WO2020077879A1 - 一种自组装铜球、导电油墨及其制备方法和应用 - Google Patents

一种自组装铜球、导电油墨及其制备方法和应用 Download PDF

Info

Publication number
WO2020077879A1
WO2020077879A1 PCT/CN2018/125634 CN2018125634W WO2020077879A1 WO 2020077879 A1 WO2020077879 A1 WO 2020077879A1 CN 2018125634 W CN2018125634 W CN 2018125634W WO 2020077879 A1 WO2020077879 A1 WO 2020077879A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
self
assembled
conductive ink
polyvinylpyrrolidone
Prior art date
Application number
PCT/CN2018/125634
Other languages
English (en)
French (fr)
Inventor
李刚
胡新艳
朱朋莉
赵涛
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to JP2021510823A priority Critical patent/JP7197685B2/ja
Publication of WO2020077879A1 publication Critical patent/WO2020077879A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present application belongs to the technical field of conductive inks, and relates to a self-assembled copper ball, a conductive ink, and a preparation method and application thereof, for example, to a self-assembled copper ball, a preparation method thereof, and a conductive ink and a conductive ink using the same Application of conductive ink.
  • Printed electronics has the advantages of simple process, high yield and low cost, and is slowly replacing the traditional lithography method.
  • conductive inks are receiving more and more attention.
  • nano silver ink has been widely used in various commercial fields due to its high conductivity and stability.
  • its high price and easy migration of electronic features limit its wide application.
  • Copper conductive ink is considered to be the best substitute for gold and silver conductive ink due to its low price and excellent conductivity.
  • the main disadvantage of copper conductive ink is that copper nanoparticles are easy to oxidize and difficult to sinter, which may reduce the conductivity and increase the sintering temperature.
  • PI polyimide
  • Nano-copper particles are easy to oxidize and not easy to sinter at low temperature, mainly to try to functionalize the surface of individual nano-copper particles, and the structural design of copper particles to adjust these properties is rarely reported.
  • Israeli 3D printing electronics company NanoDimension announced that its subsidiary NanoDimension has successfully developed not only oxidation resistance, but also sintered interconnected copper nanoparticles at temperatures below 160 °C.
  • Antioxidant copper nanoparticles are constructed as "unique spherical clusters" with similar properties to the core / shell structure.
  • Nano Dimension Technologies has filed a similar copper particle patent application with the US Patent and Trademark Office, but the company has not disclosed details of its patent-pending technology.
  • CN104292983A discloses a conductive ink.
  • the components and formulation of the conductive ink are as follows: graphene 5 parts-30 parts; carbon black 5 parts-20 parts; copper powder 5 parts-20 parts; resin 5 parts-30 parts; 20 parts to 40 parts of solvent; 1 part to 20 parts of auxiliary; the conductive ink prepared by the invention has high resistivity and poor conductive performance.
  • CN105458295A discloses a porous copper ball and a preparation method thereof; the preparation method includes the following steps: adding a copper source, an organic acid complexing agent, and an organic amine complexing agent to a solvent, stirring uniformly, and then adding the reducing agent hydrazine hydrate to react , Centrifugation, taking the precipitate, washing and vacuum drying to obtain porous copper balls; the porous copper balls prepared by this invention are not mentioned and can be applied to conductive inks.
  • the purpose of the present application is to provide a self-assembled copper ball, conductive ink and its preparation method and application, in particular to provide a self-assembled copper ball, its preparation method and conductive ink using it and its preparation method and application, the method
  • the prepared self-assembled copper ball has good oxidation resistance, and the preparation process is simple and environmentally friendly.
  • the conductive ink prepared by the self-assembled copper ball has lower resistivity, higher conductivity, and lower sintering temperature. Will not cause higher energy loss.
  • One of the purposes of the present application is to provide a self-assembled copper ball including a composite copper ball and a polymer coated on the surface of the composite copper ball, the composite copper ball including copper particles and adsorbed on the copper particles Oxidation products of surface reducing agents.
  • the self-assembled copper ball prepared by the present application has good oxidation resistance, and the oxidation is not obvious when placed in the air for a long time.
  • the self-assembled copper balls prepared in the present application can form a sheet-like structure under external force induction, and can realize low-temperature interconnection.
  • the self-assembled copper balls prepared by the present application absorb the oxidation products of the reducing agent on the outside of the copper particles, and the coated polymer, so that the self-assembled copper balls have good oxidation resistance.
  • the composite copper ball further includes a reducing agent adsorbed on the surface of the copper particles.
  • the polymer is polyvinylpyrrolidone.
  • the polyvinylpyrrolidone includes: any one of polyvinylpyrrolidone K13-K18, polyvinylpyrrolidone K23-K27, polyvinylpyrrolidone K29-K32 or polyvinylpyrrolidone K88-K96 or a combination of at least two .
  • the number average molecular weight of the polyvinylpyrrolidone K13-K18 is 0.8-1.2 thousand, for example, 8,000, 80,500, 09,000, 0.95 million, 10,000, 105,000, 11,000, 115,000, 12,000 Wait.
  • the number average molecular weight of the polyvinylpyrrolidone K23-K27 is 2-28 thousand, such as 20,000, 21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000 Wait.
  • the number average molecular weight of the polyvinylpyrrolidone K29-K32 is 55,000-65,000, such as 55,000, 56,000, 57,000, 58,000, 59,000, 60, 000, 61,000, 62,000, 63,000 , 64,000, 65,000, etc.
  • the number average molecular weight of the polyvinylpyrrolidone K88-K96 is 1.2-1.4 million, such as 1.2 million, 1.22 million, 1.25 million, 1.27 million, 1.3 million, 1.32 million, 1.35 million, 1.38 million, 1.4 million Wait.
  • the reducing agent is ascorbic acid and / or sodium metaborate.
  • the oxidation product of the reducing agent is dehydroascorbic acid and / or sodium metaborate.
  • the particle size of the self-assembled copper balls is 2-10 ⁇ m, such as 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, and the like.
  • the second objective of the present application is to provide a method for preparing self-assembled copper balls.
  • the preparation method includes: mixing and reacting a copper precursor, a conjugate and a reducing agent in a solvent to obtain the self-assembled copper balls, wherein
  • the copper precursor includes any one or a combination of at least two of copper hydroxide, copper acetylacetonate, or copper citrate.
  • the liquid phase reduction method is used to prepare self-assembled copper balls.
  • the preparation process is simple and does not need to be carried out in an inert environment.
  • the raw materials are readily available, environmentally friendly, and can be mass produced.
  • the self-assembled micron copper balls prepared by the preparation method described in this application have uniform size, controllable particle size, and less surface organic content.
  • the oxidation product of the copper particles and the reducing agent is an oxidation product of the copper particles and the reducing agent prepared by reacting the copper precursor with the reducing agent.
  • the copper precursor used in this application is any one or a combination of at least two of copper hydroxide, copper acetylacetonate, copper citrate, copper nitrate trihydrate or copper sulfate pentahydrate, if copper nitrate, copper sulfate or chlorine is used Strongly acidic metal copper salts such as copper chloride cannot react with ascorbic acid at low temperatures to generate metal copper particles; if metal copper salts such as copper formate and copper acetate are selected, copper powder will be generated instead of Assemble copper microparticles.
  • the reducing agent includes ascorbic acid and / or sodium borohydride.
  • ascorbic acid reacts with copper ions in the copper precursor.
  • the dehydroascorbic acid produced by the reaction is adsorbed on copper The surface of the particles causes the copper particles to be negatively charged. Under the electrostatic force of the positively charged groups of polyvinylpyrrolidone, the clusters slowly grow to form a uniform and stable self-assembled structure with a rough surface.
  • the solvent is water and / or alcohol.
  • the alcohol is one or a combination of at least two of ethanol, ethylene glycol or glycerin.
  • the mass ratio of the copper precursor to the polymer is 1: (0.05-2), such as 1: 0.05, 1: 0.1, 1: 0.2, 1: 0.3, 1: 0.4, 1: 0.5, 1: 0.6, 1: 0.7, 1: 0.8, 1: 0.9, 1: 1, 1: 1.1, 1: 1.2, 1: 1.3, 1: 1.4, 1: 1.5, 1: 1.6, 1: 1.7, 1: 1.8, 1: 1.9, 1: 2, etc.
  • the mass ratio of the copper precursor to the polymer is 1: (0.05-2). Within this ratio, it can ensure that the polymer can completely coat the small particles formed by the copper precursor without causing raw materials. Waste; when the mass ratio of the two is higher than 1: 0.05, the amount of polymer is too small to cover the small particles formed by the copper precursor completely, causing the self-assembled copper balls to be easily oxidized; when the two When the mass ratio is less than 1: 2, although it will accelerate the aggregation of copper particles, it will cause waste of raw materials.
  • the mass ratio of the copper precursor to the reducing agent is 1: (1-50), such as 1: 1, 1: 5, 1:10, 1:15, 1:20, 1:25 , 1:30, 1:35, 1:40, 1:45, 1:50, etc.
  • the mass ratio of copper precursor and reducing agent used in this application is 1: (1-50), within this range, it can ensure the smooth progress of the reaction without causing waste of raw materials; when the copper precursor and reducing agent When the mass ratio is higher than 1: 1, some copper precursors will not react or generate monovalent copper ions; when the mass ratio of copper precursor to reducing agent is less than 1:50, although the reaction will accelerate Proceed, but it will cause waste of raw materials.
  • the reaction temperature is 40-150 ° C, such as 40 ° C, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 °C etc.
  • the reaction time is 10-180 min, for example 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, 70 min, 80 min, 90 min, 100 min, 110 min, 120 min, 130 min, 140 min, 150 min, 160 min, 170 min, 180 min Wait.
  • the preparation method further includes post-processing the obtained self-assembled copper balls.
  • the post-treatment includes solid-liquid separation, cleaning, and vacuum drying.
  • the solid-liquid separation is centrifugation.
  • the solvent used for the cleaning is water and / or ethanol.
  • the preparation method includes: mixing a copper precursor, a protective agent polyvinylpyrrolidone and a reducing agent in a mass ratio of 1: (0.05-2): (1-50) in water and / or alcohol, 40 Reaction at -150 ° C for 10-180 min, and then centrifugation, washing with water and / or alcohol, and vacuum drying to obtain the self-assembled copper balls with a particle size of 2-10 ⁇ m.
  • the third object of the present application is to provide a conductive ink including the self-assembled copper ball according to one of the objects.
  • the fourth object of the present application is to provide a method for preparing the conductive ink according to the third object, the preparation method includes: dispersing a self-assembled copper ball in an organic solvent to obtain the conductive ink.
  • the organic solvent is any one or a combination of at least two of ethanol, ethylene glycol, glycerin, triethylene glycol monomethyl ether, terpineol or ethylene glycol butyl ether.
  • the mixing is ball milling.
  • the fifth object of the present application is to provide an application of the conductive ink as described in the third object as a printed electronic functional material.
  • the self-assembled copper balls provided by this application have good anti-oxidation ability, and will not oxidize when placed in the air for a long time; the prepared self-assembled balls are easily broken into small columnar particles by external force, and the particles are more It is easy to realize interconnection and shows good sintering performance.
  • the sintering temperature can be as low as 180 °C; it is prepared by liquid phase reduction method, the preparation process is simple, does not need to be carried out in an inert environment, the preparation raw materials are easily available, environmentally friendly, and can be used in industry Production, mass production of self-assembled copper balls; conductive inks prepared by self-assembled balls have lower resistivity, the resistivity can be as low as 5 ⁇ 10 -6 ⁇ ⁇ m, showing good conductivity.
  • Example 1 is an XRD diagram of the self-assembled copper ball prepared in Example 1 of the present application and placed in the air for three months;
  • Example 2 is an XPS diagram of the self-assembled copper ball prepared in Example 1 of this application and placed in the air for three months;
  • Example 3 is an SEM image of the self-assembled copper ball prepared in Example 1 of the present application, and the scale is 4 ⁇ m;
  • Figure 4 (a) is an SEM image of the conductive ink prepared in Example 1 of the present application after sintering at 25 ° C, with a scale of 10 ⁇ m;
  • Example 5 is an SEM image of a self-assembled copper ball prepared in Example 2 of the present application, with a scale of 4 ⁇ m;
  • Example 6 is an SEM image of a self-assembled copper ball prepared in Example 3 of the present application, with a scale of 4 ⁇ m;
  • Example 7 is an SEM image of a self-assembled copper ball prepared in Example 4 of the present application, with a scale of 4 ⁇ m;
  • Example 8 is an SEM image of a self-assembled copper ball prepared in Example 5 of the present application, with a scale of 4 ⁇ m;
  • Example 9 is an SEM image of a self-assembled copper ball prepared in Example 6 of the present application, and the scale is 4 ⁇ m.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • the oxidation product of the reducing agent wherein the polymer is polyvinylpyrrolidine K29-K32, its number average molecular weight is 58,000, and the oxidation product of the reducing agent is dehydroascorbic acid.
  • the preparation method of the self-assembled copper ball is as follows:
  • Copper hydroxide, polyvinylpyrrolidone K29-K32 and L-ascorbic acid are mixed in water according to a mass ratio of 1: 0.26: 12, wherein the mass of copper hydroxide is 3.92g, and the mass of polyvinylpyrrolidone K29-K32 is 1g, L- The mass of ascorbic acid was 12 g, and the reaction was carried out at 40 ° C. for 90 min, and then centrifuged, the obtained solid was centrifugally washed with ethanol, and vacuum dried to obtain the self-assembled copper balls with a particle size of 3-10 ⁇ m.
  • the preparation method of the conductive ink is as follows:
  • FIG. 1 is an XRD diagram of the self-assembled copper balls prepared in this example and the prepared self-assembled copper balls placed in the air for three months. As can be seen from FIG. 1, the prepared self-assembled copper balls are placed in the air for three months After that, no obvious oxidation occurred.
  • FIG. 2 is an XPS diagram of the self-assembled copper balls prepared in this example and the prepared self-assembled copper balls placed in the air for three months. As can be seen from FIG. 2, the prepared self-assembled copper balls are placed in the air for three months After that, no obvious oxidation occurred.
  • FIG. 3 is an SEM image of a self-assembled copper ball prepared in this example, with a scale of 4 ⁇ m, indicating that the preparation method produces a uniform, stable, and rough surface self-assembled structure.
  • FIG. 4 (a) is an SEM image of the conductive ink prepared in this example after sintering at 25 ° C.
  • the scale is 10 ⁇ m, indicating that the conductive ink cannot be sintered at 25 ° C.
  • FIG. 4 (b) is an SEM image of the conductive ink prepared in this example sintered at 150 ° C.
  • the scale is 10 ⁇ m, indicating that the conductive ink cannot be sintered at 150 ° C.
  • FIG. 4 (c) is an SEM image of the conductive ink prepared in this example sintered at 200 ° C.
  • the scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 200 ° C.
  • FIG. 4 (c) is an SEM image of the conductive ink prepared in this example sintered at 200 ° C. The scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 200 ° C.
  • FIG. 4 (d) is an SEM image of the conductive ink prepared at this embodiment sintered at 250 ° C.
  • the scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 250 ° C.
  • FIG. 4 (e) is an SEM image of the conductive ink prepared in this example sintered at 300 ° C.
  • the scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 300 ° C.
  • FIG. 4 (e) is an SEM image of the conductive ink prepared in this example sintered at 300 ° C. The scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 300 ° C.
  • FIG. 4 (f) is an SEM image of the conductive ink prepared in this example sintered at 350 ° C.
  • the scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 350 ° C.
  • FIG. 4 (f) is an SEM image of the conductive ink prepared in this example sintered at 350 ° C. The scale is 10 ⁇ m, indicating that the conductive ink can be sintered at 350 ° C.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • the conductive ink prepared in this embodiment has a lower sintering temperature, lower resistivity and better conductivity.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • the oxidation product of the reducing agent wherein the polymer is polyvinylpyrrolidine K29-K32, its number average molecular weight is 58,000, and the oxidation product of the reducing agent is dehydroascorbic acid.
  • the preparation method of the self-assembled copper ball is as follows:
  • Copper hydroxide, polyvinylpyrrolidone K29-K32 and L-ascorbic acid are mixed in a mixed solution of 200mL water and 200ml ethanol according to a mass ratio of 1: 0.26: 12, wherein the mass of copper hydroxide is 3.92g, and polyvinylpyrrolidone K29-
  • the mass of K32 was 1 g
  • the mass of L-ascorbic acid was 12 g
  • the reaction was carried out at 80 ° C. for 30 min, and then centrifuged, the obtained solid was centrifugally washed with ethanol, and vacuum dried to obtain the self-assembled copper balls with a particle size of 4 ⁇ m.
  • the preparation method of the conductive ink is as follows:
  • FIG. 5 is an SEM image of the self-assembled copper balls prepared in this example, and the scale is 4 ⁇ m, which shows that the preparation method produces a uniform and stable self-assembled structure with a rough surface.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 5.5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • the conductive ink prepared in this embodiment has a lower sintering temperature, lower resistivity and better conductivity.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • Oxidation product of the reducing agent wherein the polymer is polyvinylpyrrolidine K88-K96 with a number average molecular weight of 130,000, and the oxidation product of the reducing agent is dehydroascorbic acid.
  • the preparation method of the self-assembled copper ball is as follows:
  • Copper hydroxide, polyvinylpyrrolidone K88-K96 and L-ascorbic acid are mixed in a mixed solution of 200mL water and 200ml ethanol according to a mass ratio of 1: 0.26: 12, wherein the mass of copper hydroxide is 3.92g, and polyvinylpyrrolidone K88-
  • the mass of K96 was 1 g
  • the mass of L-ascorbic acid was 12 g
  • the reaction was carried out at 60 ° C. for 60 min, and then centrifuged, the obtained solid was centrifugally washed with ethanol, and vacuum dried to obtain the self-assembled copper balls with a particle size of 3 ⁇ m.
  • the preparation method of the conductive ink is as follows:
  • FIG. 6 is an SEM image of a self-assembled copper ball prepared in this example, with a scale of 4 ⁇ m, which illustrates that the preparation method produces a uniform and stable self-assembled structure with a rough surface.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 6 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • the conductive ink prepared in this embodiment has a lower sintering temperature, lower resistivity and better conductivity.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • Oxidation product of the reducing agent where the polymer is a mixture of polyvinylpyrrolidone K29-K32 (number average molecular weight of 58,000) and polyvinylpyrrolidone K88-K96 (number average molecular weight of 130,000), the oxidation of the reducing agent
  • the product is dehydroascorbic acid.
  • the preparation method of the self-assembled copper ball is as follows:
  • Copper hydroxide, polyvinylpyrrolidone and L-ascorbic acid were mixed in 400mL water according to a mass ratio of 1: 0.52: 6, wherein the mass of copper hydroxide was 3.92g, polyvinylpyrrolidone was 1g polyvinylpyrrolidone-K29-K32, and The mixture of vinylpyrrolidone K88-K96, the mass of L-ascorbic acid was 12 g, and the reaction was carried out at 80 ° C. for 30 min, and then centrifuged, the obtained solid was centrifugally washed with ethanol, and vacuum-dried to obtain the self-assembled copper balls with a particle size of 6 ⁇ m.
  • the preparation method of the conductive ink is as follows:
  • FIG. 7 is an SEM image of the self-assembled copper balls prepared in this example, with a scale of 4 ⁇ m, indicating that the preparation method produces a uniform, stable, and rough surface self-assembled structure. After placing the prepared self-assembled copper balls in the air for three months, no obvious oxidation occurred.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 6 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • Oxidation product of the reducing agent where the polymer is a mixture of polyvinylpyrrolidone K13-K18 (number average molecular weight of 10,000) and polyvinylpyrrolidone K88-K96 (number average molecular weight of 130,000), the oxidation of the reducing agent
  • the product is dehydroascorbic acid.
  • the preparation method of the self-assembled copper ball is as follows:
  • Copper hydroxide, polyvinylpyrrolidone and L-ascorbic acid were mixed in 400mL water according to a mass ratio of 1: 0.52: 6, wherein the mass of copper hydroxide was 3.92g, polyvinylpyrrolidone was 1g polyvinylpyrrolidone-K88-K96 and 1g poly The mixture of vinylpyrrolidone K13-K18, the mass of L-ascorbic acid was 12g, and the reaction was carried out at 80 ° C for 30 min, and then centrifuged, the obtained solid was centrifugally washed with ethanol, and vacuum dried to obtain the self-assembled copper balls with a particle size of 5 ⁇ m.
  • the preparation method of the conductive ink is as follows:
  • FIG. 8 is an SEM image of the self-assembled copper balls prepared in this example, and the scale is 4 ⁇ m, which shows that the preparation method produces a uniform and stable self-assembled structure with a rough surface.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 5.5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • the oxidation product of the reducing agent wherein the polymer is polyvinylpyrrolidine K29-K32, its number average molecular weight is 58,000, and the oxidation product of the reducing agent is dehydroascorbic acid.
  • the preparation method of the self-assembled copper ball is as follows: copper hydroxide, polyvinylpyrrolidone K29-K32 and L-ascorbic acid are mixed according to a mass ratio of 1: 0.72: 4 in 400 mL of water, wherein the mass of copper hydroxide is 3.92 g, poly The mass of vinylpyrrolidone K29-K32 was 3 g, the mass of L-ascorbic acid was 12 g, and the reaction was carried out at 80 ° C. for 30 min, and then centrifuged, the obtained solid was centrifugally washed with ethanol, and vacuum dried to obtain the self-assembled copper balls with a particle size of 2 ⁇ m.
  • the preparation method of the conductive ink is as follows:
  • FIG. 9 is an SEM image of the self-assembled copper balls prepared in this example, and the scale is 4 ⁇ m, which shows that the preparation method produces a uniform and stable self-assembled structure with a rough surface.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 6.5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • the preparation method of the self-assembled copper ball is as follows:
  • Copper hydroxide, polyvinylpyrrolidone K29-K32 and sodium borohydride are mixed in water according to a mass ratio of 1: 0.05: 1, wherein the mass of copper hydroxide is 4g, the mass of polyvinylpyrrolidone K29-K32 is 0.8g, and the borohydride
  • the mass of sodium was 4 g, and the reaction was carried out at 150 ° C. for 10 min. After centrifugation, the obtained solid was centrifugally washed with ethanol and vacuum dried to obtain the self-assembled copper balls with a particle size of 3 ⁇ m.
  • This embodiment provides a method for preparing a conductive ink.
  • the preparation method includes:
  • the conductive ink prepared in this example was sintered at a sintering temperature of 180 ° C for 1 hour, and the resistivity of the conductive path was 5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • a self-assembled copper ball in this embodiment, includes a composite copper ball and a polymer coated on the surface of the composite copper ball.
  • the composite copper ball includes copper particles and adsorbed on the surface of the copper particles.
  • the preparation method of the self-assembled copper ball is as follows: copper hydroxide, polyvinylpyrrolidone K29-K32 and sodium borohydride are mixed in water at a mass ratio of 1: 2: 50, wherein the mass of copper hydroxide is 1 g, and polyvinylpyrrolidone The mass of K29-K32 is 2 g, the mass of sodium borohydride is 50 g, and the reaction is carried out at 40 ° C. for 180 min, and then centrifuged, the obtained solid is centrifugally washed with ethanol, and vacuum-dried to obtain the self-assembled copper balls with a particle size of 6 ⁇ m.
  • This embodiment provides a method for preparing a conductive ink.
  • the preparation method includes:
  • the conductive ink prepared in this example was sintered at 200 ° C. for 1 hour, and the resistivity of the conductive path was 5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • the self-assembled copper balls prepared in this example were placed in the air for 3 months, and it was found that the self-assembled copper balls were partially oxidized.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 8 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • the divalent copper ions were reduced to copper, and part of them were reduced to monovalent copper ions. Placed in the air for three months, it was found that the self-assembled copper balls were partially oxidized.
  • the conductive ink prepared in this example was sintered at a sintering temperature of 250 ° C. for 1 hour, and the resistivity of the conductive path was 8.5 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • the self-assembled copper ball cannot be prepared in this comparative example, and it is easily oxidized when placed in the air.
  • the conductive ink prepared in this comparative example was sintered at 200 ° C for 1 hour, and the resistivity of the conductive path was 10 ⁇ 10 -6 ⁇ ⁇ m.
  • the self-assembled copper balls cannot be prepared in this comparative example.
  • the conductive ink prepared in this comparative example was sintered at 200 ° C. for 1 hour, and the resistivity of the conductive path was 3.5 ⁇ 10 -4 ⁇ ⁇ m.
  • This comparative example differs from Example 1 only in that the copper precursor is copper nitrate, and the remaining components and composition ratios and preparation methods are the same as in Example 1.
  • the self-assembled copper balls cannot be prepared in this comparative example.
  • the conductive ink prepared in this comparative example was sintered at 200 ° C. for 1 hour, and the resistivity of the conductive path was 12 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • This comparative example differs from Example 1 only in that the copper precursor is copper sulfate, and the remaining components and composition ratios and preparation methods are the same as in Example 1.
  • the self-assembled copper balls cannot be prepared in this comparative example.
  • the conductive ink prepared in this comparative example was sintered at 200 ° C. for 1 hour, and the resistivity of the conductive path was 20 ⁇ 10 ⁇ 6 ⁇ ⁇ m.
  • This comparative example differs from Example 1 only in that the copper precursor is copper acetate, and the remaining components and composition ratios and preparation methods are the same as in Example 1.
  • the self-assembled copper balls cannot be prepared in this comparative example.
  • the conductive ink prepared in this comparative example was sintered at 200 ° C. for 1 hour, and the resistivity of the conductive path was 15 ⁇ 10 ⁇ 6 ⁇ ⁇ m.

Abstract

一种自组装铜球、导电油墨及其制备方法和应用,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物。

Description

一种自组装铜球、导电油墨及其制备方法和应用 技术领域
本申请属于导电油墨技术领域,涉及一种自组装铜球、导电油墨及其制备方法和应用,例如涉及一种自组装铜球、其制备方法以及使用它的导电油墨、导电油墨的制备方法和导电油墨的应用。
背景技术
印刷电子具有工艺简单,产量高,成本低等优点,正慢慢取代传统的光刻方法。导电油墨作为印刷电子的功能材料,越来越受到人们的重视。其中,纳米银油墨因其高导电性和稳定性,已经广泛的应用于各大商业领域。但是其价格高,电子易迁移等特点,限制了其广泛应用。铜导电油墨由于价格低廉,导电性优异,被认为是金银导电油墨的最佳替代品。但是铜导电油墨的主要缺点是铜纳米颗粒易氧化,难以烧结,这可能降低电导率并提高烧结温度。对于塑料,聚酰亚胺(PI),纸等柔性基底,高温会破坏其基底。为了实现铜油墨的广泛商业应用,我们必须解决抗氧化性差和烧结性差的问题。
为了提高铜导电油墨的抗氧化性能,研究人员做了很多研究,分别是使用惰性气氛,聚合物涂层,碳/石墨烯涂层和金属外壳。然而,这些方法存在一些缺点,涂层工艺通常很繁琐且不完整。此外,氧化是不可避免的,并取决于周围的环境,表面的聚合物可能会影响其烧结。在所有的方法中,合成抗氧化性良好的铜颗粒是最佳选择。另外,可烧结性差也限制了铜油墨的应用。表面氧化层会严重降低铜基油墨的电导率并提高烧结温度,而且合成过程的有机物通常在高于250℃的烧结温度下才会分解。为了获得更好的烧结性能,研究人员尝试了不同的烧结技术,如光子烧结,激光烧结,闪光烧结,等离子工艺等,但 这些都需要复杂的烧结设备。因此目前实现铜油墨的低温烧结仍然是一个难题。
目前,解决纳米铜颗粒容易氧化以及低温下不易烧结的问题,主要是尝试对单独的纳米铜颗粒进行的表面功能化,而对铜颗粒的结构设计来调控这些性能很少有报道。近日,以色列3D打印电子公司Nano Dimension对外发布消息称,其子公司Nano Dimension Technologies已经成功开发出不仅具有抗氧化性,而且可以在低于160℃的温度下烧结互联的铜纳米粒子。抗氧化铜纳米颗粒被构造成具有与核/壳结构相似性质的“独特的球形簇”。目前,Nano Dimension Technologies已向美国专利商标局提交类似的铜粒子专利申请,但该公司还没有透露其正在申请专利的技术的细节。
CN104292983A公开了一种导电油墨,所述导电油墨的组分及配方如下:石墨烯5份-30份;炭黑5份-20份;铜粉5份-20份;树脂5份-30份;溶剂20份-40份;助剂1份-20份;该发明制备的导电油墨电阻率较高,导电性能较差。
CN105458295A公开了一种多孔铜球及其制备方法;该制备方法包括如下步骤:将铜源和有机酸络合剂、有机胺络合剂加入溶剂中,搅拌均匀后再加入还原剂水合肼进行反应,离心,取沉淀,洗涤后真空干燥,得到多孔铜球;该发明制备的多孔铜球未提及可应用于导电油墨中。
因此,开发一种新型的导电效果好的铜导电油墨非常有必要。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种自组装铜球、导电油墨及其制备方法和应用,特别是提供一种自组装铜球、其制备方法以及使用它的导电油墨及其制备方法和应用,该方法制备的自组装铜球具有较好的抗氧化性,且制备工艺简单,环 境友好,该自组装铜球制备的导电油墨具有较低的电阻率,较高的导电性能,且烧结温度较低,不会造成较高的能量损耗。
为达此目的,本申请采用以下技术方案:
本申请的目的之一在于提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物。
本申请制备的自组装铜球具有较好的抗氧化性,在空气中长久放置氧化不明显。
本申请制备的自组装铜球在外力诱导下可形成片状结构,能够实现低温互联。
本申请制备的自组装铜球中铜颗粒外面吸附还原剂的氧化产物,以及包覆聚合物,使自组装铜球具有良好的抗氧化性。
在本申请中,所述复合铜球还包括吸附在铜颗粒表面的还原剂。
在本申请中,所述聚合物为聚乙烯吡咯烷酮。
在本申请中,所述聚乙烯吡咯烷酮包括:聚乙烯吡咯烷酮K13-K18、聚乙烯吡咯烷酮K23-K27、聚乙烯吡咯烷酮K29-K32或聚乙烯吡咯烷酮K88-K96中的任意一种或至少两种的组合。
在本申请中,所述聚乙烯吡咯烷酮K13-K18的数均分子量为0.8-1.2万,例如0.8万、0.85万、0.9万、0.95万、1.0万、1.05万、1.1万、1.15万、1.2万等。
在本申请中,所述聚乙烯吡咯烷酮K23-K27的数均分子量为2-2.8万,例如2万、2.1万、2.2万、2.3万、2.4万、2.5万、2.6万、2.7万、2.8万等。
在本申请中,所述聚乙烯吡咯烷酮K29-K32的数均分子量为5.5-6.5万,例如5.5万、5.6万、5.7万、5.8万、5.9万、6.0万、6.1万、6.2万、6.3万、6.4 万、6.5万等。
在本申请中,所述聚乙烯吡咯烷酮K88-K96的数均分子量为120-140万,例如120万、122万、125万、127万、130万、132万、135万、138万、140万等。
在本申请中,所述还原剂为抗坏血酸和/或偏硼酸钠。
在本申请中,所述还原剂的氧化产物为脱氢抗坏血酸和/或偏硼酸钠。
在本申请中,所述自组装铜球的粒径为2-10μm,例如2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm等。
本申请的目的之二在于提供一种自组装铜球的制备方法,所述制备方法包括:将铜前驱体、结合物和还原剂在溶剂中混合,反应,得到所述自组装铜球,其中铜前驱体包括氢氧化铜、乙酰丙酮铜或柠檬酸铜中的任意一种或至少两种的组合。
本申请选用液相还原法制备自组装铜球,制备工艺简单,无需在惰性环境中进行,原料易得,对环境友好,可进行大批量生产。
本申请所述的制备方法制备得到的自组装微米铜球具有尺寸均匀,粒径可控,且表面有机物含量较少。
在本申请中,所述铜颗粒和还原剂的氧化产物是通过铜前驱体与还原剂反应制备得到铜颗粒和还原剂的氧化产物。
本申请选用的铜前驱体为氢氧化铜、乙酰丙酮铜、柠檬酸铜、三水合硝酸铜或五水硫酸铜中的任意一种或至少两种的组合,若选用硝酸铜、硫酸铜或氯化铜等强酸性金属铜盐,则在较低温度下不能与抗坏血酸反应生成金属铜颗粒;若选用甲酸铜、乙酸铜等金属铜盐,则会生成铜粉,而非本申请所述的自组装铜微米颗粒。
在本申请中,所述还原剂包括抗坏血酸和/或硼氢化钠。
本申请中抗坏血酸与铜前驱体中的铜离子进行反应,反应方程式为Cu 2++C 6H 8O 6=Cu+C 6H 6O 6+2H +,反应生成的脱氢抗坏血酸吸附在铜颗粒的表面,导致铜颗粒带负电,在聚乙烯吡咯烷酮的正电基团的静电作用力下,团簇慢慢生长,形成均匀稳定、表面粗糙的自组装结构。
本申请的硼氢化钠与铜前驱体中的铜离子发生反应,反应方程式为:4Cu 2++NaBH 4+8OH -=4Cu+NaBO 2+6H 2O,在反应过程中会产生羟基,羟基会吸附在铜颗粒的表面,使铜颗粒带负电,在聚乙烯吡咯烷酮的正电基团的静电作用力下,团簇慢慢生长,形成均匀稳定、表面粗糙的自组装结构。
在本申请中,所述溶剂为水和/或醇。
在本申请中,所述醇为乙醇、乙二醇或丙三醇中的其中一种或至少两种的组合。
在本申请中,所述铜前驱体和聚合物的质量比为1∶(0.05-2),例如1∶0.05、1∶0.1、1∶0.2、1∶0.3、1∶0.4、1∶0.5、1∶0.6、1∶0.7、1∶0.8、1∶0.9、1∶1、1∶1.1、1∶1.2、1∶1.3、1∶1.4、1∶1.5、1∶1.6、1∶1.7、1∶1.8、1∶1.9、1∶2等。
本申请选用铜前驱体和聚合物的质量比为1∶(0.05-2),在该比例范围内,既能确保聚合物能够将铜前驱体形成的小颗粒包覆完全,又不会造成原料的浪费;当二者的质量比高于1∶0.05,则聚合物的量过少,不能将铜前驱体形成的小颗粒包覆完全,造成生成的自组装铜球易被氧化;当二者的质量比低于1∶2时,虽然会加速铜颗粒的聚集,但是会造成原料的浪费。
在本申请中,所述铜的前躯体和还原剂的质量比为1∶(1-50),例如1∶1、1∶5、1∶10、1∶15、1∶20、1∶25、1∶30、1∶35、1∶40、1∶45、1∶50等。
本申请选用铜的前躯体和还原剂的质量比为1∶(1-50),在该范围内,既能保 证反应顺利进行,又不会造成原料的浪费;当铜的前躯体和还原剂的质量比高于1∶1时,则会有部分的铜前驱体不能反应或者生成一价铜离子;当铜的前躯体和还原剂的质量比低于1∶50时,虽然会加速反应的进行,但会造成原料的浪费。
在本申请中,所述反应温度为40-150℃,例如40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃等。
在本申请中,所述反应时间为10-180min,例如10min、20min、30min、40min、50min、60min、70min、80min、90min、100min、110min、120min、130min、140min、150min、160min、170min、180min等。
在本申请中,所述制备方法还包括将得到的自组装铜球进行后处理。
在本申请中,所述后处理包括固液分离、清洗以及真空干燥。
在本申请中,所述固液分离为离心。
在本申请中,所述清洗所用的溶剂为水和/或乙醇。
本申请制备的铜颗粒经过离心洗涤之后,表面的有机物残留较少,便于进行后续应用。
在本申请中,所述制备方法包括:将铜前驱体、保护剂聚乙烯吡咯烷酮和还原剂按照质量比1∶(0.05-2)∶(1-50)在水和/或醇中混合,40-150℃反应10-180min,而后离心、用水和/或醇清洗,真空干燥,得到所述粒径为2-10μm自组装铜球。
本申请的目的之三在于提供一种导电油墨,所述导电油墨包括如目的之一所述的自组装铜球。
本申请的目的之四在于提供一种目的之三所述的导电油墨的制备方法,所述制备方法包括:将自组装铜球分散于有机溶剂中,得到所述导电油墨。
在本申请中,所述有机溶剂为乙醇、乙二醇、丙三醇、三乙二醇单甲醚、 松油醇或乙二醇丁醚中的任意一种或至少两种的组合。
在本申请中,所述混合为球磨。
本申请的目的之五在于提供一种如目的之三所述的导电油墨作为印刷电子功能材料的应用。
相对于相关技术,本申请具有以下有益效果:
本申请提供的自组装铜球具有较好的抗氧化能力,在空气中长久放置也不会出现氧化现象;制备的自组装球很容易受外力而破碎为柱状小颗粒,颗粒与颗粒之间更容易实现互联,表现出很好的烧结性能,烧结温度可低至180℃;采用液相还原法制备,制备工艺简单,无需在惰性环境中进行,制备原料易得,对环境友好,可用于工业生产,大批量制备自组装铜球;自组装球制备的导电油墨具有较低的电阻率,电阻率可低至5×10 -6Ω·m,表现出较好的导电性能。
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1是本申请实施例1制备的自组装铜球和将其在空气中放置三个月后的XRD图;
图2为本申请实施例1制备的自组装铜球和将其在空气中放置三个月后的XPS图;
图3为本申请实施例1制备的自组装铜球的SEM图,标尺为4μm;
图4(a)为本申请实施例1制备的导电油墨在25℃烧结后的SEM图,标尺为10μm;
图4(b)为本申请实施例1制备的导电油墨在150℃烧结后的SEM图,标尺为10μm;
图4(c)为本申请实施例1制备的导电油墨在200℃烧结后的SEM图,标尺为10μm;
图4(d)为本申请实施例1制备的导电油墨在250℃烧结后的SEM图,标尺为10μm;
图4(e)为本申请实施例1制备的导电油墨在300℃烧结后的SEM图,标尺为10μm;
图4(f)为本申请实施例1制备的导电油墨在350℃烧结后的SEM图,标尺为10μm;
图5为本申请实施例2制备的自组装铜球的SEM图,标尺为4μm;
图6为本申请实施例3制备的自组装铜球的SEM图,标尺为4μm;
图7为本申请实施例4制备的自组装铜球的SEM图,标尺为4μm;
图8为本申请实施例5制备的自组装铜球的SEM图,标尺为4μm;
图9为本申请实施例6制备的自组装铜球的SEM图,标尺为4μm。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K29-K32,其数均分子量为5.8万,所述还原剂的氧化产物为脱氢抗坏血酸。
所述自组装铜球的制备方法如下:
将氢氧化铜、聚乙烯吡咯烷酮K29-K32和L-抗坏血酸按照质量比1∶0.26∶12在水中混合,其中氢氧化铜的质量为3.92g,聚乙烯吡咯烷酮K29-K32的质量为1g,L-抗坏血酸的质量为12g,40℃反应90min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为3-10μm的自组装铜球。
所述导电油墨的制备方法如下:
将1.6g上述制备的自组装铜球溶于0.4g松油醇中,球磨,得到所述导电油墨。
图1为本实施例制备的自组装铜球和将制备的自组装铜球在空气中放置三个月的XRD图,从图1可知,将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
图2为本实施例制备的自组装铜球和将制备的自组装铜球在空气中放置三个月的XPS图,从图2可知,将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
图3为本实施例制备的自组装铜球的SEM图,标尺为4μm,说明该制备方法制备得到均匀稳定、表面粗糙的自组装结构。
图4(a)为本实施例制备的导电油墨在25℃烧结后的SEM图,标尺为10μm,说明导电油墨在25℃不能进行烧结。
图4(b)为本实施例制备的导电油墨在150℃烧结的SEM图,标尺为10μm,说明导电油墨在150℃不能进行烧结。
图4(c)为本实施例制备的导电油墨在200℃烧结的SEM图,标尺为10μm,说明导电油墨在200℃可以进行烧结。
图4(d)为本实施例制备的导电油墨在250℃烧结的SEM图,标尺为10μm, 说明导电油墨在250℃可以进行烧结。
图4(e)为本实施例制备的导电油墨在300℃烧结的SEM图,标尺为10μm,说明导电油墨在300℃可以进行烧结。
图4(f)为本实施例制备的导电油墨在350℃烧结的SEM图,标尺为10μm,说明导电油墨在350℃可以进行烧结。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为5×10 -6Ω·m。
本实施例制备的导电油墨烧结温度较低,电阻率较低,导电性能较好。
实施例2
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K29-K32,其数均分子量为5.8万,所述还原剂的氧化产物为脱氢抗坏血酸。
所述自组装铜球的制备方法如下:
将氢氧化铜、聚乙烯吡咯烷酮K29-K32和L-抗坏血酸按照质量比1∶0.26∶12在200mL水和200ml乙醇的混合溶液中混合,其中氢氧化铜的质量为3.92g,聚乙烯吡咯烷酮K29-K32的质量为1g,L-抗坏血酸的质量为12g,80℃反应30min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为4μm自组装铜球。
所述导电油墨的制备方法如下:
将1.6g上述制备的自组装铜球溶于0.4g三乙二醇单甲醚中,球磨,得到所述导电油墨。
图5为本实施例制备的自组装铜球的SEM图,标尺为4μm,说明该制备方法制备得到均匀稳定、表面粗糙的自组装结构。
将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为5.5×10 -6Ω·m。
本实施例制备的导电油墨烧结温度较低,电阻率较低,导电性能较好。
实施例3
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K88-K96,其数均分子量为13万,所述还原剂的氧化产物为脱氢抗坏血酸。
所述自组装铜球的制备方法如下:
将氢氧化铜、聚乙烯吡咯烷酮K88-K96和L-抗坏血酸按照质量比1∶0.26∶12在200mL水和200ml乙醇的混合溶液中混合,其中氢氧化铜的质量为3.92g,聚乙烯吡咯烷酮K88-K96的质量为1g,L-抗坏血酸的质量为12g,60℃反应60min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为3μm自组装铜球。
所述导电油墨的制备方法如下:
将1.6g上述制备的自组装铜球溶于0.4g乙二醇中,球磨,得到所述导电油墨。
图6为本实施例制备的自组装铜球的SEM图,标尺为4μm,说明该制备方法制备得到均匀稳定、表面粗糙的自组装结构。
将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为6×10 -6Ω·m。
本实施例制备的导电油墨烧结温度较低,电阻率较低,导电性能较好。
实施例4
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K29-K32(数均分子量为5.8万)和聚乙烯吡咯烷酮K88-K96(数均分子量为13万)的混合物,所述还原剂的氧化产物为脱氢抗坏血酸。
所述自组装铜球的制备方法如下:
将氢氧化铜、聚乙烯吡咯烷酮和L-抗坏血酸按照质量比1∶0.52∶6在400mL水中混合,其中氢氧化铜的质量为3.92g,聚乙烯吡咯烷酮为1g聚乙烯吡咯烷酮-K29-K32和1g聚乙烯吡咯烷酮K88-K96的混合物,L-抗坏血酸的质量为12g,80℃反应30min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为6μm自组装铜球。
所述导电油墨的制备方法如下:
将1.6g上述制备的自组装铜球溶于0.4g丙三醇中,球磨,得到所述导电油墨。
图7为本实施例制备的自组装铜球的SEM图,标尺为4μm,说明该制备方法制备得到均匀稳定、表面粗糙的自组装结构。将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为6×10 -6Ω·m。
实施例5
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K13-K18(数均分子量为1万)和聚乙烯吡咯烷酮K88-K96(数均分子量为13万)的混合物,所述还原剂的氧化产物为脱氢抗坏血酸。
所述自组装铜球的制备方法如下:
将氢氧化铜、聚乙烯吡咯烷酮和L-抗坏血酸按照质量比1∶0.52∶6在400mL水中混合,其中氢氧化铜的质量为3.92g,聚乙烯吡咯烷酮为1g聚乙烯吡咯烷酮-K88-K96和1g聚乙烯吡咯烷酮K13-K18的混合物,L-抗坏血酸的质量为12g,80℃反应30min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为5μm自组装铜球。
所述导电油墨的制备方法如下:
将1.6g上述制备的自组装铜球溶于0.4g乙二醇丁醚中,球磨,得到所述导电油墨。
图8为本实施例制备的自组装铜球的SEM图,标尺为4μm,说明该制备方法制备得到均匀稳定、表面粗糙的自组装结构。
将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为5.5×10 -6Ω·m。
实施例6
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K29-K32,其数均分子量为5.8万,所述还原剂的氧化产物为脱氢抗坏血酸。
所述自组装铜球的制备方法如下:将氢氧化铜、聚乙烯吡咯烷酮K29-K32和L-抗坏血酸按照质量比1∶0.72∶4在400mL水中混合,其中氢氧化铜的质量为3.92g,聚乙烯吡咯烷酮K29-K32的质量为3g,L-抗坏血酸的质量为12g,80℃反应30min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为2μm自组装铜球。
所述导电油墨的制备方法如下:
将1.6g上述制备的自组装铜球溶于0.2g三乙二醇单甲醚中,球磨,得到所述导电油墨。
图9为本实施例制备的自组装铜球的SEM图,标尺为4μm,说明该制备方法制备得到均匀稳定、表面粗糙的自组装结构。
将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为6.5×10 -6Ω·m。
实施例7
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K29-K32,其数均分子量 为5.8万,所述还原剂的氧化产物为偏硼酸钠。
所述自组装铜球的制备方法如下:
将氢氧化铜、聚乙烯吡咯烷酮K29-K32和硼氢化钠按照质量比1∶0.05∶1在水中混合,其中氢氧化铜的质量为4g,聚乙烯吡咯烷酮K29-K32的质量为0.8g,硼氢化钠的质量为4g,150℃反应10min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为3μm自组装铜球。
本实施例提供一种导电油墨的制备方法,所述制备方法包括:
将1.6g上述制备的自组装铜球溶于0.2g三乙二醇单甲醚中,球磨,得到所述导电油墨。
将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为180℃下烧结1h,导电通路的电阻率为5×10 -6Ω·m。
实施例8
在本实施例中,提供一种自组装铜球,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物;其中聚合物为聚乙烯吡咯烷K29-K32,其数均分子量为5.8万,所述还原剂的氧化产物为偏硼酸钠。
所述自组装铜球的制备方法如下:将氢氧化铜、聚乙烯吡咯烷酮K29-K32和硼氢化钠按照质量比1∶2∶50在水中混合,其中氢氧化铜的质量为1g,聚乙烯吡咯烷酮K29-K32的质量为2g,硼氢化钠的质量为50g,40℃反应180min,而后离心、将得到的固体用乙醇离心清洗,真空干燥,得到所述粒径为6μm自组装铜球。
本实施例提供一种导电油墨的制备方法,所述制备方法包括:
将1.6g上述制备的自组装铜球溶于0.2g三乙二醇单甲醚中,球磨,得到所述导电油墨。
将制备的自组装铜球放置在空气中三个月后,并未发生明显的氧化。
本实施例制备的导电油墨在烧结温度为200℃下烧结1h,导电通路的电阻率为5×10 -6Ω·m。
实施例9
本实施例与实施例1的区别仅在于氢氧化铜和聚乙烯吡咯烷酮的质量比为1∶0.01,其余组分与组分配比以及制备方法均与实施例1相同。
本实施例制备的自组装铜球在空气中放置3个月,发现自组装铜球部分被氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为8×10 -6Ω·m。
实施例10
本实施例与实施例1的区别仅在于氢氧化铜和L抗坏血酸的质量比为1∶0.5,其余组分与组分配比以及制备方法均与实施例1相同。
本实施例制备的自组装铜球,二价铜离子被还原成铜,而部分被还原成一价铜离子,将其放置在空气中三个月,发现自组装铜球部分被氧化。
本实施例制备的导电油墨在烧结温度为250℃下烧结1h,导电通路的电阻率为8.5×10 -6Ω·m。
对比例1
本对比例与实施例的区别仅在于不添加聚乙烯吡咯烷酮,其余组分与组分 配比以及制备方法均与实施例1相同。
本对比例不能制备得到自组装铜球,且放置在空气中易被氧化。
本对比例制备的导电油墨在烧结温度为200℃下烧结1h,导电通路的电阻率为10×10 -6Ω·m。
对比例2
本对比例与实施例的区别仅在于不添加还原剂,其余组分与组分配比以及制备方法均与实施例1相同。
本对比例不能制备得到自组装铜球。
本对比例制备的导电油墨在烧结温度为200℃下烧结1h,导电通路的电阻率为3.5×10 -4Ω·m。
对比例3
本对比例与实施例1的区别仅在于铜前驱体为硝酸铜,其余组分与组分配比以及制备方法均与实施例1相同。
本对比例不能制备得到自组装铜球。
本对比例制备的导电油墨在烧结温度为200℃下烧结1h,导电通路的电阻率为12×10 -6Ω·m。
对比例4
本对比例与实施例1的区别仅在于铜前驱体为硫酸铜,其余组分与组分配比以及制备方法均与实施例1相同。
本对比例不能制备得到自组装铜球。
本对比例制备的导电油墨在烧结温度为200℃下烧结1h,导电通路的电阻 率为20×10 -6Ω·m。
对比例5
本对比例与实施例1的区别仅在于铜前驱体为乙酸铜,其余组分与组分配比以及制备方法均与实施例1相同。
本对比例不能制备得到自组装铜球。
本对比例制备的导电油墨在烧结温度为200℃下烧结1h,导电通路的电阻率为15×10 -6Ω·m。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。

Claims (14)

  1. 一种自组装铜球,其中,所述自组装铜球包括复合铜球以及包覆在复合铜球表面的聚合物,所述复合铜球包括铜颗粒以及吸附在铜颗粒表面的还原剂的氧化产物。
  2. 根据权利要求1所述的自组装铜球,其中,所述聚合物为聚乙烯吡咯烷酮。
  3. 根据权利要求1或2所述的自组装铜球,其中,所述还原剂的氧化产物为脱氢抗坏血酸和/或偏硼酸钠;
    可选地,所述复合铜球还包括吸附在铜颗粒表面的还原剂;
    可选地,所述聚乙烯吡咯烷酮包括聚乙烯吡咯烷酮K13-K18、聚乙烯吡咯烷酮K23-K27、聚乙烯吡咯烷酮K29-K32或聚乙烯吡咯烷酮K88-K96中的任意一种或至少两种的组合;
    可选地,所述聚乙烯吡咯烷酮K13-K18的数均分子量为0.8-1.2万;
    可选地,所述聚乙烯吡咯烷酮K23-K27的数均分子量为2-2.8万;
    可选地,所述聚乙烯吡咯烷酮K29-K32的数均分子量为5.5-6.5万;
    可选地,所述聚乙烯吡咯烷酮K88-K96的数均分子量为120-140万;
    可选地,所述还原剂包括抗坏血酸和/或硼氢化钠;
    可选地,所述自组装铜球的粒径为2-10μm。
  4. 根据权利要求1-3任一项所述的自组装铜球的制备方法,其中,所述制备方法包括:将铜前驱体、聚合物和还原剂在溶剂中混合,反应,得到所述自组装铜球;其中铜前驱体为氢氧化铜、乙酰丙酮铜或柠檬酸铜中的任意一种或至少两种的组合。
  5. 根据权利要求4所述的制备方法,其中,所述铜前驱体和聚合物的质量 比为1∶(0.05-2)。
  6. 根据权利要求4或5所述的制备方法,其中,所述铜的前躯体和还原剂的质量比为1∶(1-50)。
  7. 根据权利要求4-6任一项所述的制备方法,其中,所述溶剂为水和/或醇;
    可选地,所述醇为乙醇、乙二醇或丙三醇中的任意一种或至少两种的组合。
  8. 根据权利要求4-7任一项所述的制备方法,其中,所述反应温度为40-150℃;
    可选地,所述反应时间为10-180min。
    可选地,所述制备方法还包括将得到的自组装铜球进行后处理;
    可选地,所述后处理包括固液分离、清洗以及真空干燥;
    可选地,所述固液分离为离心;
    可选地,所述清洗所用的溶剂为水和/或乙醇;
    可选地,所述清洗为离心清洗。
  9. 根据权利要求4-8任一项所述的制备方法,其中,所述制备方法包括:将铜前驱体、聚乙烯吡咯烷酮和还原剂按照质量比1∶(0.05-2)∶(1-50)在水和/或醇中混合,40-150℃反应10-180min,而后离心、将得到的固体用水和/或醇离心清洗,真空干燥,得到所述粒径为2-10μm自组装铜球。
  10. 一种导电油墨,其中,所述导电油墨包括如权利要求1-3任一项所述的自组装铜球。
  11. 根据权利要求10所述的导电油墨的制备方法,其中,所述制备方法包括:将自组装铜球溶于有机溶剂中,混合,得到所述导电油墨。
  12. 根据权利要求11所述的导电油墨的制备方法,其中,所述有机溶剂为乙醇、乙二醇、丙三醇、三乙二醇单甲醚、松油醇或乙二醇丁醚中的任意一种 或至少两种的组合。
  13. 根据权利要求11或12所述的导电油墨的制备方法,其中,所述混合为球磨。
  14. 根据权利要求10所述的导电油墨作为印刷电子功能材料的应用。
PCT/CN2018/125634 2018-10-17 2018-12-29 一种自组装铜球、导电油墨及其制备方法和应用 WO2020077879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021510823A JP7197685B2 (ja) 2018-10-17 2018-12-29 自己組織化銅球の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811210272.9A CN109467984B (zh) 2018-10-17 2018-10-17 一种自组装铜球、导电油墨及其制备方法和应用
CN201811210272.9 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020077879A1 true WO2020077879A1 (zh) 2020-04-23

Family

ID=65665119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125634 WO2020077879A1 (zh) 2018-10-17 2018-12-29 一种自组装铜球、导电油墨及其制备方法和应用

Country Status (3)

Country Link
JP (1) JP7197685B2 (zh)
CN (1) CN109467984B (zh)
WO (1) WO2020077879A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880493A (zh) * 2010-07-01 2010-11-10 中国科学院宁波材料技术与工程研究所 一种纳米铜导电墨水的制备方法
CN102205422A (zh) * 2011-01-17 2011-10-05 深圳市圣龙特电子有限公司 一种电子浆料用纳米铜粉及其制作工艺
CN103736996A (zh) * 2014-01-24 2014-04-23 云南大学 一种制备多孔的覆有导电微米线/棒的复合微球材料的方法
CN103862039A (zh) * 2014-03-14 2014-06-18 中国科学院深圳先进技术研究院 核壳结构铜纳米微粒及其制备方法
WO2017115330A1 (es) * 2015-12-30 2017-07-06 Universidad De Chile Método de obtención de nano partículas de cobre y uso de dichas partículas
CN107460459A (zh) * 2017-06-29 2017-12-12 深圳安德万斯新材料科技有限公司 一种纳米铜活化液及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936623B1 (ko) 2007-07-26 2010-01-13 주식회사 엘지화학 구리 입자 조성물의 제조방법
WO2010035258A2 (en) * 2008-09-25 2010-04-01 Nanoready Ltd. Discrete metallic copper nanoparticles
CN103087582A (zh) * 2013-01-25 2013-05-08 天津理工大学 一种低温烧结纳米铜导电油墨的制备方法
JP6324237B2 (ja) 2014-06-30 2018-05-16 古河電気工業株式会社 微粒子、微粒子の製造方法、及び微粒子分散溶液
CN105754414B (zh) * 2014-12-16 2019-04-23 中国科学院苏州纳米技术与纳米仿生研究所 一种导电纳米铜墨水及其制备方法
CN105598468B (zh) * 2016-03-17 2018-05-15 中国科学院深圳先进技术研究院 一种可用于导电油墨的银包铜纳米颗粒的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880493A (zh) * 2010-07-01 2010-11-10 中国科学院宁波材料技术与工程研究所 一种纳米铜导电墨水的制备方法
CN102205422A (zh) * 2011-01-17 2011-10-05 深圳市圣龙特电子有限公司 一种电子浆料用纳米铜粉及其制作工艺
CN103736996A (zh) * 2014-01-24 2014-04-23 云南大学 一种制备多孔的覆有导电微米线/棒的复合微球材料的方法
CN103862039A (zh) * 2014-03-14 2014-06-18 中国科学院深圳先进技术研究院 核壳结构铜纳米微粒及其制备方法
WO2017115330A1 (es) * 2015-12-30 2017-07-06 Universidad De Chile Método de obtención de nano partículas de cobre y uso de dichas partículas
CN107460459A (zh) * 2017-06-29 2017-12-12 深圳安德万斯新材料科技有限公司 一种纳米铜活化液及其制备方法

Also Published As

Publication number Publication date
JP2021535956A (ja) 2021-12-23
CN109467984B (zh) 2021-08-31
CN109467984A (zh) 2019-03-15
JP7197685B2 (ja) 2022-12-27

Similar Documents

Publication Publication Date Title
JP6339136B2 (ja) 官能化グラフェンシートを含有するコーティングおよびそれらのコーティングで被覆した物品
JP5748606B2 (ja) 導電性塗料
JP5556176B2 (ja) 粒子およびインクおよびそれらを用いるフィルム
US9221979B2 (en) Copper particles, copper paste, process for producing conductive coating film, and conductive coating film
Meschi Amoli et al. Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: The effect of NPs sintering on the electrical conductivity improvement
CN106928773B (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
US20170253824A1 (en) Method for preparing two-dimensional hybrid composite
CN106782757B (zh) 一种可印刷柔性导电浆料及其导电线路与制备方法
CN107638816B (zh) 一种多巴胺助分散氧化石墨烯改性聚偏氟乙烯超滤膜的制备方法
Wei et al. Hybrids of silver nanowires and silica nanoparticles as morphology controlled conductive filler applied in flexible conductive nanocomposites
WO2020143273A1 (zh) 一种核壳结构Ag@Cu纳米颗粒导电墨水及其制备方法和用途
JP2009275227A (ja) 銀ナノ粒子含有印刷可能組成物、該組成物を用いた導電性被膜の製造方法、および該方法により製造された被膜
CN107163686B (zh) 一种石墨烯复合导电油墨的制备方法及其应用
KR20110040090A (ko) 그라비아 직접 인쇄방식에 적용 가능한 저온 소성용 도전성 페이스트
JP2013091824A (ja) カーボン複合金属微粒子およびその製造方法
JP5773148B2 (ja) 銀微粒子並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP5326336B2 (ja) 導電体及びその製造方法
WO2020077879A1 (zh) 一种自组装铜球、导电油墨及其制备方法和应用
Dai et al. Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes
Hu et al. Facile and scalable fabrication of self-assembled Cu architecture with superior antioxidative properties and improved sinterability as a conductive ink for flexible electronics
CN105153813A (zh) 一种低渗流阈值导电油墨的制备方法
TW201315685A (zh) 銀微粒子及含有該銀微粒子之導電膏,導電膜及電子裝置
CN112530625B (zh) 一种甲壳素晶须基导电材料及其制备方法和水性导电墨水及其应用
JP5773147B2 (ja) 銀微粒子並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
CN111874898A (zh) 一种高品质水溶性石墨烯的绿色简便制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021510823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18937525

Country of ref document: EP

Kind code of ref document: A1