WO2020075762A1 - (メタ)アクリル酸の精製方法 - Google Patents

(メタ)アクリル酸の精製方法 Download PDF

Info

Publication number
WO2020075762A1
WO2020075762A1 PCT/JP2019/039840 JP2019039840W WO2020075762A1 WO 2020075762 A1 WO2020075762 A1 WO 2020075762A1 JP 2019039840 W JP2019039840 W JP 2019039840W WO 2020075762 A1 WO2020075762 A1 WO 2020075762A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic acid
slurry
solid
chamber
Prior art date
Application number
PCT/JP2019/039840
Other languages
English (en)
French (fr)
Inventor
恭弘 地崎
浩司 金谷
智道 日野
盛博 李
龍太郎 石橋
裕貴 田口
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2020551203A priority Critical patent/JP7151778B2/ja
Priority to KR1020217013656A priority patent/KR102533815B1/ko
Priority to CN201980056393.9A priority patent/CN112638857A/zh
Publication of WO2020075762A1 publication Critical patent/WO2020075762A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/044Filters with filtering elements which move during the filtering operation with filtering bands or the like supported on cylinders which are pervious for filtering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/123Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using belt or band filters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a method for purifying (meth) acrylic acid. Specifically, it relates to a method for purifying (meth) acrylic acid in which crude (meth) acrylic acid crystals are purified in a purification tower.
  • the (meth) acrylic acid obtained by the direct oxidation method or the like contains carboxylic acids and aldehydes other than (meth) acrylic acid as impurities.
  • a crystallization method is known as one of the methods for purifying crude (meth) acrylic acid containing these impurities.
  • FIG. 3 shows a flow sheet for producing (meth) acrylic acid.
  • S1 is a step of producing crude (meth) acrylic acid by the direct oxidation method or the ACH method as described above.
  • a slurry containing (meth) acrylic acid crystals is obtained by precipitating crystals of (meth) acrylic acid by cooling a mixed solution of crude (meth) acrylic acid and a solvent such as methanol in a crystallization tank.
  • Crystallization step S2 for obtaining The solvent is used to improve operability in crystallization.
  • the slurry is filtered, and the (meth) acrylic acid crystals and the mother liquor adhering to the crystal surface (hereinafter referred to as (meth) acrylic acid crude crystals) and the mother liquor are subjected to solid-liquid separation (solid-liquid separation step S3).
  • Further purification (purification step S4) in a purification tower makes it possible to obtain highly pure (meth) acrylic acid crystals.
  • Patent Document 1 proposes a method of improving purification efficiency by adjusting the amount of (meth) acrylic acid and the mother liquor retention rate of (meth) acrylic acid crude crystals introduced into the purification column.
  • Patent Document 2 by heating the crude crystal of (meth) acrylic acid introduced into the purification column to reduce the amount of mother liquor entrained in the crude crystal of (meth) acrylic acid, it is possible to further improve the purification efficiency. Is proposed.
  • the solid-liquid separation step of reducing the amount of mother liquor in (meth) acrylic acid crude crystals is improved, and the residual ratio of the mother liquor, particularly methanol as a solvent, is low (meth) acrylic acid solid
  • An object is to provide a liquid separation method.
  • Another object of the present invention is to provide a method for purifying (meth) acrylic acid including the solid-liquid separation method.
  • the present inventors in a method for solid-liquid separation of a slurry containing (meth) acrylic acid crude crystals and a solvent, supply gas into a chamber for solid-liquid separation of the slurry.
  • the inventors have found that the above problems can be solved by promoting evaporation of the solvent, and have achieved the present invention. That is, the gist of the present invention is as follows.
  • the solid-liquid separation method according to [1] or [2], wherein the temperature of the gas supplied into the chamber is 10 ° C. or higher and 65 ° C. or lower.
  • [5] The solid-liquid separation method according to any one of [1] to [4], wherein the mother liquor contains methanol.
  • [6] The solid-liquid separation method according to [5], wherein the concentration of methanol in the slurry is 1% by mass or more and 5% by mass or less.
  • a method for purifying (meth) acrylic acid which comprises a step of obtaining crude crystals of (meth) acrylic acid by the solid-liquid separation method according to any one of [1] to [6].
  • [8] A method for producing purified (meth) acrylic acid, including the method for purifying (meth) acrylic acid according to [7].
  • FIG. 3 is a schematic side view (A) and a schematic top view (B) showing an example of a solid-liquid separation device using a belt filter. It is a schematic diagram which showed an example of the refinement
  • the present invention relates to a method of solid-liquid separating a slurry containing crude crystals of (meth) acrylic acid and a mother liquor in a chamber, while supplying a gas into the chamber, through a filter arranged in the chamber. Separating the mother liquor from the slurry.
  • the slurry can be obtained, for example, by mixing crude (meth) acrylic acid obtained by a direct oxidation method or the like with a solvent, and then cooling the mixed solution in a crystallization tank for crystallization.
  • the slurry thus formed contains at least crude (meth) acrylic acid crystals and a solvent. More specifically, it contains a non-crystallized (meth) acrylic acid, a solvent, a mother liquor containing impurities derived from the production of crude (meth) acrylic acid, and (meth) acrylic acid crude crystals.
  • the method for producing crude (meth) acrylic acid is not limited to the direct oxidation method, and it can be produced by other methods such as the known ACH method.
  • the impurities are not particularly limited, but as described above, usually, impurities derived from the production of crude (meth) acrylic acid are mentioned, and examples thereof include phenol, formic acid, acetic acid, propionic acid, maleic acid, citraconic acid, and benzoic acid.
  • examples thereof include carboxylic acids such as acids, toluic acid and terephthalic acid, and aldehydes such as formaldehyde, propionaldehyde, methacrolein, benzaldehyde, tolualdehyde and furfural.
  • the solvent is mainly mixed with crude (meth) acrylic acid in order to improve operability in crystallization.
  • the solvent include methanol, ethanol, propanol, butanol, diethyl ether, dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl formate, ethyl formate, methyl acetate, ethyl acetate, methyl (meth) acrylate and (meth) acrylic.
  • Ethyl acid or the like can be used.
  • the composition ratio of the slurry is not particularly limited, but the (meth) acrylic acid amount relative to the total amount of the slurry, that is, the sum of the (meth) acrylic acid crude crystal amount and the uncrystallized (meth) acrylic acid amount relative to the total amount of the slurry, It is preferably 80% by mass or more, more preferably 90% by mass or more, particularly preferably 95% by mass or more, while preferably 99% by mass or less and 98% by mass or less. It is more preferable that the content is 97% by mass or less.
  • the amount of the solvent with respect to the total amount of the slurry is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 3% by mass or more, while 20% by mass. % Or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the amount of impurities with respect to the total amount of slurry is not particularly limited, but the present invention is more effective when it is 0.1% by mass or more, and particularly effective when it is 0.3% by mass or more. There is no particular upper limit.
  • the ratio of the (meth) acrylic acid crude crystals to the total amount of the slurry is not particularly limited, but 5 It is preferably not less than mass%, more preferably not less than 10 mass%, particularly preferably not less than 20 mass%, preferably not more than 60 mass% and not more than 55 mass%. Is more preferable, and particularly preferably 50% by mass or less.
  • the ratio of the mother liquor to the total amount of the slurry is not particularly limited, but is preferably 40% by mass or more, more preferably 45% by mass or more, particularly preferably 50% by mass or more, while 95 It is preferably not more than 90% by mass, more preferably not more than 90% by mass, particularly preferably not more than 80% by mass.
  • composition of the slurry means the slurry to be subjected to solid-liquid separation, that is, the slurry composition before being put into the solid-liquid separation device.
  • a slurry containing crude (meth) acrylic acid crystals (hereinafter, simply referred to as “slurry”) obtained by the crystallization operation is extracted from a crystallization tank, and then the slurry 1 is fed into a chamber as shown in FIG. According to 2, it is transported to the purification tower while being filtered.
  • the mother liquor is removed and the (meth) acrylic acid crude crystals are deposited to form layered (meth) acrylic acid crude crystals.
  • the mother liquor mainly contains uncrystallized (meth) acrylic acid, solvent, and impurities. Therefore, by removing the mother liquor, a large amount of impurities and solvent should be removed.
  • the solid-liquid separation device 10 in FIG. 1 has a chamber 4 in which a belt filter 3 is arranged, and a slurry inlet 5 is provided above one end of the belt filter 3 in the chamber 4.
  • the slurry 1 containing crude (meth) acrylic acid crystals and the mother liquor is introduced into the chamber 4 through the slurry inlet 5, and the mother liquor is removed while the belt filter 3 conveys the slurry.
  • the (meth) acrylic acid crude crystals 2 having a desired mother liquor content (liquid content) can be obtained.
  • the mother liquor solid-liquid separated by the belt filter 3 can be recovered from the discharge port 8 at the lower part of the chamber and returned to the crystallization tank (not shown) for reuse.
  • the chamber 4 is provided with a means for supplying gas into the chamber, and, for example, as shown in FIG. 1, introduces gas (called gas) set to a predetermined temperature via pipes A and B. It has a configuration that can.
  • the pipe A can supply gas from the supply port 6 in the substantially central portion above the chamber, and can flow the gas in the chamber.
  • the pipe B is connected to the support portion of the belt filter 3 and is arranged so that gas can be supplied from below the slurry 1.
  • the gas in the chamber flows by supplying the gas from the outside of the chamber into the chamber through these pipes.
  • the upper portion of the slurry has a large proportion of (meth) acrylic acid crude crystals, while the lower portion of the slurry, that is, near the surface of the belt filter, contains impurities.
  • the existence ratio of the mother liquor that contains a large amount tends to increase.
  • the mother liquor cannot be removed efficiently, and it may be difficult to obtain highly pure (meth) acrylic acid crystals in the above-described purification step S4 with high productivity. did.
  • gas is supplied from the outside of the chamber to the inside of the chamber during solid-liquid separation, and the gas is replaced through the vent 9.
  • the atmosphere in the chamber from becoming saturated with the solvent, so that the vaporization of the solvent in the slurry can be efficiently promoted. Therefore, highly pure (meth) acrylic acid can be efficiently obtained without significantly losing the (meth) acrylic acid crystals.
  • the temperature of the gas when supplied into the chamber is preferably the temperature of the slurry charged into the solid-liquid separation device or higher, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
  • the temperature is preferably 30 ° C. or higher, particularly preferably 40 ° C. or higher.
  • the amount of (meth) acrylic acid crystals that can be melted can be suppressed when considering the same amount of heat to bring in, resulting in high productivity. It is possible to obtain highly pure (meth) acrylic acid crystals.
  • the temperature of the gas to be supplied is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, particularly preferably 65 ° C. or lower, in order to prevent a large loss of the crystal melting amount.
  • the gas supplied into the chamber may further flow inside the chamber.
  • a blower such as a fan may be provided on the upstream side of the belt filter 3 to allow the gas in the chamber to flow.
  • a heating means may be provided inside or outside the chamber to heat the slurry within a range in which the (meth) acrylic acid crystal is not significantly melted.
  • the gas supplied from the outside of the chamber to the inside of the chamber is not particularly limited, but is preferably a gas having low reactivity, preferably air or an inert gas, and particularly preferably air.
  • the inert gas is not particularly limited, but nitrogen is preferable.
  • the pipe A supplies gas from one gas supply port and the pipe B supplies gas from four gas supply ports
  • the supply amount of the pipe B is four times that of the pipe A.
  • the arrangement of the gas supply port 6 is not limited to the example of FIG. 1 and can be variously changed.
  • the number of gas supply ports is not particularly limited. That is, the gas may be supplied from one gas supply port, or the gas may be supplied from a plurality of gas supply ports. If gas is supplied into the chamber from at least one gas supply port, the gas in the entire chamber flows and the entire slurry is heated, so that the effect of the present invention can be obtained.
  • the gas into the chamber from a position higher than the belt filter, and above all, supply the gas from the upper part of the chamber. It is preferable.
  • the amount of gas supplied per hour per chamber volume is not particularly limited, but in order to promote vaporization of a solvent such as methanol, it should be 100% by volume / h or more with respect to the chamber internal volume. Is preferable, and 200% by volume / h or more is more preferable.
  • it is preferably 10000 volume% / h or less, more preferably 8000 volume% / h or less, and 1000 It is more preferably not more than volume%, particularly preferably not more than 800 volume%.
  • the amount of gas supplied to the amount of (meth) acrylic acid crude crystals in the slurry is not particularly limited, but is 1 Nm 3 / (m 3 ⁇ h) or more in order to promote vaporization of a solvent such as methanol. Is preferable and 10 Nm 3 / (m 3 ⁇ h) or more is more preferable. Meanwhile, in order to prevent melting of the (meth) acrylic acid crystals, preferably 500Nm 3 / (m 3 ⁇ h ) or less, still more preferably 350Nm 3 / (m 3 ⁇ h ) or less.
  • the crude crystal amount of (meth) acrylic acid means the total crystal amount of (meth) acrylic acid existing on the belt filter in the case of the solid-liquid separator shown in FIG.
  • Bringing heat for the chamber volume is no particular limitation, to promote vaporization of solvent such as methanol, is preferably 0.005kW / m 3 or more, it is 0.01 kW / m 3 or more More preferable.
  • solvent such as methanol
  • it is preferably 5.0 kW / m 3 or less, more preferably 3.0 kW / or less, and particularly preferably 1.0 kW / or less. .
  • the amount of heat brought into the slurry with respect to the (meth) acrylic acid crude crystal amount is not particularly limited, but is preferably 0.005 kW / m 3 or more in order to promote vaporization of a solvent such as methanol, and More preferably, it is 01 kW / m 3 or more.
  • it is preferably 100 kW / m 3 or less, and more preferably 50 kW / m 3 or less.
  • the pressure inside the chamber is not particularly limited, but it is preferably atmospheric pressure in order to avoid complication of the device.
  • the gas in the solid-liquid separation device is discharged by the vent 9, but the vent 9 may have equipment for sucking the atmosphere in the chamber. Specifically, a blower may be provided.
  • the temperature of the gas supplied from each gas supply port may be the same or different.
  • the temperature of the gas when it is supplied into the chamber is determined by considering the temperature and supply amount of each gas supplied from each gas supply port. It shall mean the average temperature. Further, during the solid-liquid separation, it is preferable to remove the gas from the vent 9 to keep the chamber pressure constant.
  • the atmosphere temperature in the chamber is not particularly limited as long as solid-liquid separation can be efficiently performed, but it is preferably 10 ° C. or higher in order to efficiently melt the mother liquor, while melting the (meth) acrylic acid In order to suppress the temperature, it is preferably 40 ° C. or lower.
  • the ambient temperature can be adjusted by controlling the gas temperature, the gas supply amount, and the like.
  • the atmospheric temperature in the chamber means the temperature in the upper part of the chamber above the belt filter.
  • the temperature outside the chamber is not particularly limited, but the present invention is particularly effective when the temperature of the mother liquor is likely to freeze. Therefore, the present invention is more effective when the temperature outside the chamber is 15 ° C. or lower. And is particularly effective when the temperature is 10 ° C. or lower.
  • the volume of the chamber is not particularly limited, but in the case of the continuous solid-liquid separation device 10 using a belt filter as shown in FIG. 1, it is preferably 2 m 3 or more, and more preferably 3 m 3 or more. It is preferably 4 m 3 or more, more preferably 5 m 3 or more, and particularly preferably 8 m 3 or less, particularly preferably 7 m 3 or less.
  • the slurry temperature when charged into the solid-liquid separation device 10 is not particularly limited, but from the viewpoint of operation stability in the crystallization step S2, it is preferably ⁇ 2 ° C. or higher and 12 ° C. or lower, and particularly 3 It is more preferable that the temperature is not lower than 0 ° C, and even if it is not higher than 10 ° C.
  • the amount of slurry charged into the solid-liquid separator 10 from the crystallization tank depends on the size of the solid-liquid separator, but is preferably 80 kg / h or more and 5000 kg / h or less, and particularly 1000 kg / h. It is more preferably h or more, and more preferably 4000 kg / h or less. Within this range, stable operation in the purification tower can be ensured while ensuring productivity.
  • the concentration of the solid content in the slurry (slurry concentration) is preferably 25 to 50% by mass when methanol is used as the solvent, from the viewpoint of stable operation of the crystallization tank.
  • the height of the slurry on the belt filter 3 is preferably 10 to 200 cm, more preferably 40 to 100 cm. Since a certain amount of mother liquor remains in the coarse crystals due to the capillary force, if the slurry height is within this range, the mother liquor liquid content will not be too high, and the mother liquor separation time will be appropriate.
  • a known belt filter can be used as the belt filter.
  • the width of the belt may be selected from the viewpoint of productivity (relationship between the slurry supply amount and height range) and the cost of the apparatus, but is preferably 10 to 200 cm, more preferably 50 to 150 cm. , 75 to 125 cm is more preferable.
  • the length of the belt to be laid may be selected from the viewpoint of separating the mother liquor and the cost of the apparatus, but is preferably 1 to 10 m, more preferably 4 to 8 m.
  • the "belt laying length” is the length between the stretching rollers that stretch the belt, and is substantially the same as the length of the belt that is in contact with the slurry.
  • the belt filter stainless steel is preferable from the viewpoint of not being affected by the slurry that undergoes solid-liquid separation and preventing impurities from adhering to the slurry, and SUS316 is more preferable from the viewpoint of corrosion resistance and economy.
  • the belt filter is provided with a large number of holes such as a mesh structure for solid-liquid separation.
  • the mesh size (mesh size) is preferably 1.5 mm or less, and more preferably 1.2 mm or less.
  • the pore size is preferably 0.6 mm or more, more preferably 0.9 mm or more.
  • the belt speed at the time of solid-liquid separation depends on the belt width, laying length, slurry supply amount and height, etc., but is 2 to 8 m / h for productivity and solid-liquid separation performance. Is preferred.
  • the (meth) acrylic acid crude crystal 2 in which the amount of mother liquor is reduced by the solid-liquid separation in this way is further purified.
  • the purification step is not particularly limited, and a known method can be used. Among them, in the purification tower 20 shown in FIG. 2, a step of countercurrently contacting the refluxed liquid in which the purified crystals are melted, or the purified crystals are once taken out to the outside and heated and melted in the refluxed liquid 21 in the outside is preferable. Thereby, (meth) acrylic acid can be purified.
  • the supply amount of the (meth) acrylic acid crude crystal 2 to the purification tower 20 may be appropriately set depending on the type of the purification tower 20 and the outer diameter and height of the purification tower can 24.
  • a stirrer 25 is disposed inside the purification tower can 24 to control the rise of the crude crystals and the fall of the reflux liquid.
  • the temperature of the (meth) acrylic acid crude crystal 2 when supplied to the purification tower 20 is preferably 5 to 6 ° C.
  • the discharge amount of the concentrated mother liquor 23 containing impurities from the purification tower 20 may be appropriately adjusted depending on the supply amount of the (meth) acrylic acid crude crystal 2 and the distillation amount of the product 22.
  • the supply amount (REF) of the external reflux liquid 21 to the top of the purification column 20 needs to be set to a minimum amount REF min or more in order to maintain the quality of the product 22 by the effect of the cleaning action. It has been found by the present inventors that the REF min that can sufficiently exert the cleaning effect is the same as the liquid content of the (meth) acrylic acid crude crystal 2. That is, REF min can be calculated by the following equation (1).
  • REF min (supply amount of (meth) acrylic acid crude crystal 2) x qm / (100-qm) (1) (In the formula (1), qm is the liquid content of the (meth) acrylic acid crude crystal 2).
  • REF is preferably 1.0 to 1.1 times REF min .
  • the temperature of the external reflux liquid 21 is preferably 35 to 40 ° C. When the temperature of the external reflux liquid 21 is 35 ° C. or higher, it is easy to sufficiently exert the sweating action. Further, if the temperature of the external reflux liquid 21 is set to 40 ° C. or lower, it is easy to suppress deterioration of the purification efficiency and deterioration of the quality of the product 22.
  • the temperature of the external reflux liquid 21 can be adjusted by the heating amount supplied to the external heater 27.
  • the temperature of the refinery column distillate 26 is the same as the temperature of the external reflux liquid 21.
  • the refining method according to the present invention is not limited to the method using the refining tower 20 illustrated in FIG.
  • Purified (meth) acrylic acid can be produced by the above purification steps.
  • a solid-liquid separation method for separating the mother liquor from the slurry through a filter disposed in the chamber is provided.
  • a method for purifying (meth) acrylic acid which comprises a step of obtaining crude crystals of (meth) acrylic acid by the solid-liquid separation method.
  • a method for producing purified (meth) acrylic acid including the method for purifying (meth) acrylic acid.
  • the residual ratio of methacrylic acid (MAA) crystals was calculated by the following formula.
  • Example 1 The solid-liquid separation device shown in FIG. 1 was prepared.
  • the outline of the solid-liquid separation device shown in FIG. 1 is as follows.
  • a slurry containing methacrylic acid (MAA) crystals and a solvent (methanol), which is put into this solid-liquid separator, has a slurry flow rate of 2200 kg / h, a slurry concentration of 44.3 mass% and a slurry temperature of 5 ° C.
  • the operating conditions on the side of the crystallization tank were adjusted, and continuous operation was performed so that the amount of crude crystals obtained by the solid-liquid separator shown in FIG. 1 was 950 kg / h (theoretical value).
  • solid-liquid separation device in the piping 3Nm to 60 ° C. air from A 3 / h, the feed while MAA crude crystals were conveyed at 4m / h to 60 ° C.
  • the amount of air supplied into the chamber with respect to the chamber volume was set to about 375% by volume.
  • the outlet air temperature at the top of the chamber was 13 ° C.
  • the residual rate of methacrylic acid crystals in the solid-liquid separator was 99.8% by mass
  • the amount of external reflux supplied to the purification column was 230 kg / h
  • the amount of purified methacrylic acid obtained from the top of the purification column was Was 626 kg / h
  • the ratio of the amount of external reflux to the amount of purified methacrylic acid in the purification tower was 0.37.
  • Example 2 Purification was performed in the solid-liquid separation operation and the purification tower by the same method as in Example 1 except that the temperature of the air supplied into the chamber was 15 ° C. At this time, the residual rate of methacrylic acid crystals was 99.9% by mass, and the amount of crude crystals obtained by the solid-liquid separator was 951 kg / h.
  • the amount of the external reflux liquid supplied to the purification tower was 265 kg / h
  • the amount of purified methacrylic acid obtained from the top of the purification tower was 577 kg / h
  • the amount of the external reflux was relative to the amount of purified methacrylic acid in the purification column. The ratio was 0.46.
  • Example 1 shows the inlet air temperature, the outlet air temperature, the MAA crude crystal amount (A), the gas supply amount (B), the heat amount (C), and the chamber volume (D) in Examples 1 and 2.
  • the MAA crude crystal amount, the gas supply amount (B / A and B / D) and the carry-in amount (C / A and C / D) with respect to the chamber volume are also shown.
  • a crystallization operation was performed using a stainless steel continuous jacket cooling type crystallization tank (volume: 4 L) equipped with a stirring mechanism with a flat paddle blade, a scraper unit, and a baffle plate as a crystallization device.
  • a 40 mass% ethylene glycol aqueous solution was used as the heat medium.
  • Gas chromatography (main body: GC-17A (product name), manufactured by Shimadzu Corporation, analytical column: HP-FFAP (trade name), manufactured by Agilent Technologies) was used to measure the concentrations of the components. Further, the outline of the experimental apparatus is shown in FIG. The experiment apparatus was carried out by using a sieve 41 instead of the filter of the solid-liquid separation apparatus of FIG.
  • Methacrylic acid was extracted from n-heptane from an aqueous solution of methacrylic acid obtained by catalytically vapor-phase oxidizing tertiary butyl alcohol with molecular oxygen and absorbing the resulting reaction gas in water, and distilling this extract. By doing so, the organic solvent and the non-volatile components were removed to obtain crude methacrylic acid.
  • a mixed solution in which 3.8% by mass of methanol was mixed with this crude methacrylic acid was used as a raw material. After cooling this mixed solution to 10 ° C., 3.4 L thereof was charged into a crystallization tank, and a heating medium of 10 ° C.
  • the sieve 41 was further made into a polypropylene container. It was installed in 43 (capacity: 7.8 L). The container containing the sieve was installed in an incubator kept at 3 ° C. Air at 16 ° C. was supplied at a flow rate of 10 L / min for 20 minutes from the gas supply port 44 at the bottom of the sieve and exhausted from the gas discharge port 45.
  • Table 1 shows the inlet air temperature, the outlet air temperature, the MAA crude crystal amount (A), the gas supply amount (B), the heat amount (C), and the chamber volume (D) in Example 3.
  • the MAA crude crystal amount, the gas supply amount (B / A and B / D) with respect to the chamber volume, and the carry-in heat amount (C / A and C / D) are also shown.
  • the heat quantity (heat quantity (W)) applied to the entire container by the air was calculated from the temperature difference between the inlet air temperature and the outlet air temperature.
  • the methanol concentration in the slurry was measured by gas chromatography after melting the slurry after filtration.
  • the removal rate was calculated by comparing with the methanol concentration in the slurry before the treatment.
  • the crystal residual rate was calculated by comparing the initial crystal mass with the crystal mass after filtration. Table 2 shows the results.
  • Example 4 A filtration experiment was conducted in the same manner as in Example 3 except that the temperature of the air supplied from the lower part of the sieve was changed to 60 ° C., and mass measurement and methanol concentration measurement were carried out in the same manner as in Example 1. The results are summarized in Tables 1 and 2.
  • ⁇ Comparative Example 1> A filtration experiment was performed in the same manner as in Example 1 except that air was not supplied from the lower part of the sieve, and mass measurement and methanol concentration measurement were performed in the same manner as in Example 3. The results are summarized in Table 1.
  • ⁇ Comparative Example 2> Instead of supplying air from the bottom of the sieve, a SUS316 pipe (inner diameter: 2 mm, outer diameter: 3 mm) wound on the sieve was installed on the sieve, and the crystal was transferred onto the pipe. After hot water of 30 ° C. was passed through the pipe at a flow rate of 150 mL / min for 2 minutes, mass measurement and methanol concentration measurement were performed in the same manner as in Example 3. The results are summarized in Table 1.
  • the amount of heat applied was obtained by measuring the water temperature after passing through the pipe and calculating the amount of heat (heat amount (J)) that the hot water gave to the entire container from the temperature difference from the supply water temperature.
  • heat amount (J) the amount of heat that the hot water gave to the entire container from the temperature difference from the supply water temperature.
  • the amount of methanol in the slurry after solid-liquid separation should be reduced as much as possible, and the throughput and productivity of the equipment in the high-purification operation should be reduced. From the viewpoint, it is important that the crystal residual rate is 80% by mass or more.
  • the crystal residual rate can be set to 80% or more and the amount of methanol can be significantly reduced. From these results, in the present invention, highly productive and highly pure (meth) acrylic acid can be obtained. Further, as shown in Examples 1 and 2, even in the solid-liquid separation device using the actual belt filter, the high residual crystal ratio of 99.8% or more was achieved.
  • Solid-Liquid Separator 1 Slurry 2 (Crystalline (meth) acrylic acid crystal 3) Belt filter 4 Chamber 5 Slurry inlet 6 Gas supply port 8 Outlet 9 Vent 20 Purification tower 21 (External) reflux liquid 22 Product ((meth) acrylic acid) crystal) 23 Mother Liquor Containing Impurities 24 Purifying Tower Can 25 Stirrer 26 Purifying Tower Distillate 27 External Heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(メタ)アクリル酸粗結晶と、母液と、を含むスラリーをチャンバー内で固液分離する方法において、前記チャンバー内に気体を供給しながら、前記チャンバー内に配置されたフィルターを介して、前記スラリーから前記母液を分離する固液分離方法により、母液量、特に溶媒としてのメタノールが低減された粗結晶を得ることができ、母液と共に不純物の低減された粗結晶から精製することで、不純物の少ない精製(メタ)アクリル酸を得ることができる。

Description

(メタ)アクリル酸の精製方法
 本発明は、(メタ)アクリル酸の精製方法に関する。詳しくは(メタ)アクリル酸粗結晶を、精製塔内で精製する(メタ)アクリル酸の精製方法に関する。
 直接酸化法などにより得られる(メタ)アクリル酸(「アクリル酸又はメタクリル酸」を示す、以下同様)中には、不純物として(メタ)アクリル酸以外のカルボン酸類やアルデヒド類が含まれる。これら不純物を含む粗(メタ)アクリル酸を精製する方法の一つとして晶析法が知られている。例えば、図3は、(メタ)アクリル酸製造のフローシートを示す。S1は上記のように直接酸化法やACH法により粗(メタ)アクリル酸を製造する工程である。次に、粗(メタ)アクリル酸とメタノール等の溶媒との混合液を晶析槽で冷却することで、(メタ)アクリル酸の結晶を析出させることにより、(メタ)アクリル酸結晶を含むスラリーを得る晶析工程S2を行う。なお、溶媒は、晶析における操作性を向上するために使用される。その後、該スラリーをろ過し、(メタ)アクリル酸結晶および結晶表面付着母液(以降(メタ)アクリル酸粗結晶と定義する)と母液を固液分離する(固液分離工程S3)。さらに精製塔において精製する(精製工程S4)ことにより、純度の高い(メタ)アクリル酸結晶を得ることができる。
 精製塔での精製には、精製した結晶を融解した還流液、もしくは精製した結晶を一旦外部に取り出して外部で加熱融解した還流液と、精製前の原料粗結晶とを向流接触させて精製する方法が知られている。本出願人は、精製効率を向上する方法として、特許文献1及び2に記載の方法を提案している。
 特許文献1では、精製塔内に導入する(メタ)アクリル酸粗結晶の(メタ)アクリル酸量および母液保持率を調整することで、精製効率を向上する方法を提案している。特許文献2では、精製塔内に導入する(メタ)アクリル酸粗結晶を加熱して、(メタ)アクリル酸粗結晶に同伴される母液量を低減することにより、さらなる精製効率の向上を図ることを提案している。
特開2011-256138号公報 特開2015-40205号公報
 純度の高い(メタ)アクリル酸を生産性高く得ようとすると、不純物だけでなく充分に溶媒を除去しておく必要がある。しかしながら、本発明者等の検討によると、特許文献1及び2に記載の方法の場合、上述の固液分離工程S3において、充分に母液を除去することができず、上述の精製工程S4において純度の高い(メタ)アクリル酸結晶を生産性高く得ることが困難な場合があることが判明した。特に、冬場等、外気温が低くなるとスラリーの母液に含まれる(メタ)アクリル酸が凍結してしまい、その結果、母液中に含まれるメタノール等の溶媒が効率良く除去できずに、純度の高い(メタ)アクリル酸を生産性高く得ることが困難になる場合がある。
 本発明では前記課題に鑑み、(メタ)アクリル酸粗結晶中の母液量を低減する固液分離工程を改善し、母液、特に溶媒であるメタノールの残存率の低い(メタ)アクリル酸結晶の固液分離方法を提供することを目的とする。又、本発明は、該固液分離法を含む(メタ)アクリル酸の精製方法を提供することを目的とする。
 上記実情に鑑み鋭意検討の結果、本発明者らは、(メタ)アクリル酸粗結晶と溶媒とを含むスラリーを固液分離する方法において、該スラリーを固液分離するチャンバー内に気体を供給し、溶媒の蒸発を促すことにより上記課題を解決できることを見出し、本発明を達成するに至った。すなわち、本発明の要旨は下記の通りである。
[1] (メタ)アクリル酸粗結晶と、母液と、を含むスラリーをチャンバー内で固液分離する方法において、前記チャンバー内に気体を供給しながら、前記チャンバー内に配置されたフィルターを介して、前記スラリーから前記母液を分離する固液分離方法。
[2] 前記チャンバー内に供給する気体の温度が前記スラリーの温度よりも高い、[1]に記載の固液分離方法。
[3] 前記チャンバー内に供給する気体の温度が、10℃以上65℃以下である[1]または[2]に記載の固液分離方法。
[4] 前記気体が空気である、[1]又は~[3]のいずれかに記載の固液分離方法。
[5] 前記母液がメタノールを含む、[1]~[4]のいずれかに記載の固液分離方法。
[6] 前記スラリー中のメタノール濃度が1質量%以上5質量%以下である[5]に記載の固液分離方法。
[7] [1]~[6]のいずれかに記載の固液分離方法により(メタ)アクリル酸の粗結晶を得る工程を含む、(メタ)アクリル酸の精製方法。
[8] [7]に記載の(メタ)アクリル酸の精製方法を含む、精製(メタ)アクリル酸の製造方法。
 本発明によれば、純度の高い(メタ)アクリル酸を生産性高く得ることができる。
ベルトフィルターを用いた固液分離装置の一例を示した概略側面図(A)と概略上面図(B)である。 精製塔における(メタ)アクリル酸粗結晶の精製の一例を示した模式図である。 (メタ)アクリル酸製造のフローシートである。 実施例で使用した実験装置の概略図である。
 本発明は、(メタ)アクリル酸の粗結晶と母液とを含むスラリーをチャンバー内で固液分離する方法において、前記チャンバー内に気体を供給しながら、前記チャンバー内に配置されたフィルターを介して、前記スラリーから前記母液を分離する。
 以下に、本発明を実施形態により詳細に説明するが、本発明はこれに限定されない。
(スラリー)
 本発明において、スラリーは、例えば、直接酸化法等により得られた粗(メタ)アクリル酸を溶媒と混合した後、該混合液を晶析槽において冷却し晶析させることにより得ることができる。このようにして形成されたスラリーは、少なくとも、(メタ)アクリル酸粗結晶と、溶媒と、を含有する。より詳細には、結晶化していない(メタ)アクリル酸と、溶媒と、粗(メタ)アクリル酸の製造由来の不純物と、を含有する母液と、(メタ)アクリル酸粗結晶とを含有する。
 なお、粗(メタ)アクリル酸の製造方法は、直接酸化法に限定されず、例えば、公知のACH法等のように他の方法により製造することもできる。
 不純物としては、特段の制限はないが、上述の通り、通常、粗(メタ)アクリル酸の製造由来の不純物が挙げられ、例えば、フェノール、ギ酸、酢酸、プロピオン酸、マレイン酸、シトラコン酸、安息香酸、トルイル酸、テレフタル酸等のカルボン酸類や、ホルムアルデヒド、プロピオンアルデヒド、メタクロレイン、ベンズアルデヒド、トルアルデヒド、フルフラール等のアルデヒド類が挙げられる。
 溶媒は、主に、晶析における操作性を向上させるために、粗(メタ)アクリル酸と混合されるものである。溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ジエチルエーテル、ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチル等を用いることができる。この中でも、(メタ)アクリル酸粗結晶との分離性の観点からメタノールを用いることが好ましい。
 スラリーの組成比は特段の制限はないが、スラリー全量に対する(メタ)アクリル酸量、すなわち、スラリー全量に対する(メタ)アクリル酸粗結晶量と結晶化していない(メタ)アクリル酸量の和は、80質量%以上であることが好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、一方、99質量%以下であることが好ましく、98質量%以下であることがさらに好ましく、97質量%以下であることが特に好ましい。
 スラリー全量に対する溶媒量は、特段の制限はないが、1質量%以上であることが好ましく、2質量%以上であることがさらに好ましく、3質量%以上であることが特に好ましく、一方、20質量%以下であることが好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。
 スラリー全量に対する不純物量は、特段の制限はないが、0.1質量%以上の際に本発明はより有効であり、0.3質量%以上の際に特に有効である。なお、上限は特にない。
 一方、スラリーを固形分((メタ)アクリル酸粗結晶)と液分(母液)の割合で考えた場合、スラリー全量に対する(メタ)アクリル酸粗結晶の割合は、特段の制限はないが、5質量%以上であることが好ましく、10質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましく、一方、60質量%以下であることが好ましく、55質量%以下であることがさらに好ましく、50質量%以下であることが特に好ましい。
 スラリー全量に対する母液の割合は、特段の制限はないが、40質量%以上であることが好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましく、一方、95質量%以下であることが好ましく、90質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。
 なお、上述のスラリーの組成に関する記載は、固液分離の対象とするスラリー、すなわち、固液分離装置に投入する前のスラリー組成を意味するものとする。
 前記晶析操作により得られる(メタ)アクリル酸粗結晶を含むスラリー(以下、単に「スラリー」という)を晶析槽から抜き出した後、図1に示すようにチャンバー内で該スラリー1をベルトフィルター2により、ろ過しながら精製塔に搬送する。スラリーをろ過することで、母液が除去され、(メタ)アクリル酸粗結晶が堆積されて層状の(メタ)アクリル酸粗結晶が形成される。なお、母液には、上述の通り、主に、結晶化していない(メタ)アクリル酸と、溶媒と、不純物が含まれているために、母液を除去することにより不純物及び溶媒を多く除去することができる。
 図1の固液分離装置10は、ベルトフィルター3が配されたチャンバー4を有し、チャンバー4のベルトフィルター3の一端部の上方にスラリー投入口5が設けられている。スラリー投入口5を介して、チャンバー4内に(メタ)アクリル酸粗結晶と母液とを含むスラリー1を導入し、ベルトフィルター3によりスラリーを搬送しながら母液を除去する。これにより、スラリー1がベルトフィルター3の他方の端部に到達するときには、所望の母液含有率(含液率)の(メタ)アクリル酸粗結晶2を得ることができる。なお、ベルトフィルター3で固液分離された母液は、チャンバー下部の排出口8から回収し、晶析槽(不図示)に戻して再利用することができる。
 チャンバー4には、チャンバー内に気体を供給するための手段が設けられており、例えば、図1に示すように、配管A及びBを介して所定温度に設定された気体(ガスという)を導入できる構成を有している。配管Aはチャンバー上方のほぼ中央部分の供給口6からガスを供給することができ、チャンバー内の気体を流動させることができる。また、配管Bは、ベルトフィルター3の支持部に連結されており、スラリー1の下方からガスを供給できるように配されている。本実施形態においては、これらの配管を介して、チャンバー外部からチャンバー内に気体を供給することで、チャンバー内の気体が流動する。
 一般的に、ベルトフィルターを用いてスラリーの固液分離を行うと、スラリー上部は(メタ)アクリル酸粗結晶の割合が多くなる一方で、スラリー下部、すなわち、ベルトフィルターの表面付近では、不純物を多く含む母液の存在割合が多くなる傾向がある。ここで、従来の方法の場合、効率良く母液を除去することができず、上述の精製工程S4において純度の高い(メタ)アクリル酸結晶を生産性高く得ることが困難な場合があることが判明した。特に、冬場等、外気温が低くなるとスラリーの母液に含まれる(メタ)アクリル酸が凍結してしまい、その結果、母液中に含まれるメタノール等の溶媒が効率良く除去できずに、純度の高い(メタ)アクリル酸を生産性高く得ることが困難になる場合がある。そこで、母液が凍結するのを回避する、又は凍結した母液を溶融するために、特許文献2のように、ベルトフィルターのみの加熱により、凍結した母液が存在するスラリー下部だけを加熱することも検討したが、この場合、凍結した母液を効率良く溶融できて、母液を分離することが可能となるため、スラリー中の不純物は低減されるものの、加熱能力の高い温水配管によってスラリー中の(メタ)アクリル酸結晶が直接加熱されるため、結晶融解によるロスが大きく、さらには、母液中の溶媒を効率良く除去することが困難であることが判明した。
 これに対して、本実施形態では、固液分離時にチャンバー外部から気体をチャンバー内部に供給しており、ベント9を介して、気体の入れ替えが行われることになる。その結果、チャンバー内の雰囲気が溶媒の飽和状態になるのを防ぐことができるために、効率良くスラリー中の溶媒の気化を促すことができる。そのため、(メタ)アクリル酸結晶を大きくロスすることなく、純度の高い(メタ)アクリル酸を効率良く得ることができる。
 また、チャンバー内へ供給する際の気体の温度は、固液分離装置に投入されるスラリーの温度以上であることが好ましく、10℃以上であることがより好ましく、20℃以上であることがさらに好ましく、30℃以上であることが特に好ましく、40℃以上であることが最も好ましい。供給する気体の温度を上記範囲内とすることにより、チャンバー内雰囲気温度を上げることができるためにメタノールの蒸発をさらに促進するとともに、スラリー中の母液が凍結するのを防ぐ、又は凍結した母液を溶融することができるために、固液分離において溶媒を効率良く除去することができる。また、温水配管等によりフィルター上のスラリーを直接加熱した場合と比較しても、同じ持ち込み熱量で考えた場合、(メタ)アクリル酸結晶が融解する量を抑えることができるために、生産性高く純度の高い(メタ)アクリル酸結晶を得ることができる。一方、気体の温度が高すぎても、結晶融解量の大幅な損失を防ぐために、供給する気体の温度は、80℃以下が好ましく、70℃以下がより好ましく、65℃以下が特に好ましい。
 チャンバー内に供給した気体は、さらにチャンバー内を流動させてもよい。具体的には、ベルトフィルター3の上流側にファンなどの送風装置を設けて、チャンバー内の気体を流動させてもよい。なお、(メタ)アクリル酸結晶が大幅に溶融しない範囲で、チャンバーの内部又は外部に加熱手段を設けて、スラリーを加熱してもよい。
 チャンバー外部からチャンバー内部へ供給する気体は、特段の制限はないが、反応性の低い気体であることが好ましく、空気又は不活性ガスであることが好ましく、なかでも空気であることが特に好ましい。なお、不活性ガスとしては特段の制限はないが、好ましくは窒素が挙げられる。
 図1に示す装置の場合、配管Aは一つのガス供給口から、配管Bは4つの気体供給口から気体が供給されることから、配管Bでは配管Aの4倍の供給量となる。なお、気体供給口6の配置は図1の例に限定されず、種々変更することが可能である。また、気体供給口の数も特に制限はない。すなわち、一つの気体供給口から気体を供給してもよいし、複数の気体供給口から気体を供給してもよい。なお、少なくとも一つの気体供給口からチャンバー内に気体を供給すれば、チャンバー全体の気体が流動し、スラリー全体が加熱されるために、本発明の効果は得られるが、なかでも、スラリー上部の気体を積極的に流動させて、スラリー上部をより加熱しやすくするという観点からは、ベルトフィルターよりも高い位置からチャンバー内に気体を供給することが好ましく、なかでも、チャンバー上部から気体を供給することが好ましい。一方、母液量の多いスラリー下部を加熱しやすくするために、スラリーよりも低い位置からガスを供給することも好ましく、これらを合わせて行うことが特に好ましい。
 また、チャンバー容積当たりの1時間当たりの気体の供給量は特段の制限はないが、メタノール等の溶媒の気化を促進するために、チャンバー内容積に対して、100容積%/h以上であることが好ましく、200容積%/h以上であることがより好ましい。一方、チャンバーからベント9を介して放出される気体を処理する設備の経済性の観点から、10000容積%/h以下であることが好ましく、8000容積%/h以下であることがより好ましく、1000容積%以下であることがさらに好ましく、800容積%以下であることが特に好ましい。
 スラリー中の(メタ)アクリル酸粗結晶量に対する気体の供給量は、特段の制限はないが、メタノール等の溶媒の気化を促進するために、1Nm/(m・h)以上であることが好ましく、10Nm/(m・h)以上であることがさらに好ましい。一方、(メタ)アクリル酸結晶の溶融を防ぐために、500Nm/(m・h)以下であることが好ましく、350Nm/(m・h)以下であることがさらに好ましい。(メタ)アクリル酸粗結晶量とは、図1に示す固液分離装置の場合、ベルトフィルター上に存在する全ての(メタ)アクリル酸結晶量を意味している。
 チャンバー容積に対する持ち込み熱量は、特段の制限はないが、メタノール等の溶媒の気化を促進するために、0.005kW/m以上であることが好ましく、0.01kW/m以上であることがさらに好ましい。一方、(メタ)アクリル酸結晶の溶融を防ぐために、5.0kW/m以下であることが好ましく、3.0kW/以下であることがさらに好ましく、1.0kW/以下であることが特に好ましい。
 スラリー中の(メタ)アクリル酸粗結晶量に対する持ち込み熱量は、特段の制限はないが、メタノール等の溶媒の気化を促進するために、0.005kW/m以上であることが好ましく、0.01kW/m以上であることがさらに好ましい。一方、(メタ)アクリル酸結晶の溶融を防ぐために、100kW/m以下であることが好ましく、50kW/m以下であることがさらに好ましい。
 また、チャンバー内の圧力は特段の制限はないが、装置の複雑化を避けるために、大気圧であることが好ましい。
 固液分離装置内の気体は、ベント9により排出されるが、ベント9はチャンバー内の雰囲気を吸引する設備を有していてもよい。具体的には、ブロワ―を設けてもよい。
 また、複数のガス供給口からガスを供給する場合、各ガス供給口から供給されるガスの温度は同じであってもよいし異なっていてもよい。なお、本発明において、複数のガス供給口からガスを供給する場合、チャンバー内に供給する際のガスの温度は、各ガス供給口から供給される各ガスの温度及び供給量を考慮したガスの平均温度を意味するものとする。また、固液分離中は、ベント9から気体を抜いてチャンバー内圧力を一定にすることが好ましい。
 チャンバー内の雰囲気温度は固液分離が効率良く行える限りにおいて、特段の制限はないが、効率良く母液を融解するために10℃以上であることが好ましく、一方、(メタ)アクリル酸の融解を抑えるために40℃以下であることが好ましい。なお、雰囲気温度は、ガスの温度、ガス供給量等を制御することにより調整することができる。なお、本発明において、チャンバー内の雰囲気温度とは、ベルトフィルター上方のチャンバー内上部の温度を意味するものとする。
 チャンバー外の温度(外気温度)は、特段の制限はないが、本発明は特に母液が凍結しやすい温度の場合に有効であるため、チャンバー外の温度が15℃以下の特に本発明はより有効であり、10℃以下である場合に特に有効である。
 チャンバーの容積は特段の制限はないが、図1に示すようなベルトフィルターを用いた連続式の固液分離装置10の場合、2m以上であることが好ましく、3m以上であることがより好ましく、4m以上であることがさらに好ましく、5m以上であることが特に好ましく、一方、8m以下であることが好ましく、7m以下であることが特に好ましい。
 固液分離装置10に投入する際のスラリー温度は、特段の制限はないが、晶析工程S2の運転安定性の観点から、-2℃以上12℃以下であることが好ましく、なかでも、3℃以上であることがさらに好ましく、10℃以下であることがさらに好ましい。
 固液分離装置10に晶析槽から投入されるスラリー量としては、固液分離装置の大きさにも依存するが、80kg/h以上、5000kg/h以下の範囲が好ましく、なかでも、1000kg/h以上であることがより好ましく、一方、4000kg/h以下であることがより好ましい。この範囲であれば、生産性を確保しつつ、精製塔での安定運転を確保することができる。スラリー中の固形分の濃度(スラリー濃度)は、溶媒にメタノールを使用する場合、25~50質量%であることが晶析槽の安定運転の点で好ましい。
 ベルトフィルター3上でのスラリーの高さは10~200cmが好ましく、40~100cmがより好ましい。粗結晶中には毛細管力により一定量母液量が残るため、スラリー高さがこの範囲であれば、母液含液率が高くなりすぎることがなく、母液分離の時間も適性となる。
 ベルトフィルターとしては、公知のベルトフィルターが使用できる。ベルトの幅は生産性(上記スラリーの供給量と高さの範囲との関係)と装置コストの観点から最適な幅を選択すればよいが、10~200cmが好ましく、50~150cmがより好ましくは、75~125cmがさらに好ましい。また、ベルトの敷設長さは、母液の分離性と装置コストの観点から最適な長さを選択すればよいが、1~10mが好ましく、4~8mがより好ましい。なお、「ベルトの敷設長さ」とは、ベルトを張架している張架ローラ間の長さであり、スラリーと接しているベルトの長さとほぼ同じである。
 ベルトフィルターとしては、固液分離するスラリーに影響されることがなく、また、スラリーに不純物を付着させない観点から、ステンレス鋼が好ましく、耐食性と経済性の観点からはSUS316がより好ましい。また、ベルトフィルターは固液分離のため、メッシュ構造などの多数の孔が設けられている。スラリー中の結晶の落下防止の観点から、メッシュサイズ(網目サイズ)は1.5mm以下が好ましく、1.2mm以下がより好ましい。一方、固液分離を効率的に行うため、孔径は0.6mm以上が好ましく、0.9mm以上がより好ましい。
 固液分離時のベルト速度としては、ベルトの幅や敷設長さ、スラリーの供給量や高さなどにもよるが、2~8m/hであることが、生産性と固液分離性能の点で好ましい。
 このようにして固液分離され、母液量が低減された(メタ)アクリル酸粗結晶2は、さらに高純度化工程を行うことが好ましい。高純度化工程は、特段の制限はなく、公知の方法を使用することができる。なかでも、図2に示す精製塔20にて、精製した結晶を融解した還流液、もしくは精製した結晶を一旦外部に取り出して外部で加熱融解した還流液21と向流接触させる工程が好ましい。これにより、(メタ)アクリル酸を精製することができる。精製塔20への(メタ)アクリル酸粗結晶2の供給量は、精製塔20の種類及び精製塔缶体24の外径、高さ等によって適宜設定すればよい。精製塔缶体24内部には攪拌装置25が配置されて、粗結晶の上昇と環流液の下降を制御している。精製塔20に供給する際の(メタ)アクリル酸粗結晶2の温度は5~6℃であることが好ましい。また、精製塔20からの濃縮された不純物を含む母液23の排出量は(メタ)アクリル酸粗結晶2の供給量、製品22の留出量により適宜調節すればよい。
 精製塔20の塔頂への外部還流液21の供給量(REF)は、洗浄作用の効果により製品22の品質を維持していく点から最低量REFmin以上に設定する必要がある。洗浄効果を充分に発揮させることのできるREFminは、すでに本発明者らにより(メタ)アクリル酸粗結晶2の含液量と等量であることが見出されている。すなわち、REFminは、下記式(1)により算出することができる。
 REFmin=((メタ)アクリル酸粗結晶2の供給量)×qm/(100-qm) (1)
(式(1)中、qmは(メタ)アクリル酸粗結晶2の含液率である)。
 また、外部還流液21の供給量が多すぎると製品22の生産性が低くなる。そのため、REFは、REFminの1.0~1.1倍にすることが好ましい。
 外部還流液21の温度は、35~40℃であることが好ましい。外部還流液21の温度を35℃以上とすれば、発汗作用を充分に発揮させやすい。また、外部還流液21の温度を40℃以下とすれば、精製効率が低下し製品22の品質が劣化することを抑制しやすい。外部還流液21の温度は外部加熱器27に供給する加熱量により調節することができる。精製塔留出分26の温度は外部還流液21の温度と同じ温度である。
 尚、本発明に係る精製方法は、図2に例示した精製塔20を用いる方法には限定されない。例えば、(メタ)アクリル酸粗結晶2を塔頂側から供給し、外部還流液を塔底側から供給し、不純物を含む母液を塔頂側から排出する精製塔を用いる方法であっても、図2に示す精製塔20を用いる方法と同様に高い精製効率で精製を行うことができる。
 以上の精製工程により、精製(メタ)アクリル酸を製造することができる。
 このように,本発明の一態様によれば、(メタ)アクリル酸粗結晶と、母液と、を含むスラリーをチャンバー内で固液分離する方法において、前記チャンバー内に気体を供給しながら、前記チャンバー内に配置されたフィルターを介して、前記スラリーから前記母液を分離する固液分離方法が提供される。
 また、本発明の他の態様によれば、上記固液分離方法により(メタ)アクリル酸の粗結晶を得る工程を含む、(メタ)アクリル酸の精製方法が提供される。
 加えて、本発明のさらに他の態様によれば、上記(メタ)アクリル酸の精製方法を含む、精製(メタ)アクリル酸の製造方法が提供される。
 以下、実施例を用いて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、本実施例において、メタクリル酸(MAA)結晶の残存率は下記式により求めた。
 融解率(%)=(固液分離操作により融解した結晶量/粗結晶量)×100
 結晶の残存率(%)=100(%)-融解率(%)
<実施例1>
 図1に示す固液分離装置を用意した。なお、図1に示す固液分離装置の概要は下記の通りである。
  ベルトフィルターの幅:600mm
  ベルトフィルターの敷設長さ:4m
  ベルトフィルターの材質:SUS316(螺旋メッシュタイプ、孔径:約1mm)
  チャンバー容積:約4m
 この固液分離装置に投入されるメタクリル酸(MAA)結晶と溶媒(メタノール)を含むスラリーが、スラリー流量:2200kg/h、スラリー濃度:44.3質量%、スラリー温度:5℃となるように晶析槽側の運転条件を整えて、図1に示される固液分離装置で得られる粗結晶量が950kg/h(理論値)となる連続運転を行った。さらに、固液分離装置内に配管Aから60℃の空気を3Nm/h、配管Bから60℃の空気を12Nm/hで供給しながらMAA粗結晶を4m/hで搬送して、精製塔に供給した。すなわち、チャンバー容積に対するチャンバー内への空気の供給量は約375容積%とした。なお、チャンバー上部の出口空気温度は、13℃であった。その後、精製塔においてはMAA粗結晶を、攪拌装置を用いて精製塔上部に搬送しながら、精製塔内を下降する精製MAA融解液(環流液)によって精製する連続運転を行った。このとき、固液分離装置におけるメタクリル酸結晶の残存率は99.8質量%であり、精製塔に供給する外部還流量は230kg/hであり、精製塔の塔頂から得られる精製メタクリル酸量は、626kg/hであり、精製塔での精製メタクリル酸量に対する外部還流量の比率は0.37であった。
<実施例2>
 チャンバー内に供給する空気の温度を15℃とした以外は、実施例1と同様の方法により、固液分離操作と精製塔において精製を行った。このとき、メタクリル酸結晶の残存率は99.9質量%であり、固液分離装置で得られた粗結晶量は951kg/hであった。また、精製塔に供給する外部還流液の量は265kg/hであり、精製塔の塔頂から得られる精製メタクリル酸量は577kg/hであり、精製塔での精製メタクリル酸量に対する外部還流量の比率は0.46であった。
 実施例1及び2の結果から、60℃又は16℃の気体を供給することにより、母液の凍結を防止するとともに、メタノールの蒸発が促進され、その結果、スラリー中のメタノールを効率良く除去することができ、精製塔における外部還流量を抑制できたものと考えられる。その結果、純度の高いメタクリル酸を生産性高く得ることができたと考えられる。
 実施例1,2における入口空気温度、出口空気温度、MAA粗結晶量(A)、気体供給量(B)、熱量(C)、チャンバー容積(D)を表1に示す。又、MAA粗結晶量及びチャンバー容積に対する気体供給量(B/A及びB/D)及び持ち込み量(C/A及びC/D)を合わせて示す。
 以下の実施例及び比較例において、晶析装置としてはフラットパドル翼による攪拌機構、スクレーパーユニット、邪魔板を備えたステンレス製の連続型ジャケット冷却式晶析槽(容積4L)を用い、晶析操作を行った。熱媒体としては、40質量%エチレングリコール水溶液を用いた。
 成分の濃度測定には、ガスクロマトグラフィー(本体:GC-17A(製品名)、(株)島津製作所製、分析カラム:HP-FFAP(商品名)、Agilent Technologies製)を用いた。
 又、実験装置の概略を図4に示す。該実験装置は、図1の固液分離装置のフィルタの代わりにふるい41を用い、ふるい41の網目上にスラリー42を配置し、ガス供給口44及びガス排出口を備えた容器43にて実施した。なお、ろ過された母液はふるい41の下に不図示のトレーを配置して受けるようにした。また、比較例2,3については、ふるい41の網目上にらせん状のステンレス配管を配置して、温水を供給できる様にした。
<実施例3>
 第3級ブチルアルコールを分子状酸素により接触気相酸化し、得られた反応ガスを水に吸収させて得られるメタクリル酸水溶液からn-ヘプタンを用いてメタクリル酸を抽出し、この抽出液を蒸留することにより有機溶剤及び不揮発分を除去して粗製メタクリル酸を得た。この粗製メタクリル酸に対し、3.8質量%のメタノールが混合された混合溶液を原料として用いた。
 この混合溶液を10℃に冷却した後、その3.4Lを晶析槽内に仕込み、125rpmの撹拌条件下、晶析槽のジャケットに10℃の熱媒体を供給した。
 その後、熱媒体温度を2.0℃/hrにて降温した。熱媒体温度が4.5℃となった時点で、1時間保持し、原料のスラリーを作製した。
 そしてスラリーを下部にフィルターを設置したガラスカラム(内径:50mm、高さ:300mm)に移し、重力濾過した。
 重力ろ過は3℃に保たれたインキュベーター内で10分間行った。重力ろ過後のフィルター上に残った粗結晶42を、図4に示すように、SUS304製のふるい(直径:15cm、目開き:180μm)41の網目上に移し、さらにこのふるい41をポリプロピレン製容器43(容量:7.8L)の中に設置した。
 ふるいが収納された容器は3℃に保たれたインキュベーター内に設置した。ふるいの下部の気体供給口44から16℃の空気を10L/分の流量で20分間供給し、気体排出口45から排気した。
 実施例3における入口空気温度、出口空気温度、MAA粗結晶量(A)、気体供給量(B)、熱量(C)、チャンバー容積(D)を表1に示す。又、MAA粗結晶量及びチャンバー容積に対する気体供給量(B/A及びB/D)及び持ち込み熱量(C/A及びC/D)を合わせて示す。
 また、入口空気温度と出口空気温度の温度差から空気により容器全体に与えた熱量(与熱量(W))を算出した。
 スラリー中のメタノール濃度を、ろ過後のスラリーを融解し、ガスクロマトグラフィーで測定した。処理前のスラリー中のメタノール濃度と比較して、その除去率を求めた。初期結晶質量とろ過後結晶質量とを比較して結晶残存率を求めた。結果を表2に示す。
<実施例4>
 ふるい下部から供給する空気の温度を60℃にする以外は実施例3と同様にしてろ過実験を行い、実施例1と同様に質量測定、メタノール濃度測定を行った。結果を表1及び表2にまとめて示す。
<比較例1>
 ふるい下部から空気を供給しない以外は実施例1と同様にしてろ過実験を行い、実施例3と同様に質量測定、メタノール濃度測定を行った。結果を表1にまとめて示す。
<比較例2>
 ふるい下部から空気を供給する代わりにふるい上に渦上に巻いたSUS316配管(内径:2mm、外径:3mm)を設置し、配管の上に結晶を移した。
 配管に30℃の温水を150mL/分の流量で2分間流通させた後、実施例3と同様に質量測定、メタノール濃度測定を行った。結果を表1にまとめて示す。なお、与熱量は配管通過後の水温を測定し、供給水温との温度差から温水が容器全体に与えた熱量(与熱量(J))を算出した。
<比較例3>
 配管に50℃の温水を流通させる以外は、比較例2と同様に行った。その後、実施例3と同様に質量測定、メタノール濃度測定を行った。結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 固液分離後の高純度化操作において純度の高いメタクリル酸を得るために、固液分離後のスラリーのメタノール量を極力低減しておくとともに、高純度化操作における装置の処理量と生産性の観点から、結晶残存率を80質量%以上とすることが重要である。
 しかしながら、表2の結果から分かるように、フィルター下部に温水配管を設けて30℃の温水でスラリーを加熱した比較例2の場合、温水配管による加熱を行わなかった比較例1と比較して、メタノールの残存率にほとんど差はなく、むしろ、加熱することにより結晶残存率が低下していることが分かる。また、50℃の温水で加熱した比較例3では、メタノールの除去率は比較例1と比較して向上させることができているものの、結晶残存量が極めて低くなっているために生産性が大幅に低下することが予測される。一方、本発明のように実施例3及び4では、いずれも結晶残存率を80%以上とすることができているとともに、メタノール量も大幅に低減できていることが分かる。これらの結果から、本発明においては、生産性高く純度の高い(メタ)アクリル酸を得ることができる。また、実施例1,2に示すように、実際のベルトフィルターを用いた固液分離装置でも、99.8%以上という高い結晶残存率が達成されている。
10 固液分離装置
1 スラリー
2 (メタ)アクリル酸粗結晶
3 ベルトフィルター
4 チャンバー
5 スラリー投入口
6 ガス供給口
8 排出口
9 ベント
20 精製塔
21 (外部)還流液
22 製品((メタ)アクリル酸結晶)
23 不純物を含む母液
24 精製塔缶体
25 攪拌装置
26 精製塔留出分
27 外部加熱器

Claims (8)

  1.  (メタ)アクリル酸粗結晶と、母液と、を含むスラリーをチャンバー内で固液分離する方法において、前記チャンバー内に気体を供給しながら、前記チャンバー内に配置されたフィルターを介して、前記スラリーから前記母液を分離する固液分離方法。
  2.  前記チャンバー内に供給する気体の温度が前記スラリーの温度よりも高い、請求項1に記載の固液分離方法。
  3.  前記チャンバー内に供給する気体の温度が、10℃以上65℃以下である請求項1又は2に記載の固液分離方法。
  4.  前記気体が空気である、請求項1~3のいずれか1項に記載の(固液分離方法。
  5.  前記母液がメタノールを含む、請求項1~4のいずれか1項に記載の固液分離方法。
  6.  前記スラリー中のメタノール濃度が1質量%以上5質量%以下である、請求項5に記載の固液分離方法。
  7.  請求項1~6のいずれか1項に記載の固液分離方法により(メタ)アクリル酸の粗結晶を得る工程を含む、(メタ)アクリル酸の精製方法。
  8.  請求項7に記載の(メタ)アクリル酸の精製方法を含む、精製(メタ)アクリル酸の製造方法。
PCT/JP2019/039840 2018-10-09 2019-10-09 (メタ)アクリル酸の精製方法 WO2020075762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020551203A JP7151778B2 (ja) 2018-10-09 2019-10-09 (メタ)アクリル酸の精製方法
KR1020217013656A KR102533815B1 (ko) 2018-10-09 2019-10-09 (메트)아크릴산의 정제 방법
CN201980056393.9A CN112638857A (zh) 2018-10-09 2019-10-09 (甲基)丙烯酸的纯化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-190785 2018-10-09
JP2018190785 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075762A1 true WO2020075762A1 (ja) 2020-04-16

Family

ID=70164524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039840 WO2020075762A1 (ja) 2018-10-09 2019-10-09 (メタ)アクリル酸の精製方法

Country Status (4)

Country Link
JP (1) JP7151778B2 (ja)
KR (1) KR102533815B1 (ja)
CN (1) CN112638857A (ja)
WO (1) WO2020075762A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4613914B1 (ja) * 1967-07-10 1971-04-14
JPS5259177A (en) * 1975-11-06 1977-05-16 Monsanto Co Drying method of trichlorooss triazinetrion
JP2015040205A (ja) * 2013-08-23 2015-03-02 三菱レイヨン株式会社 (メタ)アクリル酸の精製方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9302333D0 (en) * 1993-02-05 1993-03-24 Ici Plc Filtration process
JPH11343264A (ja) * 1998-05-28 1999-12-14 Mitsubishi Chemical Corp 芳香族カルボン酸の製造方法
JP4299133B2 (ja) * 2001-11-15 2009-07-22 ビーエーエスエフ ソシエタス・ヨーロピア 結晶を母液中の結晶の懸濁液から精製分離する方法
JP2004137197A (ja) * 2002-10-17 2004-05-13 Idemitsu Petrochem Co Ltd ビスフェノールaの製造方法
WO2010119484A1 (ja) * 2009-04-16 2010-10-21 株式会社日立プラントテクノロジー 晶析スラリーからの結晶の回収方法
JP5630078B2 (ja) 2010-06-10 2014-11-26 三菱レイヨン株式会社 (メタ)アクリル酸の精製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4613914B1 (ja) * 1967-07-10 1971-04-14
JPS5259177A (en) * 1975-11-06 1977-05-16 Monsanto Co Drying method of trichlorooss triazinetrion
JP2015040205A (ja) * 2013-08-23 2015-03-02 三菱レイヨン株式会社 (メタ)アクリル酸の精製方法

Also Published As

Publication number Publication date
KR102533815B1 (ko) 2023-05-17
JP7151778B2 (ja) 2022-10-12
CN112638857A (zh) 2021-04-09
KR20210071056A (ko) 2021-06-15
JPWO2020075762A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
TW506965B (en) Process for producing pure terephthalic acid with improved recovery of precursors, solvent and methyl acetate
JP5701305B2 (ja) アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
JP5722771B2 (ja) (メタ)アクリル酸の晶析方法
JP2007191435A (ja) (メタ)アクリル酸の製造方法
CN110386867B (zh) 一种乙基香兰素的连续化纯化方法
JP4055913B2 (ja) 高純度テレフタル酸を製造する方法
US10442747B2 (en) Method for purifying methacrylic acid and method for producing methacrylic acid
WO2020075762A1 (ja) (メタ)アクリル酸の精製方法
EP1810959B1 (en) Method for producing acrylic acid
JP2010163380A (ja) 芳香族カルボン酸の製造装置及び製造方法
JP5336794B2 (ja) 原料粗結晶の精製方法
TWI535696B (zh) 製備甲基丙烯酸及甲基丙烯酸酯的方法
TWI673260B (zh) 淨化丙烯酸的程序和裝置
JP2022528886A (ja) ポリマーグレードのアクリル酸の生成
JP2020132612A (ja) 固液分離方法、並びに、それを用いた(メタ)アクリル酸の精製方法及び精製(メタ)アクリル酸の製造方法
JP5774928B2 (ja) アクリル酸の製造方法
JP5581316B2 (ja) (メタ)アクリル酸の製造方法
TW200804267A (en) Dispersion medium substitution method
JP2006096710A (ja) テレフタル酸の精製方法
JP6214156B2 (ja) メタクリル酸の精製方法
JP2015040205A (ja) (メタ)アクリル酸の精製方法
JP2002114736A (ja) メタクリル酸の精製方法およびメタクリル酸メチルの製造方法
WO2015030470A1 (ko) (메트)아크릴산의 연속 회수 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2101002037

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2020551203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217013656

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19872023

Country of ref document: EP

Kind code of ref document: A1