and the embodiments of the present disclosure may be combined with one or more optional solutions in one or more embodiments described above.
  • the method for docking a cargo container in the embodiment of the present disclosure may include:
  • Step 401 When driving to the docking area of the target cargo container, identify the location of the first type of target marker and the location of the second type of target marker on the target cargo container.
  • the first type of target mark is the target mark on the target cargo container close to the robot side
  • the second type of target mark is the target mark on the target cargo container far from the robot side or located at the bottom of the target cargo container and used Target marker for guiding the robot to dock with the target cargo container.
  • multiple target markers may exist at different positions on the target cargo container, and the target marker may be a structural feature possessed by the target cargo container or may be added on the target cargo container Recognizable markers.
  • the robot receives the docking instruction to dock the target cargo container and moves to the target cargo container, among the multiple target markers on the target cargo container, a part of the target marker will be close to the robot, and another part of the target marker It will be far from the robot or located at the bottom of the target cargo container.
  • the direction indicated between the two parts of the target markers can reflect the actual placement position and / or placement angle of the target cargo container at a predetermined position to a certain extent.
  • the first type of target markers and the second type of target markers can be used for distinguishing.
  • the actual placement position and / or actual placement angle of the target cargo container at the predetermined position can be estimated so that The actual placement position and / or actual placement angle of the predetermined position adjusts the traveling direction of the robot.
  • the first type of target marker may be a plurality of target markers located at different foot positions on the bottom of the target cargo container and close to the side of the robot.
  • the target marker may be an identifiable container mark or identifiable label of the target cargo container.
  • the identifiable container mark may be a specific structural feature on the target cargo container, etc.
  • the identifiable label may be a specific mark on the target cargo container, such as a two-dimensional code label.
  • the first type of target marker may include a first target marker and a second target marker located at different foot positions on the bottom of the target cargo container and close to the side of the robot.
  • the first target marker and the second target marker may be two container legs at different foot positions on the bottom of the target cargo container near the robot side; or, in another example, the first The target marker and the second target marker may be recognizable labels or structural features of the recognizable container legs located on two container legs at different foot positions on the bottom of the target cargo container near the robot side, respectively.
  • the center point of the two positions can be calculated according to the position of the first target marker and the position of the second target marker, and the center point can be used as a reference point for the robot to travel.
  • the robot When the robot is driving to the target cargo container, According to the reference point, it can pass through the middle of the container legs at the two foot positions of the target cargo container and drive into the bottom of the target cargo container.
  • the first type of target marker may be at least one target marker located at a predetermined position on the side of the target cargo container and close to the robot side (eg, 321 and 322 shown in FIG. 3b or 316a and 316b shown in FIG. 3d).
  • the target marker may be an identifiable container mark or identifiable label of the target cargo container.
  • the first type of target marker may also include a fifth target marker located at a predetermined position on the side of the target cargo container and close to the robot side.
  • the fifth target marker may also be located on the side of the target cargo container close to the robot, and the fifth target marker may be located at a predetermined position on the side of the target cargo container corresponding to the side.
  • the fifth target marker may be an identifiable container mark or an identifiable label on the target cargo container.
  • the identifiable container mark may be a specific structural feature on the target cargo container, and the identifiable label may be a specific mark on the target cargo container, such as a two-dimensional code label.
  • the position of the fifth target marker on the side of the target cargo container cannot be too biased, and if it is too biased, the robot cannot travel from the position of the fifth target marker to the bottom of the target cargo container.
  • the fifth target marker may be located at the center of the side of the cargo container near the robot side of the target cargo container (as shown in FIG. 3b) 324), or on the center line of the line connecting the positions of the two feet on the bottom of the cargo container on the side of the target cargo container close to the robot (as shown in FIG. 3b 323), and the center line is located on the side Cargo container on the side.
  • the robot can also use the position of the fifth target marker as a reference point, and the robot can also pass between the two feet of the target cargo container according to the reference point and drive into the bottom of the target cargo container.
  • the second type of target marker may be a plurality of target markers located at different foot positions on the bottom of the target cargo container and away from the robot side.
  • the target marker may be an identifiable container mark or identifiable label of the target cargo container.
  • the second type of target markers may include third target markers and fourth target markers (eg, 316c and 316d shown in FIG. 3d) located at different foot positions on the bottom of the target cargo container and away from the robot.
  • the third target marker and the fourth target marker may be two container legs at different foot positions on the side of the robot away from the bottom of the target cargo container, or may be located away from the bottom of the target cargo container respectively The identifiable label on the two container legs at different support positions on the side of the robot or the structural characteristics of the container legs.
  • the center point of the two positions can be calculated according to the position of the third target marker and the position of the fourth target marker, and the center point can be used as another reference point for the robot to drive into the bottom of the target cargo container After that, the robot can smoothly travel to the docking position at the bottom of the target cargo container according to the guidance of the two reference points, the robot stops at the docking location, and docks with the target cargo container through the lifting structure.
  • the second type of target marker may also be a target marker located at the bottom of the target cargo container and used to guide the robot to travel.
  • the second type of target marker may also be a sixth target marker located at the bottom of the target cargo container and used to guide the robot to travel (to guide the robot to the docking position with the target cargo container), the sixth target The marker may include a plurality of discrete markers or a continuous guide belt, and the position of the sixth target marker near the end of the robot and the position of the first type of target marker (ie, the first type of target marker determines The position of the reference point) corresponds to ensure that the robot directly reaches the position of the sixth target mark after passing the position of the first type target mark.
  • the sixth target marker may be a specific structural feature provided on the target cargo container, a plurality of specific identifiable labels, or a specific robot driving guide belt. Similarly, after driving into the bottom of the target cargo container, the robot can further smoothly travel to the docking position according to the guidance of the sixth target marker located at the bottom of the target cargo container.
  • identifying the position of the first type of target marker and the position of the second type of target marker on the target cargo container may include:
  • Step 401a Start at least one target marker recognition module set on the robot
  • Step 401b Identify the position of the first type of target marker and the position of the second type of target marker on the target cargo container through at least one target marker identification module.
  • the robot may be provided with at least one target marker recognition module, and the position and type 2 of the first type of target marker on the target cargo container may be recognized through the at least one target mark recognition module located on the robot The location of the target marker.
  • the target marker recognition module may refer to a target marker recognition module including a lidar or a camera, and the target marker recognition module may include multiple lidars or multiple cameras.
  • the target marker recognition module can be set at a suitable position on the robot, and the actual set position can be determined according to the actual situation.
  • one or more target marker recognition modules 3102 may be disposed at the front end of the robot 310, and the one or more target marker recognition modules 3102 may include multiple lidars or cameras.
  • one or more target marker recognition modules can be set below the front end of the robot.
  • the height of the one or more target marker identification modules is consistent with the height of the target marker of the target cargo container.
  • the robot when traveling to the docking area of the target cargo container, the robot may activate at least one target marker recognition module provided on the robot, and scan and identify the target cargo in the docking area through at least one target marker recognition module Multiple target markers on the container.
  • One or more target marker recognition modules can identify one or more target markers on the target cargo container and the position information of the one or more target markers, and determine which target markers are closer to the robot (ie, the target The target marker on the cargo container close to the robot), and which target markers are farther from the robot (ie, the target marker on the target cargo container away from the robot), so that the first category on the target cargo container is recognized The position of the target marker and the position of the second type of target marker.
  • the cargo container 311b when the offset occurs is used as the target cargo container, and the target markers on the target cargo container are the four container legs at the positions of the four feet at the bottom of the target cargo container are:
  • the robot 310 may recognize the position of the first type of target marker and the second type of target marker on the target cargo container through at least one target marker recognition module 3102 s position.
  • the two container legs on the side of the target cargo container close to the robot 310 are the first container leg 316a and the second container leg 316b, respectively.
  • the 316a and the second container leg 316b can be used as the first type of target marker; when the robot 310 travels to the docking area 313 of the target cargo container, the two container legs on the side of the target cargo container away from the robot 310 are the third container The leg 316c and the fourth container leg 316d, at this time, the third container leg 316c and the fourth container leg 316d may serve as the second type of target marker.
  • the robot may activate at least one target marker recognition module provided on the robot, first identify and determine the target cargo container, and then identify a plurality of target cargo containers in the docking area.
  • Target marker when driving to the docking area of the target cargo container, the robot may activate at least one target marker recognition module provided on the robot, first identify and determine the target cargo container, and then identify a plurality of target cargo containers in the docking area.
  • the determination of the first type of target marker and the second type of target marker is not fixed, and the determination of the first type of target marker and the second type of target marker can be based on the robot driving to the target cargo In the docking area of the container, the distance between the target marker on the target cargo container and the robot is determined.
  • the target marker on the other side of the target cargo container can be used as the first type of target marker.
  • the cargo container 311b when the offset occurs is still used as the target cargo container, and the target markers on the target cargo container are located at the four bottoms of the target cargo container.
  • the robot 310 travels to the upper right position of the docking area 313, the first container leg 316a and the second container leg 316b on the target cargo container are closer to the robot 310, and thus are determined It is the first type of target marker, and the third container leg 316c and the fourth container leg 316d on the target cargo container are relatively far from the robot 310, and thus are determined as the second type of target marker.
  • the determination of the first type of target markers and the second type of target markers is related to how close the target markers on the target cargo container are to the robot when the robot travels to the docking area of the target cargo container.
  • Step 402 Determine a first reference position according to the position of the first type of target marker and determine a second reference position according to the position of the second type of target marker.
  • the direction indicated between the first type of target marker and the second type of target marker can be understood as the actual placement angle of the target cargo container. After the actual placement angle of the target cargo container is determined, the robot can travel along the actual placement angle of the target cargo container to the bottom of the target cargo container.
  • the first reference position can be determined according to the position of the first type of target marker, and according to the second type
  • the second reference position is determined by the position of the target marker, and the actual placement angle of the target cargo container can be estimated from the first reference position and the second reference position, so that the robot can determine the current position of the robot from the actual placement angle of the target cargo container Position the driving path towards the bottom of the target cargo container and enter to adjust the driving direction of the robot according to the determined driving path.
  • determining the first reference position according to the position of the first type of target marker may include:
  • the first target marker and the second target marker in the first type of target markers as container legs at different foot positions on the bottom of the target cargo container for example, when When the robot 310 travels to the upper right of the docking area 311 of the target cargo container, the first target marker is the first container leg 316a, and the second target marker is the second container leg 316b.
  • the robot 310 may recognize the position of the first container leg 316a and the position of the second container leg 316b of the first type of target marker close to the robot 310 side.
  • the position of the center point between the first container leg 316a and the second container leg 316b can be calculated based on the position of the first container leg 316a and the position of the second container leg 316b, and the difference between the first container leg 316a and the second container leg 316b The position of the center point is used as the first reference position.
  • the first target marker and the second target marker in the first type of target marker include but are not limited to the above-mentioned container legs on the target cargo container, and use the container legs on the target cargo container as the target marker Is only an example when explaining and explaining this embodiment.
  • the first target marker and the second target marker may be target markers located on the target cargo container close to the robot side and at two different bottom feet of the target cargo container, respectively.
  • the target marker may be an identifiable container mark or an identifiable label on the target cargo container.
  • the identifiable container mark may refer to a specific structural feature on the target cargo container
  • the identifiable label may refer to a specific two-dimensional code label on the target cargo container.
  • determining the first reference position according to the position of the first type of target marker may include:
  • the position of the fifth target marker in the first type of target marker is determined and used as the first reference position; wherein the fifth target marker is located at a predetermined position on the target cargo container close to the robot side.
  • the fifth target marker may be located on the side of the target cargo container 311 on the target cargo container 311 close to the robot side, and the fifth target marker is simultaneously located on the side of the target cargo container 311 on that side
  • the center line 323 between the location of the first bottom leg 321 and the location of the second bottom leg 322 is on the line.
  • the fifth target marker may slightly deviate from the centerline 323, and may not necessarily be accurately located on the centerline 323, as long as it is located at a position within an allowable range from the centerline 323. After determining the position of the fifth target marker in the first type of target marker, the position of the fifth target marker in the first type of target marker can be directly used as the first reference position.
  • the fifth target marker may be an identifiable container mark or identifiable label of the target cargo container.
  • the identifiable container mark may be a specific structural feature on the target cargo container, etc.
  • the identifiable label may be a specific two-dimensional code label on the target cargo container. It can be understood that, for a specific introduction to the fifth target marker, reference may be made to the relevant explanation in this embodiment.
  • determining the second reference position according to the position of the second type of target marker may include:
  • the third target marker and the fourth target marker are respectively located at two other different legs at the bottom of the target cargo container.
  • the third target marker and the fourth target marker of the second type of target markers are respectively available on the container legs at different leg positions on the bottom of the target cargo container 311b.
  • the identification label is taken as an example to illustrate, when the robot 310 travels to the upper right of the docking area 311 of the target cargo container, the third target mark is the identifiable label on the third container leg 316c and the fourth target mark is the first Four identifiable labels on container legs 316d.
  • the robot 310 can recognize the position of the recognizable label on the third container leg 316c on the side of the second type of target marker away from the robot 310 and the position of the recognizable label on the fourth container leg 316d.
  • the identifiable label on the third container leg 316c and the identifiable label on the fourth container leg 316d can be calculated The position of the center point and the center position between the identifiable label on the third container leg 316c and the identifiable label on the fourth container leg 316d serve as the second reference position.
  • the third target markers and the third target markers in the second type of target markers include but are not limited to the above identifiable labels on the container legs of the target cargo container, and use the identifiable labels on the container legs of the target cargo container as The target marker is only an example when explaining this embodiment.
  • the third target marker and the fourth target marker may be target markers respectively located on two different feet on the target cargo container away from the robot and at the bottom of the target cargo container.
  • the target marker may be an identifiable container mark or identifiable label of the target cargo container.
  • the identifiable container mark may refer to a specific structural feature on the target cargo container
  • the identifiable label may refer to a specific two-dimensional code label on the target cargo container.
  • determining the second reference position according to the position of the second type of target marker may include:
  • the sixth target marker may be an identifiable container mark or identifiable label located at the bottom of the target cargo container, and the position of the identifiable container mark or identifiable label near the end of the robot and the first type of target marker The positions correspond to ensure that the robot directly transitions from the position of the first type of target marker to the position of the sixth target marker, and travels to the docking position.
  • the identifiable container mark may be located on a specific structural feature at the bottom of the target cargo container, and the identifiable label may be a specific two-dimensional code label located at the bottom of the target cargo container.
  • the sixth target marker may be a robot travel guide belt at the bottom of the target cargo container, and the position on the robot travel guide belt near the end of the robot corresponds to the position of the first type of target marker.
  • the robot driving guide belt passes the target position at the bottom of the target cargo container and the position of the first type of target marker.
  • the form of the path indicated by the robot travel guide belt is not limited to a straight line, and the determined travel path may be a polyline travel path or an arc travel path.
  • Step 403 Adjust the driving direction of the robot according to the first reference position and the second reference position.
  • the robot 310 may use the connection between the current position of the robot 310, the first reference position, and the second reference position as the driving path of the robot 310 into the bottom of the target cargo container .
  • the robot 310 may adjust the driving direction of the robot 310 into the bottom of the target cargo container according to the route direction indicated by the determined driving path into the bottom of the target cargo container, and into the bottom of the target cargo container according to the adjusted traveling direction.
  • the current position, the first reference position, and the second reference position of the robot 310 can be used as a reference position for determining the travel path, so according to the connection between the current position of the robot 310, the first reference position, and the second reference position
  • the form of the determined travel path is not limited to a straight line, and the determined travel path may be a polyline travel path or an arc travel path.
  • Step 404 Drive into the bottom of the target cargo container according to the adjusted driving direction, and dock with the target cargo container at the bottom of the target cargo container.
  • the target cargo container may be a shelf that allows fixed placement, or a cage cart with a universal wheel or other wheels installed.
  • container legs are provided at the four bottom feet of the target cargo container Or a universal wheel, if the robot does not enter in the adjusted driving direction, the robot is easily blocked by the container legs or the universal wheels located at the four bottom foot positions of the target cargo container, so that it cannot enter the target cargo container smoothly bottom. For this reason, when the robot enters the bottom of the target cargo container according to the adjusted driving direction, the robot will not be blocked by the container legs or universal wheels located at the four bottom foot positions of the target cargo container, and thus can smoothly enter the target The bottom of the cargo container, and docking with the target cargo container at the bottom of the target cargo container.
  • the robot first docks the target cargo container when carrying the target cargo container, and the position where the robot and the target cargo container are docked at the bottom of the target cargo container may be used as the target location.
  • the target position can be determined according to the actual structure of the target cargo container docked by the robot. For example, when the target cargo container is a cuboid structure with a uniform and symmetric structure, the center position of the bottom of the target cargo container can be used as the target position; however, when the target cargo container is not evenly and symmetrically distributed, the center position of the bottom of the target cargo container cannot be Target position.
  • the target position can be determined at the bottom of the target cargo container according to the actual structure of the target cargo container, the robot drives into the bottom of the target cargo container according to the adjusted driving direction, and the target location at the bottom of the target cargo container is determined in advance. Cargo containers are docked.
  • driving into the bottom of the target cargo container according to the adjusted driving direction and docking the target cargo container at the bottom of the target cargo container may include:
  • Step 4041a Drive into the bottom of the target cargo container according to the adjusted driving direction, and simultaneously activate the target mark recognition module provided on the robot;
  • Step 4041b At the bottom of the target cargo container, continue to travel in the adjusted driving direction, and identify the target mark at the bottom of the target cargo container through the target mark recognition module;
  • Step 4041c If the target mark at the bottom of the target cargo container is identified, travel to the target position corresponding to the target mark at the bottom of the target cargo container, and stop driving after reaching the target position corresponding to the target mark;
  • Step 4041d At the target position, the target mark at the bottom of the target cargo container is used as an alignment point to dock with the target cargo container.
  • a target mark 317 may be set in advance at a target position at the bottom of the target cargo container.
  • the robot 310 may drive into the bottom of the target cargo container according to the adjusted driving direction, and activate the target mark recognition module provided on the robot while driving into the bottom of the target cargo container.
  • the robot 310 may recognize the target mark 317 located at the bottom of the target cargo container through the target mark recognition module in the driving direction.
  • the target mark recognition module 3101 may be located at a concave position on the top of the robot 310, and the target mark recognition module 3101 may include one or more cameras.
  • the target mark can be understood as a position mark for identifying the target position at the bottom of the target cargo container.
  • the position mark may be a specific identifiable label set at the target position at the bottom of the cargo container, such as a two-dimensional code label; or the position mark may be a structural feature of the container at the target position at the bottom of the cargo container, such as the target at the bottom of the cargo container "Cross" structural features at the location.
  • the robot 310 if the target mark at the bottom of the target cargo container is recognized, it is determined that the robot 310 has traveled to the target position at the bottom of the target cargo container, that is, the stop position of the robot 310 is located at The target position at the bottom of the target cargo container, at which time the robot 310 stops continuing to travel. After the robot 310 travels to the target position at the bottom of the target cargo container, it can be directly docked with the cargo container at the stop position of the robot 310 according to the general situation.
  • the target mark at the bottom of the target cargo container may be used as the alignment point, Accurate docking with the target cargo container.
  • the robot 310 can guide the docking at the stop position by using the target mark at the bottom of the target cargo container as an alignment point, and fine-tune the docking path of the robot 310 and the target cargo container during the docking process to achieve accurate docking with the target cargo container .
  • the target cargo container before driving into the bottom of the target cargo container according to the adjusted driving direction, it may include: determining the target position information of the bottom of the target cargo container; accordingly, driving according to the adjusted driving direction Into the bottom of the target cargo container and docking with the target cargo container at the bottom of the target cargo container, which may include:
  • Step 4042a Drive into the bottom of the target cargo container according to the adjusted driving direction, and simultaneously activate the target mark recognition module provided on the robot;
  • Step 4042b When it is detected that the robot has entered the bottom of the target cargo container according to the adjusted driving direction, it directly travels to the position indicated by the target location information according to the target location information of the determined target cargo container bottom;
  • Step 4042c At the position indicated by the target position information, identify the target mark at the bottom of the target cargo container through the target mark recognition module, and use the target mark as an alignment point to dock with the target cargo container.
  • this embodiment differs from the method in steps 4041a to 4041c in that the robot 310 of this embodiment does not recognize the location of the target cargo container by the target mark recognition module in the direction of travel after entering the bottom of the cargo container.
  • the target mark at the bottom directly travels directly to the position indicated by the target position information according to the target position information at the bottom of the determined target cargo container. Then, at the position indicated by the target position information, the target mark at the bottom of the target cargo container is identified by the target mark recognition module, and the target mark is used as an alignment point to accurately dock with the target cargo container.
  • driving into the bottom of the target cargo container according to the adjusted driving direction and docking with the target cargo container at the bottom of the target cargo container may include:
  • Step 4043a Calculate the stop position for docking with the target cargo container according to the first reference position and the second reference position;
  • Step 4043a At the bottom of the target cargo container, travel to the stop position for docking with the target cargo container according to the adjusted travel direction, and dock with the target cargo container at the stop location.
  • a method for docking a cargo container includes: when driving to a docking area of a target cargo container, from a target mark on the target cargo container, identify a target on the target cargo container near the robot side Markers, and the identification of target markers on the side of the target cargo container away from the robot, based on the location of the identified target markers on the target cargo container close to the robot side and the target markers on the target cargo container away from the robot Position, determine the driving path when entering the bottom of the target cargo container; adjust the robot's driving direction according to the driving path into the bottom of the target cargo container; drive into the bottom of the target cargo container according to the adjusted driving direction, and The bottom is docked with the target cargo container.
  • the technical solution of the embodiments of the present disclosure can ensure that the robot can still find the target cargo container during the movement and adjust the walking direction and determine the stop position in time when the target cargo container is placed away from the predetermined position, so as to accurately locate the target cargo container
  • the bottom of the target is docked with the target cargo container, which improves the docking efficiency of the robot and the target cargo container, thereby reducing the time for the robot to move the cargo container and improve the movement of the cargo.
  • the technical solution of the embodiment of the present disclosure can also reduce the rely.
  • FIG. 5 is a schematic structural diagram of a device for docking a cargo container provided in an embodiment of the present disclosure.
  • the embodiment of the present disclosure can be applied to a case where a robot moves one or more cargo containers in a warehouse or beside a production line.
  • the device can be used Realized in software and / or hardware, the device can be integrated in any robot with network communication function, and the robot can be a self-driven robot.
  • the device for docking a cargo container in an embodiment of the present disclosure may include: a direction adjustment module 501 and a target docking module 502, where:
  • the direction adjustment module 501 is set to adjust the traveling direction of the robot according to the position of the target marker on the target cargo container when traveling to the docking area of the target cargo container;
  • the target docking module 502 is configured to drive into the bottom of the target cargo container according to the adjusted driving direction, and dock with the target cargo container at the bottom of the target cargo container.
  • the direction adjustment module 501 may include:
  • a marker recognition unit configured to recognize the position of the first type of target marker and the position of the second type of target marker on the target cargo container; wherein the first type of target marker is on the target cargo container A target marker close to the side of the robot, the second type of target marker is a target marker on the target cargo container away from the robot or located at the bottom of the target cargo container and used to guide the robot Target markers for driving;
  • a reference position determining unit configured to determine the first reference position according to the position of the first type of target marker and determine the second reference position according to the position of the second type of target marker;
  • the traveling direction adjusting unit is configured to adjust the traveling direction of the robot according to the first reference position and the second reference position.
  • the marker recognition unit may include:
  • the first starter unit is configured to start at least one target marker recognition module provided on the robot;
  • the first identification subunit is configured to identify the position of the first type of target marker and the position of the second type of target marker on the target cargo container through the at least one target marker identification module.
  • the reference position determining unit may include one of the following:
  • the first reference position determination subunit is configured to calculate the first target marker and the position of the first target marker in the first type of target marker and the position of the second target marker The center position between the second target markers and serves as the first reference position; wherein, the first target marker and the second target marker are respectively located in two of the bottoms of the target cargo container Different feet
  • the first reference position determination subunit is set to determine the position of the fifth target marker in the first type of target marker and serve as the first reference position; wherein, the fifth target marker is located in the target cargo
  • the container is close to a side of the robot, and the fifth target marker is located at a predetermined position on the side of the target cargo container corresponding to the side.
  • the reference position determining unit may include one of the following:
  • the second reference position determination subunit is configured to calculate the third target marker and the fourth target marker according to the position of the third target marker and the position of the fourth target marker in the second type of target marker The center position between the objects and serves as the second reference position; wherein the third target marker and the fourth target marker are respectively located at two other different legs at the bottom of the target cargo container;
  • a second reference position determination subunit configured to determine the position of the sixth target marker in the second type of target marker as a second reference position; wherein the sixth target marker is located in the target cargo container And the position on the sixth target marker near the end of the robot corresponds to the position of the first type marker.
  • the target docking module 502 may include:
  • the second starting unit is set to start the target mark recognition module set on the robot
  • a second identification unit configured to continue driving in the adjusted traveling direction at the bottom of the target cargo container, and identify the target mark at the bottom of the target cargo container through the target mark identification module;
  • the target searching unit is configured to, if a target mark located at the bottom of the target cargo container is recognized, travel to the target position corresponding to the target mark, and stop driving after reaching the target position corresponding to the target mark;
  • the target docking unit is set to dock with the target cargo container using the target mark at the bottom of the target cargo container as an alignment point at the target position.
  • the target docking module 502 may include:
  • a stop position calculation unit configured to calculate a stop position for docking with the target cargo container according to the first reference position and the second reference position;
  • the target docking unit is configured to travel to the stop position for docking with the target cargo container according to the adjusted traveling direction at the bottom of the target cargo container, and meet the target at the stop location Cargo containers are docked.
  • the apparatus for docking a cargo container provided in an embodiment of the present disclosure can execute the method for docking a cargo container provided in any of the embodiments of the present disclosure, and has corresponding functional modules and effects for performing the method for docking the cargo container.
  • FIG. 6 is a schematic structural diagram of a robot provided in an embodiment of the present disclosure.
  • FIG. 6 shows a block diagram of an exemplary robot 612 suitable for implementing embodiments of the present disclosure.
  • the robot 612 shown in FIG. 6 is only an example.
  • the robot 612 is represented in the form of a general-purpose computing device.
  • the components of the robot 612 may include, but are not limited to, one or more processors or processors 616, a system memory 628, and a bus 618 connecting different system components (including the system memory 628 and the processor 616).
  • the bus 618 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus that uses any of a variety of bus structures.
  • these architectures include but are not limited to industry standard architecture (Industry Standard Architecture, ISA) bus, micro channel architecture (Micro Channel Architecture, MAC) bus, enhanced ISA bus, Video Electronics Standards Association (Video Electronic Standard Association) Association (VESA) local area bus and peripheral component interconnection (Peripheral Component Interconnection, PCI) bus.
  • the robot 612 includes various computer system readable media. These media may be any available media that can be accessed by the robot 612, including volatile and nonvolatile media, removable and non-removable media.
  • System memory 628 may include computer system readable media in the form of volatile memory, such as random access memory (Random Access Memory, RAM) 630 and / or cache memory 632.
  • RAM Random Access Memory
  • the robot 612 may include other removable / non-removable, volatile / nonvolatile computer system storage media.
  • the storage system 634 may be configured to read and write non-removable, non-volatile magnetic media (not shown in FIG. 6 and is commonly referred to as a "hard disk drive").
  • a disk drive for reading and writing to a removable non-volatile disk such as a "floppy disk"
  • a removable non-volatile optical disk such as a portable compact disk read-only memory
  • CD-ROM Compact Disc Read-Only Memory
  • DVD-ROM digital video disc
  • each drive may be connected to the bus 618 through one or more data media interfaces.
  • the memory 628 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of one or more embodiments of the present disclosure.
  • a program / utility tool 640 having a set of (at least one) program modules 642 may be stored in, for example, the memory 628.
  • Such program modules 642 include but are not limited to an operating system, one or more application programs, other program modules, and program data Each of these examples or some combination may include the implementation of a network environment.
  • the program module 642 generally performs the functions and / or methods in the embodiments described in the present disclosure.
  • the robot 612 can also communicate with one or more external devices 614 (eg, keyboard, pointing device, display 624, etc.), and can also communicate with one or more devices that enable a user to interact with the robot 612, and / or with the robot 612 can communicate with any device (eg, network card, modem, etc.) that can communicate with one or more other computing devices. Such communication may be performed through an input / output (I / O) interface 622.
  • the robot 612 can also communicate with one or more networks (such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN), and / or a public network, such as the Internet) through the network adapter 620.
  • networks such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN), and / or a public network, such as the Internet
  • the network adapter 620 communicates with other modules of the robot 612 through the bus 618. It should be understood that although not shown in FIG. 6, other hardware and / or software modules may be used in conjunction with the robot 612, including but not limited to: microcode, device driver, redundant processing unit, external disk drive array, disk array (Redundant Arrays of Independent Drives (RAID) systems, tape drives and data backup storage systems, etc.
  • RAID Redundant Arrays of Independent Drives
  • the processor 616 executes one or more functional applications and data processing by running a program stored in the system memory 628, for example, to implement the method for docking a cargo container provided in the embodiments of the present disclosure, the method includes:
  • a computer-readable storage medium is also provided in an embodiment of the present disclosure, and a computer program is stored on the storage medium.
  • the computer program is executed by a processor, the method for docking a cargo container as provided in the embodiment of the present disclosure is implemented Methods include:
  • the computer storage media of the embodiments of the present disclosure may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above.
  • Computer-readable storage media include (non-exhaustive list): electrical connection with one or more wires, portable computer disk, hard disk, RAM, read-only memory (Read-Only Memory, ROM), erasable programmable only Erasable Programmable Read-Only Memory (EPROM) or flash memory, optical fiber, CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal that is propagated in baseband or as part of a carrier wave, in which computer-readable program code is carried. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • the computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit a program for use by or in combination with an instruction execution system, apparatus, or device. .
  • the program code contained on the computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • RF radio frequency
  • the computer program code for performing the operations of the present disclosure may be written in one or more programming languages or a combination thereof, the programming languages including object-oriented programming languages such as Java, Smalltalk, C ++, as well as conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including LAN or WAN, or may be connected to an external computer (eg, using an Internet service provider to connect through the Internet).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种对接货物容器的方法、装置、机器人和存储介质,由机器人执行,该方法包括:在行驶至目标货物容器(311)的对接区域的情况下,依据所述目标货物容器(311)上的目标标志物(316a,316b)的位置确定参考位置,并根据所述参考位置调整所述机器人(310)的行驶方向;按照调整后的行驶方向驶入所述目标货物容器(311)的底部及行使至与所述目标货物容器(311)的对接位置,并在所述目标货物容器(311)的底部的所述对接位置与所述目标货物容器(311)对接。该方法解决了机器人无法快速与需要搬移的货物容器进行对接的问题,能够提高对接货物容器的效率,进而减少机器人搬移货物容器的时间,以及提高搬移货物容器的效率。

Description

对接货物容器的方法、装置、机器人和存储介质
本申请要求在2018年10月18日提交中国专利局、申请号为201811214271.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及仓储技术领域,例如涉及一种对接货物容器的方法、装置、机器人和存储介质。
背景技术
随着电子商务和机器人行业的迅速发展,为整个仓储行业带来了巨大的技术变革,尤其是越来越多的机器人被应用于仓储行业中,通过机器人可以自动搬移仓库中或生产线旁的货物容器。在相关技术中的搬移方式中,将货物容器放置在预定位置,并在该预定位置的地面上(例如,与货物容器的中心位置垂直映射的地面点)粘贴定位辅助标记,用于标识该预定位置,机器人通过该预定位置和粘贴的定位辅助标记来寻找货物容器所在位置,并在货物容器所在位置从货物容器的底部与货物容器进行对接,在与货物容器对接后自动搬移该货物容器。
然而,在实际使用过程中,由于摆放精度或其他原因会导致货物容器的实际放置位置偏离预定坐标位置(例如,平移、在一定角度内的旋转、或者两者兼具),因此,在货物容器上也粘贴定位辅助标记,机器人与预定位置处的定位辅助标记对准后,还根据一定方式在定位辅助标记的周围来回寻找货物容器上的定位辅助标记才能与货物容器准确对接,影响机器人对接货物容器的效率,造成机器人搬移货物容器的时间变长,以及搬移货物容器的效率下降。
发明内容
本公开实施例中提供了一种克服上述问题或者至少部分地解决上述问题的对接货物容器的方法、装置、机器人和存储介质,以提高对接货物容器的效率,进而减少机器人搬移货物容器的时间。
在一实施例中,本公开实施例中提供了一种对接货物容器的方法,由机器 人执行,该方法包括:
在行驶至目标货物容器的对接区域的情况下,依据所述目标货物容器上的目标标志物的位置确定参考位置,并根据所述参考位置调整所述机器人的行驶方向;
按照调整后的行驶方向驶入所述目标货物容器的底部及行使至与所述目标货物容器的对接位置,并在所述目标货物容器的底部的所述对接位置与所述目标货物容器对接。
在一实施例中,本公开实施例中还提供了一种机器人,该机器人包括:
标志物识别模块与标签识别模块;
一个或多个处理器;
存储装置,设置为存储一个或多个程序,
所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述实施例所述的方法。
在一实施例中,本公开实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例所述的方法。
在一实施例中,本公开实施例中还提供了一种机器人,包括:
第一传感器、存储器以及处理器,所述处理器分别与所述第一传感器和所述存储器电连接;
所述第一传感器配置为,在所述机器人驶入目标货物容器底部的过程中,识别所述目标货物容器的容器支脚;所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如下操作:
根据所述第一传感器的识别结果,计算所述目标货物容器的容器支脚的位置;
至少根据所述目标货物容器的容器支脚的位置确定所述机器人与所述目标货物容器的对接路线以及对接位置;
控制所述机器人按照所述对接路线驶入所述目标货物容器的底部并行驶至 所述对接位置,所述机器人在所述对接位置与所述目标货物容器对接。
附图说明
图1是本公开实施例中提供的一种货物拣选系统的系统结构示意图;
图2是本公开实施例中提供的一种对接货物容器的方法的流程示意图;
图3a是本公开实施例中提供的俯视机器人驶向货物容器底部的示意图;
图3b是本公开实施例中提供的侧视机器人驶入货物容器底部的示意图;
图3c是本公开实施例中提供的侧视机器人在货物容器底部对接的示意图;
图3d是本公开实施例中提供的俯视机器人在货物容器底部对接的示意图;
图4是本公开实施例中提供的另一种对接货物容器的方法的流程示意图;
图5是本公开实施例中提供的一种对接货物容器的装置的结构示意图;
图6是本公开实施例中提供的一种机器人的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
图1是本公开实施例中提供的一种货物拣选系统的系统结构示意图。参见图1,货物拣选系统100包括:机器人110、控制系统120、货物容器区130以及工作站140,货物容器区130设置有多个货物容器131,货物容器131上放置有一种或多种货物,例如,如同在超市中见到的放置有多种商品的货架一样,多个货物容器131之间排布成阵列形式。通常,在货物容器区130的一侧可以设置有多个工作站140,机器人110可以为自驱动机器人。
控制系统120与机器人110进行无线通信,工作人员通过操作台16可以使控制系统120工作,机器人110在控制系统120的控制下,执行搬运货物容器的任务。其中,该货物容器可以包括但不限于货架和笼车。以货物容器131为货架为例,机器人110可以沿货架阵列中的空着的空间(机器人110通行通道的一部分)行驶,运动到货架131的底部,利用举升机构举起货架131,并搬运到被分配到的工作站140。或者,以货物容器131为笼车为例,机器人110可以 沿笼车阵列中的空着的空间(机器人110通行通道的一部分)行驶,运动到笼车131的底部,利用举升机构举起笼车131或者利用挂钩机构拉动笼车131,将笼车131搬运到被分配到的工作站140。在一个示例中,机器人110可以具有举升机构或挂钩结构,以及具有自主导航功能,机器人110能够行驶至货物容器131底部,并利用举升机构将整个货物容器131举起或利用挂钩结构拉动整个货物容器131,使得货物容器131能够随着具有升降功能的举升机构上下移动或随着挂钩机构进行拉动。在一个示例中,机器人110能够根据摄像头拍摄到的二维码信息定位并向前行驶,并且能够根据控制系统120确定的路线行驶至控制系统120提示的货物容器131的下面。机器人110将货物容器131搬运到工作站140,在工作站140处的拣货人员141或拣选机器人从货物容器131上拣选货物并放入周转箱150中等待打包。
控制系统120为在服务器上运行的、具有数据存储、信息处理能力的软件系统,可通过无线或有线与机器人、硬件输入系统、其它软件系统连接。控制系统120可以包括一个或多个服务器,可以为集中式控制架构或者分布式计算架构。服务器包括处理器1201和存储器1202,在存储器1202中可以具有订单池1203。
以图1中所示的拣选系统为例,相关技术中,机器人110搬移仓库中的货物容器(比如,货架或笼车)时,机器人110可以通过寻找位于预定位置处的目标货物容器,并与寻找到的目标货物容器进行对接,然后搬移对接后的目标货物容器。另外,在相关技术中,为了快速和准确寻找到预定位置处的目标货物容器,还可以在预定位置处增加定位辅助标记,借助定位辅助标记快速精确地寻找目标货物容器并进行对接搬移。但是在实际使用过程中,由于摆放精度或其他原因会导致目标货物容器的实际放置位置偏离预定位置,机器人110借助预定位置和预定位置处的定位辅助标记,均无法快速寻找到目标货物容器,从而无法实现与目标货物容器快速进行对接。因此,要改进与货物容器的对接方式,以提高对接货物容器的效率。
下面针对本公开实施例中提供的对接货物容器的方法、装置、机器人和存储介质,通过实施例进行详细阐述。
图2是本公开实施例中提供的一种对接货物容器的方法的流程示意图,本公开实施例可应用于机器人搬移位于仓库中或生产线旁的一种或多种货物容器 的情况,例如,搬移位于仓库中或生产线旁的货架和笼车的场景。该方法可由对接货物容器的装置来执行,该装置可以采用软件和/或硬件的方式实现,该装置可以集成在任何具有网络通信功能的机器人中,该机器人可以为自驱动机器人。
如图2所示,本公开实施例中的对接货物容器的方法可以包括:
步骤210、在行驶至目标货物容器的对接区域的情况下,依据目标货物容器上的目标标志物的位置,调整所述机器人的行驶方向。
在本公开实施例中,图3a是本公开实施例中提供的俯视机器人驶向货物容器底部的示意图。在一个示例中,以机器人310自动搬移仓库中或生产线旁的货物容器为例,图3a中示出了机器人310、未发生偏移时的货物容器311a、发生偏移时的货物容器311b、行驶路径312、对接区域313,以及由第一预定位置线314a与第二预定位置线314b组成的预定位置314。当目标货物容器为未发生偏移时的货物容器311a时,机器人310可以按照行驶路径312准确驶入未发生偏移时的货物容器311a的底部与未发生偏移的货物容器311a进行对接,并在对接后将未发生偏移时的货物容器311a搬移到合适的位置。
在本公开实施例中,目标货物容器上可以包含有多个目标标志物,目标标志物可以位于目标货物容器的不同位置处。参见图3a,以目标货物容器为货架311b为例,目标标志物可以位于目标货物容器的底部的不同支脚位置处,或者位于目标货物容器的侧面预定位置处。其中,目标标志物可以理解为用于识别目标货物容器的容器标记。该容器标记可以为设置在货物容器上的特定可识别标签,比如二维码标签等;或者,该容器标记可以为货物容器本身具备的容器结构特征,比如位于货物容器的底部的四个不同支脚位置处的四条容器腿或者位于货物容器的底部的四个不同支脚位置处四条容器腿的容器腿结构。
在本公开实施例中,货物容器摆放精度或其他原因可能会导致货物容器在预定位置处的实际摆放位置和/或角度会产生一定的偏移。其中,货物容器发生偏移的情况可以包括货物容器在预定位置处的摆放位置发生了距离上的偏移和/或在预定位置处的摆放角度发生了角度上的旋转偏移。参见图3a,在一个示例中,以发生偏移时的货物容器311b作为目标货物容器为例,发生偏移时的货物容器311b在预定位置314处的摆放位置和/或角度,与未发生偏移时的货物容器311a在预定位置314处的摆放位置和/或角度之间会存在一定的偏差。当目标货 物容器为发生偏移时的货物容器311b时,由于发生偏移时的货物容器311b与未发生偏移时的货物容器311a在预定位置314的摆放位置和/或摆放角度不同,机器人310按照到达未发生偏移时的货物容器311a时所使用的行驶路径312无法直接行驶至发生偏移的货物容器311b的底部,机器人310按照行驶路径312到达预定位置314附近之后,在预定位置314附近经过多次试探才可以行驶至发生偏移时的货物容器311b底部。在另一个示例中,仍以发生偏移时的货物容器311b作为目标货物容器为例,在发生偏移时的货物容器311b的偏移角度比较小的情况下,由于发生偏移时的货物容器311b在预定位置已经发生了位置和/或角度上的偏移,发生偏移时的货物容器311b与机器人310的对接位置也会发生相应的变化,因此,即使机器人310可以行驶至发生偏移时的货物容器311b的底部,也无法直接到达对接处与发生偏移时的货物容器311b进行对接,重新寻找对接位置才能完成对接。
可以理解的是,无论上述哪种情况,机器人310在与目标货物容器对接时均浪费大量的时间。基于上述情况,为了保证机器人310可以快速的驶入目标货物容器的底部,到达目标货物容器的对接位置并与目标货物容器进行对接,当机器人接收到对接目标货物容器的对接指令后,可以驶向目标货物容器方向行驶,依据目标货物容器上的多个目标标志物的位置,调整机器人的行驶方向,以便后续按照调整后的行驶方向驶向目标货物容器底部的对接位置处并进行货物容器的对接操作。
在本公开实施例中,在调整机器人的行驶方向时,并不一定是机器人接收到对接指令后就立即调整,可以在检测到机器人行驶至目标货物容器的对接区域后再调整。当然,如果机器人接收到对接指令时的位置正好位于目标货物容器的对接区域,那么此时可以立即调整机器人的行驶方向。在一实施例中,当检测到机器人行驶至目标货物容器的对接区域时,依据目标货物容器上设置的目标标志物的位置,调整机器人的行驶方向。在一实施例中,目标货物容器的对接区域可以根据目标货物容器所要放置的预定位置进行确定,例如目标货物容器的对接区域可以为以预定位置为中心的预设距离范围的区域。或者,目标货物容器的对接区域可以根据目标货物容器的实际摆放位置进行确定,例如当检测到机器人与目标货物容器的一个标志物之间的距离小于预设距离时,即可以认为机器人行驶到了目标货物容器的对接区域。在一个示例中,当检测到机 器人当前所在位置与目标货物容器的任一预定标志物所在位置之间的距离小于预设距离阈值时,表明机器人已行驶至目标货物容器的对接区域,此时,机器人可以依据该目标货物容器上的目标标志物的位置,调整行驶方向。
在本公开实施例中,参见图3a,仍以发生偏移时的货物容器311b作为目标货物容器为例,由于目标货物容器的摆放位置和摆放角度发生了偏移,因此机器人可以依据目标货物容器在预定位置的实际摆放位置和/或实际摆放角度来调整机器人的行驶方向。在一实施例中,机器人可以依据目标货物容器上的多个目标标志物的位置,确定目标货物容器在预定位置的实际摆放位置和/或实际摆放角度,并根据目标货物容器在预定位置的实际摆放位置和/或实际摆放角度,调整机器人的行驶方向。在本公开实施例中,目标货物容器可以是允许固定放置的货架,也可以是安装有万向轮或其他车轮的笼车。
步骤220、按照调整后的行驶方向驶入所述目标货物容器的底部,并在目标货物容器的底部与目标货物容器对接。
在本公开实施例中,图3b是本公开实施例中提供的侧视机器人驶入货物容器底部的示意图。参见图3b,机器人行驶到对接区域时,可以依据目标货物容器上的目标标志物的位置,调整机器人的行驶方向,并根据调整后的方向驶入目标货物容器的底部。例如,以调整后的机器人的行驶方向为调整方向315(图3a所示)为例,机器人可以按照调整方向315驶入货物容器的底部。图3c是本公开实施例中提供的侧视机器人在货物容器底部对接的示意图,图3d是本公开实施例中提供的俯视机器人在货物容器底部对接的示意图。参见图3c和图3d,当机器人驶入目标货物容器底部时,可以在货物容器底部与货物容器进行对接,以便机器人将对接后的货物容器搬移到需要搬移的位置处。在一实施例中,当机器人310在目标货物容器311底部与目标货物容器311(其中,目标货物容器可以为货架或笼车)进行对接时,机器人310可以在货物容器311底部通过举升机构举起目标货物容器131或者利用挂钩机构拉动目标货物容器131。可以理解的是,上述方式均可以作为与目标货物容器311进行对接的方式。
本公开实施例中提供的对接货物容器的方法,该方法包括:当行驶至目标货物容器的对接区域时,依据目标货物容器上的目标标志物的位置确定参考位置,并根据所述参考位置调整机器人的行驶方向,按照调整后的行驶方向驶入目标货物容器的底部及行使至与所述目标货物容器的对接位置,并在目标货物 容器的底部的对接位置与目标货物容器对接。本公开实施例的技术方案解决了机器人无法快速与要搬移的货物容器进行对接的问题,能够提高对接货物容器的效率,进而减少机器人搬移货物容器的时间,以及提高搬移货物容器的效率。
图4是本公开实施例中提供的另一种对接货物容器的方法的流程示意图,本公开实施例在上述实施例的基础上对依据所述目标货物容器上的目标标志物的位置,调整机器人的行驶方向的步骤进行优化,本公开实施例可以与上述一个或者多个实施例中一个或多个可选方案结合。
如图4所示,本公开实施例中的对接货物容器的方法可以包括:
步骤401、当行驶至目标货物容器的对接区域时,识别目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置。
其中,第一类目标标志物为目标货物容器上靠近机器人一侧的目标标志物,第二类目标标志物为目标货物容器上远离机器人一侧的目标标志物或位于目标货物容器的底部且用于引导机器人与目标货物容器对接的目标标志物。
在本公开实施例中,在位于目标货物容器上的不同位置处可以存在有多个目标标志物,该目标标志物可以是目标货物容器具备的结构特征,也可以是在目标货物容器上增加的可识别标志物。当机器人接收到对接目标货物容器的对接指令并向目标货物容器移动的过程中,在目标货物容器上的多个目标标志物中,存在一部分目标标志物会靠近机器人,而存在另一部分目标标志物则会远离机器人或者位于目标货物容器的底部。其中,两部分目标标志物之间所指示的方向可以在一定程度上体现目标货物容器在预定位置的实际摆放位置和/或摆放角度。当然,为了区分上述目标标志物中的两类目标标志物,可以采用第一类目标标志物和第二类目标标志物进行区分表示。通过识别目标货物容器上的第一类目标标志物和第二类目标标志物所在位置,可以估计目标货物容器在预定位置的实际摆放位置和/或实际摆放角度,以便根据目标货物容器在预定位置的实际摆放位置和/或实际摆放角度调整机器人的行驶方向。
在本公开实施例中,第一类目标标志物可以为位于目标货物容器的底部的不同支脚位置处且靠近机器人一侧的多个目标标志物。其中,该目标标志物可以为目标货物容器的可识别容器标记或者可识别标签。例如,可识别容器标记可以是目标货物容器上具备的特定结构特征等,可识别标签可以是目标货物容 器上具备的特定标记,如二维码标签。在一实施例中,第一类目标标志物可以包括位于目标货物容器的底部的不同支脚位置处且靠近机器人一侧的第一目标标志物和第二目标标志物。在一个示例中,第一目标标志物和第二目标标志物分别可以为位于目标货物容器的底部靠近机器人一侧的不同支脚位置处的两条容器腿;或者,在另一个示例中,第一目标标志物和第二目标标志物分别可以为位于目标货物容器的底部靠近机器人一侧的不同支脚位置处的两条容器腿上的可识别标签或可识别容器腿结构特征。
可以理解的,根据第一目标标志物的位置以及第二目标标志物的位置可以计算两个位置的中心点,该中心点可作为机器人行驶的一个参考点,机器人在驶向目标货物容器时,可根据该参考点从目标货物容器的两个支脚位置处的容器腿中间穿过,并驶入目标货物容器的底部。
在本公开的一个实施例中,第一类目标标志物可以为位于目标货物容器的侧面预定位置处且靠近机器人一侧的至少一个目标标志物(如,附图3b所示的321及322或者附图3d所示的316a及316b)。其中,该目标标志物可以为目标货物容器的可识别容器标记或者可识别标签。
在另一实施例中,第一类目标标志物也可以包括位于目标货物容器的侧面预定位置处且靠近机器人一侧的第五目标标志物。在一个示例中,第五目标标志物也可以位于目标货物容器上靠近机器人一侧,且第五目标标志物可以位于该侧对应的目标货物容器侧面的预定位置处。其中,该第五目标标志物可以为目标货物容器上的可识别容器标记或者可识别标签。例如,可识别容器标记可以是目标货物容器上的特定结构特征,可识别标签可以是目标货物容器上的特定标记,如二维码标签。
可以理解的是,第五目标标志物在目标货物容器侧面的位置不能太偏,如果太偏机器人无法从第五目标标志物所在位置行驶到目标货物容器的底部。为了保证第五目标标志物位于目标货物容器侧面的合适位置上,在另一个示例中,第五目标标志物可以位于目标货物容器靠近机器人一侧的货物容器侧面的中心位置(如附图3b所示的324),或者位于目标货物容器靠近机器人一侧的货物容器的底部两个支脚所在位置点连线的中心线上(如附图3b所示的323),且该中心线位于该侧的货物容器侧面上。
机器人同样也可以将第五目标标志物的位置作为参考点,机器人同样也可 以根据该参考点从目标货物容器的两个支脚中间穿过,并驶入目标货物容器的底部。
在本公开的一个实施例中,第二类目标标志物可以为位于目标货物容器的底部上的不同支脚位置处且远离机器人一侧的多个目标标志物。其中,该目标标志物可以为目标货物容器的可识别容器标记或者可识别标签。第二类目标标志物可以包括位于目标货物容器的底部的不同支脚位置处且远离机器人一侧的第三目标标志物和第四目标标志物(如,附图3d所示的316c及316d)。在一个示例中,第三目标标志物和第四目标标志物可以分别为目标货物容器的底部远离机器人一侧的不同支脚位置处的两条容器腿,或者可以分别为位于目标货物容器的底部远离机器人一侧的不同支脚位置处的两条容器腿上的可识别标签或可识别容器腿结构特征。
可以理解的,根据第三目标标志物的位置以及第四目标标志物的位置可以计算两个位置的中心点,该中心点可作为机器人行驶的另一个参考点,在驶入目标货物容器的底部后,机器人可根据两个参考点的引导在目标货物容器的底部顺利行驶至对接位置,机器人在该对接位置停止,并通过举升结构与目标货物容器对接。
在本公开的另一实施例中,第二类目标标志物也可以为位于目标货物容器的底部且用于引导机器人行驶的目标标志物。在一实施例中,第二类目标标志物也可以是位于目标货物容器的底部且用于引导机器人行驶的第六目标标志物(引导机器人行驶到与目标货物容器的对接位置),第六目标标志物可以包括多个离散的标志物或者为一个连续的引导带,且第六目标标志物中靠近机器人一端的位置与第一类目标标志物的位置(即,第一类目标标志物确定的参考点的位置)相对应,以保证机器人在经过第一类目标标志物所在位置后直接到达第六目标标志物所在的位置。在一个示例中,该第六目标标志物可以为目标货物容器上具备的特定结构特征、多个特定的可识别标签或者特定的机器人行驶引导带。同样,在驶入目标货物容器的底部后,机器人也可以进一步根据位于目标货物容器底部的第六目标标志物的引导顺利行驶至对接位置。
在本公开实施例的一种实施方式中,识别目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置,可以包括:
步骤401a、启动机器人上设置的至少一个目标标志物识别模块;
步骤401b、通过至少一个目标标志物识别模块识别目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置。
在本实施方式中,机器人上可以设置有至少一个目标标志物识别模块,通过位于机器人上的至少一个目标标志物识别模块可以识别目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置。其中,目标标志物识别模块可以是指包含激光雷达或者摄像头的目标标志物识别模块,目标标志物识别模块上可以包括多个激光雷达或者多个摄像头。该目标标志物识别模块可以设置在机器人上的合适位置,实际设置位置可以根据实际情况进行确定。示例性的,参见图3a,一个或多个目标标志物识别模块3102可以设置在机器人310的前端位置,一个或多个目标标志物识别模块3102中可以包含多个激光雷达或者摄像头。另外,为了避免一个或多个目标标志物识别模块的位置太高无法识别到目标标志物,当目标标志物为位于目标货物容器的四条容器腿的位置处的特定可识别标签或者目标标志物为目标货物容器的四条容器腿时,一个或多个目标标志物识别模块可以设置在机器人前端的下方位置。在一实施例中,一个或多个目标标志物识别模块的高度与目标货物容器的目标标志物的高度一致。
在本实施方式中,当行驶至目标货物容器的对接区域时,机器人可以启动机器人上设置的至少一个目标标志物识别模块,并通过至少一个目标标志物识别模块在对接区域内扫描及识别目标货物容器上的多个目标标志物。通过一个或多个目标标志物识别模块可以识别目标货物容器上的一个或多个目标标志物以及一个或多个目标标志物的位置信息,并确定哪些目标标志物距离机器人比较近(即,目标货物容器上靠近机器人一侧的目标标志物),以及哪些目标标志物距离机器人比较远(即,目标货物容器上远离机器人一侧的目标标志物),从而识别到目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置。
示例性的,参见图3a,以发生偏移时的货物容器311b作为目标货物容器,且目标货物容器上的目标标志物分别为位于目标货物容器的底部的四个支脚位置处的四条容器腿为例,当机器人310行驶至目标货物容器所在的对接区域313时,机器人310可以通过至少一个目标标志物识别模块3102识别目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置。其中,当机器人310行驶至目标货物容器的对接区域313时,目标货物容器上靠近机器人310一侧 的两条容器腿分别为第一容器腿316a和第二容器腿316b,此时第一容器腿316a和第二容器腿316b可以作为第一类目标标志物;而当机器人310行驶至目标货物容器的对接区域313时,目标货物容器上远离机器人310一侧的两条容器腿分别为第三容器腿316c和第四容器腿316d,此时第三容器腿316c和第四容器腿316d可以作为第二类目标标志物。
在本实施方式中,由于一个或多个货物容器的预定位置设置的比较近,当其他预定位置的货物容器发生偏移时,可能会存在其他预定位置的货物容器的一部分偏移到目标货物容器的预定位置上,从而造成在对接区域内不仅存在目标货物容器,还可能存在其他预定位置的货物容器的一部分。为此,当行驶至目标货物容器的对接区域时,机器人可以启动机器人上设置的至少一个目标标志物识别模块,先识别确定目标货物容器,然后识别在对接区域内的目标货物容器上的多个目标标志物。
在一实施例中,第一类目标标志物和第二类目标标志物的确定并不是固定不变,针对第一类目标标志物和第二类目标标志物的确定可以依据机器人行驶至目标货物容器的对接区域时,目标货物容器上的目标标志物距离机器人的远近程度进行确定。例如,当机器人在目标货物容器的另一侧时,位于目标货物容器另一侧的目标标志物就可以作为第一类目标标志物。下面通过一个实施例进行示例性的解释说明,参见图3a,仍以发生偏移时的货物容器311b作为目标货物容器,且目标货物容器上的目标标志物分别为位于目标货物容器的四个底部支脚位置处的四条容器腿为例,当机器人310行驶到对接区域313的右上方位置时,由于目标货物容器上的第一容器腿316a和第二容器腿316b距离机器人310比较近,从而被确定为第一类目标标志物,而目标货物容器上的第三容器腿316c和第四容器腿316d距离机器人310比较远,从而被确定为第二类目标标志物。然而,当机器人310行驶到对接区域313的左上方位置时,由于目标货物容器上的第二容器腿316b和第四容器腿316d距离机器人310比较近,从而被确定为第一类目标标志物,而目标货物容器上的第一容器腿316a和第三容器腿316c距离机器人310比较远,从而被确定为第二类目标标志物。可见,第一类目标标志物和第二类目标标志物的确定与当机器人行驶至目标货物容器的对接区域时,目标货物容器上的目标标志物距离机器人的远近程度有关。
步骤402、依据第一类目标标志物的位置确定第一参考位置和依据第二类目 标标志物的位置确定第二参考位置。
在本公开实施例中,第一类目标标志物与第二类目标标志物之间所指示的方向可以理解为目标货物容器的实际摆放角度。当确定目标货物容器的实际摆放角度后,机器人可以沿着目标货物容器的实际摆放角度行驶到目标货物容器的底部。为了更好的采用第一类目标标志物与第二类目标标志物来确定目标货物容器的实际摆放角度,可以依据第一类目标标志物的位置确定第一参考位置,以及依据第二类目标标志物的位置确定第二参考位置,通过第一参考位置与第二参考位置可以估计得到目标货物容器的实际摆放角度,从而可以依据目标货物容器的实际摆放角度,确定机器人从机器人当前位置驶向目标货物容器底部的行驶路径,进入依据确定的行驶路径调整机器人的行驶方向。
在本公开实施例的一种实施方式中,依据第一类目标标志物的位置确定第一参考位置,可以包括:
依据第一类目标标志物中的第一目标标志物的位置与第二目标标志物的位置,计算第一目标标志物与第二目标标志物之间的中心位置,并作为第一参考位置;其中,第一目标标志物和第二目标标志物分别位于目标货物容器的底部的其中两个不同支脚处。
在本实施方式中,参见图3a,以第一类目标标志物中的第一目标标志物和第二目标标志物分别为位于目标货物容器的底部的不同支脚位置处的容器腿为例,当机器人310行驶至目标货物容器的对接区域311的右上方时,第一目标标志物为第一容器腿316a,第二目标标志物为第二容器腿316b。机器人310可以识别第一类目标标志物中靠近机器人310一侧的第一容器腿316a的位置和第二容器腿316b的位置。依据第一容器腿316a的位置和第二容器腿316b的位置可以计算第一容器腿316a和第二容器腿316b之间中心点的位置,并将第一容器腿316a和第二容器腿316b之间中心点的位置作为第一参考位置。
可以理解的是,第一类目标标志物中的第一目标标志物和第二目标标志物包括但不限于上述的目标货物容器上的容器腿,将目标货物容器上的容器腿作为目标标志物,仅是本实施方式进行解释说明时的一种示例。在一实施例中,第一目标标志物和第二目标标志物可以分别为位于目标货物容器上靠近机器人一侧的且位于目标货物容器的两个不同底部支脚处的目标标志物。其中,该目标标志物可以为目标货物容器上的可识别容器标记或者可识别标签。例如,该 可识别容器标记可以是指目标货物容器上的特定结构特征,可识别标签可以是指目标货物容器上的特定二维码标签。
在本公开实施例的另一种实施方式中,依据第一类目标标志物的位置确定第一参考位置,可以包括:
确定第一类目标标志物中的第五目标标志物的位置,并作为第一参考位置;其中,第五目标标志物位于目标货物容器上靠近机器人一侧的预定位置处。
在本实施方式中,参见图3b,第五目标标志物可以位于目标货物容器311上靠近机器人一侧的目标货物容器311侧面上,且第五目标标志物同时位于该侧的目标货物容器311的第一底部支脚321所在位置和第二底部支脚322所在位置之间连线的中心线323上。在一实施例中,第五目标标志物可以稍微偏离中心线323,并不一定准确位于上述中心线323上,只要位于距离上述中心线323的可允许范围的位置处即可。当确定第一类目标标志物中第五目标标志物的位置之后,可以直接将第一类目标标志物中第五目标标志物的位置作为第一参考位置。其中,第五目标标志物可以为目标货物容器的可识别容器标记或者可识别标签。例如,该可识别容器标记可以是目标货物容器上的特定结构特征等,可识别标签可以是目标货物容器上的特定二维码标签等。可以理解的是,关于第五目标标志物的具体介绍可以参见本实施例中的相关解释。
在本公开实施例的一种实施方式中,依据第二类目标标志物的位置确定第二参考位置,可以包括:
依据第二类目标标志物中的第三目标标志物的位置与第四目标标志物的位置,计算第三目标标志物与第四目标标志物之间的中心位置,并作为第二参考位置;其中,第三目标标志物和第四目标标志物分别位于目标货物容器的底部的另外两个不同支脚处。
在本实施方式中,参见图3a,以第二类目标标志物中的第三目标标志物和第四目标标志物分别为位于目标货物容器311b的底部的不同支脚位置处的容器腿上的可识别标签为例进行示例性说明,当机器人310行驶至目标货物容器的对接区域311的右上方时,第三目标标志物为第三容器腿316c上的可识别标签和第四目标标志物为第四容器腿316d上的可识别标签。机器人310可以识别第二类目标标志物中远离机器人310一侧的第三容器腿316c上的可识别标签的位 置和第四容器腿316d上的可识别标签的位置。依据第三容器腿316c上的可识别标签的位置和第四容器腿316d上的可识别标签的位置可以计算第三容器腿316c上的可识别标签和第四容器腿316d上的可识别标签之间中心点的位置,并第三容器腿316c上的可识别标签和第四容器腿316d上的可识别标签之间的中心位置作为第二参考位置。
第二类目标标志物中的第三目标标志物和第三目标标志物包括但不限于上述的目标货物容器的容器腿上的可识别标签,将目标货物容器的容器腿上的可识别标签作为目标标志物,仅是本实施方式进行解释说明时的一种示例。在一实施例中,第三目标标志物和第四目标标志物可以为分别位于目标货物容器上远离机器人一侧的且位于目标货物容器的底部的两个不同支脚处的目标标志物。其中,目标标志物可以为目标货物容器的可识别容器标记或者可识别标签。例如,可识别容器标记可以是指目标货物容器上的特定结构特征,可识别标签可以是指目标货物容器上的特定二维码标签。
在本公开实施例的一种实施方式中,依据第二类目标标志物的位置确定第二参考位置,可以包括:
确定第二类目标标志物中的第六目标标志物的位置,作为第二参考位置;其中,第六目标标志物位于目标货物容器的底部,且第六目标标志物上靠近机器人一端的位置与第一类目标标志物的位置相对应。
在本实施方式中,第六目标标志物可以为位于目标货物容器的底部的可识别容器标记或者可识别标签,且识别容器标记或者可识别标签靠近机器人一端的位置与第一类目标标志物的位置相对应,以保证机器人从第一类目标标志物所在的位置直接过渡到第六目标标志物位置,并行驶至对接位置处。例如,可识别容器标记可以位于目标货物容器底部的特定结构特征,可识别标签可以为位于目标货物容器底部的特定二维码标签等。在一实施例中,第六目标标志物可以为位于目标货物容器底部的机器人行驶引导带,且机器人行驶引导带上靠近机器人一端的位置与第一类目标标志物的位置相对应。其中,机器人行驶引导带经过目标货物容器底部的目标位置和第一类目标标志物的位置。机器人行驶引导带所指示的路径的形式并不限定为直线,已确定的行驶路径可以为折线行驶路径,也可以为弧线行驶路径。
步骤403、依据第一参考位置和第二参考位置,调整机器人的行驶方向。
在本公开实施例中,参见图3b和图3d,机器人310可以将机器人310当前位置、第一参考位置和第二参考位置之间的连线,作为机器人310驶入目标货物容器底部的行驶路径。机器人310可以按照已确定的驶入目标货物容器底部的行驶路径所指示的路线方向,调整机器人310驶入目标货物容器底部的行驶方向,并按照调整的行驶方向驶入目标货物容器的底部。可以理解的是,机器人310当前位置、第一参考位置和第二参考位置可以作为确定行驶路径的一个参考位置,因此依据机器人310当前位置、第一参考位置和第二参考位置之间的连线所确定的行驶路径的形式并不限定为直线,已确定的行驶路径可以为折线行驶路径,也可以为弧线行驶路径。
步骤404、按照调整后的行驶方向驶入目标货物容器的底部,并在目标货物容器的底部与目标货物容器对接。
在本公开实施例中,目标货物容器可以为允许固定放置的货架,也可以是安装有万向轮或其他车轮的笼车,一般情况下目标货物容器的四个底部支脚位置处会设置容器腿或万向轮,如果机器人没有按照调整后的行驶方向驶入,那么机器人容易被位于目标货物容器的四个底部支脚位置处的容器腿或万向轮所阻挡,从而无法顺利进入目标货物容器的底部。为此,当机器人按照调整后的行驶方向驶入目标货物容器底部时,机器人才不会被位于目标货物容器的四个底部支脚位置处的容器腿或万向轮所阻挡,进而可以顺利进入目标货物容器的底部,并在目标货物容器底部与目标货物容器进行对接。
在本公开实施例中,机器人在搬运目标货物容器时,先与目标货物容器进行对接,机器人与目标货物容器在目标货物容器底部进行对接的位置可以作为目标位置。其中,该目标位置可以根据机器人对接的目标货物容器的实际结构进行确定。例如,当目标货物容器为结构均匀对称的长方体结构时,可以将目标货物容器底部的中心位置作为目标位置;然而当目标货物容器不是结构均匀对称分布时,该目标货物容器底部的中心位置不能作为目标位置,此时一旦将中心位置作为目标位置,机器人在目标位置与目标货物容器对接之后,目标货物容器在机器人上无法保持平衡。为此,可以根据目标货物容器的实际结构在目标货物容器的底部确定目标位置,机器人按照调整后的行驶方向驶入目标货物容器底部,并在预先确定的目标货物容器底部的目标位置处与目标货物容器进行对接。
在本公开实施例的一种实施方式中,按照调整后的行驶方向驶入目标货物容器的底部,并在目标货物容器的底部与目标货物容器对接,可以包括:
步骤4041a、按照调整后的行驶方向驶入目标货物容器的底部,同时启动在机器人上设置的目标标记识别模块;
步骤4041b、在目标货物容器的底部,按照调整后的行驶方向上继续行驶,并通过目标标记识别模块识别位于目标货物容器的底部的目标标记;
步骤4041c、若识别到位于目标货物容器底部的目标标记,则向目标货物容器的底部的目标标记对应的目标位置处行驶,并在到达目标标记对应的目标位置处后停止行驶;
步骤4041d、在目标位置处以位于目标货物容器的底部的目标标记作为对准点,与目标货物容器进行对接。
在本实施方式中,参见图3c和图3d,可以预先在目标货物容器的底部的目标位置处设置目标标记317。机器人310可以按照调整后的行驶方向驶入目标货物容器底部,并在驶入目标货物容器底部的同时启动机器人上设置的目标标记识别模块。机器人310可以在该行驶方向上通过目标标记识别模块识别位于目标货物容器底部的目标标记317。其中,该目标标记识别模块3101可以位于机器人310的顶部凹陷位置处,该目标标记识别模块3101可以包含一个或多个摄像头。目标标记可以理解为用于识别目标货物容器底部的目标位置的位置标记。该位置标记可以为设置在货物容器底部的目标位置处的特定可识别标签,比如,二维码标签;或者该位置标记可以为货物容器底部目标位置处的容器结构特征,比如位于货物容器底部目标位置处的“十字”结构特征。
在本实施方式中,参见图3c和图3d,若识别到位于目标货物容器底部的目标标记,则确定机器人310已行驶到目标货物容器底部的目标位置处,即机器人310的停止位置处为位于目标货物容器底部的目标位置,此时机器人310停止继续行驶。当机器人310行驶到位于目标货物容器底部的目标位置后,按照一般情况可以直接在机器人310的停止位置处与货物容器进行对接。但是考虑到机器人310的停止位置处可能与目标货物容器的目标位置仍然存在微小的偏差,为了提高机器人310与目标货物容器对接准确度,可以在以位于目标货物容器底部的目标标记作为对准点,与目标货物容器进行精确对接。换言之,机 器人310可以在停止位置处通过位于所述目标货物容器底部的目标标记作为对准点进行对接引导,在对接过程中微调机器人310与目标货物容器的对接路径,实现与目标货物容器进行精确对接。
在本公开实施例的另一实施方式中,在按照调整后的行驶方向驶入目标货物容器底部之前,可以包括:确定目标货物容器底部的目标位置信息;相应的,按照调整后的行驶方向驶入目标货物容器底部,并在目标货物容器底部与目标货物容器对接,可以包括:
步骤4042a、按照调整后的行驶方向驶入目标货物容器的底部,同时启动机器人上设置的目标标记识别模块;
步骤4042b、当检测到机器人按照调整后的行驶方向已驶入目标货物容器的底部后,根据已确定目标货物容器底部的目标位置信息直接行驶至该目标位置信息所指示的位置处;
步骤4042c、在目标位置信息所指示的位置处,通过目标标记识别模块识别位于目标货物容器底部的目标标记,并将该目标标记作为对准点,与目标货物容器进行对接。
在本实施方式中,本实施方式与步骤4041a~步骤4041c中的方式的不同在于,本实施方式的机器人310在进入货物容器底部之后没有在该行驶方向上通过目标标记识别模块识别位于目标货物容器底部的目标标记,而是直接根据已确定目标货物容器底部的目标位置信息直接行驶至该目标位置信息所指示的位置处。然后,在目标位置信息所指示的位置处,通过目标标记识别模块识别位于目标货物容器底部的目标标记,并将该目标标记作为对准点,与目标货物容器进行精确对接。可以理解的是,本实施方式中的相关技术特征的解释说明可以参考步骤4041a~步骤4041c中的解释说明,这里不再赘述。
在本公开实施例的又一实施方式中,按照调整后的行驶方向驶入目标货物容器底部,并在目标货物容器底部与目标货物容器对接,可以包括:
步骤4043a、依据第一参考位置和第二参考位置,计算与目标货物容器进行对接的停止位置;
步骤4043a、在目标货物容器的底部,按照调整后的行驶方向上行驶至与目标货物容器进行对接的停止位置处,并在停止位置处与目标货物容器进行对接。
本公开实施例中提供的对接货物容器的方法,该方法包括:当行驶至目标货物容器的对接区域时,从目标货物容器上的目标标志物中,识别目标货物容器上靠近机器人一侧的目标标志物,以及识别目标货物容器上远离机器人一侧的目标标志物,依据识别得到的目标货物容器上靠近机器人一侧的目标标志物的位置与目标货物容器上远离机器人一侧的目标标志物的位置,确定驶入目标货物容器底部时的行驶路径;按照驶入目标货物容器底部的行驶路径调整机器人的行驶方向;按照调整后的行驶方向驶入目标货物容器的底部,并在目标货物容器的底部与目标货物容器对接。本公开实施例的技术方案能够保证在目标货物容器摆放偏离预定位置的情况下,机器人仍然可以在移动过程中寻找到目标货物容器并及时调整行走方向和确定停止位置,从而准确在目标货物容器的底部与目标货物容器对接,提高了机器人与目标货物容器的对接效率,进而减少机器人搬移货物容器的时间,提高搬移货,同时本公开实施例的技术方案还可以降低了机器人对地面固定标志的依赖。
图5是本公开实施例中提供的一种对接货物容器的装置的结构示意图,本公开实施例可应用于机器人搬移仓库中或生产线旁的一种或多种货物容器的情况,该装置可以采用软件和/或硬件的方式实现,该装置可以集成在任何具有网络通信功能的机器人中,该机器人可以为自驱动机器人。
如图5所示,本公开实施例中的对接货物容器的装置可以包括:方向调整模块501和目标对接模块502,其中:
方向调整模块501,设置为在行驶至目标货物容器的对接区域的情况下,依据所述目标货物容器上的目标标志物的位置,调整所述机器人的行驶方向;
目标对接模块502,设置为按照调整后的行驶方向驶入所述目标货物容器的底部,并在所述目标货物容器底部与所述目标货物容器对接。
在本公开实施例的一种实施方式中,所述方向调整模块501可以包括:
标志物识别单元,设置为识别所述目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置;其中,所述第一类目标标志物为所述目标货物容器上靠近所述机器人一侧的目标标志物,所述第二类目标标志物为所述目标货物容器上远离所述机器人一侧的目标标志物或位于所述目标货物容器的底部且用于引导机器人行驶的目标标志物;
参考位置确定单元,设置为依据所述第一类目标标志物的位置确定第一参考位置和依据所述第二类目标标志物的位置确定第二参考位置;
行驶方向调整单元,设置为依据所述第一参考位置和所述第二参考位置,调整所述机器人的行驶方向。
在本公开实施例的一种实施方式中,所述标志物识别单元可以包括:
第一启动子单元,设置为启动机器人上设置的至少一个目标标志物识别模块;
第一识别子单元,设置为通过所述至少一个目标标志物识别模块识别所述目标货物容器上的所述第一类目标标志物的位置和所述第二类目标标志物的位置。
在本公开实施例的一种实施方式中,所述参考位置确定单元可以包括下述之一:
第一参考位置确定子单元,设置为依据所述第一类目标标志物中的所述第一目标标志物的位置与所述第二目标标志物的位置,计算所述第一目标标志物与所述第二目标标志物之间的中心位置,并作为第一参考位置;其中,所述第一目标标志物和所述第二目标标志物分别位于所述目标货物容器的底部的其中两个不同支脚处;
第一参考位置确定子单元,设置为确定所述第一类目标标志物中的第五目标标志物的位置,并作为第一参考位置;其中,所述第五目标标志物位于所述目标货物容器上靠近所述机器人一侧,且所述第五目标标志物位于该侧对应的目标货物容器侧面的预定位置处。
在本公开实施例的一种实施方式中,所述参考位置确定单元可以包括下述之一:
第二参考位置确定子单元,设置为依据所述第二类目标标志物中的第三目标标志物的位置与第四目标标志物的位置,计算所述第三目标标志物与第四目标标志物之间的中心位置,并作为第二参考位置;其中,所述第三目标标志物和所述第四目标标志物分别位于所述目标货物容器的底部的另外两个不同支脚处;
第二参考位置确定子单元,设置为确定所述第二类目标标志物中的第六目标标志物的位置,作为第二参考位置;其中,所述第六目标标志物位于所述目标货物容器的底部,且所述第六目标标志物上靠近机器人一端的位置与所述第一类目标标志物的位置相对应。
在本公开实施例的一种实施方式中,所述目标对接模块502可以包括:
第二启动单元,设置为启动机器人上设置的目标标记识别模块;
第二识别单元,设置为在所述目标货物容器底部,按照所述调整后的行驶方向上继续行驶,并通过所述目标标记识别模块识别位于所述目标货物容器底部的目标标记;
目标寻找单元,设置为若识别到位于所述目标货物容器底部的目标标记,则向所述目标标记对应的目标位置处行驶,并在到达所述目标标记对应的目标位置处后停止行驶;
目标对接单元,设置为在所述目标位置处以位于所述目标货物容器底部的目标标记作为对准点,与所述目标货物容器进行对接。
在本公开实施例的一种实施方式中,所述目标对接模块502可以包括:
停止位置计算单元,设置为依据所述第一参考位置和所述第二参考位置,计算与目标货物容器进行对接的停止位置;
目标对接单元,设置为在所述目标货物容器的底部,按照所述调整后的行驶方向上行驶至所述与目标货物容器进行对接的停止位置处,并在所述停止位置处与所述目标货物容器进行对接。
本公开实施例中提供的对接货物容器的装置可执行上述本公开任意实施例中所提供的对接货物容器的方法,具备执行该对接货物容器的方法相应的功能模块和效果。
图6是本公开实施例中提供的一种机器人的结构示意图。图6示出了适于用来实现本公开实施方式的示例性机器人612的框图。图6显示的机器人612仅仅是一个示例。
如图6所示,机器人612以通用计算设备的形式表现。机器人612的组件可以包括但不限于:一个或者多个处理器或者处理器616,系统存储器628,连 接不同系统组件(包括系统存储器628和处理器616)的总线618。
总线618表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronic Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnection,PCI)总线。
机器人612包括多种计算机系统可读介质。这些介质可以是任何能够被机器人612访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器628可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)630和/或高速缓存存储器632。机器人612可以包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统634可以设置为读写不可移动的、非易失性磁介质(图6未显示,通常称为“硬盘驱动器”)。尽管在图6中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM),数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线618相连。存储器628可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本公开一个或多个实施例的功能。
具有一组(至少一个)程序模块642的程序/实用工具640,可以存储在例如存储器628中,这样的程序模块642包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块642通常执行本公开所描述的实施例中的功能和/或方法。
机器人612也可以与一个或多个外部设备614(例如键盘、指向设备、显示器624等)通信,还可与一个或者多个使得用户能与机器人612交互的设备通 信,和/或与使得该机器人612能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(Input/Output,I/O)接口622进行。并且,机器人612还可以通过网络适配器620与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器620通过总线618与机器人612的其它模块通信。应当明白,尽管在图6中未示出,可以结合机器人612使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Drives,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理器616通过运行存储在系统存储器628中的程序,从而执行一种或多种功能应用以及数据处理,例如实现本公开实施例中所提供的对接货物容器的方法,该方法包括:
在行驶至目标货物容器的对接区域的情况下,依据所述目标货物容器上的目标标志物的位置,调整所述机器人的行驶方向;
按照调整后的行驶方向驶入所述目标货物容器的底部,并在所述目标货物容器的底部与所述目标货物容器对接。
本公开实施例中还提供了一种计算机可读存储介质,该存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例所中提供的对接货物容器的方法,该方法包括:
在行驶至目标货物容器的对接区域的情况下,依据所述目标货物容器上的目标标志物的位置,调整所述机器人的行驶方向;
按照调整后的行驶方向驶入所述目标货物容器的底部,并在所述目标货物容器的底部与所述目标货物容器对接。
本公开实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、只读存储器(Read-Only Memory,ROM)、可擦式可编程只 读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括LAN或WAN—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (12)

  1. 一种对接货物容器的方法,由机器人执行,包括:
    在行驶至目标货物容器的对接区域的情况下,依据所述目标货物容器上的目标标志物的位置确定参考位置,并根据所述参考位置调整所述机器人的行驶方向;
    按照调整后的行驶方向驶入所述目标货物容器的底部及行使至与所述目标货物容器的对接位置,并在所述目标货物容器的底部的所述对接位置与所述目标货物容器对接。
  2. 根据权利要求1所述的方法,其中,依据所述目标货物容器上的目标标志物的位置确定参考位置,并根据所述参考位置调整所述机器人的行驶方向,包括:
    识别所述目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置;
    依据所述第一类目标标志物的位置确定第一参考位置和依据所述第二类目标标志物的位置确定第二参考位置,其中,所述第一参考位置用于引导机器人从所述目标货物容器的两个支脚中间穿过并驶入所述目标货物容器的底部,所述第二参考位置用于引导机器人在所述目标货物容器的底部行驶至与所述目标货物容器的对接位置;
    依据所述第一参考位置和所述第二参考位置,调整所述机器人的行驶方向。
  3. 根据权利要求2所述的方法,其中,识别目标货物容器上的第一类目标标志物的位置和第二类目标标志物的位置,包括:
    启动在所述机器人上设置的至少一个目标标志物识别模块;
    通过所述至少一个目标标志物识别模块识别所述目标货物容器上的所述第一类目标标志物的位置和所述第二类目标标志物的位置。
  4. 根据权利要求2所述的方法,其中,依据所述第一类目标标志物的位置确定第一参考位置,包括下述之一:
    依据所述第一类目标标志物中的所述第一目标标志物的位置与所述第二目标标志物的位置,计算所述第一目标标志物与所述第二目标标志物之间的中心位置,并作为第一参考位置;其中,所述第一目标标志物和所述第二目标标志 物分别位于所述目标货物容器的底部的其中两个不同支脚处;
    确定所述第一类目标标志物中的第五目标标志物的位置,并作为第一参考位置;其中,所述第五目标标志物位于所述目标货物容器上靠近所述机器人一侧的预定位置处。
  5. 根据权利要求4所述的方法,其中,依据所述第二类目标标志物的位置确定第二参考位置,包括下述之一:
    依据所述第二类目标标志物中的第三目标标志物的位置与第四目标标志物的位置,计算所述第三目标标志物与所述第四目标标志物之间的中心位置,并作为第二参考位置;其中,所述第三目标标志物和所述第四目标标志物分别位于所述目标货物容器的底部的另外两个不同支脚处;
    确定所述第二类目标标志物中的第六目标标志物的位置,作为第二参考位置;其中,所述第六目标标志物位于所述目标货物容器的底部。
  6. 根据权利要求1所述的方法,还包括:
    启动在所述机器人上设置的目标标记识别模块;
    在所述目标货物容器的底部,按照所述调整后的行驶方向继续行驶时,通过所述目标标记识别模块识别位于所述目标货物容器底部的目标标记;
    响应于识别到位于所述目标货物容器的底部的目标标记的识别结果,向所述目标标记对应的目标位置处行驶,并在到达所述目标标记对应的目标位置处后停止行驶,所述目标位置为与所述目标货物容器的对接位置。
  7. 一种机器人,包括:
    标志物识别模块与标签识别模块;
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的方法。
  8. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的方法。
  9. 一种机器人,包括:
    第一传感器、存储器以及处理器,所述处理器分别与所述第一传感器和所述存储器电连接;
    所述第一传感器配置为,在所述机器人驶入目标货物容器底部的过程中,识别所述目标货物容器的容器支脚;所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如下操作:
    根据所述第一传感器的识别结果,计算所述目标货物容器的容器支脚的位置;
    至少根据所述目标货物容器的容器支脚的位置确定所述机器人与所述目标货物容器的对接路线以及对接位置;
    控制所述机器人按照所述对接路线驶入所述目标货物容器的底部并行驶至所述对接位置,所述机器人在所述对接位置与所述目标货物容器对接。
  10. 根据权利要求9所述的机器人,还包括:第二传感器,所述处理器与所述第二传感器电连接;
    所述第二传感器配置为,在所述机器人驶入目标货物容器底部后,识别所述目标货物容器底部的目标标记;
    所述处理器配置为,根据所述目标货物容器的容器支脚的位置以及所述目标货物容器底部的目标标记确定所述目标货物容器的对接位置。
  11. 根据权利要求9或10所述的机器人,其中,所述第一传感器是配置为,识别所述目标货物容器的至少两个容器支脚。
  12. 根据权利要求9-11中任意一项所述的机器人,其中,在所述目标货物容器的至少一个容器支脚上包括可识别容器标记或者可识别标签。
PCT/CN2019/095354 2018-10-18 2019-07-10 对接货物容器的方法、装置、机器人和存储介质 WO2020078052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020522002A JP6829793B2 (ja) 2018-10-18 2019-07-10 荷物容器の突き合わせ方法、突き合わせ装置、ロボット及び記憶媒体
US16/870,579 US11300971B2 (en) 2018-10-18 2020-05-08 Cargo container butting method and apparatus, robot, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811214271.1 2018-10-18
CN201811214271.1A CN109018810B (zh) 2018-10-18 2018-10-18 对接货物容器的方法、装置、机器人和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/870,579 Continuation US11300971B2 (en) 2018-10-18 2020-05-08 Cargo container butting method and apparatus, robot, and storage medium

Publications (1)

Publication Number Publication Date
WO2020078052A1 true WO2020078052A1 (zh) 2020-04-23

Family

ID=64613282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095354 WO2020078052A1 (zh) 2018-10-18 2019-07-10 对接货物容器的方法、装置、机器人和存储介质

Country Status (4)

Country Link
US (1) US11300971B2 (zh)
JP (1) JP6829793B2 (zh)
CN (1) CN109018810B (zh)
WO (1) WO2020078052A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508144A (zh) * 2020-04-24 2020-08-07 广州磐众智能科技有限公司 一种调节货道宽度的自动扫描重设方法
CN112208676A (zh) * 2020-09-10 2021-01-12 北京旷视机器人技术有限公司 置货容器的调整方法、装置和搬运设备
JP6909944B1 (ja) * 2021-03-11 2021-07-28 株式会社竹中土木 資材運搬取付装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771175B (zh) * 2018-02-13 2024-01-19 精工爱普生株式会社 搬运车的行驶控制系统、以及搬运车的行驶控制方法
CN109018810B (zh) * 2018-10-18 2020-02-21 北京极智嘉科技有限公司 对接货物容器的方法、装置、机器人和存储介质
CN109571408B (zh) * 2018-12-26 2020-03-10 北京极智嘉科技有限公司 一种机器人、库存容器的角度校准方法及存储介质
CN109573439B (zh) * 2018-12-27 2021-07-09 北京旷视机器人技术有限公司 搬运机器人、货架、仓储系统以及搬运货架的方法
JP2020107322A (ja) * 2018-12-27 2020-07-09 北京曠視機器人技術有限公司Beijing Kuangshi Robotics Technology Co., Ltd. 運搬ロボット、商品棚、倉庫保管システム及び商品棚運搬方法
WO2020179386A1 (ja) * 2019-03-04 2020-09-10 パナソニックIpマネジメント株式会社 移動体制御方法、移動体制御システム、及びプログラム
CN111776581A (zh) * 2019-08-29 2020-10-16 北京京东乾石科技有限公司 物品拣选系统及拣选方法
CN110850868A (zh) * 2019-10-12 2020-02-28 浙江大华机器人技术有限公司 地牛agv对接的纠偏方法、装置、设备以及存储介质
CN111360831B (zh) * 2020-03-18 2021-11-02 南华大学 核退役机器人末端工具远程换装方法
CN113264303A (zh) * 2020-06-12 2021-08-17 深圳市海柔创新科技有限公司 取货控制的方法、系统、搬运机器人及存储介质
CN111846724B (zh) * 2020-07-24 2022-02-01 北京极智嘉科技股份有限公司 一种货物搬运系统及货物搬运方法
CN112830138B (zh) * 2020-12-25 2023-05-05 北京旷视机器人技术有限公司 处理异常的方法、装置和机器人
CN113772281A (zh) * 2021-08-23 2021-12-10 河北惠行智能设备有限公司 集装箱及辨识集装箱堆放方向的方法
CN114147707B (zh) * 2021-11-25 2024-04-26 上海思岚科技有限公司 一种基于视觉识别信息的机器人对接方法与设备
CN118560907A (zh) * 2022-02-09 2024-08-30 北京三快在线科技有限公司 一种配送系统、智能配送柜、配送机器人以及智能配送柜与配送机器人接驳传输货品的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130120576A1 (en) * 2008-10-07 2013-05-16 Industrial Technology Research Institute Image-based vehicle maneuvering assistant method and system
EP2704882A2 (en) * 2011-05-04 2014-03-12 Harvest Automation, Inc. Adaptable container handling robot with boundary sensing subsystem
CN105593143A (zh) * 2013-10-11 2016-05-18 株式会社日立制作所 搬运机器人系统
CN106379684A (zh) * 2016-11-11 2017-02-08 杭州南江机器人股份有限公司 一种潜入式agv对接方法及系统以及潜入式agv
CN107636547A (zh) * 2015-02-05 2018-01-26 格雷奥朗佩特有限公司 用于装卸货物的设备和方法
US20180043533A1 (en) * 2016-03-25 2018-02-15 Locus Robotics Corporation Robot queuing in order fulfillment operations
CN109018810A (zh) * 2018-10-18 2018-12-18 北京极智嘉科技有限公司 对接货物容器的方法、装置、机器人和存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078035A (zh) * 1973-11-09 1975-06-25
JPS6078035U (ja) 1983-11-02 1985-05-31 富士ゼロックス株式会社 複写機における原稿押え装置
US4684247A (en) * 1985-10-18 1987-08-04 Calspan Corporation Target member for use in a positioning system
JP4438736B2 (ja) * 2005-11-04 2010-03-24 村田機械株式会社 搬送装置
US9436184B2 (en) * 2006-06-09 2016-09-06 Amazon Technologies, Inc. Method and system for transporting inventory items
CN202864200U (zh) * 2012-11-05 2013-04-10 长沙丰达智能科技有限公司 一种坐标位置自适应的智能仓储机器人
JP2014118216A (ja) * 2012-12-13 2014-06-30 Toyota Industries Corp 位置検出装置
DE102013111760B3 (de) * 2013-10-25 2015-04-09 Harting Electric Gmbh & Co. Kg Steckverbinder
CN103587869B (zh) * 2013-11-05 2015-07-08 无锡普智联科高新技术有限公司 基于总线方式的多机器人物流仓储系统及其控制方法
US9280153B1 (en) * 2014-09-19 2016-03-08 Amazon Technologies, Inc. Inventory holder load detection and/or stabilization
CN107848706B (zh) * 2015-08-03 2019-10-18 株式会社日立制作所 架子搬运系统、架子搬运车、以及架子搬运方法
WO2017090108A1 (ja) 2015-11-25 2017-06-01 株式会社日立製作所 棚配置システム、搬送ロボット及び棚配置方法
CN106005866B (zh) * 2016-07-19 2018-08-24 青岛海通机器人系统有限公司 一种基于移动机器人的智能仓储系统
US10012992B2 (en) * 2016-09-15 2018-07-03 Amazon Technologies, Inc. Integrated obstacle detection and payload centering sensor system
US10346797B2 (en) * 2016-09-26 2019-07-09 Cybernet Systems, Inc. Path and load localization and operations supporting automated warehousing using robotic forklifts or other material handling vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130120576A1 (en) * 2008-10-07 2013-05-16 Industrial Technology Research Institute Image-based vehicle maneuvering assistant method and system
EP2704882A2 (en) * 2011-05-04 2014-03-12 Harvest Automation, Inc. Adaptable container handling robot with boundary sensing subsystem
CN105593143A (zh) * 2013-10-11 2016-05-18 株式会社日立制作所 搬运机器人系统
CN107636547A (zh) * 2015-02-05 2018-01-26 格雷奥朗佩特有限公司 用于装卸货物的设备和方法
US20180043533A1 (en) * 2016-03-25 2018-02-15 Locus Robotics Corporation Robot queuing in order fulfillment operations
CN106379684A (zh) * 2016-11-11 2017-02-08 杭州南江机器人股份有限公司 一种潜入式agv对接方法及系统以及潜入式agv
CN109018810A (zh) * 2018-10-18 2018-12-18 北京极智嘉科技有限公司 对接货物容器的方法、装置、机器人和存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508144A (zh) * 2020-04-24 2020-08-07 广州磐众智能科技有限公司 一种调节货道宽度的自动扫描重设方法
CN111508144B (zh) * 2020-04-24 2022-02-18 广州磐众智能科技有限公司 一种调节货道宽度的自动扫描重设方法
CN112208676A (zh) * 2020-09-10 2021-01-12 北京旷视机器人技术有限公司 置货容器的调整方法、装置和搬运设备
JP6909944B1 (ja) * 2021-03-11 2021-07-28 株式会社竹中土木 資材運搬取付装置
JP2022139234A (ja) * 2021-03-11 2022-09-26 株式会社竹中土木 資材運搬取付装置

Also Published As

Publication number Publication date
CN109018810A (zh) 2018-12-18
CN109018810B (zh) 2020-02-21
JP6829793B2 (ja) 2021-02-10
US11300971B2 (en) 2022-04-12
JP2021502937A (ja) 2021-02-04
US20200348683A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2020078052A1 (zh) 对接货物容器的方法、装置、机器人和存储介质
US11413753B2 (en) Robotic system control method and controller
JP6247796B2 (ja) 棚配置システム、搬送ロボット及び棚配置方法
TWI637455B (zh) 用於片盒夾持的機械手及自動片盒搬運裝置
JP2018020423A (ja) ロボットシステム及びピッキング方法
EP3892423B1 (en) Transfer robot-based control method and device
CN106379684A (zh) 一种潜入式agv对接方法及系统以及潜入式agv
US20220250842A1 (en) Automated carrying system
CN111694358B (zh) 运送机器人的控制方法、装置、运送机器人和存储介质
US11958687B2 (en) High-position robot, method for calibrating return of storage container, and storage medium
US11117260B2 (en) Method for controlling a plurality of mobile driverless manipulator systems
CN109571408B (zh) 一种机器人、库存容器的角度校准方法及存储介质
CN110825111A (zh) 适用于高架仓库货物盘点的无人机控制方法、货物盘点方法、装置、服务器及存储介质
CN113379011A (zh) 位姿校正方法、装置、设备和存储介质
CN114578821A (zh) 移动机器人的脱困方法、移动机器人及存储介质
US20240231390A9 (en) Automated Recovery Assistance for Incapacitated Mobile Robots
JP7500484B2 (ja) 無人搬送車、無人搬送システム及び搬送プログラム
WO2021049089A1 (ja) 管理システム及び管理システムの制御方法
CN114434453B (zh) 一种机器人乘梯方法、系统、机器人和存储介质
US20230297121A1 (en) Moving body control system, control apparatus, and moving body control method
CN115072235A (zh) 取货方法、自动导航车及智能仓储系统
US20230001576A1 (en) Adaptive mobile manipulation apparatus and method
CN118081762A (zh) 机器人控制方法、系统、装置、电子设备及存储介质
CN111376251A (zh) 一种物流机器人
US20200379477A1 (en) Method, System and Apparatus for Mitigating Data Capture Light Leakage

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020522002

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873549

Country of ref document: EP

Kind code of ref document: A1