WO2020034745A1 - 一种高吸附高分散二氧化硅及其制备方法 - Google Patents

一种高吸附高分散二氧化硅及其制备方法 Download PDF

Info

Publication number
WO2020034745A1
WO2020034745A1 PCT/CN2019/091688 CN2019091688W WO2020034745A1 WO 2020034745 A1 WO2020034745 A1 WO 2020034745A1 CN 2019091688 W CN2019091688 W CN 2019091688W WO 2020034745 A1 WO2020034745 A1 WO 2020034745A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
silica
solution
add
sodium silicate
Prior art date
Application number
PCT/CN2019/091688
Other languages
English (en)
French (fr)
Inventor
李丽峰
林英光
任振雪
胡非
张梦梅
Original Assignee
广州市飞雪材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市飞雪材料科技有限公司 filed Critical 广州市飞雪材料科技有限公司
Publication of WO2020034745A1 publication Critical patent/WO2020034745A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Definitions

  • the invention belongs to the technical field of precipitated silica, and particularly relates to a high-adsorption and high-dispersion silica and a preparation method thereof.
  • Sodium tripolyphosphate was once recognized as an excellent washing powder washing aid in the world, but it was limited because it would aggravate the problem of phosphorus-rich nutrition in water, and it was gradually replaced by 4A zeolite for washing. With the acceleration of the pace of life and the continuous improvement of the quality of family life, people's requirements for washing products have become higher and higher. Concentrated washing powder with high efficiency, decontamination, energy saving and environmental protection has become the mainstream trend in the washing powder industry. Concentrated laundry powder, which has the characteristics of high density and high content of surfactants. The high content of surfactants means that high requirements are placed on the additives that help to prevent flow and blocking in washing powder formulations, while the cost of washing 4A zeolite in washing powder formulations is relatively high. Therefore, it is very necessary to find a low-price detergent powder additive with high loading and good anti-sagging effect.
  • the silica prepared by the precipitation method has a large specific surface area and a high oil absorption value, so it has good adsorption properties, and can form micelles formed by various surfactants at a critical washing concentration during the laundry washing process.
  • the dirt carried by rolling is absorbed and diffused into the washing water, so that the clothes can be cleaned quickly.
  • there are a large number of silanol structures on the surface of the silica molecules which can exchange calcium and magnesium ions in the water, thereby softening hard water, which is helpful to improve the decontamination and detergent Washing capacity. Therefore, highly adsorbed precipitated silica as a novel additive has great practical significance for solving the environmental pollution caused by phosphorus-rich, and opens a new way for the preparation of phosphorus-free laundry.
  • the pore structure of the existing high-adsorption silica is mainly composed of small pores with a pore diameter of less than 10 nm, and the multi-pore structure results in poor dispersibility.
  • the fluidity of the laundry powder becomes poor.
  • the washing powder is agglomerated, which brings inconvenience to the preparation and use of the washing powder.
  • the silica produced by the precipitation method has a large and non-uniform particle size, and it needs to be crushed to make the particle size between 10 and 30 ⁇ m before being added to the laundry powder.
  • the crushing treatment not only increases the production cost and produces dust pollution, but also destroys the porous structure of the initial silica, which reduces the oil absorption value of the silica. Therefore, it is necessary to further optimize the structure and performance of the existing high-adsorption silica.
  • Patent document CN107720763A discloses a method for preparing high-dispersion silica.
  • the method uses sodium hexametaphosphate as a dispersant and sodium sulfate as a reaction assistant.
  • the first step is to add hexametaphosphate to a sodium sulfate solution.
  • Sodium silicate solution and then add sulfuric acid solution for reaction.
  • the reaction temperature is 85 ⁇ 95 °C.
  • the pH value is 8.5, stop adding acid.
  • the second step add the sodium silicate solution and sulfuric acid solution at the same time to maintain the reaction pH. 8.5.
  • silica After the sodium silicate solution is added, continue to add acid to a pH value of 4 to 5, and continue to stir to form silica; finally, it is prepared by pressure filtration, washing, spray drying and crushing.
  • the silica prepared by this method has good dispersibility and large specific surface area.
  • the premise of the silica with high dispersibility is that it needs to be crushed to a particle size of 4 to 6 ⁇ m, and its oil absorption value is low, and its adsorption is low. Poor performance, can not meet the good application in washing powder.
  • the present invention provides a method for preparing high-adsorption and high-dispersion silica, by changing the preparation process, and using carbomer resin as Auxiliary agent, which can effectively enlarge the pore diameter and reduce the particle size, so that the silica particles can improve the dispersibility under the premise of maintaining high adsorption and satisfy the good application in washing powder.
  • the method for preparing high-adsorption and high-dispersion silica provided by the present invention specifically includes the following steps:
  • the first step is to disperse the carbomer resin with water and add it to a sodium sulfate solution of 9 to 11 m 3 , and stir for 30 minutes to prepare a mixed solution;
  • the second step is to add a mixed solution to the reaction kettle, add 1.5-3.0m 3 of sodium silicate solution under stirring, heat to 80-90 ° C, and then add sulfuric acid solution at a flow rate of 3.0-3.5m 3 / h to perform acid-base Neutralization reaction, when the pH value reaches 8.0 ⁇ 9.0, stop adding acid and mature for 10 minutes;
  • the third step is to add 8-10m 3 of sodium silicate solution and sulfuric acid solution at the same time, and carry out the co-current neutralization reaction for 30-40 minutes.
  • the pH value is controlled to be 8.0-9.0.
  • the fourth step is to filter press and wash the silica slurry, so that the conductivity of the washing water of the silica filter cake is less than 1000 ⁇ s. After spray drying, a high-adsorption and high-dispersion particle size 18 to 25 ⁇ m is prepared. Silicon oxide.
  • the weight (kg) of the carbomer resin is 20 to 80% of the volume (m 3 ) of the sodium sulfate solution.
  • the mass percentage concentration of the sodium sulfate solution is 0.3 to 1.0%.
  • the concentration of the sodium silicate solution is 2.5 to 3.5 mol / L.
  • the modulus of the sodium silicate is 3.45 to 3.55.
  • the concentration of the sulfuric acid solution is 2.0-3.0 mol / L.
  • the rotation speed of the stirring is 40-50 Hz.
  • Kappa resin and sodium sulfate are used as reaction aids, and water glass and sulfuric acid having the same modulus and concentration are used to participate in the reaction.
  • the reaction time and the amount of alkali used are controlled by a two-step thermal precipitation method.
  • the reaction is carried out in a weakly alkaline environment at 80 to 90 ° C to prepare silica with high adsorption and dispersion.
  • the first step is acid dropping alkali.
  • a certain amount of Kappa resin is added to the sodium sulfate solution as a reaction bottom liquid.
  • the Kappa resin has a sol network structure in a weakly alkaline environment, forming a sol state, and is a silica primary particle.
  • Primary particles accumulate on the skeleton to form many large pores, so that large-pore silica particles are obtained, which avoids the natural growth of primary particles and the formation of too many small pores. Therefore, the silica has good adsorption.
  • Performance high oil absorption value, can effectively adsorb dirt, especially macromolecule oil pollution; meanwhile, the network structure of carbomer resin can also disperse and fix silica particles, which improves the dispersibility and is very good
  • the particle growth is controlled to keep the particle size low.
  • the second step is to continue the same drop of acid and alkali on this basis.
  • the salting-out benefit of sodium sulfate in the bottom liquid it can prevent the secondary particles from further contacting each other to form agglomerates, so that the silica particles can maintain a low particle size. It has good dispersibility; at the same time, the same drop of acid and alkali in the second step can also improve the uniformity of the secondary particles and increase the oil absorption value, and produce silica with large pore size, low particle size, and high absorption and dispersibility.
  • the concentration of sodium sulfate and the reaction time it is necessary to control the concentration of sodium sulfate and the reaction time, otherwise the concentration of sodium sulfate is too high and the oil absorption value of silica decreases; if the reaction time is too long, the silica will easily coalesce, resulting in an increase in particle size.
  • the present invention also provides silica prepared by the above preparation method of high-adsorption and high-dispersion silica.
  • the specific surface area of the silica is 240-300m 2 / g, and the oil absorption value is 260-320ml / 100g. It has a high loading capacity for surfactants, and its pore diameter is 12-17nm, and its particle size is 18-25 ⁇ m. It can be used as a washing aid and directly added to laundry powder, which brings good anti-junction and flow aid effects. And it completely meets the requirements for application in concentrated laundry powder, and is an ideal concentrated laundry powder additive.
  • the method for preparing high-adsorption and high-dispersion silica according to the present invention adds a certain amount of carbomer resin to the reaction system, and simultaneously controls the temperature, pH value, concentration, and time of the reaction process, so that the silica is maintained at a relatively high level.
  • the pore diameter can be effectively enlarged and the particle diameter can be reduced, thereby improving the dispersibility and suspension of silica.
  • the method is simple, the process is stable, the conditions are controllable, the production cycle is short, the production cost is low, and the environment Less pollution, can be industrialized production;
  • the silica of the present invention has a specific surface area of 240 to 300 m 2 / g, an oil absorption value of 260 to 320 ml / 100 g, a pore size of 12 to 17 nm, a particle size of 18 to 25 ⁇ m, small and uniform particles, and high adsorption, High dispersion, can be used as a washing aid, directly added to the laundry powder, bringing good anti-settling and flow-assisting effects, and at the same time, the laundry powder has better solubility, dispersibility, adsorption and detergency in water To meet people's needs well.
  • the raw materials used in the present invention are all conventional commercial products.
  • Kapo resin was purchased from Guangzhou Bofeng Chemical Technology Co., Ltd., and the model number is 940.
  • the first step the resin 1.8kg 4kg Kaposi dispersed water, was added a solution of sodium 9m 3, stirred for 30 minutes to prepare a mixed solution;
  • the second step add the mixed solution to the reaction kettle, add 1.5m 3 of sodium silicate solution under stirring, heat to 80 ° C, and then add sulfuric acid solution at a flow rate of 3.0m 3 / h to perform acid-base neutralization reaction.
  • the value reaches 8.0, stop adding acid and mature for 10 minutes; adding acid in this section takes 25 minutes, that is, the reaction time is 25 minutes;
  • the third step is to simultaneously add 8m 3 of sodium silicate solution and sulfuric acid solution to carry out co-current neutralization reaction for 30 minutes. During this period, adjust the flow rate of sodium silicate solution and sulfuric acid solution to control the process pH at 8.0. After the sodium solution is added, continue to add the sulfuric acid solution. When the endpoint pH reaches 3.5, stop adding acid and stir for 10 minutes to prepare a silica slurry.
  • the fourth step is to press filter and wash the silica slurry, so that the conductivity of the washing water of the silica filter cake is less than 1000 ⁇ s. After spray drying, a high-adsorption and high-dispersion particle diameter 21 to 25 ⁇ m is prepared. Silicon oxide.
  • the mass percentage concentration of the sodium sulfate solution is 0.3%; the concentration of the sodium silicate solution is 2.5mol / L; the modulus of the sodium silicate is 3.45; and the concentration of the sulfuric acid solution is 3.0mol / L;
  • the stirring speed is 40 Hz.
  • Example 2 The high-adsorption and high-dispersion silica of the present invention and preparation thereof
  • the second step add the mixed solution to the reaction kettle, add 3.0m 3 of sodium silicate solution under heating, heat to 90 ° C, and then add sulfuric acid solution at a flow rate of 3.5m 3 / h to perform acid-base neutralization reaction.
  • the value reaches 9.0, stop adding acid and mature for 10 minutes; the total time for adding acid in this section is 35 minutes, that is, the reaction time is 35 minutes;
  • the third step is to simultaneously add 10m 3 of sodium silicate solution and sulfuric acid solution to carry out co-current neutralization reaction for 40 minutes. During the period, adjust the flow rate of sodium silicate solution and sulfuric acid solution to control the process pH at 9.0. After the addition of the sodium solution is completed, continue to add the sulfuric acid solution. When the endpoint pH value reaches 4.0, stop adding acid and stir for 10 minutes to obtain a silica slurry;
  • the fourth step is to press filter and wash the silica slurry, so that the conductivity of the washing water of the silica filter cake is less than 1000 ⁇ s. After spray drying, a high-adsorption and high-dispersion particle size 22 to 25 ⁇ m is prepared. Silicon oxide.
  • the mass percentage concentration of the sodium sulfate solution is 1.0%; the concentration of the sodium silicate solution is 3.5 mol / L; the modulus of the sodium silicate is 3.55; the concentration of the sulfuric acid solution is 2.0 mol / L; The stirring speed is 50 Hz.
  • Example 3 The high-adsorption and high-dispersion silica of the present invention and its preparation
  • the second step add the mixed solution to the reaction kettle, add 3.0m 3 of sodium silicate solution under stirring, heat to 85 ° C, and then add sulfuric acid solution at a flow rate of 3.0m 3 / h to perform acid-base neutralization reaction.
  • the value reaches 8.0, stop adding acid and mature for 10 minutes; adding acid in this section takes 30 minutes, that is, the reaction time is 30 minutes;
  • the third step is to simultaneously add 8m 3 of sodium silicate solution and sulfuric acid solution to carry out the co-current neutralization reaction for 35 minutes. During the period, adjust the flow rate of the sodium silicate solution and the sulfuric acid solution to control the process pH at 9.0. After the sodium solution is added, continue to add the sulfuric acid solution. When the endpoint pH reaches 3.5, stop adding acid and stir for 10 minutes to prepare a silica slurry.
  • the fourth step is to filter press and wash the silica slurry, so that the conductivity of the washing water of the silica filter cake is less than 1000 ⁇ s. After spray drying, high adsorption and high dispersion particles with a particle size of 18 to 23 ⁇ m are prepared. Silicon oxide.
  • the mass percentage concentration of the sodium sulfate solution is 0.7%; the concentration of the sodium silicate solution is 3.0 mol / L; the modulus of the sodium silicate is 3.45; the concentration of the sulfuric acid solution is 2.5 mol / L; The stirring speed is 45 Hz.
  • Example 4 High-adsorption and high-dispersion silica of the present invention and preparation thereof
  • the second step add the mixed solution to the reaction kettle, add 2.0m 3 of sodium silicate solution under stirring, heat to 85 ° C, and then add sulfuric acid solution at a flow rate of 3.0m 3 / h to perform acid-base neutralization reaction.
  • the value reaches 8.5, stop adding acid and mature for 10 minutes; adding acid in this period takes 30 minutes, that is, the reaction time is 30 minutes;
  • the third step is to add 9m 3 of sodium silicate solution and sulfuric acid solution at the same time, and carry out co-current neutralization reaction for 40 minutes. During the period, adjust the flow rate of sodium silicate solution and sulfuric acid solution to control the process pH value at 8.5. After the addition of the sodium solution is completed, continue to add the sulfuric acid solution. When the endpoint pH value reaches 4.0, stop adding acid and stir for 10 minutes to obtain a silica slurry;
  • the fourth step is to filter press and wash the silica slurry so that the conductivity of the washing water of the silica filter cake is less than 1000 ⁇ s. After spray drying, a high-adsorption and high-dispersion particle diameter of 20 to 24 ⁇ m is obtained. Silicon oxide.
  • the mass percentage concentration of the sodium sulfate solution is 0.6%; the concentration of the sodium silicate solution is 3.0 mol / L; the modulus of the sodium silicate is 3.55; the concentration of the sulfuric acid solution is 2.6 mol / L; The stirring speed is 45 Hz.
  • Example 4 Compared with Example 4, the difference of this comparative example is only that no carbolic resin is added.
  • Example 4 Compared with Example 4, the difference of this comparative example is only that: the flow rate of adding sulfuric acid solution in the second step is reduced, so that the total time for adding acid is extended to 45 minutes, that is, the reaction time is 45 minutes.
  • Example 4 Compared with Example 4, the difference of this comparative example is only that the mass percentage concentration of the sodium sulfate solution is increased to 2.0%.
  • Example 4 Compared with Example 4, the difference of this comparative example is that the pH value of the process is controlled at 8.5 by adjusting the flow rate of the sodium silicate solution and the sulfuric acid solution in the third step, and the co-current neutralization reaction time is 50 minutes.
  • Example 3 312 298 12 ⁇ 16 18 ⁇ 23
  • Example 4 320 285 14 ⁇ 17 20 ⁇ 24 Comparative Example One 205 220 6 to 10 40 ⁇ 60 Comparative Example Two 225 230 7 ⁇ 13 51 ⁇ 63 Comparative Example Three 218 231 8 ⁇ 13 15 ⁇ 21 Comparative Example Four 269 251 8 ⁇ 12 60 ⁇ 75
  • Powder flowability a known volume of washing powder is flowed through the standard hole, and the volume of the washing powder flowing out per unit time is calculated according to the time used, the unit is mL / s; the larger the value of the fluidity, the powder The better the liquidity.
  • Anti-caking property of powder press the laundry powder into a cylinder with a specified size with a 10kg weight, and then add a weight to test the pressure to break the cylinder, the unit is g; the smaller the anti-caking value, It means that the washing powder is less likely to agglomerate.
  • Detergency According to GB / T 13174-2008 "Determination of Detergency and Circulating Washing Performance of Laundry Detergents", the detergency of the aforesaid laundry powder is tested.
  • the silica of the present invention has a high oil absorption value and specific surface area, and has good adsorptivity. At the same time, its pore size is large and the pore size distribution is concentrated, which can effectively adsorb dirt, especially large-molecule oil stains, making the adsorption power of laundry powder And decontamination capabilities;
  • the silica of the present invention has a small particle diameter and a narrow particle size distribution, and can be directly added to the laundry powder without performing a crushing treatment. At the same time, the pore diameter is large, and the dispersibility of the silica is significantly improved. After that, it brings good anti-knotting and flow-assisting effects, and at the same time also makes the washing powder have better solubility and dispersibility in water.
  • Example 4 Compared with Example 4, in the first comparative example, no Kappa resin was added, the silica grew naturally, the pore size was small, the particle size was large, and the specific surface area was small, so that the particles were dense, the oil absorption value became lower, and the detergency was decreased; Comparative Example 2 and Comparative Example 4 extended the reaction time, the pore size of silica became smaller, and the particle size became larger, which resulted in poor anti-junction and flow-assistance effects, as well as poor adsorption, leading to a reduction in detergent detergency; Thirdly, the concentration of the sodium sulfate solution in the reaction bottom liquid is increased, the oil absorption value and specific surface area of the silicon dioxide are reduced, resulting in a decrease in the adsorption property and affecting the detergency of the laundry powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Compounds (AREA)

Abstract

提供一种高吸附高分散二氧化硅的制备方法及由其获得的二氧化硅。该方法包括:一、将卡波树脂加入硫酸钠溶液中,搅拌制得混合溶液;二、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液,加热至80~90℃,加入硫酸,pH值为8.0~9.0时停止加酸,熟化;三、同时加入硅酸钠溶液和硫酸,控制pH值在8.0~9.0,硅酸钠加完,继续添加硫酸,pH值为3.5~4.0时停止加酸,搅拌,制得二氧化硅浆料;四、将二氧化硅浆料进行压滤、洗涤,通过喷雾干燥后,制得粒径为18~25μm的高吸附高分散二氧化硅。该二氧化硅颗粒小且均一,具备高吸附、高分散的特性,可作为洗涤助剂,直接添加于洗衣粉中,带来良好的抗结助流效果。

Description

一种高吸附高分散二氧化硅及其制备方法 技术领域
本发明属于沉淀二氧化硅的技术领域,具体涉及一种高吸附高分散二氧化硅及其制备方法。
背景技术
三聚磷酸钠,曾是世界公认的优良洗衣粉洗涤助剂,但由于其会加重水体富磷营养化问题而遭到限制,并逐步被洗涤用4A沸石所取代。随着生活节奏的加快,家庭生活品质的不断提升,人们对洗涤用品的要求也越来越高。高效、去污、节能、环保的浓缩洗衣粉已成为洗衣粉行业的主流趋势。浓缩洗衣粉,具有密度大、含高含量表面活性剂等特点。高含量的表面活性剂,意味着对洗衣粉配方中起助流抗结块作用的助剂提出了高要求,而洗衣粉配方中的洗涤用4A沸石的成本比较高。因此,寻求一种具备高负载量和良好抗结助流作用且价格低廉的洗衣粉助剂是非常必要的。
沉淀法制备的二氧化硅具有较大的比表面积和较高的吸油值,因而其具有良好的吸附性,能够在洗涤衣物的过程中把各种表面活性剂在临界洗涤浓度时形成的胶束滚动携带的污垢吸附扩散到洗涤水中,从而快速洁净衣物,同时二氧化硅分子表面有大量的硅羟基结构,可交换水中的钙、镁离子,从而软化硬水,有利于提高洗涤剂的去污和洗涤能力。因此,高吸附性沉淀二氧化硅作为一种新颖的助剂对解决富磷引起的环境污染有很大的现实意义,给制备无磷洗衣服开辟了一个新的途径。
可是,现有高吸附性二氧化硅的孔结构主要由孔径在10nm以下的小孔构成,多小孔的结构导致其分散性差,作为洗涤助剂应用后,使得洗衣粉的流动性变差,特别是应用于浓缩洗衣粉后,导致洗衣粉结块,给洗衣粉制备和使用过程带来不便。另外,沉淀法制得的二氧化硅粒径大且不均一,需经过破碎处理,使其粒径在10~30μm之间才能应用添加到洗衣粉之中。破碎处理不仅增加生产成本,制造粉尘污染,还会破坏初始二氧化硅的多孔结构,使得二氧化硅的吸油值下降。因此,有必要对现有高吸附性二氧化硅的结构和性能做进一步优化。
专利文献CN 107720763 A公开了一种高分散二氧化硅的制备方法,该方法以六偏磷酸钠作为分散剂,以硫酸钠作为反应助剂,第一步往硫酸钠溶液中加入含有六偏磷酸钠的硅酸 钠溶液,然后加入硫酸溶液进行反应,反应温度为85~95℃,当pH值为8.5时停止加酸;第二步同时加入硅酸钠溶液和硫酸溶液,保持反应pH值为8.5,硅酸钠溶液加完后继续加酸至pH值为4~5,继续搅拌,形成二氧化硅;最后经压滤、洗涤、喷雾干燥、破碎制得。该方法制得的二氧化硅的分散性较好,比表面积也较大,可是该二氧化硅具备高分散性的前提是需破碎至粒径为4~6μm,并且其吸油值偏低,吸附性较差,不能满足在洗衣粉中的良好应用。
发明内容
为了克服现有高吸附性二氧化硅存在的分散性差、粒径大的技术问题,本发明提供了一种高吸附高分散二氧化硅的制备方法,通过改变制备工艺,同时采用卡波树脂作为助剂,有效扩大孔径,降低粒径,使二氧化硅粒子在保持高吸附性的前提下,提高分散性,满足在洗衣粉中的良好应用。
本发明的目的将通过下面的详细描述来进一步体现和说明。
本发明提供的高吸附高分散二氧化硅的制备方法,具体包括以下步骤:
第一步、将卡波树脂用水分散后加入硫酸钠溶液9~11m 3中,搅拌30分钟,制得混合溶液;
第二步、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液1.5~3.0m 3,加热至80~90℃,然后以3.0~3.5m 3/h的流速加入硫酸溶液,进行酸碱中和反应,当pH值到达8.0~9.0时,停止加酸,熟化10分钟;
第三步、同时加入硅酸钠溶液8~10m 3和硫酸溶液,进行并流中和反应30~40分钟,期间控制过程pH值在8.0~9.0,硅酸钠溶液添加完毕后,继续添加硫酸溶液,当终点pH值到达3.5~4.0时,停止加酸,搅拌10分钟,制得二氧化硅浆料;
第四步、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水的电导率小于1000μs,通过喷雾干燥后,制得粒径为18~25μm的高吸附高分散二氧化硅。
进一步地,所述卡波树脂添加的重量(kg)为硫酸钠溶液体积(m 3)的20~80%。
进一步地,所述硫酸钠溶液的质量百分比浓度为0.3~1.0%。
进一步地,所述硅酸钠溶液的浓度为2.5~3.5mol/L。
进一步地,所述硅酸钠的模数为3.45~3.55。
进一步地,所述硫酸溶液的浓度为2.0~3.0mol/L。
进一步地,所述搅拌的转速为40~50Hz。
在本发明的制备方法中,采用卡波树脂和硫酸钠作为反应助剂,以模数和浓度相同的水玻璃以及硫酸参与反应,通过两步热沉淀法,控制反应时间和用碱量,让反应在弱碱性环境中和80~90℃下进行,制备出高吸附高分散的二氧化硅。
第一步酸滴碱,首先往硫酸钠溶液中加入一定量的卡波树脂作为反应底液,卡波树脂在弱碱性环境中呈溶胶网状结构,形成溶胶状态,为二氧化硅一次粒子提供模板骨架,一次粒子在骨架上堆积,形成许多大孔,从而得到大孔径的二氧化硅粒子,避免了一次粒子自然生长而形成过多小孔的结构,因而该二氧化硅拥有好的吸附性能,高的吸油值,可有效吸附污垢,尤其是大分子的油污;同时卡波树脂的网状结构还可将二氧化硅粒子分散并固定,使其分散性也得到了提高,并且很好地控制了粒子的生长,使粒子保持低粒径。第一步中需要控制卡波树脂的用量和反应时间,否则过多的卡波树脂和过长的反应时间会导致二氧化硅粒子生长过大,导致产品粒径过大,且孔径变小。
第二步在此基础上继续酸碱同滴,通过底液中硫酸钠的盐析效益,可防止二次粒子进一步相互接触而聚结形成胶团,使二氧化硅粒子保持低粒径,从而具备良好的分散性;同时第二步酸碱同滴还可改善二次粒子的均一性并且提高吸油值,制得大孔径、低粒径、兼备高吸附性和分散性的二氧化硅。第二步中需要控制硫酸钠的浓度和反应时间,否则硫酸钠浓度过高,二氧化硅吸油值下降;反应时间过长,二氧化硅易聚结,导致粒径增大。
相应地,本发明还提供了由上述高吸附高分散二氧化硅的制备方法制得的二氧化硅,该二氧化硅的比表面积为240~300m 2/g,吸油值为260~320ml/100g,对表面活性剂具有较高的负载量,同时其孔径为12~17nm,粒径为18~25μm,可作为洗涤助剂,直接添加于洗衣粉中,带来良好的抗结助流作用,并且完全满足在浓缩型洗衣粉中应用的要求,是一种较为理想的浓缩型洗衣粉助剂。
因此,与现有技术相比,本发明的优势在于:
(1)本发明高吸附高分散二氧化硅的制备方法通过在反应体系中添加一定量的卡波树脂,同时控制反应过程的温度、pH值、浓度和时间等,使二氧化硅在保持较高吸油值和比表面积的前提下,有效扩大孔径、降低粒径,从而提高二氧化硅的分散性和悬浮性,该方法简单,工艺稳定,条件可控,生产周期短,生产成本低,环境污染少,可工业化生产;
(2)本发明二氧化硅的比表面积为240~300m 2/g,吸油值为260~320ml/100g,孔径为12~17nm,粒径为18~25μm,颗粒小且均一,具备高吸附、高分散的特性,可作为洗涤助剂,直接添加于洗衣粉中,带来良好的抗结助流效果,同时让洗衣粉在水中具有更好的溶解性、分散性、吸附性和去污能力,很好地满足人们的需求。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明所用原料均为常规市售商品,例如卡波树脂购至广州博峰化工科技有限公司,型号为940。
实施例1、本发明高吸附高分散二氧化硅及其制备
第一步、将卡波树脂1.8kg用水4kg分散后,加入硫酸钠溶液9m 3中,搅拌30分钟,制得混合溶液;
第二步、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液1.5m 3,加热至80℃,然后以3.0m 3/h的流速加入硫酸溶液,进行酸碱中和反应,当pH值到达8.0时,停止加酸,熟化10分钟;此段加酸总用时25分钟,即反应时间为25分钟;
第三步、同时加入硅酸钠溶液8m 3和硫酸溶液,进行并流中和反应30分钟,期间通过调节硅酸钠溶液和硫酸溶液的流速以控制过程pH值在8.0,达到30分钟时硅酸钠溶液添加完毕,继续添加硫酸溶液,当终点pH值到达3.5时,停止加酸,搅拌10分钟,制得二氧化硅浆料;
第四步、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水的电导率小于1000μs,通过喷雾干燥后,制得粒径为21~25μm的高吸附高分散二氧化硅。
所述硫酸钠溶液的质量百分比浓度为0.3%;所述硅酸钠溶液的浓度为2.5mol/L;所述硅酸钠的模数为3.45;所述硫酸溶液的浓度为3.0mol/L;所述搅拌的转速为40Hz。
实施例2、本发明高吸附高分散二氧化硅及其制备
第一步、将卡波树脂8.8kg用水18kg分散后,加入硫酸钠溶液11m 3中,搅拌30分钟,制得混合溶液;
第二步、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液3.0m 3,加热至90℃,然后以3.5m 3/h的流速加入硫酸溶液,进行酸碱中和反应,当pH值到达9.0时,停止加酸,熟化10分钟;此段加酸总用时35分钟,即反应时间为35分钟;
第三步、同时加入硅酸钠溶液10m 3和硫酸溶液,进行并流中和反应40分钟,期间通过调节硅酸钠溶液和硫酸溶液的流速以控制过程pH值在9.0,达到40分钟时硅酸钠溶液添加完毕,继续添加硫酸溶液,当终点pH值到达4.0时,停止加酸,搅拌10分钟,制得二氧化 硅浆料;
第四步、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水的电导率小于1000μs,通过喷雾干燥后,制得粒径为22~25μm的高吸附高分散二氧化硅。
所述硫酸钠溶液的质量百分比浓度为1.0%;所述硅酸钠溶液的浓度为3.5mol/L;所述硅酸钠的模数为3.55;所述硫酸溶液的浓度为2.0mol/L;所述搅拌的转速为50Hz。
实施例3、本发明高吸附高分散二氧化硅及其制备
第一步、将卡波树脂5.5kg用水10kg分散后,加入硫酸钠溶液11m 3中,搅拌30分钟,制得混合溶液;
第二步、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液3.0m 3,加热至85℃,然后以3.0m 3/h的流速加入硫酸溶液,进行酸碱中和反应,当pH值到达8.0时,停止加酸,熟化10分钟;此段加酸总用时30分钟,即反应时间为30分钟;
第三步、同时加入硅酸钠溶液8m 3和硫酸溶液,进行并流中和反应35分钟,期间通过调节硅酸钠溶液和硫酸溶液的流速以控制过程pH值在9.0,达到35分钟时硅酸钠溶液添加完毕,继续添加硫酸溶液,当终点pH值到达3.5时,停止加酸,搅拌10分钟,制得二氧化硅浆料;
第四步、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水的电导率小于1000μs,通过喷雾干燥后,制得粒径为18~23μm的高吸附高分散二氧化硅。
所述硫酸钠溶液的质量百分比浓度为0.7%;所述硅酸钠溶液的浓度为3.0mol/L;所述硅酸钠的模数为3.45;所述硫酸溶液的浓度为2.5mol/L;所述搅拌的转速为45Hz。
实施例4、本发明高吸附高分散二氧化硅及其制备
第一步、将卡波树脂6kg用水12kg分散后,加入硫酸钠溶液10m 3中,搅拌30分钟,制得混合溶液;
第二步、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液2.0m 3,加热至85℃,然后以3.0m 3/h的流速加入硫酸溶液,进行酸碱中和反应,当pH值到达8.5时,停止加酸,熟化10分钟;此段加酸总用时30分钟,即反应时间为30分钟;
第三步、同时加入硅酸钠溶液9m 3和硫酸溶液,进行并流中和反应40分钟,期间通过调节硅酸钠溶液和硫酸溶液的流速以控制过程pH值在8.5,达到40分钟时硅酸钠溶液添加完毕,继续添加硫酸溶液,当终点pH值到达4.0时,停止加酸,搅拌10分钟,制得二氧化 硅浆料;
第四步、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水的电导率小于1000μs,通过喷雾干燥后,制得粒径为20~24μm的高吸附高分散二氧化硅。
所述硫酸钠溶液的质量百分比浓度为0.6%;所述硅酸钠溶液的浓度为3.0mol/L;所述硅酸钠的模数为3.55;所述硫酸溶液的浓度为2.6mol/L;所述搅拌的转速为45Hz。
对比例一
与实施例4相比,本对比例的区别仅在于:不添加卡波树脂。
对比例二
与实施例4相比,本对比例的区别仅在于:降低第二步硫酸溶液的添加流速,使加酸总用时延长至45分钟,即反应时间为45分钟。
对比例三
与实施例4相比,本对比例的区别仅在于:所述硫酸钠溶液的质量百分比浓度提高至2.0%。
对比例四
与实施例4相比,本对比例的区别仅在于:通过调节第三步硅酸钠溶液和硫酸溶液的流速以控制过程pH值在8.5,并且控制并流中和反应时间为50分钟。
试验例、本发明二氧化硅的结构和性能检测及应用效果
(一)对实施例1~4和对比例一~四二氧化硅的指标进行检测,二氧化硅吸油值的检测方法,依据国标QB/T2346-2007(5.13吸油值);利用静态氮吸附法检测二氧化硅的比表面积和孔径;采用激光衍射法测定二氧化硅的粒径;结果如下表1所示。
表1 各二氧化硅的结构及性能检测结果
二氧化硅 吸油值(ml/100g) 比表面积(m 2/g) 孔径(nm) 粒径(μm)
实施例1 265 243 12~15 21~25
实施例2 292 264 13~16 22~25
实施例3 312 298 12~16 18~23
实施例4 320 285 14~17 20~24
对比例一 205 220 6~10 40~60
对比例二 225 230 7~13 51~63
对比例三 218 231 8~13 15~21
对比例四 269 251 8~12 60~75
(二)将实施例1~4和对比例一~四的二氧化硅直接应用于浓缩洗衣粉中,制成相应的洗衣粉,对洗衣粉的粉体流动性、粉体抗结块性和去污力进行检测,结果如下表2所示。
浓缩洗衣粉的配方(以重量百分比计):直链烷基苯磺酸盐32%、烧碱13.9%、泡花碱8%(干基)、聚羧酸盐PA25CL 2.5%、荧光增白剂0.2%、纯碱15%、AEO-9 1%、碱性蛋白酶1.5%、香精0.3%和二氧化硅25.6%。
粉体流动性:将已知体积的洗衣粉流过标准孔,根据所用时间计算出该洗衣粉在单位时间内流出的体积,单位为mL/s;流动性的数值越大,表示该粉体的流动性越好。
粉体抗结块性:用10kg的砝码将洗衣粉压成规定尺寸的圆柱体,然后添加砝码,测试使该圆柱体破碎的压力,单位为g;抗结块性的数值越小,表示该洗衣粉越不容易结块。
去污力:根据GB/T 13174-2008《衣料用洗涤剂去污力及循环洗涤性能的测定》对上述洗衣粉的去污力进行检测。
表2 各洗衣粉性质及去污力检测结果
Figure PCTCN2019091688-appb-000001
由上表1和2可知:
(1)本发明二氧化硅的吸油值和比表面积较高,具有良好的吸附性,同时其孔径大且孔径分布集中,可有效吸附污垢,尤其是大分子的油污,使得洗衣粉的吸附力和去污能力提升;
(2)本发明二氧化硅的粒径小且粒径分布窄,无需进行破碎处理即可直接添加于洗衣粉中,同时孔径大,使二氧化硅的分散性得到明显提高,应用于洗衣粉后,带来良好的抗结助流效果,同时也让洗衣粉在水中具有更好的溶解性和分散性。
(3)与实施例4相比,对比例一不添加卡波树脂,二氧化硅自然生长,孔径小,粒径大,比表面积小,以致粒子密实,吸油值变低,去污力下降;对比例二和对比例四延长了反应时间,二氧化硅的孔径变小,粒径变大,以致抗结助流作用变差,同时吸附性变差,导致洗衣粉去污力下降;对比例三提高了反应底液硫酸钠溶液的浓度,二氧化硅的吸油值和比表面积有所下降,导致吸附性下降,影响了洗衣粉的去污力。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

  1. 一种高吸附高分散二氧化硅的制备方法,其特征在于,包括以下步骤:
    第一步、将卡波树脂用水分散后加入硫酸钠溶液9~11m 3中,搅拌30分钟,制得混合溶液;
    第二步、往反应釜中加入混合溶液,搅拌下加入硅酸钠溶液1.5~3.0m 3,加热至80~90℃,然后以3.0~3.5m 3/h的流速加入硫酸溶液,进行酸碱中和反应,当pH值到达8.0~9.0时,停止加酸,熟化10分钟;
    第三步、同时加入硅酸钠溶液8~10m3和硫酸溶液,进行并流中和反应30~40分钟,期间控制过程pH值在8.0~9.0,硅酸钠溶液添加完毕后,继续添加硫酸溶液,当终点pH值到达3.5~4.0时,停止加酸,搅拌10分钟,制得二氧化硅浆料;
    第四步、将二氧化硅浆料进行压滤、洗涤,使二氧化硅滤饼的洗涤水的电导率小于1000μs,通过喷雾干燥后,制得粒径为18~25μm的高吸附高分散二氧化硅。
  2. 如权利要求1所述高吸附高分散二氧化硅的制备方法,其特征在于,所述卡波树脂添加的重量为硫酸钠溶液体积的20~80%。
  3. 如权利要求1所述高吸附高分散二氧化硅的制备方法,其特征在于,所述硫酸钠溶液的质量百分比浓度为0.3~1.0%。
  4. 如权利要求1所述高吸附高分散二氧化硅的制备方法,其特征在于,所述硅酸钠溶液的浓度为2.5~3.5mol/L。
  5. 如权利要求1所述高吸附高分散二氧化硅的制备方法,其特征在于,所述硅酸钠的模数为3.45~3.55。
  6. 如权利要求1所述高吸附高分散二氧化硅的制备方法,其特征在于,所述硫酸溶液的浓度为2.0~3.0mol/L。
  7. 如权利要求1所述高吸附高分散二氧化硅的制备方法,其特征在于,所述搅拌的转速为40~50Hz。
  8. 如权利要求1~7任一项所述高吸附高分散二氧化硅的制备方法制得的二氧化硅,其特征在于,所述二氧化硅的比表面积为240~300m 2/g,孔径为12~17nm,吸油值为260~320ml/100g,粒径为18~25μm。
PCT/CN2019/091688 2018-08-16 2019-06-18 一种高吸附高分散二氧化硅及其制备方法 WO2020034745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810939855.9 2018-08-16
CN201810939855.9A CN108821298B (zh) 2018-08-16 2018-08-16 一种高吸附高分散二氧化硅及其制备方法

Publications (1)

Publication Number Publication Date
WO2020034745A1 true WO2020034745A1 (zh) 2020-02-20

Family

ID=64150270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091688 WO2020034745A1 (zh) 2018-08-16 2019-06-18 一种高吸附高分散二氧化硅及其制备方法

Country Status (2)

Country Link
CN (1) CN108821298B (zh)
WO (1) WO2020034745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250074A (zh) * 2020-10-26 2021-01-22 广州市飞雪材料科技有限公司 一种高吸油高比表面积的二氧化硅的制备方法及其应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821298B (zh) * 2018-08-16 2019-03-29 广州市飞雪材料科技有限公司 一种高吸附高分散二氧化硅及其制备方法
CN109480097B (zh) * 2019-01-03 2022-02-01 山东联科科技股份有限公司 一种酸化剂载体用二氧化硅微球的制备方法
CN112047352B (zh) * 2019-07-08 2021-11-30 福建远翔新材料股份有限公司 一种高吸附效率啤酒防混浊剂用二氧化硅的生产方法
CN110395740B (zh) * 2019-07-12 2020-03-24 广州市飞雪材料科技有限公司 一种高流动性高吸油值洗衣粉用二氧化硅及其制备方法
CN110683550B (zh) * 2019-11-15 2020-07-14 广州市飞雪材料科技有限公司 一种湿式牙膏用二氧化硅浆料及其制备方法
CN111039298B (zh) * 2020-01-13 2023-10-24 福建省三明正元化工有限公司 一种高分散二氧化硅的制备方法
CN111392739B (zh) * 2020-03-27 2020-12-01 广州市飞雪材料科技有限公司 一种高分散性增稠型二氧化硅的制备方法及应用
CN112694092A (zh) * 2020-12-29 2021-04-23 山东联科卡尔迪克白炭黑有限公司 一种氯化胆碱载体用二氧化硅的生产工艺及应用
CN113603104B (zh) * 2021-08-27 2022-04-08 金三江(肇庆)硅材料股份有限公司 沉淀法制备高吸油值高比表面积的蓄电池用二氧化硅
CN114455598B (zh) * 2022-03-14 2022-09-16 金三江(肇庆)硅材料股份有限公司 一种造纸颜料用疏水高分散高吸附二氧化硅及其制备方法
CN114956105B (zh) * 2022-07-26 2022-10-21 广州市飞雪材料科技有限公司 一种植脂末用高吸附二氧化硅抗结剂及其制备方法
CN115385347B (zh) * 2022-09-05 2023-03-14 金三江(肇庆)硅材料股份有限公司 一种可调节孔径的沉淀型二氧化硅及其制备方法和应用
CN115557509B (zh) * 2022-10-12 2023-04-14 金三江(肇庆)硅材料股份有限公司 一种二氧化硅纳米颗粒及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812319A (ja) * 1994-06-21 1996-01-16 Lion Corp 低屈折率無機粉体、その製造方法、それを用いた液状洗浄剤組成物及び透明歯磨組成物
CN105271268A (zh) * 2015-11-13 2016-01-27 上海联锴日用化工有限公司 一种单分散介孔二氧化硅微球粉及其制备方法
JP2017222523A (ja) * 2016-06-13 2017-12-21 株式会社NDYunited 酸素を包含するシリカコロイド集合体分散水、酸素を包含するシリカコロイド集合体分散水の製造方法、酸素を包含するシリカコロイド集合体分散水よりなる洗浄剤及び酸素を包含するシリカコロイド集合体分散水よりなる洗浄剤の製造方法
CN108516559A (zh) * 2018-05-25 2018-09-11 广州市飞雪材料科技有限公司 一种低粘度高吸油值牙膏用二氧化硅的制备方法
CN108821298A (zh) * 2018-08-16 2018-11-16 广州市飞雪材料科技有限公司 一种高吸附高分散二氧化硅及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858668B (zh) * 2016-03-30 2017-03-22 广州市飞雪材料科技有限公司 一种高吸油值高吸水量洗衣粉用二氧化硅的制备方法
CN106986349B (zh) * 2017-05-27 2017-12-19 广州市飞雪材料科技有限公司 一种低消泡二氧化硅的制备方法
CN107324346B (zh) * 2017-07-27 2018-08-07 广州市飞雪材料科技有限公司 一种高比表面积高吸油值二氧化硅的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812319A (ja) * 1994-06-21 1996-01-16 Lion Corp 低屈折率無機粉体、その製造方法、それを用いた液状洗浄剤組成物及び透明歯磨組成物
CN105271268A (zh) * 2015-11-13 2016-01-27 上海联锴日用化工有限公司 一种单分散介孔二氧化硅微球粉及其制备方法
JP2017222523A (ja) * 2016-06-13 2017-12-21 株式会社NDYunited 酸素を包含するシリカコロイド集合体分散水、酸素を包含するシリカコロイド集合体分散水の製造方法、酸素を包含するシリカコロイド集合体分散水よりなる洗浄剤及び酸素を包含するシリカコロイド集合体分散水よりなる洗浄剤の製造方法
CN108516559A (zh) * 2018-05-25 2018-09-11 广州市飞雪材料科技有限公司 一种低粘度高吸油值牙膏用二氧化硅的制备方法
CN108821298A (zh) * 2018-08-16 2018-11-16 广州市飞雪材料科技有限公司 一种高吸附高分散二氧化硅及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250074A (zh) * 2020-10-26 2021-01-22 广州市飞雪材料科技有限公司 一种高吸油高比表面积的二氧化硅的制备方法及其应用
CN112250074B (zh) * 2020-10-26 2021-05-07 广州市飞雪材料科技有限公司 一种高吸油高比表面积的二氧化硅的制备方法及其应用

Also Published As

Publication number Publication date
CN108821298B (zh) 2019-03-29
CN108821298A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2020034745A1 (zh) 一种高吸附高分散二氧化硅及其制备方法
CN110395740B (zh) 一种高流动性高吸油值洗衣粉用二氧化硅及其制备方法
CN101979443B (zh) 一种改性白炭黑的生产方法
CN111484025B (zh) 一种低比表面积高密度增稠型牙膏用二氧化硅的制备方法
JPS61117113A (ja) 高い吸油性能と制御された一次構造とを有するシリカ及びその製造方法
CN103571334B (zh) 氧化铈抛光粉及其制备方法
CN111547730B (zh) 一种粉末涂料用超细沉淀二氧化硅抗结剂的制备方法
CN107324346A (zh) 一种高比表面积高吸油值二氧化硅的制备方法
WO2020140401A1 (zh) 一种低吸油值高比表面积磨擦型二氧化硅及其制备方法
CN108190893B (zh) 一种铅酸蓄电池隔板用二氧化硅的制备方法
CN106276935B (zh) 水玻璃联产白炭黑清洁化生产工艺
CN110054193B (zh) 一种高分散高导热白炭黑的制备方法
CN105967201A (zh) 一种用粉煤灰酸渣生产p型沸石的方法
CN103769045B (zh) 一种粉煤灰基高性能吸附材料的制备方法
TW387859B (en) Amorphous precipitated silica
CN105858668B (zh) 一种高吸油值高吸水量洗衣粉用二氧化硅的制备方法
CN106044790A (zh) 一种沉淀法制备白炭黑的方法
CN106241879B (zh) 一种纳米三氧化钨空心团聚球粉末的制备方法
CN103466644A (zh) 一种疏水性白炭黑的制备方法
CN103553069B (zh) 一种亚微米4a沸石的制备方法
CN103936013B (zh) 一种制备白炭黑浆液的方法
AU2017304792A1 (en) Method for manufacturing ultra-porous nano-SiO2
CN106477591A (zh) 一种pe 隔板用二氧化硅的制备方法
CN110482559A (zh) 一种铝改性酸性硅溶胶及其制备方法和应用
CN106673032A (zh) 一种高酸性低结晶度氧化铝干胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849658

Country of ref document: EP

Kind code of ref document: A1