WO2020078029A1 - 一种高分散二氧化硅及其制备方法 - Google Patents

一种高分散二氧化硅及其制备方法 Download PDF

Info

Publication number
WO2020078029A1
WO2020078029A1 PCT/CN2019/091979 CN2019091979W WO2020078029A1 WO 2020078029 A1 WO2020078029 A1 WO 2020078029A1 CN 2019091979 W CN2019091979 W CN 2019091979W WO 2020078029 A1 WO2020078029 A1 WO 2020078029A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
highly dispersed
reaction
solution
sodium silicate
Prior art date
Application number
PCT/CN2019/091979
Other languages
English (en)
French (fr)
Inventor
张梦梅
林英光
李丽峰
胡非
任振雪
Original Assignee
广州市飞雪材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市飞雪材料科技有限公司 filed Critical 广州市飞雪材料科技有限公司
Publication of WO2020078029A1 publication Critical patent/WO2020078029A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Definitions

  • the invention belongs to the technical field of silica preparation, and particularly relates to a highly dispersed silica and a preparation method thereof.
  • Silica is an amorphous white powder, non-toxic, odorless, and pollution-free.
  • the surface is rich in hydroxyl groups, with small particle size and uniform particle size distribution. It has a large specific surface area and high pore volume.
  • As an environmentally friendly functional material it is widely used in food , Daily necessities and medicine and liquid carrier industries.
  • the uniformity and dispersion of silica particle size distribution directly determine its performance. Therefore, the study of micron silica with uniform particle size and high dispersion is an inevitable trend of modern materials science.
  • the industrial preparation of high-dispersion silica mainly adopts gas phase method, gel method and precipitation method.
  • the silica produced by the gas-phase method has good performance, but the raw material of the gas-phase method is expensive, the equipment requirements are high, the technology is complex, and the output is low, resulting in high production costs.
  • the gel method is obtained by performing neutralization reaction between diluted water glass and inorganic acid to form a gel, which is spray-dried and then subjected to secondary processing such as air flow crushing.
  • secondary processing such as air flow crushing.
  • the precipitation method has the advantages of wide source of raw materials, low cost, small energy consumption, simple process, and easy industrialization.
  • it also has the problem of large particle size or wide distribution range. This is because the product properties are affected by many The influence of variable factors.
  • patent document CN 103112864 A discloses a preparation method of cationic nano-silica powder, which includes adding an ammonium salt and an alkyl bis-quaternary ammonium salt to an aqueous ethanol solution, stirring to dissolve, adding sodium silicate, and reacting at room temperature until no Ammonia gas is released, and the reaction is continued at 100 to 150 ° C for 1 to 2 hours to obtain nano-silica with an average particle size of 80 to 100 nm and a specific surface area of 395 to 460 m 2 / g.
  • the method uses alkyl quaternary ammonium salts (such as N-octadecylethylenediamine diammonium bromide, N-hexadecylpropylene diamine diammonium chloride) than alkyl monoquaternary ammonium salts
  • alkyl quaternary ammonium salts such as N-octadecylethylenediamine diammonium bromide, N-hexadecylpropylene diamine diammonium chloride
  • alkyl monoquaternary ammonium salts such as N-octadecylethylenediamine diammonium bromide, N-hexadecylpropylene diamine diammonium chloride
  • silica can be charged with more positive charges, which is more conducive to dispersion in water.
  • the method has high reaction temperature and long reaction time, and also releases ammonia gas, which is easy to explode and is not conducive to large-scale production.
  • the above-mentioned prior art uses cetyltrimethylammonium bromide and alkylbisquaternary ammonium salts respectively to achieve the purpose of improving product dispersibility.
  • the mechanism is that the cationic surface activity of the two is used to form micelles in solution , Adsorbed and encapsulated on the particles, thereby improving the dispersibility of the product, but due to the low solubility of cetyltrimethylammonium bromide and alkylbisquaternium in water, it needs to be dissolved with ethanol in order to Participate in the reaction better; in addition, when sodium silicate is acidified in an aqueous solution, -ONa is converted to -OH, which is a high surface area particle, and a large amount of water is adsorbed on its surface.
  • the raw material formulation of the high-dispersion silica precipitation method is complicated and the reaction conditions are harsh, which is not easy for industrial production. Therefore, it is necessary to develop an industrial production method of highly dispersed silica.
  • the present invention provides a method for preparing highly dispersed silica, which adopts ammonium chloride dropwise addition of water glass precipitation method, and then add dodecyl trimethyl ammonium chloride as Auxiliary agent, to produce high-dispersion micron-grade silica with uniform particle size, without crushing treatment, simple process, save reagents, short reaction time, low energy consumption, suitable for industrial production.
  • the preparation method of the highly dispersed silica provided by the present invention specifically includes the following steps:
  • the concentration of the ammonium chloride solution is 3.2 to 5.0 mol / L.
  • the added weight (kg) of the dodecyltrimethylammonium chloride is 5-15% of the volume (m 3 ) of the ammonium chloride solution.
  • the modulus of the sodium silicate is from 3.3 to 3.45.
  • the concentration of the sodium silicate solution is 0.8-1.5 mol / L.
  • the rotation speed of the stirring in the steps S2 and S3 is 40-50 Hz.
  • the flow rate of the mixed liquid is 6-8 m 3 / h.
  • the present invention also provides silica prepared by the above method for preparing highly dispersed silica, the silica has a particle size of 5-8 ⁇ m, a specific surface area of 230-280 m 2 / g, and an oil absorption value 140 ⁇ 190ml / 100g, easy to disperse in water and non-polar solvents (such as n-hexane), no agglomeration, can be used as a dispersant or carrier in the field of medicine and daily chemical.
  • non-polar solvents such as n-hexane
  • dodecyltrimethylammonium chloride is dissolved in water and added to the ammonium chloride solution to obtain a mixed solution. Then, at a reaction temperature of 60 to 80 ° C, the mixed solution is added dropwise to silicon at a certain flow rate Sodium solution.
  • the method of ammonium chloride dropwise addition of sodium silicate solution is used, and this dropwise addition method is also conducive to the full reaction of sodium silicate, and at the same time, dodecyl trimethyl Ammonium chloride as a surfactant will form ammonium chloride when it is bonded to the surface of the silica molecule in the reaction solution.
  • Ammonium chloride can continue to participate in the reaction; water glass is weakly alkaline. With the addition of the mixed solution, In a weakly alkaline environment, silicic acid polymerizes to form colloidal particles, and at 60-80 ° C, the Brownian motion of the silicate ions and colloidal particles intensifies, the frequency of collisions increases, the rate of silicic acid polymerization increases, the reaction time decreases, and formation Primary particles with larger particle size are helpful to reduce specific surface area and increase product dispersion; silica is negatively charged during the nucleation process, while adding dodecyltrimethylammonium chloride is cationic, the two are strongly attractive The negative charge on the surface of the silica particles is partially neutralized, and the repulsive force between the particles is reduced.
  • the association of hydrophobic chains adsorbed on the surface of the silica particles causes the nanoparticles to aggregate more easily, but the hydroxyl groups do not.
  • the dehydration condensation forms a gel and hard agglomeration occurs, but as the reaction proceeds, the added dodecyltrimethylammonium chloride will form micelles on the surface of the particles, making the silica more dispersible and the resulting
  • the steric hindrance effect can effectively regulate the growth rate of each crystal face of the crystal, induce the formation of spherical silica particles, and control the product particle size to the micron level.
  • the temperature is raised to 85 to 95 ° C, and the reaction is stirred for 25 to 35 min. Heating up to 85 ⁇ 95 °C can make the reaction more full, at the same time make the structure of silica more compact and increase the dispersibility of the product, so as to produce silica with small specific surface area, low oil absorption value and high dispersibility.
  • the preparation method of the high-dispersion silica of the present invention has easily obtained raw materials, simple formulas, easy controllable conditions, stable technology, short production cycle, low energy consumption, green and safe, can be produced in large-scale industrialization, and is beneficial to promotion.
  • the particle size of the highly dispersed silica of the present invention is 5 to 8 ⁇ m, the specific surface area is 230 to 280 m 2 / g, and the oil absorption value is 140 to 190 ml / 100 g, in water and a non-polar solvent (such as n-hexane) Easy to disperse, no agglomeration, can be used as a dispersant or carrier in the field of medicine and daily chemical industry, has a good application prospect.
  • a non-polar solvent such as n-hexane
  • Example 1 The present invention highly dispersed silica and its preparation
  • Preparation of the sodium silicate solution After solid sodium silicate with a modulus of 3.3 to 3.45 is liquefied at high temperature, water is added to prepare a sodium silicate solution with a concentration of 0.8 mol / L, and the mixture is stirred for 20 minutes;
  • the rotation speed of the stirring in the steps S2 and S3 is 40 Hz.
  • Preparation of the sodium silicate solution After solid sodium silicate with a modulus of 3.3 to 3.45 is liquefied at high temperature, water is added to prepare a sodium silicate solution with a concentration of 1.5 mol / L, and the mixture is stirred for 20 minutes;
  • the rotation speed of the stirring in step S2 and step S3 is 50 Hz.
  • Example 3 The present invention highly dispersed silica and its preparation
  • Preparation of the sodium silicate solution After solid sodium silicate with a modulus of 3.3 to 3.45 is liquefied at high temperature, water is added to prepare a sodium silicate solution with a concentration of 1.0 mol / L, and the mixture is stirred for 20 minutes;
  • the rotation speed of the stirring in step S2 and step S3 is 45 Hz.
  • Example 4 The present invention highly dispersed silica and its preparation
  • Preparation of the sodium silicate solution After solid sodium silicate with a modulus of 3.3 to 3.45 is liquefied at high temperature, water is added to prepare a sodium silicate solution with a concentration of 1.5 mol / L, and the mixture is stirred for 20 minutes;
  • the rotation speed of the stirring in step S2 and step S3 is 45 Hz.
  • this comparative example differs only in that: S1, after dissolving 2 kg of dodecyltrimethylammonium chloride in 3 kg of water and adding it to a concentration of 3.8 mol / L ammonium chloride solution 10 m 3 , Stir for 20min to prepare the mixed liquid and set aside; that is, increase the dosage of dodecyltrimethylammonium chloride to 2kg.
  • Example 3 Compared with Example 3, the difference of this comparative example is only that: S2, adding sodium silicate solution 14m 3 to the reaction kettle, heating to 50 ° C, and then adding the mixed solution 6m 3 at a uniform speed with stirring to neutralize the reaction; The reaction temperature is up to 50 ° C.
  • this comparative example differs only in that the concentration of the ammonium chloride solution is reduced to 1.5 mol / L.
  • this comparative example changes the feeding method, specifically:
  • this comparative example changes the feeding method, specifically:
  • Particle size laser diffraction method, the instrument model is BT-9300ST, purchased from Dandong Baite Instrument Co., Ltd .;
  • Dispersibility Disperse 1g of silica sample in 20g of water or 20g of n-hexane, stir for 5min and let stand for 10min to observe whether the silica sample is agglomerated.
  • the silica of Examples 1 to 4 of the present invention is on the nanometer level, the particle size is 5 to 8 ⁇ m, and the particle size distribution range is narrow, the particles are fine and uniform, and the specific surface area is small, 230 to 280 m 2 / g, oil absorption value The lower is 140 ⁇ 190ml / 100g. It has excellent dispersibility in water and n-hexane, without agglomeration. It is suitable as a dispersant or carrier for pharmaceutical and daily chemical fields.
  • Comparative Example 1 increased the amount of dodecyltrimethylammonium chloride, but it did not bring about the effect of improving dispersibility, but instead increased the particle size and oil absorption value, and the dispersibility Decreased, presumably because the concentration of dodecyltrimethylammonium chloride increased, negative charge neutralization and hydrophobic chain association increased, the reaction intensified, resulting in nanoparticles forming a gel and hard agglomeration, so that silica The particle size and oil absorption value increase, and the dispersibility decreases.
  • Comparative Example 2 reduced the reaction temperature, as a result, the specific surface area of silica increased, the oil absorption value decreased, and the dispersibility decreased; Comparative Example 3 reduced the concentration of the ammonium chloride solution, As a result, the particle size, specific surface area and oil absorption value of silica increased significantly, and the dispersibility decreased.
  • Comparative Example 4 and Comparative Example 5 changed the order of material addition, and as a result, the specific surface area of both silicas increased significantly and the dispersibility decreased, while Comparative Example 4 silica The oil absorption value increased significantly, and the oil absorption value of the comparative silica five decreased significantly.
  • the steps of the preparation method of the present invention complement each other and cooperate with various operating parameters to produce silica with a small specific surface area, a low oil absorption value, and high dispersibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

提供一种高分散二氧化硅的制备方法及由其制得的二氧化硅。该制备方法包括:S1将十二烷基三甲基氯化铵溶解后加入至氯化铵溶液中,搅拌,制得混合液;S2往反应釜中加入硅酸钠溶液,加热至60~80℃,搅拌下加入混合液进行反应;S3升温至85~95℃,搅拌反应,制得二氧化硅浆料;S4将二氧化硅浆料进行压滤、洗涤,使洗涤水中盐含量低于2%,通过喷雾干燥后,制得粒径为5~8μm的高分散二氧化硅。该方法工艺简单,反应时间短,能耗低,适合工业化生产,且制备的二氧化硅粒径均匀,分散性高。

Description

一种高分散二氧化硅及其制备方法 技术领域
本发明属于二氧化硅制备技术领域,具体涉及一种高分散二氧化硅及其制备方法。
背景技术
二氧化硅为无定型白色粉末,无毒、无味、无污染,表面富含羟基,粒径小且粒度分布均匀,具有大比表面积和高孔容,作为一种环保型功能材料,被广泛用在食品、日化用品与医药以及液体载体等行业。二氧化硅粒径分布的均一性及分散性直接决定了其性能的发挥,因此具有粒度均一、高分散的微米二氧化硅的研究是现代材料科学的必然趋势。
目前工业上制备高分散二氧化硅主要是采用气相法、凝胶法和沉淀法。气相法生产的二氧化硅性能好,但是气相法的原材料昂贵、设备要求高、技术复杂、产量低,导致其生产成本高。凝胶法由稀释的水玻璃和无机酸进行中和反应,形成凝胶经喷雾干燥后,再进行气流粉碎等二次加工制得。然而,二次加工的过程不仅破坏粒子本身的形貌,降低产品的原有性能,还会产生较大的能量消耗和产品的浪费。沉淀法具有原料来源广泛、价廉,能耗小,工艺简单,易于工业化等优点,但是同时也存在产品粒径大或分布范围较宽的问题,这是由于产品性状在制备过程中受许多可变因素的影响。
近年来,许多研究通过各种手段来改善沉淀法产品的性状。例如胡彦伟等利用化学沉淀法制备纳米二氧化硅(胡彦伟等.化学沉淀法制备纳米SiO 2颗粒[J].化工学报,2016年8月第67卷:379-383),具体通过配制乙醇水溶液,然后将硅酸钠溶于乙醇水溶液中,并向其中加入少量十六烷基三甲基溴化铵,接着配制氯化铵溶液,并将其加热至40℃,再将硅酸钠-乙醇水溶液缓慢滴入氯化铵溶液中,直至pH值达到8.5,继续搅拌反应,然后将所得的沉淀离心洗涤,最后白色粉末经烘干、煅烧,制得粒径为70~100nm分散性好的纳米二氧化硅。该方法制成的产品在100℃烘干后,还需要在马弗炉中高温煅烧,不易于工业化生产。
再如专利文献CN 103112864 A公开了阳离子型纳米二氧化硅粉体的制备方法,包括将铵盐和烷基双季铵盐加入乙醇水溶液中,搅拌溶解,加入硅酸钠,常温下反应至无氨气放出,在100~150℃下继续反应1~2h,得到纳米二氧化硅,该二氧化硅的平均粒径为80~100nm,比表面积为395~460m 2/g。该方法利用烷基双季铵盐(如N-十八烷基亚乙基二胺双溴化铵、N-十六烷基亚丙基二胺双氯化铵)比烷基单季铵盐具有更高的正电荷密度,能够使二氧化硅带上更多的正电荷,因而更有利于在水中分散。该方法的反应温度高,反应时间长,而且还会释放出氨气,容易发生爆炸,不利于大试生产。
上述现有技术分别采用十六烷基三甲基溴化铵和烷基双季铵盐以达到提高产品分散性的目的,其机理 在于,利用两者的阳离子表面活性,在溶液中形成胶束,吸附并包裹在微粒上,从而起到提高产品分散性的作用,但是由于十六烷基三甲基溴化铵和烷基双季铵盐在水中的溶解度低,因而需要使用乙醇溶解,以便更好地参与反应;此外,硅酸钠在水溶液中酸化时,-ONa转化为-OH,是一种高表面积的微粒,在它表面吸附有大量的水,如果失水,这种结合就会迅速发生,迅速增长成粗大的颗粒,而极性分子乙醇的存在可起到隔离的作用,乙醇分子靠与顶氧生成氢键来阻碍顶氧形成硅-氧联结,从而制得小颗粒、高分散的二氧化硅。
综上,现在高分散二氧化硅沉淀法的原料配方复杂,反应条件苛刻,不易于工业化生产。因此,有必要研发出一种高分散二氧化硅的工业化生产方法。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种高分散二氧化硅的制备方法,该方法采用氯化铵滴加水玻璃沉淀法,再加入十二烷基三甲基氯化铵作为助剂,生成粒径均匀的高分散性微米级二氧化硅,不需要破碎处理,工艺简单,节约试剂,反应时间短,能耗低,适合工业化生产。
本发明提供的高分散二氧化硅的制备方法,具体包括以下步骤:
S1、将十二烷基三甲基氯化铵用水溶解后,加入至氯化铵溶液中,搅拌15~25min,制得混合液,备用;
S2、往反应釜中加入硅酸钠溶液12~16m 3,加热至60~80℃,然后搅拌下匀速加入混合液6~8m 3进行中和反应;
S3、中和反应结束后,升温至85~95℃,搅拌反应25~35min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得粒径为5~8μm的高分散二氧化硅。
进一步地,所述氯化铵溶液的浓度为3.2~5.0mol/L。
进一步地,所述十二烷基三甲基氯化铵的添加重量(kg)为氯化铵溶液体积(m 3)的5~15%。
进一步地,所述硅酸钠的模数为3.3~3.45。
进一步地,所述硅酸钠溶液的浓度为0.8~1.5mol/L。
进一步地,所述步骤S2和步骤S3中搅拌的转速为40~50Hz。
进一步地,所述混合液的加入流速为6~8m 3/h。
相应的,本发明还提供了由上述高分散二氧化硅的制备方法制得的二氧化硅,该二氧化硅的粒径为5~8μm,比表面积为230~280m 2/g,吸油值为140~190ml/100g,在水和非极性溶剂(如正己烷)中易分散、无团聚,可作为分散剂或载体应用于医药和日化领域。
本发明高分散二氧化硅的制备方法的具体机理如下:
第一段,十二烷基三甲基氯化铵用水溶解后加入至氯化铵溶液中,得到混合液,然后在反应温度60~80℃下,将该混合液以一定流速滴加至硅酸钠溶液中。在这一过程中,由于氯化铵容易受热分解,所以采用氯化铵滴加硅酸钠溶液的方式,而此滴加方式也有利于硅酸钠的充分反应,同时十二烷基三甲基氯化铵作为表面活性剂在反应溶液中键合到二氧化硅分子表面时会生成氯化铵,氯化铵可以继续参与反应;水玻璃为弱碱性,随着混合液的加入,在弱碱性环境中,硅酸聚合形成胶体粒子,且在60~80℃下,硅酸根离子与胶体粒子的布朗运动加剧,碰撞的频率增大,硅酸聚合的速度加剧,反应时间缩短,形成粒径较大的一次粒子,有利于降低比表面积,增加产品分散性;二氧化硅在成核过程中带负电,而加入十二烷基三甲基氯化铵呈阳离子性,二者强烈吸引,二氧化硅粒子表面的负电荷被部分中和,颗粒之间排斥力降低,同时二氧化硅粒子表面吸附的疏水链的缔合作用导致纳米粒子间更易聚集,羟基间不断脱水缩合形成凝胶而发生硬团聚,但是随着反应的进行,加入的十二烷基三甲基氯化铵会在颗粒表面形成胶束,使二氧化硅分散性更好,而且产生的空间位阻效应可有效调控晶体各晶面的生长速率,诱导球形二氧化硅颗粒的形成,控制产品粒径为微米级。
第二段,中和反应结束后,升温至85~95℃,搅拌反应25~35min。升温至85~95℃可以让反应更充分,同时使得二氧化硅的结构更加密实,增加产品的分散性,从而制得比表面积较小、吸油值较低、分散性高的二氧化硅。
因此,与现有技术相比,本发明的优势在于:
(1)本发明高分散二氧化硅制备方法的原料易得、配方简单,条件易控、工艺稳定,生产周期短、能耗低,绿色安全,可大工业化生产,有利于推广。
(2)本发明高分散二氧化硅的粒径为5~8μm,比表面积为230~280m 2/g,吸油值为140~190ml/100g,在水和非极性溶剂(如正己烷)中易分散、无团聚,可作为分散剂或载体应用于医药和日化领域,具有良好的应用前景。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1、本发明高分散二氧化硅及其制备
S1、将十二烷基三甲基氯化铵0.5kg用水1kg溶解后,加入至浓度为3.2mol/L的氯化铵溶液10m 3中,搅拌15min,制得混合液,备用;
S2、往反应釜中加入硅酸钠溶液12m 3,加热至60℃,然后搅拌下以6m 3/h匀速加入混合液7m 3进行中和反应;
S3、中和反应结束后,升温至85℃,搅拌反应35min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得二氧化硅。
所述硅酸钠溶液的制备:将模数为3.3~3.45的固体硅酸钠经高温液化后,加水调制成浓度为0.8mol/L的硅酸钠溶液,搅拌20min制得;
所述步骤S2和步骤S3中搅拌的转速为40Hz。
实施例2、本发明高分散二氧化硅及其制备
S1、将十二烷基三甲基氯化铵1.5kg用水2kg溶解后,加入至浓度为5.0mol/L的氯化铵溶液10m 3中,搅拌25min,制得混合液,备用;
S2、往反应釜中加入硅酸钠溶液16m 3,加热至80℃,然后搅拌下以8m 3/h匀速加入混合液8m 3进行中和反应;
S3、中和反应结束后,升温至95℃,搅拌反应25min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得二氧化硅。
所述硅酸钠溶液的制备:将模数为3.3~3.45的固体硅酸钠经高温液化后,加水调制成浓度为1.5mol/L的硅酸钠溶液,搅拌20min制得;
所述步骤S2和步骤S3中搅拌的转速为50Hz。
实施例3、本发明高分散二氧化硅及其制备
S1、将十二烷基三甲基氯化铵1kg用水1.5kg溶解后,加入至浓度为3.8mol/L的氯化铵溶液10m 3中,搅拌20min,制得混合液,备用;
S2、往反应釜中加入硅酸钠溶液14m 3,加热至75℃,然后搅拌下以7m 3/h匀速加入混合液6m 3进行中和反应;
S3、中和反应结束后,升温至90℃,搅拌反应30min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得二氧化硅。
所述硅酸钠溶液的制备:将模数为3.3~3.45的固体硅酸钠经高温液化后,加水调制成浓度为1.0mol/L的硅酸钠溶液,搅拌20min制得;
所述步骤S2和步骤S3中搅拌的转速为45Hz。
实施例4、本发明高分散二氧化硅及其制备
S1、将十二烷基三甲基氯化铵1kg用水1.5kg溶解后,加入至浓度为4.4mol/L的氯化铵溶液10m 3中,搅拌20min,制得混合液,备用;
S2、往反应釜中加入硅酸钠溶液16m 3,加热至80℃,然后搅拌下以6m 3/h匀速加入混合液8m 3进行中和反应;
S3、中和反应结束后,升温至85℃,搅拌反应30min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得二氧化硅。
所述硅酸钠溶液的制备:将模数为3.3~3.45的固体硅酸钠经高温液化后,加水调制成浓度为1.5mol/L的硅酸钠溶液,搅拌20min制得;
所述步骤S2和步骤S3中搅拌的转速为45Hz。
对比例一
与实施例3相比,本对比例的区别仅在于:S1、将十二烷基三甲基氯化铵2kg用水3kg溶解后,加入至浓度为3.8mol/L的氯化铵溶液10m 3中,搅拌20min,制得混合液,备用;即提高十二烷基三甲基氯化铵的用量至2kg。
对比例二
与实施例3相比,本对比例的区别仅在于:S2、往反应釜中加入硅酸钠溶液14m 3,加热至50℃,然后搅拌下匀速加入混合液6m 3进行中和反应;即降低反应温度至50℃。
对比例三
与实施例3相比,本对比例的区别仅在于:将氯化铵溶液的浓度降低至1.5mol/L。
对比例四
与实施例3相比,本对比例改变加料方式,具体为:
S1、将十二烷基三甲基氯化铵1kg用水1.5kg溶解后,加入至浓度为1.0mol/L的硅酸钠溶液14m 3中,搅拌20min,制得混合液,备用;
S2、往反应釜中加入混合液14m 3,加热至75℃,然后搅拌下以7m 3/h匀速加入浓度为3.8mol/L的氯化 铵溶液6m 3进行中和反应;
S3、中和反应结束后,升温至90℃,搅拌反应30min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得二氧化硅。
对比例五
与实施例3相比,本对比例改变加料方式,具体为:
S1、将十二烷基三甲基氯化铵1kg用水1.5kg溶解后,加入至浓度为3.8mol/L的氯化铵溶液10m 3中,搅拌20min,制得混合液,备用;
S2、往反应釜中加入混合液6m 3,加热至40℃,然后搅拌下以7m 3/h匀速加入浓度为1.0mol/L的硅酸钠溶液14m 3进行中和反应;
S3、中和反应结束后,升温至90℃,搅拌反应30min,制得二氧化硅浆料;
S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得二氧化硅。
试验例一、本发明高分散二氧化硅的性能检测
对实施例1~4以及对比例一~五制得的二氧化硅进行性能测试,测试方法如下:
粒径:激光衍射法,仪器型号为BT-9300ST,购自丹东百特仪器有限公司;
比表面积:静态氮吸附法法,参考标准GB.T 19587-2004的方法进行检测,仪器型号为JW-BK200B经典型比表面及孔径分析仪,购自北京精微高博科学技术有限公司;
分散性:将二氧化硅样品1g分散于水20g或正己烷20g中,搅拌5min后静置10min,观察二氧化硅样品是否团聚。
测试结果如下表1所示:
表1各二氧化硅性能测试结果
Figure PCTCN2019091979-appb-000001
Figure PCTCN2019091979-appb-000002
由上表1可知:
(1)本发明实施例1~4二氧化硅为纳米级,粒径为5~8μm,且粒径分布范围窄,颗粒细腻均一,并且比表面积小,为230~280m 2/g,吸油值较低,为140~190ml/100g,在水和正己烷中具有优异的分散性,无团聚现象,适合作为分散剂或载体应用于医药和日化领域。
(2)与实施例3相比,对比例一提高了十二烷基三甲基氯化铵的用量,但是不能带来提高分散性的效果,反而使得粒径和吸油值增大,分散性下降,推测是因为十二烷基三甲基氯化铵的浓度增大,负电荷中和及疏水链缔合作用增强,反应加剧,导致纳米粒子聚集形成凝胶并发生硬团聚,以致二氧化硅的粒径和吸油值增大,分散性下降。
(3)与实施例3相比,对比例二降低了反应温度,结果二氧化硅的的比表面积增大,吸油值下降,并且分散性下降;对比例三降低了氯化铵溶液的浓度,结果二氧化硅的粒径、比表面积和吸油值均明显增大,分散性下降。
(4)与实施例3相比,对比例四和对比例五分别改变了物料添加顺序,结果两种二氧化硅的比表面积均明显增大,且分散性下降,而对比例四二氧化硅吸油值明显提高,对比例五二氧化硅吸油值则明显下降。
综上,本发明制备方法各步骤相辅相成,协同各操作参数,制得比表面积较小、吸油值较低、分散性高的二氧化硅。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种高分散二氧化硅的制备方法,其特征在于,包括以下步骤:
    S1、将十二烷基三甲基氯化铵用水溶解后,加入至氯化铵溶液中,搅拌15~25min,制得混合液,备用;
    S2、往反应釜中加入硅酸钠溶液12~16m 3,加热至60~80℃,然后搅拌下匀速加入混合液6~8m 3进行中和反应;
    S3、中和反应结束后,升温至85~95℃,搅拌反应25~35min,制得二氧化硅浆料;
    S4、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水中盐含量低于2%,通过喷雾干燥后,制得粒径为5~8μm的高分散二氧化硅。
  2. 如权利要求1所述高分散二氧化硅的制备方法,其特征在于,所述氯化铵溶液的浓度为3.2~5.0mol/L。
  3. 如权利要求1所述高分散二氧化硅的制备方法,其特征在于,所述十二烷基三甲基氯化铵的添加重量为氯化铵溶液体积的5~15%。
  4. 如权利要求1所述高分散二氧化硅的制备方法,其特征在于,所述硅酸钠的模数为3.3~3.45。
  5. 如权利要求1所述高分散二氧化硅的制备方法,其特征在于,所述硅酸钠溶液的浓度为0.8~1.5mol/L。
  6. 如权利要求1所述高分散二氧化硅的制备方法,其特征在于,所述步骤S2和步骤S3中搅拌的转速为40~50Hz。
  7. 如权利要求1所述高分散二氧化硅的制备方法,其特征在于,所述混合液的加入流速为6~8m 3/h。
  8. 如权利要求1所述高分散二氧化硅的制备方法制得的二氧化硅,其特征在于,所述二氧化硅的粒径为5~8μm,比表面积为230~280m 2/g,吸油值为140~190ml/100g。
PCT/CN2019/091979 2018-10-19 2019-06-20 一种高分散二氧化硅及其制备方法 WO2020078029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811226259.2A CN109110769A (zh) 2018-10-19 2018-10-19 一种高分散二氧化硅及其制备方法
CN201811226259.2 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020078029A1 true WO2020078029A1 (zh) 2020-04-23

Family

ID=64854971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091979 WO2020078029A1 (zh) 2018-10-19 2019-06-20 一种高分散二氧化硅及其制备方法

Country Status (2)

Country Link
CN (1) CN109110769A (zh)
WO (1) WO2020078029A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109110769A (zh) * 2018-10-19 2019-01-01 广州市飞雪材料科技有限公司 一种高分散二氧化硅及其制备方法
CN113675385B (zh) * 2021-07-13 2022-12-09 厦门理工学院 一种纳米级硅碳复合负极材料、制备方法及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155400A (ja) * 2007-12-25 2009-07-16 Kao Corp 複合メソポーラスシリカ粒子
CN106044790A (zh) * 2016-05-31 2016-10-26 安徽省含山县锦华氧化锌厂 一种沉淀法制备白炭黑的方法
CN106276929A (zh) * 2016-07-29 2017-01-04 广州市飞雪材料科技有限公司 一种磨擦型二氧化硅的制备方法
CN108439420A (zh) * 2018-04-02 2018-08-24 深圳元颉新材料科技有限公司 单分散多孔二氧化硅球材料的制备方法
CN109110769A (zh) * 2018-10-19 2019-01-01 广州市飞雪材料科技有限公司 一种高分散二氧化硅及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591194A (zh) * 2014-12-25 2015-05-06 中国建材国际工程集团有限公司 粒径可控单分散球形纳米SiO2粉体的制备方法
CN107055553A (zh) * 2016-10-27 2017-08-18 湖北工业大学 一种巯基羧基双重修饰的介孔二氧化硅纳米颗粒及其制备方法
CN107892306B (zh) * 2017-11-15 2019-11-15 广州市飞雪材料科技有限公司 一种低粒径高吸水量牙膏用二氧化硅的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155400A (ja) * 2007-12-25 2009-07-16 Kao Corp 複合メソポーラスシリカ粒子
CN106044790A (zh) * 2016-05-31 2016-10-26 安徽省含山县锦华氧化锌厂 一种沉淀法制备白炭黑的方法
CN106276929A (zh) * 2016-07-29 2017-01-04 广州市飞雪材料科技有限公司 一种磨擦型二氧化硅的制备方法
CN108439420A (zh) * 2018-04-02 2018-08-24 深圳元颉新材料科技有限公司 单分散多孔二氧化硅球材料的制备方法
CN109110769A (zh) * 2018-10-19 2019-01-01 广州市飞雪材料科技有限公司 一种高分散二氧化硅及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, TIANTIAN ET AL.: "Micron SiO2 Particles by Precipitation Method", JOURNAL OF SALT AND CHEMICAL INDUSTRY, vol. 45, no. 5, 31 May 2016 (2016-05-31), pages 28 - 32 *

Also Published As

Publication number Publication date
CN109110769A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN101407324B (zh) 大孔容凝胶法二氧化硅消光剂的制备方法
WO2020034745A1 (zh) 一种高吸附高分散二氧化硅及其制备方法
CN106044790B (zh) 一种沉淀法制备白炭黑的方法
CN111084727B (zh) 一种纳米氧化锌表面改性以及反相分散浆的制备方法
CN102126729B (zh) 纳米级球形硅基介孔材料的制备及粒径和形貌控制方法
CN110156033A (zh) 一种高结构高比表高分散白炭黑的制备方法
CN105585043B (zh) 一种花状纳米氧化铈材料的制备方法
WO2020078029A1 (zh) 一种高分散二氧化硅及其制备方法
CN113912071B (zh) 一种改性纳米白炭黑的制备方法
CN101280127A (zh) 塑料薄膜开口剂用沉淀白碳黑的制备方法
CN100528758C (zh) 高纯微米级氧化铋微粉的生产方法
CN111547730A (zh) 一种粉末涂料用超细沉淀二氧化硅抗结剂的制备方法
CN112209422B (zh) 一种制备氧化铈纳米球的方法
CN102198942A (zh) 二氧化硅的制备方法
AU2017304792A1 (en) Method for manufacturing ultra-porous nano-SiO2
CN108299579B (zh) 一种石墨烯/纳米二氧化硅/聚苯乙烯杂化材料及其制备方法和应用
CN108355634B (zh) 一种介孔TiO2光催化剂的制备方法
CN1792789A (zh) 用稻壳灰制备纳米二氧化硅的方法
CN109133144A (zh) 一种单分散超小粒径二氧化铈纳米晶的制备方法
CN101428807A (zh) 一种易分散双亲纳米二氧化硅的制备方法
CN108821296A (zh) 一种介孔二氧化硅球形纳米颗粒的制备方法
CN112093803B (zh) 一种高分散性啤酒防混浊剂用二氧化硅的生产方法
Balabanov et al. Synthesis and properties of yttrium hydroxyacetate sols
CN106995218A (zh) 一种砖块状单斜相wo3的制备方法
CN106829926A (zh) 一种高纯螺旋碳纳米管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874389

Country of ref document: EP

Kind code of ref document: A1