JP6247796B2 - 棚配置システム、搬送ロボット及び棚配置方法 - Google Patents

棚配置システム、搬送ロボット及び棚配置方法 Download PDF

Info

Publication number
JP6247796B2
JP6247796B2 JP2017514932A JP2017514932A JP6247796B2 JP 6247796 B2 JP6247796 B2 JP 6247796B2 JP 2017514932 A JP2017514932 A JP 2017514932A JP 2017514932 A JP2017514932 A JP 2017514932A JP 6247796 B2 JP6247796 B2 JP 6247796B2
Authority
JP
Japan
Prior art keywords
shelf
data
transfer robot
transfer
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017514932A
Other languages
English (en)
Other versions
JPWO2017090108A1 (ja
Inventor
紅山 史子
史子 紅山
渡邊 高志
高志 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2017090108A1 publication Critical patent/JPWO2017090108A1/ja
Application granted granted Critical
Publication of JP6247796B2 publication Critical patent/JP6247796B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Warehouses Or Storage Devices (AREA)

Description

本発明は、複数台の搬送ロボットを用いて複数の棚を配置する棚配置システム、搬送ロボット及び棚配置方法に関する。
近年における通販市場の拡大と顧客ニーズの多様化に伴い、物流倉庫で扱う荷物の小口化が進んでいる。これに伴い、物流サービスは多様化・複雑化しており、集品などにかかる作業コストが増加している。一方で労働人口は減少しており、作業の自動化が求められている。作業を自動化する手段の一つとして、荷物(棚に保管する又は棚に保管されている物品)をある地点から別の地点に移動する搬送作業を担う無人搬送車又はAGV(Automatic Guided Vehicle)と呼ばれるものがあり、既に倉庫、工場、港湾などの施設で導入されている。
無人搬送車が、正確・安全・高速に荷物を搬送するためには、棚が整列配置されていること、及び、搬送車が自車位置を正しく認識しながら移動できることの2つが必要である。自車位置を認識する方法の一つとして、搬送車に搭載したレーザ距離センサで周囲の幾何形状を認識し、地図との照合処理により自車位置を把握するものがある。これは、周囲に参考となる幾何形状が存在することが前提となるが、例えば棚の並ぶ倉庫内の走行において、参考となる幾何形状が配置される棚足のみであった場合、自車位置の認識が困難となる場合がある。搬送車に搭載するような小型の距離センサを用いた場合、移動しながら少し離れた場所の棚足を正確に捉えることが出来ないからである。そもそも計測データには誤差が含まれる上に、面積が小さい棚足にレーザ光が必ず到達するとは限らないからである。
無人搬送車に関する先行技術を記載する文献には、例えば特許文献1及び2がある。特許文献1には、「先に取合位置9に走行停止させる無人搬送車AGV1の車体の側面に反射板20を設ける。あとから取合位置9に走行停止させる無人搬送車AGV2の側面に反射板20を検出する光電センサからなる第2停止用センサ16を設ける。あとから到着する無人搬送車AGV2は、先に停止済の無人搬送車AGV1の反射板20を検出して走行停止する。」(要約書参照)ことが記載されている。
また、特許文献2には、「搬送車3は、搬送車本体3aと、搬送車本体3aに設けられる測距センサ50と、地図データDB42と、近似線算出部47と、位置算出部46と、を備えている。搬送車本体3aは、第1エリアと、前記第1エリア以外の第2エリアと、を含む経路を走行する。近似線算出部47は、第1エリアAでは、測距センサ50が測定した複数の測定データのうち所定の閾値以上の光の強度を有する測定データの集合に基づいて近似線を算出し、第2エリアBでは、複数の測定データの集合に基づいて近似線を算出する。位置算出部46は、近似線と地図データとを照合することで、搬送車本体3aの位置を算出する。」(要約書参照)ことが記載されている。
特開2005−85116公報 特開2013−161399公報
要するに、特許文献1は、平行に走行する2台の無人搬送車のうち先に停車した無人搬送車に取り付けられている反射板を基準に、後続する無人搬送車の停止位置を決定する技術を記載し、特許文献2は、測定データの集合に基づいて自車の位置を算出する技術を記載するものであり、無人搬送車を用いて複数の棚を整列配置することは想定されていない。そもそも、倉庫内を移動する無人搬送車に関する既存のシステムでは、棚は設置対象ではなく基準位置を与える存在である(棚は基準位置として設置済みである)。仮に、特許文献1及び2に記載の技術を棚の搬送に応用したとしても、複数の棚(又は複数の無人搬送車)の間の角度を所定の角度に調整する仕組みが存在しないため、複数の棚を整列設置することはできない。
本発明は、棚を設置する空間に位置や向きの推定に必要な幾何形状が乏しい場合でも、壁面と所定の角度を保つように棚を自動的に整列して配置できる技術を提供する。
上記課題を解決するために、本発明は、例えば特許請求の範囲に記載の構成を採用する。本明細書は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「周囲形状を測定するセンサと、地図データを記憶する記憶部とを有し、棚を搬送する少なくとも2台の搬送ロボットと、前記搬送ロボットの動作を規定する搬送データを送信する管理端末とを有し、前記搬送ロボットは、前記搬送データで指定された位置に移動した後、前記搬送データで指定された方向を前記センサで測定し、壁面に対する角度が調整されている他の搬送ロボットの幾何形状に基づいて前記棚の位置及び角度を調整する棚配置システム」である。
本発明によれば、棚を設置する空間に位置や向きの推定に必要な幾何形状が乏しい場合でも、壁面と所定の角度を保つように棚を自動的に整列して配置することができる。前述した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
実施例1における棚配置システムの概念構成を示す図。 実施例1における棚の配置イメージを説明する図。 本実施例における搬送ロボットと管理端末の機能ブロック図。 管理端末において実行される棚配置プランニング動作を説明するフローチャート。 地図データ、棚レイアウトデータ、棚配置順データのイメージを説明する図。 棚取得先座標と棚設置データのデータ例を示す図。 搬送ロボットの基本動作を示すフローチャート。 1つ目の棚を搬送する搬送ロボットの動作例を説明する図。 2つ目の棚を搬送する搬送ロボットの動作例を説明する図。 3つ目の棚を搬送する搬送ロボットの動作例を説明する図。 形状参照用の搬送ロボットが無い場合と形状参照用の搬送ロボットが有る場合のセンサデータの違いを示す図。 一列目の最後の棚を設置した直後の搬送ロボットの動作を示す図。 二列目の先頭に棚を搬送する際の搬送ロボットの動作を示す図。 棚と搬送ロボットとの位置角度の調整例を示す図。 棚と搬送ロボットとの位置角度の他の調整例を示す図。 棚取得位置における現在座標値の補正手法を説明する図。 12台の搬送ロボット200を用いる場合の棚設置データ例を示す図。 12台の搬送ロボット200を用いる場合の棚配置例を示す図。 既設の棚を再整列する際の搬送ロボットの動作を示すフローチャート。 再整列時に使用する搬送データの一例を示す図。
以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の態様は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。
(1)実施例1
本実施例では、物流倉庫の利用に先立って(倉庫内に何も設置されていない状態で)、複数の搬送ロボットを用いて壁面に平行になるように棚を自動的に整列配置する棚配置システムについて説明する。
(1−1)システムの全体構成
図1に、本実施例で想定する棚配置システムの概念構成を示す。棚配置システムは、2台以上の棚100と、2台以上の搬送ロボット200(200a、200b)と、管理端末300とで構成される。本実施例における棚100は、基本的に4本脚であり、棚足と棚足の間には搬送ロボット200が自由に移動できるだけの空間が設けられている。すなわち、最下段の棚板と床面との間には棚足によって、搬送ロボット200が自由に移動できるだけの空間が設けられている。
搬送ロボット200は、いわゆる無人搬送車の一種である。本実施例の搬送ロボット200は、概略直方体形状の装置本体と、その前進方向前面に取り付けられたレーザ距離センサ210と、装置本体の上面に取り付けられた荷役プレート220と、左右両側面に取り付けられた車輪230とで構成される。なお、車輪230の取付方法には、装置本体の左右に一対の車輪を取り付ける方法、装置本体の左右に二対の車輪を取り付ける方法、装置本体の左右に一対の車輪と一つの補助輪を取り付ける方法等、様々な取付方法が考えられる。
レーザ距離センサ210は、レーザ光を照射するレーザ光源(例えばレーザダイオード、LED(light emitting diode))と、測定対象物からのレーザ光を受光する受光素子と、受光した光に基づいて測定対象物の方向と距離を算出する演算部とで構成される。なお、演算部は他のデバイスの側に配置される場合もある。本実施例の場合、レーザ距離センサ210は、搬送ロボット200の進行方向に面した側面(前面)に1つだけ搭載されている。もっとも、レーザ距離センサ210は、1台の搬送ロボット200に対して2つ以上取り付けられていても良い。同一面に2つ以上のレーザ距離センサ210を設置する場合、上下に設置すれば異なる高さにおける距離を計測することが可能となり、左右に設置すれば一度に広範囲の距離を計測することができる。また、レーザ距離センサ210は、搬送ロボット200の複数の側面に取り付けられていても良い。複数の側面にレーザ距離センサ210が取り付けられている場合、方向転換しなくても搬送ロボット200に対して複数の側面からの距離を一度に測定することができる。なお、後述するように、本実施例におけるレーザ距離センサ210は、所定角範囲(例えば180°)内でレーザ光を走査できる。
荷役プレート220は、装置本体に対して上下に駆動される機構の総称であり、プレート本体とプレート本体を上下に駆動する第1の駆動部と、プレート本体を旋回駆動する第2の駆動部を有している。このような機構は既知である。荷役プレート220は、棚100の下に潜り込んだ装置本体に対して棚100の持ち上げる動作や持ち上げた棚100を下ろす動作に使用される。第1の駆動部の存在により、搬送ロボット200は、棚100を装置本体に対して持ち上げたまま移動することができる。また、第2の駆動部は、プレート本体を装置本体に対して旋回させることができる。この機能により、搬送ロボット200は、棚100を持ち上げた状態で装置本体に対して棚100の向きを変更又は調整することができる。この機能は、棚100を壁などの基準面に対して所定の角度に調整するのに用いることができる。
装置本体の左右側面の車輪230が同一方向に回転することで搬送ロボット200は直進し、逆方向に回転することで搬送ロボット200は旋回する。棚100を持ち上げた状態で搬送ロボット200を旋回させれば、棚100の移動方向の変更や棚100の角度調整を行うことができる。なお、荷役プレート220を装置本体に対して旋回させながら、その旋回方向とは逆向きに搬送ロボット200を旋回させると、棚100は静止状態のまま搬送ロボット200の向きだけを変更させることができる。
管理端末300は、複数の搬送ロボット200のそれぞれとの間で、無線ネットワークを介してデータを送受信する端末である。管理端末300は、棚の配置レイアウトに従って、個々の搬送ロボット200の動作(移動や旋回を含む。)、テーブル本体の上下方向への移動と回転)を指示する。
(1−2)棚を配置する動作イメージ
まず、図2に基づいて、本実施例における棚配置のイメージを説明する。図2は、2台の搬送ロボット200a及び200bを用いる棚搬送システムについて表している。本実施例における棚の配列の特徴は、一方の搬送ロボット200aの側面を壁の代わりに使用する点である。
まず、第1の搬送ロボット200aは、1つ目の棚100を持ち上げて保持したまま走行し、レーザ距離センサ210によって2つの壁面を計測可能な第1の棚設置場所まで移動する。第1の棚設置場所に達した第1の搬送ロボット200aは、レーザ距離センサ210を用いて取得したセンサデータ(後述するセンサデータ404)と、棚100を配置する空間の地図(後述する地図データ400)とを照合し、自車が正面の壁面と右側の壁面に対して所定の角度となるように自車位置及び姿勢を調整し、調整が終了した時点で停止し、1つ目の棚100を床面に降ろす。本実施例の場合、第1の搬送ロボット200aは、第2の搬送ロボット200bに対する基準位置を与えるため、その場に停止したままである。
次のステップにおいて、第2の搬送ロボット200bは、2つ目の棚100を持ち上げて保持したまま走行し、第1の搬送ロボット200aの側面を計測可能な第2の棚設置場所まで移動する。第2の棚設置場所に達した第2の搬送ロボット200bは、レーザ距離センサ210で取得したセンサデータ(後述するセンサデータ404)と、第1の搬送ロボット200aの側面形状が追記された空間の地図(後述する地図データ400)とを照合し、自車を自車の正面に停止している第1の搬送ロボット200aの側面形状と右側の壁面に対して所定の角度となるように自車位置及び姿勢を調整し、調整が完了すると、その場に2つ目の棚100を降ろす。2つ目の棚100の設置が終わると、第1の搬送ロボット200aは、第1の棚設置場所から3つ目の棚100の設置位置に移動する。今度は、第2の搬送ロボット200bが第1の搬送ロボット200aに対する基準位置を与える。このため、第2の搬送ロボット200bは、第2の棚設置場所に留まる。
更に次のステップでは、第1の搬送ロボット200aは3つ目の棚100を持ち上げて保持したまま、第2の搬送ロボット200bを計測可能な第3の棚設置場所まで移動する。第3の棚設置場所に達した第1の搬送ロボット200aは、レーザ距離センサ210で取得したセンサデータ(後述するセンサデータ404)と、第2の搬送ロボット200bの側面形状が追記された空間の地図(後述する地図データ400)とを照合し、自車を自車の正面に停止している第2の搬送ロボット200bの側面形状と右側の壁面に対して所定の角度となるように自車位置及び姿勢を調整し、調整が終了した時点で停止し、その場に3つ目の棚100を降ろす。
第1及び第2の搬送ロボット200a及び200bは、基本的にこれらの動作を交互に繰り返すことにより、壁面と所定の角度を保つように複数の棚100を整列配置する。
(1−3)搬送ロボット及び管理端末の機能ブロック構成
ここでは、図3を使用し、本実施例に係る搬送ロボット200と管理端末300の機能ブロック構成を説明する。
(1−3−1)管理端末の機能ブロック
管理端末300は、オペレータが棚配置をプランニングする際に使用されると共に、作成された棚のレイアウトに従って搬送ロボット200の搬送動作を管理する端末である。本実施例の管理端末300は、コンピュータ(CPU、RAM、ROM、ハードディスク)を基本構成とし、後述する機能をプログラムの実行を通じて提供する。棚配置プランニング部351は、倉庫の地図データ400と棚レイアウトデータ401とに基づいて、棚設置データ420を作成する。棚設置データ420は、(1)棚配置の順番、(2)配置先の座標値、(3)形状参照先(棚の配置時に位置や姿勢を決定するために参照する何らかの幾何形状が存在する方角又は方向)、(4)どの搬送ロボット200が該当する作業を担うかを示す配車データ、(5)設置後の搬送ロボットの移動先を示す設置後動作を含む。
また、棚配置プランニング部351は、配列する棚100の取得場所を与える棚取得先座標データ410を設定する。本実施例の場合、棚取得先座標データ410は1つである。すなわち、棚100が搬送ロボット200によって搬送された後は、別の棚100が同じ場所に人手等によって配置されるものとする。ただし、複数の棚100の配列前の位置を特定する座標が既知の場合には、それらの座標値を棚取得先座標データ410として設定することもできる。
搬送データ作成部352は、個別の搬送ロボット200が実行すべき動作を規定する搬送データ430を作成する。搬送データ430には、搬送作業に必要となる各種のデータ、例えば(1)棚取得先座標データ410、(2)棚配置先座標データ422、(3)形状参照先データ423、(4)既に設置済みの棚の座標(既設置棚座標値データ440)、(5)形状を参照する搬送ロボットの座標(形状参照用ロボット座標値データ441)、(6)設置後動作データ425が含まれる。搬送データ430を構成するデータのほとんどは、棚設置データ420から該当する作業番号のデータを抽出することにより作成される。
既に設置済みの棚100の座標値(記設置棚座標値データ440)は、該当する作業番号より前に設置された全ての棚100の座標値であり、形状を参照する搬送ロボット200の座標(形状参照用ロボット座標値441)は、該当する作業番号より前に設置され停止している搬送ロボット200の座標値である。ここで作成した搬送データ430は、棚設置データ420のうち該当する作業番号に対応する配車データで特定される搬送ロボット200に対して送信される。
データ送受信部353は、次に作業する搬送ロボット200に対して搬送データ430を送信すると共に、作業を終えた搬送ロボット200から作業が終了した旨の通知を受信する。作業の終了通知を搬送ロボット200から受信した場合、データ送受信部353は、棚設置データ420の次の作業番号に基づいて搬送データ430を作成し、搬送指令を該当する搬送ロボット200に対して送信する。なお、搬送データ430の作成は、必ずしも作業の終了通知の受信をトリガーとして開始しなくても良い。
記憶部(例えばRAM、ハードディスク)には、(1)棚配置の対象となる倉庫の床面からのある高さの断面図(地図データ400)、(2)棚レイアウトデータ401、(3)棚取得先座標データ410、(4)棚配置プランニング部351で作成された棚設置データ420、(5)既設置棚座標値データ440、(6)形状参照用ロボット座標値データ441、(7)搬送データ430、(8)レーザ距離センサ210の測定範囲(距離センサ測定範囲403)が格納されている。
(1−3−2)搬送ロボットの機能ブロック
搬送ロボット200は、倉庫内を自走して搬送対象である棚100を自動的に設置する無人搬送車である。前述したように、搬送ロボット200を構成する装置本体の前面(前方側面)には周囲環境との距離を計測するレーザ距離センサ210が取り付けられると共に、装置本体の上面には棚100を上げ下げすると共に棚100を装置本体に対して旋回させる荷役プレート220が取り付けられている。また、装置本体の左右側面には車輪230が取り付けられている。
搬送ロボット200は、搬送対象である棚100の設置場所(棚取得先座標データ410で指定される場所)まで移動して棚100の下に潜り込み、棚100を持ち上げるとその状態で目的地まで移動し、壁面に対して所定の位置及び角度になるように棚100を設置する。搬送ロボット200の装置本体の内部には、荷役プレート220の駆動機構、車輪230の駆動機構、それらの動作を制御するコンピュータ(CPU、RAM、ROM)が備えられている。後述する機能は、コンピュータによるプログラムの実行を通じて提供される。
データ送受信部251は、インターネット600を通じて管理端末300と無線接続されており、棚搬送に関する情報である搬送データ430を管理端末300から受信すると共に、搬送の終了を管理端末300に通知する。センシング部252は、レーザ距離センサ210で計測したデータをセンサデータ404として記憶部(RAM)に格納する。荷役部253は、不図示の駆動機構を制御して、荷役プレート220の上げ下げ及び/又は旋回を制御する。地図更新部254は、記憶部に格納されている地図データ400を現在の状態に合うよう更新する。地図更新部254は、管理端末300から受信した搬送データ430(既設置棚座標値データ440、形状参照用ロボット座標値データ441)と、自車の記憶部に格納されている棚足形状データ405及び搬送ロボット形状データ406とに基づいて、記憶部に格納されている地図データ400に対して棚足と搬送ロボットの形状データを追記する。
駆動部255は、車輪230を駆動して搬送ロボット200を移動させる駆動機構である。移動制御部256は、管理端末300から指示を受信した後、搬送データ430に基づいて作成した移動経路データ431に沿って移動するように駆動部255を制御し、搬送ロボット200の倉庫内における移動を制御する。本実施例の場合、移動制御部256は、駆動部255だけでなく装置本体内の全ての動作を制御する。
記憶部(例えばRAM)には、(1)地図データ400、(2)レーザ距離センサ210が設置された高さにおける棚足の断面図である棚足形状データ405、(3)レーザ距離センサ210が設置された高さにおける搬送ロボットの断面図である搬送ロボット形状データ406、(4)管理端末300より受信した搬送データ430、(5)現在地から棚取得位置や棚設置位置までの経路を示す移動経路データ431、(6)レーザ距離センサ210を用いて測定した周囲環境との距離を表すセンサデータ404、(7)センサデータ404と地図データ400との照合処理により算出した現在位置データ432が格納される。
(1−4)管理端末における棚配置プランニング動作
図4に、本実施例の管理端末300で実行される棚配置プランニング動作を示す。この動作は、不図示のコンピュータによるプログラムの実行を通じて提供される。まず、棚配置プランニング部351は、地図データ400を読み込むと共に、読み込んだ地図データ400の上に棚レイアウトデータ401を入力する(ステップS101)。棚配置プランニング部351は、この棚レイアウトデータ401に従って搬送ロボット200に対する指示データを作成する。指示データの作成には、搬送ロボット200が搬送対象となる棚100を取りに行く場所が必要である。そこで、棚配置プランニング部351は、棚100を取得する場所の座標値である棚取得先座標データ410を設定する(ステップS102)。
次に、棚配置プランニング部351は、棚100を設置する順番を設定する(ステップS103)。更に、棚配置プランニング部351は、棚100を設置する際に参照する形状がある方向(参照先)を設定する(ステップS104)。複数の棚100を壁面に対して所定の角度を保つように設置(配列)するには、まず初めに、壁面の認識が可能な場所に1つ目の棚100を設置する必要がある。1つ目の棚100は、搬送ロボット200に搭載したレーザ距離センサ210の計測範囲に2つの壁面が入る場所に設置する。また、棚100の設置が容易となるように、奥側から手前側に(すなわち、棚100を取りに行く地点(初期位置)から離れた場所から徐々に近づく方向に棚100を設置する流れを基本とする。
(1−5)各種レイアウト
図5に、本実施例で使用する各種レイアウト、すなわち地図データ400、棚レイアウトデータ401、棚配置順データ402を示す。地図データ400は、棚100の配置対象である倉庫内の床面からのある高さにおける断面図(2次元平面図)である。その高さは、搬送ロボット200に搭載されるレーザ距離センサ210の計測面の高さと同じである。地図データ400上には、搬送ロボット200が棚100を設置する毎に管理端末300に送信する停止位置および姿勢データに基づいて棚足の形状が追加される。この追加は、後述する移動制御部256によって実行される。地図データ400は、図3に示すように、管理端末300だけでなく、全ての搬送ロボット200に格納されている。
棚レイアウトデータ401は、倉庫の地図データ400の上にどのように棚100を配置するか示す図である。棚配置順データ402は、棚レイアウトデータ401上における棚100の配置順序を示す図である。図5の棚配置順データ402には、棚100を配置する位置に棚100の配置順序を数字(例えば1、2、…24)で示しているが、棚配置順データ402は図面として保持されている必要はなく、後述する図6の棚設置データ420のようにデータ形式で保持されていても構わない。
(1−6)棚取得先座標データ及び棚設置データ
図6に、棚取得先座標データ410と棚設置データ420のデータ例を示す。棚取得先座標データ410には、棚100の供給元となる位置(初期位置)の地図データ400上での座標値が格納される。棚設置データ420には、配置作業順にそれぞれ、(1)棚番号データ421、(2)棚配置先座標データ422、(3)形状参照先データ、(4)配車データ424、(5)設置後動作データ425が格納されている。
棚番号データ421は、棚配置順データ402(図5)に記されている棚設置先の番号のことである。棚配置先座標データ422には、地図データ400上における棚設置先の座標値(x, y)が格納される。形状参照先データ423には、棚100の設置位置を最終的に決定するために確認する方向又は方角を示すデータが格納される。棚100の設置位置は、搬送ロボット200の周囲(距離センサ測定範囲データ403の範囲内)に出現する幾何形状(壁や他の搬送ロボット200の側面)を基準に確認される。
ここで、棚配置プランニング部351は、地図データ400、棚設置予定位置(棚レイアウトデータ401)、指示対象とする搬送ロボット200以外の搬送ロボット200が停止している位置、搬送ロボット200に搭載するレーザ距離センサ210の計測範囲(距離センサ測定範囲403)に基づいて方向等を定め、当該方向を特定するデータを形状参照先データ423に格納する。方向は、地図データ400(図5)を基準に定める。
例えば搬送ロボット200の前面側に壁が入る場合の方向は「F」で示し、右面側に壁が入る場合の方向は「R」で示し、左面側に壁が入る場合の方向は「L」で示す。例えば他の搬送ロボット200が棚配置順データ402(図5)の「5」の場所に停止している場合において、搬送ロボット200が6つ目の棚100を搬送するとき、形状参照先データとして「5」と「R」が格納される。
配車データ424には、棚100の搬送に使用する搬送ロボット200を特定する番号(ロボット番号)が格納される。設置後動作データ425には、棚100の設置後に、その搬送に使用した搬送ロボット200をその場に留める場合は「stay」が、別の場所に移動する場合は移動先を特定する「番号」が格納される。なお、図6では、移動先の棚の番号を設定後動作データ425に記載しているが、移動先の座標値を記載しても良い。
なお、図6の説明では、動作の実行順序を示す通し番号「No.」が重複しないように登録されているが、複数台の搬送ロボット200を同時に動かしたい場合には、同じ通し番号「No.」を有する行を複数登録してもよい。例えば「1, 2, 3, 4, …6, 6, 7,8, …23, 24」というように「6」を複数登録してもよい。
(1−7)搬送ロボットにおいて実行される動作
図7に、搬送ロボット200の基本動作を示す。以下の動作は、搬送ロボット200に搭載されたCPUがプログラムの実行を通じて実現する。具体的には、移動制御部256が実行する。まず、データ送受信部251は、管理端末300から搬送データ430を受信する(ステップS201)。搬送データ430には、棚取得先座標データ410と、棚配置先座標データ422、形状参照先データ423、設置後動作データ425と、既設置棚座標値データ440と、形状参照用ロボット座標値データ441とが含まれる。
地図更新部254は、受信した搬送データ430に含まれる既設置棚座標値データ440と、形状参照用ロボット座標値データ441と、搬送ロボット形状データ406と、棚足形状データ405とに基づいて、自身の記憶部に格納されている地図データ400に搬送ロボット200の形状データと棚足の形状データを追加する。これにより、地図更新部254は地図データ400を最新の状態に更新する(ステップS202)。この方式は、最新の地図データ400を管理端末300からリアルタイムで受信する場合に比して通信負荷を低減することができる。
次に、移動制御部256は、設置対象とする棚100を取得するために、棚取得先座標データ410で指定された座標位置まで搬送ロボット200を移動させる(ステップS203)。ここでの移動は、移動制御部256による駆動部255の制御を通じて実現される。搬送ロボット200は、棚取得先座標データ410で示される座標位置に到着すると、棚100と自車との位置/姿勢合わせを行う。具体的な方法については後述する(図13、図14、図15)。
移動制御部256は、ステップS201で受信した棚配置先座標データ422と現在位置データ432とに基づいて搬送ロボット200の移動経路を設定する(ステップS204)。設定された移動経路は移動経路データ431として自車の記憶部に格納される。移動経路の設定後、移動制御部256は、移動経路データ431に基づいて搬送ロボット200の移動を開始する。
床面に走行ガイドや位置を示すランドマークが敷設されていない場合、移動制御部256は、一般に、レーザ距離センサ210で取得したセンサデータと地図400との照合処理を通じて自己位置を認識する。しかし、環境内に目標となる物がほとんど無い場合、必要とする情報を取得できない。すなわち、移動制御部256は、前述した方法を用いることができない。このような場合、移動制御部256は、搬送ロボット200の車輪230の回転情報に基づいて移動距離を算出するオドメトリ法を用い、目的地の近傍まで移動する(ステップS205)。
左右の車輪230の回転角と回転角速度を積算することで移動距離と方向を求めるオドメトリ法は、車輪230と床面との滑りにより生じる誤差、車輪径や搬送ロボット200aの大きさ等に起因するパラメータ誤差の影響が移動距離の増加に伴って累積し、正確な場所に到達することができない。周囲に参考となる幾何形状がない場所においては、オドメトリ法による位置推定を行うが、本実施例の場合、目的地の近傍には、壁面に加えて他の搬送ロボット200の幾何形状等が存在する。そこで、移動制御部256は、目的地の近傍に到達すると、レーザ距離センサ210から出力されるセンサデータ404と地図データ400とによる位置推定処理にモードを切り替える(ステップS206)。すなわち、移動制御部256は、オドメトリ法により算出した現在地と、センサデータ404と、地図400とを入力として自己位置を補正する。
移動制御部256は、センサデータ404と地図データ400との照合により、搬送ロボット200の中心位置が目的地に一致するように移動する(ステップS207)。本実施例では、複数の棚100が壁面に対して所定の角度で整列設置することを目的とするため、移動制御部256は、ステップS201で受信した形状参照先データ423に格納されている方向に搬送ロボット200の向きを変更し、その方向で計測可能な幾何形状と地図データ400との照合により、搬送ロボット200の位置と角度を調整する(ステップS208)。ステップS208で位置と角度の調整が終了すると、荷役部253の制御の下、荷役プレート220を降下させる。これにより、搬送ロボット200によって搬送されてきた棚100は床面に降ろされる(ステップS209)。棚100を床面に降ろすと、移動制御部256は、設置後動作データ425の指示に従い、その場に停止した状態を維持するか又は次の場所に移動する。この後、移動制御部256は、データ送受信部251を通じて管理端末300に設置完了を通知する。
(1−8)搬送動作
以下では、2台の搬送ロボット200を用いて棚100を搬送する場合の動作を説明する。以下の説明では、2台の搬送ロボット200のうち一方を搬送ロボット200aとし、他方を搬送ロボット200bとする。
図8に、1つ目の棚100を搬送ロボット200aで移動する場合を示す。まず、搬送ロボット200aは、管理端末300より搬送データ430_1を受信する(ステップS201)。搬送データ430_1には、搬送ロボット200aが棚100を棚置場から取得して配置先に設置するための情報が含まれる。具体的には、棚取得先座標データ410、棚配置先座標データ422、形状参照先データ423、既設置棚座標値データ440、形状参照用ロボット座標値441、設置後動作425が含まれる。1つ目の棚100の配置時には、形状の参照に使用可能な他の搬送ロボット200は未だ倉庫内に存在しない。このため、地図データ400上で正面と右面に位置する2つの壁面が形状参照先に指定される。このため、形状参照先データ423は(F,R)である。
前述の説明によれば、この時点で、地図データ400の更新処理の実行が予定されている(ステップS202)が、1つ目の棚100の搬送を開始する時点では、既設の棚100や形状を参照すべき他の搬送ロボット200bが存在しないため、地図400の更新はしない。図中の(1)〜(5)は、倉庫内における搬送ロボット200aの動作を上面から眺めた図である。地図データ400は、倉庫の2次元平面図であり、床面から一定の高さに現れる倉庫の壁面や柱等が描かれる。棚100の設置後や搬送ロボット200が停止した場合には、その形状が、地図データ400上に追加される。
時点(1)において、第1の搬送ロボット200aは、設置する棚100が供給される位置である棚取得先座標(x0, y0)に位置している。第1の搬送ロボット200aは、この位置から移動を開始する。時点(2)において、移動制御部256は、移動開始位置である棚取得先座標(x0, y0)と棚配置先座標(x1, y1)との間で移動経路を作成する。移動経路は、例えば(x0, y0) → (x0, y1) → 反時計回り90°回転 → (x1, y1)と表される。本実施例の場合、第1の搬送ロボット200aは、オドメトリ法に基づいて自己位置を推定し、棚配置先座標(x1, y1)の近傍まで移動する。
時点(3)において(棚配置先座標(x1, y1)の近傍に到達した時点で)、移動制御部256は、オドメトリ法に基づいて自己位置を推定するモードから、距離センサ測定範囲データ403内で取得したセンサデータ404と地図データ400との照合によって自己位置と姿勢を算出するモードに切り替わる(ステップS206)。すなわち、移動制御部256は、オドメトリ法で求めた現在地の近傍において地図データ400とセンサデータ404を照合し、自己位置と姿勢を補正する。
時点(4)において、搬送ロボット200aは、棚配置先座標(x1, y1)の近傍まで移動する(ステップS207)。ここで、移動制御部256は、搬送データ430_1に含まれる形状参照先データ423のうち「F」で指定される正面に位置する壁の形状を参照し、正面の壁と平行になるように搬送ロボット200aの位置と角度を補正する(ステップS208)。
時点(5)において、移動制御部256は、搬送データ430_1に含まれる形状参照先データ423のうち「R」で指定される右壁面の形状を参照し、右面の形状と平行になるように搬送ロボット200aの位置と角度を補正する。この際、搬送ロボット200aは、本体を時計回りに90度旋回し、位置と角度を補正する(ステップS208)。ここでの旋回は、棚100の向きを変えることなく行う。具体的には、荷役プレート220を本体に対して反時計回りに旋回させながら、一対の車輪230によって本体を時計回りに旋回させることにより行う。位置と姿勢の補正が終了すると、荷役部253は荷役プレート220を降下させる。これにより、棚100が床面に下ろされる(ステップS209)。その後、移動制御部256はその場で停止したまま、データ送受信部251を通じて設置の完了を管理端末300に送信する(ステップS210)。
図9に、2つ目の棚100を搬送ロボット200bで移動する場合を示す。まず、搬送ロボット200bは、管理端末300より搬送データ430_2を受信する(ステップS201)。搬送データ430_2には、棚取得先座標データ410、棚配置先座標データ422、形状参照先データ423、既設置棚座標値データ440、形状参照用ロボット座標値データ441、設置後動作データ425が含まれる。地図更新部254は、地図データ400上の既設置棚座標(x1, y1)と形状参照用ロボット座標値(x1, y1)の位置に、搬送ロボット形状データ406と棚足形状データ405をそれぞれ追記する(ステップS202)。
図中の(1)〜(5)は、倉庫内における搬送ロボット200bの動作を上面から眺めた図である。時点(1)において、1つ目の棚100を搬送した搬送ロボット200aは、1つ目の棚100を設置した座標(x1, y1)に停止している。一方、搬送ロボット200bは、2つ目に設置する棚100が供給される位置(すなわち、棚取得先座標(x0, y0))に停止している。時点(2)と(3)の動作は、図8で説明した時点(2)と(3)の動作と同じである。
時点(4)において、搬送ロボット200bは、棚配置先座標(x1, y1)の近傍まで移動する(ステップS207)。ここで、移動制御部256は、搬送データ430_2に含まれる形状参照先データ423のうち「1」で指定される1つ目の棚100の下に停止している搬送ロボット200aの側面形状を参照し、搬送ロボット200aと平行になるように搬送ロボット200bの位置と角度を補正する(ステップS208)。すなわち、搬送ロボット200bは、図中上側方向について、壁面そのものの幾何形状に対して角度が調整された搬送ロボット200aの幾何形状に基づいて自身の位置と角度を調整する。この場合、移動制御部256は、搬送ロボット形状データ406と棚足形状データ405が追加された地図データ400とセンサデータ404との照合処理を通じて自車の位置と姿勢を認識し、角度の補正を実行する。例えば、搬送ロボット200bは、センサデータ404と搬送ロボット形状データ406を参考に、搬送ロボット200aの中心と自車の中心とが一致するように自車の位置を調整する。
時点(5)において、搬送ロボット200bは、搬送データ430_2に含まれる形状参照先データ423のうち「R」で指定される右壁面の形状を参照し、右壁面と平行になるように搬送ロボット200aの位置と角度を補正する。この場合も、搬送ロボット200bは、本体を時計回りに90度旋回し、位置と角度を補正する(ステップS208)。位置と姿勢の補正が終了すると、荷役部253は荷役プレート220を降下させる。これにより、棚100が床面に下ろされる(ステップS209)。すなわち、搬送ロボット200bは、図中右側方向について、当該方向の壁面そのものの幾何形状に対して自身の位置と角度を調整する。その後、移動制御部256はその場で停止したまま、データ送受信部251を通じて設置の完了を管理端末300に送信する(ステップS210)。
図10に、3つ目の棚100を搬送ロボット200aで移動する場合を示す。まず、搬送ロボット200bは、管理端末300より搬送データ430_1を受信する(ステップS201)。ここでの搬送データ430_1には、既設置棚座標値データ440として(x1, y1)と(x1, y2)が格納され、形状参照用ロボット座標値データ441として(x1, y2)が格納されている。そこで、地図更新部254は、地図データ400上の既設置棚座標(x1,
y1)と(x1, y1)に棚足形状データ405を追記し、形状参照用ロボット座標値(x1, y1)の位置に搬送ロボット形状データ406を追記する(ステップS202)。この場合、時点(1)において、搬送ロボット200aは、棚取得先座標(x0, y0)まで移動する。その後の時点(2)〜(5)の動作は、図8及び図9で説明した内容と同じである。すなわち、搬送ロボット200aは、図中上側方向について、壁面に対する角度が間接的に調整された搬送ロボット200bの幾何形状に基づいて自身の位置と角度を調整する。一方、搬送ロボット200aは、図中右側方向について、当該方向の壁面そのものの幾何形状を基準に自身の位置と角度を直接調整する。
(1−9)センサデータの取得例
図11に、形状参照用の搬送ロボット200が無い場合のセンサデータ404aと形状参照用の搬送ロボット200が有る場合のセンサデータ404bの違いを示す。形状参照用の搬送ロボット200が無い場合のセンサデータ404aでは、搬送ロボット200の前方方向で取得されるデータ点が離散的に出現する。このようなセンサデータ404aでは、基準線を特定できないため、搬送ロボット200の位置と姿勢を調整するのは困難である。つまり、棚100を他の棚100に対して整列させることはできない。一方、形状参照用の搬送ロボット200が有る場合のセンサデータ404bでは、搬送ロボット200の前方方向で取得されるデータ点が連続している。このデータ点列を基準線として用いることで、自車の正面に位置する他の搬送ロボット200と自車との距離及び角度の特定が可能となる。すなわち、自車の正面で停止している他の搬送ロボット200に対応するデータ点を基準に、自車の位置と姿勢を補正することが可能になる。
(1−10)一列目の最後の棚を設置した直後の搬送ロボットの動作
図12に、一列目の最後の棚100を設置した直後の搬送ロボット200の動作を示す。ここでは、一列目の最後の棚100を搬送ロボット200bが搬送するものとする。管理端末300は、一列目の最後の棚100の搬送を指示するため、搬送ロボット200bに対して搬送データ430_6を送信する。搬送データ430_6は、前述した搬送データ430_1〜430_3(図8〜図10)と同様である。このため、搬送ロボット200bは、図8〜図10の場合と同様に、不図示の時点(1)〜時点(5)の動作を順番に実行する。すなわち、搬送ロボット200bは、更新した地図データ400を用いて棚配置先座標(x1, y6)の近傍まで移動した後、搬送ロボット200aの側面形状を参照して位置と姿勢を調整し、棚100を床面に設置する。
この際、搬送ロボット200bは、図中上側方向について、当該方向の壁面に対して角度が間接的に調整された、番号「5」の位置の搬送ロボット200aの幾何形状に基づいて自身の位置と角度を調整する。一方、搬送ロボット200bは、図中右側の壁面そのものの幾何形状に基づいて自身の位置と角度を直接調整する。棚100の設置が完了すると、移動制御部256は、設置後動作データ425を参照する。この場合、設置後動作データ425には移動先を特定する番号として「0」が格納されている。番号「0」に対応する座標は、棚取得先座標(x0, y0)である。従って、時点(6)において、搬送ロボット200bは、棚取得先座標(x0, y0)への移動を開始する。搬送ロボット200bの棚取得先座標(x0, y0)への移動が完了すると、管理端末300は、搬送ロボット200aに搬送データ430_7を送信する。
なお、管理端末300による搬送データ430_7の搬送ロボット200aへの送信は、搬送ロボット200bによる棚100の設置の完了以降であれば何時でもよい。例えば搬送ロボット200bの取得先座標(x0, y0)への移動の開始と同時であってもよい。各列の最後尾に棚100を配置する場合には、棚100の床面への配置が完了した時点でその旨が搬送ロボットから管理端末300に送信される仕組みを採用することで、前述した搬送ロボット200aと搬送ロボット200bの同時移動を実現できる。
搬送ロボット200aが受信する搬送データ430_7には、棚設置に関する情報は含まれず、既設置棚座標データ440と設置後動作データ425のみが含まれる。これは、搬送ロボット200aの移動の目的が棚100の搬送ではなく、次列の棚100の搬送時に右側の壁の代わりとして使うためである。図12の時点(7)はこのときの移動動作を表している。
搬送ロボット200aは、既設置棚座標データ440に基づいて地図データ400に棚足形状データ405を追記すると、更新後の地図データ400を用いて設置後動作データ425に記載されている番号「1」の位置に移動する。番号「1」の座標は(x1, y1)である。時点(8)は、この動作を表している。この場合、搬送ロボット200aは、センサデータ404と地図データ400との照合処理を通じて自車の位置と姿勢を推定し、前方に位置する壁と右側の壁に対して所定の角度となるように補正を行って停止する。この際の形状参照先は予めプログラムされていても良いし、他の移動時と同様、形状参照先データ423として記録されていても良い。
図13に、二列目の先頭位置に棚100を搬送する場合の搬送ロボット200bの動作を示す。この場合、搬送ロボット200bには、搬送データ430_8が管理端末300から送信される。形状参照先データ423には(F, 1)が書き込まれている。このデータは、前方の壁と番号「1」に位置する搬送ロボット200aの形状を参照すべきことを表している。時点(2)〜(5)の動作は、図8〜図10に示したものと同様である。時点(5)’は、時点(5)のうち破線で囲んだ部分の拡大図に当たる。図に示すよう、搬送ロボット200bは、本体を時計回りに90度旋回し、一列目の先頭に位置する搬送ロボット200aの幾何形状を認識する。これにより、搬送ロボット200bは、搬送ロボット200aと所定の距離及び角度を保つように、自車の位置と姿勢を調整することができる。すなわち、搬送ロボット200bは、図中上側方向については、壁面そのものの幾何形状に基づいて自身の位置と角度を直接調整し、図中右側方向については、壁面に対して角度が調整された搬送ロボット200aの幾何形状に基づいて自身の位置と角度を調整する。
なお、二列目の残りの棚100は、図8〜図10と同様の手順で配置する。例えば二列目の2番目の位置に棚100を搬送する搬送ロボット200aは、図中上側方向について、壁面そのものの幾何形状に基づいて角度が調整されている搬送ロボット200bの幾何形状に基づいて自身の位置と角度を調整する。また、二列目の3番目の位置に棚100を搬送する搬送ロボット200bは、図中上側方向について、壁面に対する角度が間接的に調整されている搬送ロボット200aの幾何形状に基づいて自身の位置と角度を調整する。この際、新たに棚100を配置する搬送ロボット200は、センサデータ404と搬送ロボット形状データ406を参考に、図中上方向に停止している隣の搬送ロボット200の中心と自車の中心とが一致するように自車の位置を調整する。これにより、2台の搬送ロボット200を用いる場合でも、複数の棚100を壁に対して整列することができる。
(1−11)棚と搬送ロボットとの位置角度の調整
棚100の整列配置を実現するには、棚100の下に潜り込んで持ち上げる搬送ロボット200と棚100との位置関係が正確に把握され調整されていなければならない。
図14に、棚100と搬送ロボット200との位置角度の調整手法の一例を示す。棚100の大きさ、棚100の棚足の大きさや位置、搬送ロボット200の大きさ、搬送ロボット200とレーザ距離センサ210の相対位置が既知であると、搬送ロボット200が棚100に潜り込んだ時の搬送ロボット200の棚100に対する相対位置と角度は、レーザ距離センサ210で計測されるセンサデータ404のデータ点の分布から算出することができる。
例えば上図のように棚100の四辺と搬送ロボット200の四辺が平行でない場合、センサデータ404のデータ点の分布は扇状に広がる距離センサ測定範囲データ403の中で左右対称にならない。これに対し、下図のように棚100の四辺と搬送ロボット200の四辺が平行であり、かつ、棚100の中心と搬送ロボット200の中心が一致していれば、センサデータ404のデータ点の分布は扇状に広がる距離センサ測定範囲データ403の中で左右対称になり、かつ、棚足が距離センサ測定範囲データ403の端から特定の距離だけ内側に位置することになる。この分布関係が得られるように、搬送ロボット200は、棚100と自車との位置及び角度を調整する。データ点の分布が所定の関係を満たすことで、搬送ロボット200は、棚100をその真下の中心位置で持ち上げることができる。
図15に、棚100と搬送ロボット200との位置角度を調整するための別の方法を示す。図15の場合、棚100の棚底には2次元バーコードなどの棚底マーカ101が取り付けられている。棚底マーカ101は、棚底の中心位置に、その四辺が棚100の四辺と平行になるように正確に貼り付けられている。一方、荷役プレート220の上面中心にはカメラ240が設けられている。カメラ240の最上面は、荷役プレート220の上面よりも内側に配置されている。このため、荷役プレート220を持ち上げた際にもカメラ240は棚底に当たることはない。
図15の仕組みを採用する場合、棚100の下に潜り込んだ搬送ロボット200のカメラ240によって棚底マーカ101が撮影される。棚底マーカ101と棚100との位置関係は既知であるので、棚底マーカ101の画像から棚100に対する搬送ロボット200の相対的な位置と角度を算出することが可能となる。この値に基づき、搬送ロボット200の位置角度を微調整すれば、棚100の真下中心位置に、棚100の四辺に対して平行となるように搬送ロボット200を停止させることが可能になる。この場合、搬送ロボット220は記憶部に撮影された画像を格納し、不図示の画像処理部によって前述した算出と調整動作を実行する。
(1−12)棚取得位置における現在座標値の補正手法
図16に、棚取得位置における現在座標値の補正手法の一例を示す。前述したように、搬送ロボット200は、棚取得先座標データ410で指定された座標位置に搬送対象とする棚100を取りに戻るが、棚100は棚取得先座標値(x0, y0)に正確に設置されているとは限らない。このため、図14や図15で説明した手法を用いて、棚100と搬送ロボット200の相対位置や角度を修正した後、地図データ400上における現在の座標値を認識する必要がある。
棚取得先座標値(x0, y0)の付近に、壁面のコーナー部分などの特徴のある幾何形状が存在する場合、移動制御部256は、センサデータ404と地図データ400の壁面コーナー部分との照合処理により、現在位置を算出する。壁面のコーナーなどの特徴のある幾何形状が存在しない場合でも、例えば棚取得位置の付近の壁などに位置や形状が既知のランドマーク501又は502などが設けられている場合、移動制御部256は、当該ランドマークを取得したセンサデータ404と地図データ400とを照合し、現在位置を正確に認識する。
ランドマーク501は、長さの異なる複数の反射板を用いた例である。ランドマーク502は、奥行きや幅が異なる立体的な(凹凸のある)オブジェクトを壁面に設置した例である。自己位置推定のためのランドマークを、倉庫全体に設置するのは、設置コストや地図データ400への反映を考えると、現実的ではない。しかし、特定の場所へ使用するだけであれば、作業コストはほとんどかからない。
(1−13)3台以上の搬送ロボット200を使用する例
以上では、2台の搬送ロボット200を交互に用いて棚100を配置する方法について説明したが、搬送ロボット200の台数はこれに限らない。ここでは、搬送ロボット200を12台用いる場合について説明する。図17は、搬送ロボット200を12台用いて一列につき6つの棚100を配置する場合の棚設置データ420を表している。この例の場合、一列目の各位置に棚100の搬送を終了した後も、搬送に用いた搬送ロボット200はその場に停止したままである。このため、二列目に対応する7番目〜12番目の棚100の搬送時において、各搬送に使用する搬送ロボット200は、右側に位置する壁の代わりに一列目で停止している搬送ロボット200の形状を参照する。
例えば7番目の棚100の搬送時に使用する形状参照先データ423は(F, 1)であり、8番目の棚100の搬送時に使用する形状参照先データ423は(7, 2)である。図18は、この棚設置データ420に従って棚100が配置されていく様子を表している。図18において塗り潰しで示すように、1列ずつ交互に棚100が設置される。前述したように、基本的には後列を配置する搬送ロボット200は前列に停止している搬送ロボット200の幾何形状に基づいて位置決めと角度を調整する。なお、図18の右下の配置の場合、左端の列を配置する搬送ロボット200は左壁の形状を参照しても良い。
(1−14)実施例の効果
本実施例の棚搬送システムは、レーザ距離センサ210の計測範囲内に棚足しか見えないなど、搬送ロボット200の位置や向きを推定するための幾何形状が乏しい空間内でも、複数の棚100を整列配置することができる。具体的には、搬送ロボット200は、壁面に対して平行に停止している計測範囲内の他の搬送ロボットの幾何形状を参照し、自車の位置と角度の調整に使用する。これにより、搬送ロボット200は、2つの方向の観点から位置と角度の調整を行うことが可能となり、壁面と所定の角度を保つように棚100を自動的に整列することができる。また、この配置作業を交互に繰り返すことにより、壁面と所定の角度を保ったまま複数の棚100を整列配置することができる。なお、搬送ロボット200は、自車と棚100との間での位置と角度を調整する機能を備えるので、搬送ロボット200による棚100の配置時の位置と角度の精度を保持することができる。
(2)実施例2
前述の実施例では、倉庫内に、複数の棚100を自動的に配置する場合について説明した。ここでは、棚100の再整列方法について説明する。設置直後は整列していても、その運用中には棚100の配列が乱れることがある。例えば作業中の人がぶつかることで棚100の位置や角度がずれることもあれば、棚100の運搬を繰り返しているうちに棚100の位置や角度にずれが生じることがある。
ずれが生じたまま利用を続けると、移動中の搬送ロボット200が棚100にぶつかる可能性が高まるため、棚100が整列された状態に定期的に戻すことが望ましい。図19に、棚100を再整列する際に搬送ロボット200が実行する動作を示す。図19には、図7との対応部分に同一符号を付して示している。図19より容易に分かるように、基本的な動作は図7で示した動作と同様である。ただし、図7とは異なり、棚供給位置まで棚100を取りに行く動作(ステップS203の動作)は不要である。
移動制御部256は、ステップS204において、搬送ロボット200の現在位置から棚配置先座標までの移動経路を設定する。棚の再整列時には、搬送ロボット周囲に参考となる幾何形状が存在するためである。本実施例の場合、移動制御部256は、オドメトリによる移動制御は行わず、センサデータ404と地図データ400との照合による自律移動により目的地となる棚配置先座標まで移動する(ステップS207)。次に、移動制御部256は、ステップS207_2を実行する。ステップS207_2は、新たに加わる処理であり、移動制御部256は、棚100と搬送ロボット200との間で位置合わせを行い、棚100を持ち上げる。棚100と搬送ロボット200の位置合わせには、図14や図15で説明した方法を用いる。以降の動作は、実施例1(すなわち棚配置時)と同じである。すなわち、形状参照先データ423で指定された方向の幾何形状に対応するセンサデータ404と地図データ400を照合し、棚100の位置と角度を調整する。
図20に、管理端末300から送信される搬送データ430の例を示す。搬送データ430_11は、1つ目の搬送ロボット200aに送信する搬送データ430の例であり、搬送データ430_12は、2つ目の搬送ロボット200bに送信する搬送データ430の例である。実施例1との違いは、棚配置時の棚取得先座標データ410が空欄である点である。
本実施例によれば、棚100を特定位置に取りに戻らない以外は棚配置時と同様に、周囲の幾何形状を用いて棚100の配置位置の微調整と角度の微調整を行うことができる。これにより、運用中の棚100の再配列についても自動化することができる。
(3)他の実施例
本発明は、上述した実施例に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも実施例で説明した全ての構成要素を備える必要はない。また、各実施例に対して他の構成要素を追加することができ、各実施例の一部の構成要素を削除することができ、各実施例の一部の構成要素を他の構成要素と置換することもできる。例えば前述の実施例の場合、搬送ロボット200は、本体の左右に車輪230を取り付けた構成を有しているが、この構成に限らない。また、搬送ロボット200はレーザ距離センサ210を用いて自車の周囲の形状を測定しているが、他の種類のセンサを搭載しても良い。
また、上述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することにより(すなわちソフトウェア的に)実現しても良い。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記憶媒体に格納することができる。また、制御線や情報線は、説明上必要と考えられるものを示すものであり、製品上必要な全ての制御線や情報線を表すものでない。実際にはほとんど全ての構成が相互に接続されていると考えて良い。
100…棚、
101…棚底マーカ、
200…搬送ロボット、
210…レーザ距離センサ、
220…荷役プレート、
230…車輪、
240…カメラ、
251…データ送受信部、
252…センシング部、
253…荷役部、
254…地図更新部、
255…駆動部、
256…移動制御部、
300…管理端末、
351…棚配置プランニング部、
352…搬送データ作成部、
353…データ送受信部、
400…地図データ、
401…棚レイアウトデータ、
402…棚配置順データ、
403…距離センサ計測範囲データ、
404…センサデータ、
405…棚足形状データ、
406…搬送ロボット形状データ、
410…棚取得先座標データ、
420…棚設置データ、
421…棚設置番号データ、
422…棚配置先座標データ、
423…形状参照先データ、
424…配車データ、
425…設置後動作データ、
430…搬送データ、
431…移動経路データ、
432…現在位置データ、
440…既設置棚座標値データ、
441…形状参照用ロボット座標値データ。

Claims (15)

  1. 周囲形状を測定するセンサと、地図データを記憶する記憶部とを有し、棚を搬送する少なくとも2台の搬送ロボットと、
    前記搬送ロボットの動作を規定する搬送データを送信する管理端末と、
    を有し、
    前記搬送ロボットは、前記搬送データで指定された位置に移動した後、前記搬送データで指定された方向を前記センサで測定し、壁面に対する角度が調整されている他の搬送ロボットの幾何形状に基づいて前記棚の位置及び角度を調整する
    ことを特徴とする棚配置システム。
  2. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、前記搬送データにおいて前記棚の配置後の移動先が指定されていない場合、新たな前記搬送データを受信するまで前記棚を配置した場所に停止する
    ことを特徴とする棚配置システム。
  3. 請求項2に記載の棚配置システムにおいて、
    前記搬送ロボットは、他の前記搬送ロボットによる列の最後尾への前記棚の配置が終了した後、前記搬送データで指定された次列の搬送位置に対応する現列内の位置に移動する
    ことを特徴とする棚配置システム。
  4. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、前記棚を載置する荷役プレートを装置本体に対して旋回させることにより又は装置本体の旋回により前記棚の角度を調整する
    ことを特徴とする棚配置システム。
  5. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、前記センサで測定された棚足に相当するデータ点の分布に基づいて前記棚と自車との相対的な位置及び角度を調整する
    ことを特徴とする棚配置システム。
  6. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、装置本体の上面に設置したカメラによって前記棚の底面に配置されているマーカを撮像し、撮像された画像に基づいて前記棚と自車との相対的な位置及び角度を調整する
    ことを特徴とする棚配置システム。
  7. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、搬送用の前記棚が用意される棚取得先座標の近傍に配置されたランドマーク又は幾何形状を前記センサで測定して自車の現在位置を補正する
    ことを特徴とする棚配置システム。
  8. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、前記搬送データで指定された任意の位置に自車のみで移動し、移動先の周辺形状を測定して前記棚の位置及び角度を調整する
    ことを特徴とする棚配置システム。
  9. 請求項1に記載の棚配置システムにおいて、
    前記搬送ロボットは、
    前記棚を装置本体に対して上げ下げする荷役プレートと、
    前記センサからセンサデータを入力して自車の周囲形状を測定するセンシング部と、
    既に配置が完了した前記棚の棚足形状データと停止中の前記搬送ロボットの形状データとを前記地図データに追加し、最新の状態に更新する地図更新部と、
    前記管理端末から受信した前記搬送データに基づいて自車の動作を制御する移動制御部と
    を更に有することを特徴とする棚配置システム。
  10. 請求項1に記載の棚配置システムにおいて、
    前記管理端末は、
    現場の地図データと、棚レイアウトデータとを記憶する記憶部と、
    前記棚の設置順序と前記棚の設置時に参照する前記幾何形状の存在する方向を決定する棚配送プランニング部と、
    前記搬送データを作成する搬送データ作成部と、
    前記搬送ロボットとの間でデータを送受信するデータ送受信部と
    を有することを特徴とする棚配置システム。
  11. 棚を搬送する搬送ロボットであって、
    周囲形状を測定するセンサと、
    地図データを記憶する記憶部と、
    受信した搬送データで指定された位置に自車を移動させた後、前記搬送データで指定された方向を前記センサで測定し、壁面に対する角度が調整されている他の搬送ロボットの幾何形状に基づいて前記棚の位置及び角度を調整する移動制御部と
    有する搬送ロボット。
  12. 請求項11に記載の搬送ロボットにおいて、
    前記移動制御部は、前記棚を装置本体に対して上げ下げする荷役プレートを装置本体に対して旋回させることにより又は装置本体自体を旋回させることにより前記棚の角度を調整する
    ことを特徴とする搬送ロボット。
  13. 請求項11に記載の搬送ロボットにおいて、
    前記移動制御部は、前記センサで測定された棚足に相当するデータ点の分布に基づいて前記棚と自車との相対的な位置及び角度を調整する
    ことを特徴とする搬送ロボット。
  14. 請求項11に記載の搬送ロボットにおいて、
    前記移動制御部は、装置本体の上面に設置したカメラによって前記棚の底面に配置されているマーカを撮像し、撮像された画像に基づいて前記棚と自車との相対的な位置及び角度を調整する
    ことを特徴とする搬送ロボット。
  15. 周囲形状を測定するセンサと、地図データを記憶する記憶部とを有し、棚を搬送する少なくとも2台の搬送ロボットと、前記搬送ロボットの動作を規定する搬送データを送信する管理端末とで構成される棚配置システムにおける棚配置方法であって、
    前記搬送ロボットは、前記搬送データで指定された位置に移動した後、前記搬送データで指定された方向を前記センサで測定し、壁面に対する角度が調整されている他の搬送ロボットの幾何形状に基づいて前記棚の位置及び角度を調整する
    ことを特徴とする棚配置方法。
JP2017514932A 2015-11-25 2015-11-25 棚配置システム、搬送ロボット及び棚配置方法 Active JP6247796B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083029 WO2017090108A1 (ja) 2015-11-25 2015-11-25 棚配置システム、搬送ロボット及び棚配置方法

Publications (2)

Publication Number Publication Date
JPWO2017090108A1 JPWO2017090108A1 (ja) 2017-11-24
JP6247796B2 true JP6247796B2 (ja) 2017-12-13

Family

ID=58763751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017514932A Active JP6247796B2 (ja) 2015-11-25 2015-11-25 棚配置システム、搬送ロボット及び棚配置方法

Country Status (3)

Country Link
JP (1) JP6247796B2 (ja)
CN (1) CN107922119B (ja)
WO (1) WO2017090108A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012992B2 (en) * 2016-09-15 2018-07-03 Amazon Technologies, Inc. Integrated obstacle detection and payload centering sensor system
WO2018064841A1 (zh) * 2016-10-09 2018-04-12 浙江国自机器人技术有限公司 一种库存物品管理系统、运载装置及其与被运载物的对接方法
JP6848759B2 (ja) 2017-08-04 2021-03-24 オムロン株式会社 シミュレーション装置、制御装置、及びシミュレーションプログラム
JP2019059460A (ja) * 2017-09-22 2019-04-18 トピー工業株式会社 荷台搬送用ロボット
CN107628404B (zh) * 2017-11-07 2024-04-12 北京翰宁智能科技有限责任公司 一种物流仓储中心基于订单到人的拣选系统和方法
JP7106203B2 (ja) * 2017-11-28 2022-07-26 トピー工業株式会社 搬送ロボット
JP2019181600A (ja) * 2018-04-05 2019-10-24 花王株式会社 ピックアンドプレイス装置
CN108438699A (zh) * 2018-04-28 2018-08-24 上海托华机器人有限公司 一种自动分拣货架以及自动分拣agv
WO2019228474A1 (zh) * 2018-06-01 2019-12-05 北京极智嘉科技有限公司 应用于货到人系统的管理方法以及装置、系统、服务器和计算机存储介质
JP7443256B2 (ja) 2018-06-12 2024-03-05 アウトストア・テクノロジー・エーエス 自動倉庫グリッドと第2の場所との間で保管コンテナを輸送する配送車両、自動倉庫システム、および方法
EP3807178A1 (en) 2018-06-12 2021-04-21 Autostore Technology AS An automated storage and retrieval system and a method of transporting storage containers between an automated storage and retrieval grid and a second location
US11352016B2 (en) 2018-06-12 2022-06-07 Autostore Technology AS Storage system
CA3099882A1 (en) * 2018-06-12 2019-12-19 Autostore Technology AS A method of operating an automated storage and retrieval system
JP7199848B2 (ja) * 2018-06-27 2023-01-06 株式会社日立インダストリアルプロダクツ ピッキング支援方法
EP3835236A4 (en) 2018-08-10 2022-08-10 Beijing Geekplus Technology Co., Ltd. DENSE REGISTRATION BASED ARTICLE MOVEMENT METHOD AND DEVICE, STORAGE MEDIA AND DENSE REGISTRATION SYSTEM
CN109279249B (zh) * 2018-10-17 2020-06-05 北京极智嘉科技有限公司 一种货物密集存储方法、装置、系统及存储介质
US11747825B2 (en) * 2018-10-12 2023-09-05 Boston Dynamics, Inc. Autonomous map traversal with waypoint matching
DE102018217471A1 (de) * 2018-10-12 2020-04-16 Krones Ag Modulares Robotersystem für eine Behälterverarbeitungsanlage
CN111061260B (zh) * 2018-10-17 2023-07-21 长沙行深智能科技有限公司 基于自动驾驶粗对准及二维图像精对准的货箱自动转移控制方法
CN111056195B (zh) * 2018-10-17 2022-05-17 长沙行深智能科技有限公司 一种用于无人设备用的自动上下货柜的对接控制方法
CN109018810B (zh) 2018-10-18 2020-02-21 北京极智嘉科技有限公司 对接货物容器的方法、装置、机器人和存储介质
US11046518B2 (en) 2019-01-14 2021-06-29 Mujin, Inc. Controller and control method for robot system
JP2020123357A (ja) * 2019-01-30 2020-08-13 高知県公立大学法人 自動搬送システム
WO2020174703A1 (ja) * 2019-02-25 2020-09-03 株式会社Mujin 保管システム
US12084328B2 (en) * 2019-03-04 2024-09-10 Panasonic Intellectual Property Management Co., Ltd. Mover control method, mover control system, and program
CN109941650B (zh) * 2019-03-07 2021-02-09 上海木木聚枞机器人科技有限公司 一种机器人对位货架的方法及系统
CN110189068B (zh) * 2019-04-14 2023-11-03 炬星科技(深圳)有限公司 一种仓库快速配置方法、设备及存储介质
CN110039543B (zh) * 2019-04-14 2022-04-15 炬星科技(深圳)有限公司 仓储地图快速确定方法、设备、存储介质及机器人
CN110135439B (zh) * 2019-05-09 2021-05-04 上海木木聚枞机器人科技有限公司 一种自动识别货架的方法及装置、移动机器人
JP7365141B2 (ja) * 2019-05-28 2023-10-19 村田機械株式会社 搬送システム
CN114174766A (zh) 2019-08-06 2022-03-11 波士顿动力公司 中间路径点生成器
CN111470242B (zh) * 2020-03-09 2022-11-01 深圳市海柔创新科技有限公司 搬运机器人、搬运系统及其搬运方法
CN111784225A (zh) * 2020-05-08 2020-10-16 北京京东乾石科技有限公司 物品搬运方法和装置
JP7409264B2 (ja) * 2020-08-27 2024-01-09 トヨタ自動車株式会社 運搬システム、運搬方法、及びプログラム
JP7444014B2 (ja) * 2020-10-02 2024-03-06 トヨタ自動車株式会社 運搬システム、及び運搬方法
CN112224736A (zh) * 2020-11-11 2021-01-15 王虹雅 一种用于智能仓库的搬运机器人
CN113148533B (zh) * 2021-02-01 2022-03-29 日照职业技术学院 一种工业用的智能装卸货物的机器人装置
JP2022139054A (ja) * 2021-03-11 2022-09-26 オムロン株式会社 搬送システム
CN113110440B (zh) * 2021-04-08 2022-11-22 华晟智能自动化装备有限公司 一种潜伏式agv货架自动识别调整系统及方法
CN113478484B (zh) * 2021-07-01 2022-06-21 河南中烟工业有限责任公司 一种烟丝箱定位对中系统以及方法
JP7258969B2 (ja) * 2021-08-12 2023-04-17 ミサワホーム株式会社 住宅
JPWO2023037498A1 (ja) * 2021-09-10 2023-03-16
EP4410710A4 (en) * 2021-09-28 2024-10-02 Fuji Corp CONTROL DEVICE AND CONTROL METHOD FOR MOVING BODY
WO2024116332A1 (ja) * 2022-11-30 2024-06-06 株式会社Fuji 無人搬送車
CN115990881B (zh) * 2023-01-06 2024-01-30 苏州朗信智能科技有限公司 基于无线定位和传统定位技术的双重搬运定位控制方法
CN116750463B (zh) * 2023-08-09 2023-11-03 杭州蓝芯科技有限公司 货架调整自动拆分方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105015A (ja) * 1983-11-11 1985-06-10 Fujitsu Ltd 自走車の位置決め方式
TWI233913B (en) * 2002-06-06 2005-06-11 Murata Machinery Ltd Automated guided vehicle system
JP5377961B2 (ja) * 2005-07-19 2013-12-25 アマゾン・テクノロジーズ・インコーポレーテッド 目録品目を取り出すための方法およびシステム
US7912574B2 (en) * 2006-06-19 2011-03-22 Kiva Systems, Inc. System and method for transporting inventory items
JP2011209845A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 自律移動体、自己位置推定方法、地図情報作成システム
JP5503419B2 (ja) * 2010-06-03 2014-05-28 株式会社日立製作所 無人搬送車および走行制御方法
JP6177097B2 (ja) * 2013-11-12 2017-08-09 株式会社日立産機システム 位置検出システム
JP2015096993A (ja) * 2013-11-15 2015-05-21 株式会社日立製作所 搬送管理装置、搬送管理方法および搬送管理プログラム
CN103823468B (zh) * 2014-02-28 2018-11-27 西安理工大学 潜入式agv导航定位系统及定位方法
CN104555222A (zh) * 2014-12-25 2015-04-29 北京物资学院 一种基于潜入式agv的储分一体化系统和方法
CN204713851U (zh) * 2015-05-07 2015-10-21 华南理工大学广州学院 一种基于agv的立体仓储系统

Also Published As

Publication number Publication date
WO2017090108A1 (ja) 2017-06-01
CN107922119A (zh) 2018-04-17
CN107922119B (zh) 2020-05-29
JPWO2017090108A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6247796B2 (ja) 棚配置システム、搬送ロボット及び棚配置方法
JP6911131B2 (ja) 注文完了システム及び方法
US10265856B2 (en) Reorienting a distance sensor using an adjustable leveler
AU2017301538B2 (en) Inventory management
EP3254059B1 (en) Apparatus and method for navigation path compensation
CN110182718A (zh) 搬运机器人的控制方法及货物搬运系统
US10025886B1 (en) Methods and systems for using projected patterns to facilitate mapping of an environment
KR101644270B1 (ko) 자동 측위 및 경로보정을 이용한 무인 화물이송 시스템
KR20180127552A (ko) 공동 재고 모니터링
CN111708371B (zh) 仓库机器人导航路线预约
US11797011B2 (en) Traveling control system for transport vehicle and traveling control method for transport vehicle
TWI721628B (zh) 搬運裝置、搬運系統及貨架搬運方法
CN107450554A (zh) 一种潜伏式agv以及运行系统
KR102000825B1 (ko) 자동 화물이송 및 피킹 시스템
CN107918384A (zh) 一种库存物品管理系统、运载装置及其与被运载物的对接方法
CN110186451B (zh) 适用于仓储系统的导航系统与物料输送载具的导航方法
US20240134378A1 (en) Automated Recovery Assistance for Incapacitated Mobile Robots
JP2019530104A (ja) 在庫品管理システム、運送装置及び運送装置と運送対象物との結合方法
US9501755B1 (en) Continuous navigation for unmanned drive units
JP7409264B2 (ja) 運搬システム、運搬方法、及びプログラム
JP2022052489A (ja) 動作制御装置及び動作制御システム
WO2022168377A1 (ja) 荷物搬送システム、並びに荷物搬送システムにおいて用いられる方法およびコンピュータプログラム
WO2024219054A1 (ja) 移動制御システム、移動制御方法及び移動制御プログラム
TWI714136B (zh) 適用於倉儲系統的導航系統與物料輸送載具的導航方法
JP7514874B2 (ja) 情報処理方法、情報処理装置及びプログラム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R151 Written notification of patent or utility model registration

Ref document number: 6247796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350