WO2020075725A1 - 水稲育苗培土 - Google Patents

水稲育苗培土 Download PDF

Info

Publication number
WO2020075725A1
WO2020075725A1 PCT/JP2019/039700 JP2019039700W WO2020075725A1 WO 2020075725 A1 WO2020075725 A1 WO 2020075725A1 JP 2019039700 W JP2019039700 W JP 2019039700W WO 2020075725 A1 WO2020075725 A1 WO 2020075725A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
paddy rice
soil
absorbent resin
rice seedling
Prior art date
Application number
PCT/JP2019/039700
Other languages
English (en)
French (fr)
Inventor
正博 馬場
裕典 三枝
利典 加藤
中村 英慈
一彦 前川
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019076924A external-priority patent/JP2022002467A/ja
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2020075725A1 publication Critical patent/WO2020075725A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • A01G24/35Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds containing water-absorbing polymers

Definitions

  • the present invention relates to a paddy rice raising seedling cultivation soil containing a water absorbent resin and a cultivation soil.
  • Patent Document 1 discloses that a highly water-absorbent resin containing a polyacrylate gel as a main component is used as an agricultural water retention material.
  • Patent Document 2 it has been clarified that the conventional superabsorbent resin has a bad influence on the emergence of seeds or the growth of plants, especially roots (Patent Document 2 or Non-Patent Document 1).
  • Patent Document 2 discloses a highly water-absorbent resin having a specific electric conductivity, a 0.9% saline water absorption rate, and a water absorption capacity of ion-exchanged water, It is disclosed that it can be applied to a water retaining material for growing plants.
  • Patent Document 3 discloses a rice seedling raising method characterized in that 0.01 to 5.0% by weight of water-absorbent resin powder having a size that does not pass through a 32 mesh standard sieve is mixed with the bed soil. It is disclosed that the air permeability of the soil can be improved by adopting such a paddy rice raising method.
  • Patent Document 4 is characterized by containing 0.01 to 10% by weight of a water-absorbing polymer substance and 0.01 to 1% by weight of a water-soluble polymer substance, which is mainly composed of soil, and is in a granular form. Is disclosed, and it is disclosed that such a plant-cultivating soil has high water retention capacity and high air permeability.
  • the superabsorbent resin disclosed in Patent Document 2 has a problem of yellowing of leaves or inhibition of root elongation due to direct contact with roots. Further, in the paddy rice raising method disclosed in Patent Document 3, it is necessary to increase the gas phase ratio in order to improve the air permeability, and the volume of the whole soil is significantly increased with the expansion of the superabsorbent resin during watering. Increase. Therefore, the positions of seeds or roots are displaced, which adversely affects germination and growth.
  • the water-soluble polymer binds to the granular soil as a binder, and the fertilizer is less likely to be eluted from the granular soil, which adversely affects germination and growth. .
  • the granular soil becomes less likely to collapse, the voids in the entire soil are high, the strength of the grown paddy rice mat seedlings is reduced, and the workability during rice planting is reduced.
  • the problem to be solved by the invention is that the paddy rice rearing and cultivating soil in which the conventional problem has been solved, that is, the burden of agricultural work is reduced (for example, weight reduction and / or reduction of irrigation load, etc.)
  • the purpose of the present invention is to provide a paddy rice seedling cultivation soil that does not inhibit the growth of rice.
  • the elution amount (B) of the water-absorbent resin into pure water after irradiation with ultraviolet rays of 4 MJ / m 2 is represented by the following formula (I): Elution amount (B) -elution amount (A) ⁇ 50% by mass (I) Meet the paddy rice seedling cultivation soil.
  • a method for producing a paddy rice nursery box according to [9] above A step of swelling the water-absorbent resin by mixing the water-absorbent resin and water, A method comprising: a step of mixing a swollen water-absorbent resin and a cultivating soil to obtain a paddy rice seedling cultivating soil containing water; and a step of introducing the paddy rice seedling cultivating soil containing water into a nursery box.
  • the paddy rice rearing seedling soil which solved the conventional subject, ie, the paddy rice rearing seedling which does not inhibit the growth of a plant body, while reducing the burden of agricultural work (for example, weight reduction and / or reduction of irrigation load etc.).
  • the paddy rice seedling cultivation medium of the present invention contains a water absorbent resin and a cultivation medium.
  • the elution amount (B) in water is represented by the following formula (I): Elution amount (B) -elution amount (A) ⁇ 50% by mass (I) Meet.
  • the paddy rice seedling cultivation soil is required to bring about good germination and growth of seed paddy.
  • a certain time usually about 2 to 3 weeks
  • the roots of the grown paddy rice are stretched so as to be intertwined with each other, and a mat suitable for setting in a rice transplanter. It is required to bring seedlings. Therefore, the present inventors have found that, in addition to water retention, weather resistance (particularly ultraviolet resistance) is very important as a property required of a water absorbent resin as a water retention material contained in paddy rice rearing soil.
  • the elution amount (A) of the water absorbent resin to pure water and the water absorbent resin to pure water after irradiation with ultraviolet rays having an integrated illuminance of 14.4 MJ / m 2 are used as an index showing excellent weather resistance.
  • the difference from the elution amount (B) of is specified.
  • the above-mentioned integrated illuminance of 14.4 MJ / m 2 corresponds to the illuminance of sunlight for about 3 weeks outdoors.
  • the water absorbent resin in the present invention is not particularly limited as long as it is a water absorbent resin satisfying the formula (I).
  • the value of "elution amount (B) -elution amount (A)” is preferably less than 40% by mass, more preferably less than 30% by mass, particularly preferably less than 20% by mass, most preferably less than 10% by mass.
  • the value of "elution amount (B) -elution amount (A)” is, for example, a molar value for ultraviolet rays having a low molar absorption coefficient for ultraviolet rays [usually 0.4 L / (mol ⁇ cm) or less (value at an ultraviolet wavelength of 300 nm).
  • the vinyl alcohol-based polymer preferably has an amount of carboxyl groups derived from acrylic acid or a salt thereof in an amount of 20 mol% or less based on all the constituent units of the vinyl alcohol-based polymer.
  • the lower limit of this value is not particularly limited.
  • the value of "elution amount (B) -elution amount (A)" is usually 0.01% by mass or more. The elution amount (A) and the elution amount (B) are measured according to the method described in Examples below.
  • the water-absorbent resin contained in the paddy rice nursery soil of the present invention comprises one or more polymers, or contains additives in addition to one or more polymers.
  • additives include polysaccharides such as starch, modified starch, sodium alginate, chitin, chitosan, cellulose and derivatives thereof; polyethylene, polypropylene, ethylene-propylene copolymer, polystyrene, acrylonitrile-styrene copolymer.
  • Polymer acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate resin, polyethylene terephthalate, polybutylene terephthalate, polylactic acid, polysuccinic acid, polyamide 6, polyamide 6,6, polyamide 6,10, polyamide 11, polyamide 12 , Polyamide 6/12, Polyhexamethylenediamine terephthalamide, Polyhexamethylenediamine isophthalamide, Polynonamethylenediamine terephthalamide, Polyphenylene A , Polyoxymethylene, polyethylene glycol, polypropylene glycol, polytrimethylene glycol, polytetramethylene glycol, polyurethane, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyacrylic acid , Polyacrylic acid ester, polyacrylic acid salt, polymethacrylic acid, polymethacrylic acid ester, polymethacryl
  • additives may be used alone or in combination of two or more.
  • the total amount thereof may be within a range that does not impair the effects of the present invention, and is usually 30% by mass or less, preferably 20% by mass or less based on the total mass of the water-absorbent resin. Is.
  • the water absorbent resin used in the present invention is preferably particles.
  • the average particle size of the particles is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less. , And more preferably 300 ⁇ m or less.
  • the average particle diameter can be measured by laser diffraction / scattering.
  • the content of the water absorbent resin is preferably 0.0001 to 80% by mass, more preferably 0.05 to 30% by mass, and particularly preferably 0.1 to 20% by mass, based on the total mass of the paddy rice seedling cultivation soil. More preferably, it is 0.2 to 10% by mass.
  • the content is the content in the dry state.
  • the “dry state” refers to a state in which the water absorbent resin does not contain volatile components such as water or an organic solvent.
  • the water-absorbent resin can be dried by vacuum drying at 40 ° C. until the mass of the water-absorbent resin becomes constant.
  • the water-absorbent resin used in the present invention preferably contains a vinyl alcohol-based polymer [hereinafter sometimes referred to as vinyl alcohol-based polymer (A)] as a polymer.
  • a vinyl alcohol-based polymer [hereinafter sometimes referred to as vinyl alcohol-based polymer (A)] as a polymer.
  • the vinyl alcohol-based polymer (A) include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and those obtained by acetalizing vinyl alcohol units thereof with an acetalizing agent.
  • the vinyl alcohol polymer (A) preferably has a carboxyl group from the viewpoint of easily exhibiting excellent water absorption or water absorption speed.
  • the content of the vinyl alcohol polymer (A) in the water absorbent resin is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, still more preferably 95% by mass or more. , May be 100% by mass.
  • examples of the vinyl alcohol-based polymer (A) include (i) one or more kinds selected from a monomer having a carboxyl group and a derivative of the monomer, and vinyl ester. (Ii) a compound having a vinyl alcohol-based polymer, a functional group (b1) capable of reacting with a hydroxyl group, and a carboxyl group and / or a functional group (b2) derivable to a carboxyl group (b2) Reaction products with (B); and the like.
  • the monomer having a carboxyl group is not particularly limited, but examples thereof include acrylic acid, methacrylic acid, itaconic acid, and maleic acid.
  • examples of the derivative of the monomer having a carboxyl group include anhydrides, esterified products, and neutralized products of the monomer. For example, methyl acrylate, methyl methacrylate, dimethyl itaconate, monomethyl maleate, and Maleic anhydride or the like is used.
  • the vinyl ester is not particularly limited, and examples thereof include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl stearate, vinyl benzoate, vinyl trifluoroacetate, and vinyl pivalate. And vinyl acetate is preferred.
  • the method for producing the saponified product (i) is not particularly limited, and one or more kinds selected from a monomer having a carboxyl group and a derivative of the monomer and a vinyl ester are polymerized by a known polymerization initiator using a known polymerization initiator. It can be produced by carrying out a reaction and then a saponification reaction by a known method.
  • the functional group (b1) is not particularly limited, and examples thereof include an aldehyde group, a carboxyl group, an amino group and derivatives of these functional groups. Among them, the aldehyde group and the derivative of the aldehyde group are preferable from the viewpoint of ease of production or durability of the water absorbent resin. That is, as the compound (B), an aldehyde having a carboxyl group and / or a derivative of the aldehyde is preferable.
  • a vinyl alcohol polymer in which at least a part of vinyl alcohol units is acetalized by at least one selected from an aldehyde having a carboxyl group and / or a derivative of the aldehyde (hereinafter referred to as , Sometimes referred to as vinyl alcohol polymer (A-1)] is preferred.
  • the aldehyde having a carboxyl group as the compound (B) is not particularly limited, and examples thereof include glyoxylic acid, 2-formylpropanoic acid, 3-formylpropanoic acid, and phthalaldehyde acid. Among them, glyoxylic acid is preferable from the viewpoint of easy availability and biodegradability.
  • Examples of the derivative of the aldehyde having a carboxyl group, which is the compound (B) include anhydrides, hydrates, esterified products, acetalized products, and neutralized products of the aldehydes, and examples thereof include glyoxylate.
  • the vinyl alcohol unit of the vinyl alcohol polymer is acetalized with at least one acetalizing agent selected from the group consisting of glyoxylic acid and glyoxylic acid derivatives.
  • Examples of the counter cation of the glyoxylate include alkali metal ions such as sodium ion, potassium ion, and lithium ion; alkaline earth metal ions such as calcium ion and magnesium ion; organic cations such as ammonium ion and alkylammonium ion: Etc.
  • alkali metal ions such as sodium ion, potassium ion, and lithium ion
  • alkaline earth metal ions such as calcium ion and magnesium ion
  • organic cations such as ammonium ion and alkylammonium ion: Etc.
  • potassium ions, calcium ions, and magnesium ions are preferable from the viewpoint of easily exhibiting a superior water absorption rate.
  • Calcium ions are more preferable from the viewpoint of easily maintaining the water absorbability upon contact with divalent ions contained in soil, and potassium ions are more preferable from the viewpoint of growth of paddy rice.
  • Examples of the glyoxylic acid ester include methyl glyoxylate, ethyl glyoxylate, propyl glyoxylate, isopropyl glyoxylate, butyl glyoxylate, isobutyl glyoxylate, sec-butyl glyoxylate, tert-butyl glyoxylate, hexyl glyoxylate, and glyoxylic acid.
  • Examples include octyl and 2-ethylhexyl glyoxylate.
  • the method for producing the vinyl alcohol polymer (A-1) is not particularly limited as long as the elution amounts (A) and (B) of the water absorbent resin satisfy the formula (I), and vinyl produced by a known method is used. It can be produced by acetalizing at least a part of the vinyl alcohol unit of the alcohol-based polymer in the presence or absence of a catalyst with at least one selected from an aldehyde having a carboxyl group and a derivative of the aldehyde.
  • the catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as carboxylic acid and sulfonic acid; cation exchange resins, and solid acids such as heteropolyacid. These catalysts may be used alone or in combination of two or more. Since glyoxylic acid is an acid that accelerates the acetalization reaction, it also functions as a catalyst when the vinyl alcohol polymer (A-1) is produced. That is, from the viewpoint of ease of treatment after the reaction, a method of using glyoxylic acid as the aldehyde having a carboxyl group is preferable in the production of the vinyl alcohol polymer (A-1).
  • the vinyl alcohol-based polymer used as a raw material in the production of the vinyl alcohol-based polymer (A-1) is an industrially-produced commercially available product; vinyl carboxylate such as vinyl acetate and other monomers as necessary are allowed to coexist.
  • Vinyl carboxylate such as vinyl acetate and other monomers as necessary are allowed to coexist.
  • the saponification degree of the vinyl alcohol-based polymer used as the raw material is preferably 30 mol% or more, more preferably 60 mol% or more, and from the viewpoint of easily introducing an appropriate amount of a carboxyl group in one embodiment of the present invention, 80 mol% % Or more is more preferable.
  • the degree of acetalization of the vinyl alcohol polymer (A-1) is preferably 0.01 mol% or more and 85 mol% or less. When the degree of acetalization is within the above range, it is easy to improve water absorption. From the above viewpoint, the degree of acetalization is preferably 0.1 mol% or more, more preferably 1 mol% or more, further preferably 5 mol% or more, even more preferably 8 mol% or more, and particularly preferably 10 mol% or more. , And preferably 80 mol% or less, more preferably 70 mol% or less, further preferably 60 mol% or less, still more preferably 50 mol% or less, particularly preferably 45 mol% or less, and further preferably 40 mol% or less. Is.
  • an aldehyde having a carboxyl group and an aldehyde other than a derivative of the aldehyde are used in combination with an acetal. You may perform a chemical reaction.
  • aldehydes include, for example, aliphatic aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, i-butyraldehyde, sec-butyraldehyde, and tert-butyraldehyde; benzaldehyde, anisaldehyde, cinnamic aldehyde, Aromatic aldehydes such as 4-benzyloxybenzaldehyde, 3-benzyloxybenzaldehyde, 4-amyloxybenzaldehyde, and 3-amyloxybenzaldehyde; and the like.
  • aliphatic aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, i-butyraldehyde, sec-butyraldehyde, and tert-butyraldehy
  • formaldehyde, acetaldehyde, and n-butyraldehyde are preferable from the viewpoint of ease of production or water absorption of the resulting water-absorbent resin.
  • the amount used is not particularly limited, but is usually 0.01 to 30 mol%, preferably 0.1 to 10 mol based on the total of the carboxylic acid-containing aldehyde and the derivative of the aldehyde. %, And more preferably 1 to 5 mol%.
  • the amount of the other aldehyde used is less than or equal to the upper limit, the water absorption of the resulting water-absorbent resin tends to be excellent, and if it is greater than or equal to the lower limit, the paddy rice of the water-absorbent resin by combining with other aldehydes is used. It is easy to obtain the effect of suppressing elution during seedling raising.
  • the other aldehyde may be used as a derivative such as an acetal body.
  • the vinyl alcohol polymer (A) when the vinyl alcohol polymer (A) has a carboxyl group, part or all of the carboxyl group may be in the form of carboxylate.
  • carboxylates include alkali metal ions such as lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion; alkaline earth metals such as magnesium ion, calcium ion, strontium ion, and barium ion. Ions; other metal ions such as aluminum ions and zinc ions; onium cations such as ammonium ions, imidazoliums, pyridiniums, and phosphonium ions; and the like.
  • the vinyl alcohol polymer (A) has potassium ions as counter ions.
  • Examples of the method for producing the vinyl alcohol-based polymer (A) in which a part or all of the carboxyl groups are carboxylic acid salts include, for example, a method using a neutralized product of a monomer having a carboxyl group in the above (i); ) In which a neutralized product of a compound having a functional group capable of reacting with a hydroxyl group and a carboxyl group is used; after the vinyl alcohol-based polymer (A) having a carboxyl group is produced by the various methods described above, the neutralization is performed. And the like.
  • the amount of the carboxyl group in the vinyl alcohol-based polymer (A) is the same as that of the vinyl alcohol-based polymer (A). It is preferably 0.1 mol% or more, more preferably 1 mol% or more, particularly preferably 3 mol% or more, most preferably 5 mol% or more, preferably 80 mol% or less, and more preferably all mol units. Is 50 mol% or less, more preferably 40 mol% or less, more preferably 30 mol% or less, further preferably 25 mol% or less, particularly preferably 20 mol% or less, and most preferably less than 18 mol%.
  • the amount of the carboxyl group is the lower limit or more, the water absorption of the water-absorbent resin used in the present invention is more excellent, and when the amount is the upper limit or less, even at the time of contact with divalent ions contained in soil. Easy to maintain water absorption.
  • the amount of the carboxyl group derived from acrylic acid or a salt thereof among the above carboxyl groups is preferably 20 mol% or less, more preferably less than 20 mol% with respect to the total constitutional units of the vinyl alcohol polymer, and further It is preferably 15 mol% or less, particularly preferably 10 mol% or less, and may be 0 mol%.
  • the present invention also provides a paddy rice seedling cultivation soil containing a water-absorbent resin and a soil, wherein the water-absorbent resin is 0.1 to 80 mol% of carboxyl as a polymer with respect to all the constituent units of the vinyl alcohol-based polymer.
  • the water absorbent resin in the paddy rice seedling cultivation soil can satisfy the formula (I).
  • the amount of the carboxyl group in the vinyl alcohol-based polymer (A) and the amount of the carboxyl group derived from acrylic acid or a salt thereof in the carboxyl group are, for example, solid-state NMR (nuclear magnetic resonance spectroscopy), FTIR (Fourier Conversion infrared spectroscopy), acid-base titration and the like.
  • the “structural unit” means a repeating unit constituting a polymer, for example, a vinyl alcohol unit is “1 unit”, and a structure in which two vinyl alcohol units are acetalized is “2 units”. Will be counted.
  • the amount of the above-mentioned carboxyl group in the vinyl alcohol-based polymer (A) and the amount of the carboxyl group derived from acrylic acid or a salt thereof among the carboxyl groups can be calculated by the method described in Examples below.
  • the average residual hydroxyl group amount of the vinyl alcohol polymer (A) is preferably more than 20 mol%, more preferably 50 mol% or more, further preferably 60 mol% based on all the constitutional units of the vinyl alcohol polymer (A). It is at least mol%, preferably at most 98 mol%, more preferably at most 95 mol%, further preferably at most 90 mol%.
  • the average residual hydroxyl group amount can be measured by, for example, FTIR (Fourier Transform Infrared Spectroscopy), solid-state NMR (Nuclear Magnetic Resonance Spectroscopy), etc., and from the consumption amount of acetic anhydride when reacted with a certain amount of acetic anhydride. It can also be calculated.
  • the vinyl alcohol polymer (A) may contain a constitutional unit other than the constitutional unit having a vinyl alcohol unit and a carboxyl group.
  • constitutional units derived from vinyl carboxylates such as vinyl acetate and pivalate
  • constitutional units derived from olefins such as ethylene, 1-butene, and isobutylene
  • acrylic acid and its derivatives methacryl.
  • the above-mentioned other structural unit may contain one kind or plural kinds.
  • the content of the other structural unit is preferably 50 mol% or less, more preferably 30 mol% or less, further preferably 15 mol% or less based on all the structural units of the vinyl alcohol polymer (A). And may be 0 mol%.
  • the content of the other structural unit is not more than the upper limit value, it is easy to obtain more excellent water absorption and water absorption rate of the water absorbent resin used in the present invention.
  • the viscosity average polymerization degree of the vinyl alcohol polymer (A) is not particularly limited, but from the viewpoint of ease of production, it is preferably 20,000 or less, more preferably 10,000 or less, still more preferably 4000 or less, and particularly preferably. Is 3000 or less. On the other hand, it is preferably 100 or more, more preferably 200 or more, still more preferably 400 or more from the viewpoint of the mechanical properties of the water absorbent resin and the elution resistance to water.
  • the viscosity average degree of polymerization of the vinyl alcohol polymer (A) can be measured, for example, by a method according to JIS K6726.
  • the water-absorbent resin used in the present invention preferably contains a cross-linked structure from the viewpoint of preventing the water-absorbent resin from being eluted during rice seedling raising.
  • a crosslinked structure it is in a gel state when absorbing water.
  • the form of the crosslinked structure is not particularly limited, and examples thereof include crosslinked structures formed by ester bonds, ether bonds, acetal bonds, carbon-carbon bonds and the like.
  • ester bond examples include an ester bond formed between the hydroxyl group and the carboxyl group of the vinyl alcohol polymer (A) when the vinyl alcohol polymer (A) has a carboxyl group.
  • ether bond examples include an ether bond formed by dehydration condensation between the hydroxyl groups of the vinyl alcohol polymer (A).
  • acetal bond when an aldehyde having a carboxyl group is used in the production of the vinyl alcohol-based polymer (A), the hydroxyl groups of the two vinyl alcohol-based polymers (A) are converted to the aldehyde and acetal. The acetal bond formed by reacting is mentioned.
  • Examples of the carbon-carbon bond include a carbon-carbon bond formed by coupling between carbon radicals of the vinyl alcohol polymer (A), which occurs when the water-absorbent resin is irradiated with active energy rays.
  • These crosslinked structures may be contained alone or in combination.
  • a crosslinked structure formed by an ester bond or an acetal bond is preferable from the viewpoint of ease of production, and a crosslinked structure formed by an acetal bond is more preferable from the viewpoints of water retention maintenance and UV resistance during seedling cultivation in rice.
  • Such a crosslinked structure may be formed at the same time as the acetalization reaction in the step of acetalizing at least a part of the vinyl alcohol unit with at least one selected from an aldehyde having a carboxyl group and the aldehyde derivative, although it may be formed in another step, in the present invention, it is preferable to form a crosslinked structure by further adding a crosslinking agent.
  • cross-linking agent examples include glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, 1,9-nonanedial, adipaldehyde, malealdehyde, tartaraldehyde, citraldehyde, phthalaldehyde, isophthalaldehyde, and terephthalaldehyde.
  • the amount of the cross-linking agent in the vinyl alcohol polymer (A) is preferably 0.001 mol% or more, more preferably 0. 0% from the viewpoint of easily maintaining water retention in soil. 005 mol% or more, more preferably 0.01 mol% or more, even more preferably 0.03 mol% or more, preferably 0.5 mol% or less, more preferably 0.4 mol% or less, further preferably It is 0.3 mol% or less.
  • the paddy rice seedling cultivation medium of the present invention contains a cultivation medium in addition to the water absorbent resin.
  • the paddy rice seedling cultivating soil contains the cultivating soil, the roots grow in the gaps of the cultivating soil so that the roots are easily entangled with each other, and the excellent drainage and air permeability of the paddy rice raising seedling cultivating soil are easily obtained.
  • the cultivating soil is not particularly limited, and one kind of commercially available cultivating soil for paddy rice can be used alone or in combination of two or more kinds. It is also possible to attach and use the optional components described below to the soil by a conventional method (for example, a method of spraying a solution or dispersion of the optional components on the soil and then drying).
  • the soil is preferably granular.
  • the average particle size of the granular soil is preferably 0.2 to 20 mm, more preferably 0.5 to 10 mm, and particularly preferably 1 to 5 mm.
  • a commercially available granular soil for paddy rice can be used after sieving.
  • a granulation method such as a compression granulation method, an extrusion granulation method, a tumbling granulation method, or a fluidized bed granulation method can be used for producing the granular soil.
  • the average particle size of the granular soil can be measured by the following method.
  • the diameter of each particle is measured using a caliper, and the average value is used as the average particle diameter of the granular soil.
  • the average value of the longest side and the shortest side is the diameter of the particle.
  • the content of the cultivating soil is preferably 20 to 99.9999% by mass, more preferably 70 to 99.95% by mass, particularly preferably 80 to 99.9% by mass, and most preferably the total mass of the cultivating soil for raising rice seedlings. Is 90 to 99.8% by mass.
  • the said content is content in the dry state of the constituent materials (water-absorbent resin, cultivating soil and optional components) of the paddy rice seedling cultivating soil.
  • the mixture of the water-absorbent resin and the soil is sprayed with water or an aqueous solution containing a water-soluble polymer on the soil material (for example, mountain soil) and granulated by the tumbling granulation method or the like, and then the water-absorbent resin is added.
  • Drying method It can be manufactured by a method of previously mixing a soil material and a water-absorbent resin, spraying water or an aqueous solution containing a water-soluble polymer, granulating by a tumbling granulation method, and drying.
  • the water-absorbent resin may be dispersed between particles of the soil, may be attached to the surface of the soil, or may be contained inside the soil.
  • the water absorbent resin is attached to the surface of the soil.
  • the optional components described below are mixed with the soil material in advance and granulated; the granulated soil is sprayed with a solution or dispersion of the optional components; the mixture is mixed with the water-absorbent resin in advance and added to the soil; It can be blended by a method of spraying a solution or dispersion of arbitrary components into a mixture of the functional resin and the soil.
  • the paddy rice seedling cultivation medium of the present invention may contain an optional component in addition to the water absorbent resin and the cultivation medium.
  • optional ingredients include peat, grass charcoal, peat, peat moss, coco peat, rice husk, humus fermenting material, charcoal, diatomaceous earth fired particles, shell fossil powder, shell powder, crab shell, VA mycorrhizal fungus, microbial material, etc.
  • the total amount thereof may be within a range that does not impair the effects of the present invention, and is usually 50% by mass or less, preferably 30% by mass or less with respect to the total mass of the paddy rice seedling cultivating soil. Is.
  • fertilizers are three major fertilizers: nitrogen fertilizers, phosphorus fertilizers and potassium fertilizers; essential elements for plants such as calcium, magnesium, sulfur, iron, copper, manganese, zinc, boron, molybdenum, chlorine and nickel. Fertilizers containing; compost such as bark compost, cow dung, pork dung, chicken dung, food waste and pruned waste.
  • Nitrogen fertilizers include ammonium sulfate, ammonium chloride, ammonium nitrate, sodium nitrate, lime nitrate, humic acid ammonia fertilizer, urea, lime nitrogen, ammonium nitrate lime, ammonium nitrate soda, magnesium nitrate fertilizer; phosphoric acid fertilizers include superphosphoric acid.
  • potassium fertilizers include potassium sulfate, potassium chloride, potassium potassium sulfate, potassium carbonate, potassium bicarbonate, potassium silicate and the like. These fertilizers may be used in the form of solid, paste, liquid, solution or the like, or may be used as coated fertilizer.
  • pesticides include insecticides, fungicides, insecticide fungicides, herbicides, rodenticides, preservatives, plant growth regulators and the like.
  • the content of the coated fertilizer in the paddy rice nursery soil is preferably 10 to 99.99% by mass, more preferably 15 to 90% by mass, particularly preferably 20 to 80% by mass, and most preferably 30 to It is 60% by mass.
  • the content of the soil in the paddy rice nursery soil may be 20 to 80% by mass.
  • the said content is content in the dry state of the constituent materials (water-absorbent resin, cultivating soil, coated fertilizer, etc.) of paddy rice seedling cultivating soil.
  • the paddy rice seedling cultivation soil of the present invention can be sown with seed rice. Therefore, in one embodiment of the present invention, the paddy rice nursery soil of the present invention further comprises seed paddy. Seed seeds are often sown in paddy rice nursery boxes in which paddy rice seedling cultivation soil has been introduced. Therefore, the present invention is also directed to the paddy rice nursery box in which the paddy rice nursery soil and water of the present invention have been introduced.
  • the amount of seed paddy is 100 to 700 g (eg 100 to 500 g) per box for raising rice seedlings (length 28 cm ⁇ width 58 cm).
  • the amount of seed paddy is as high as 250 to 700 g (for example, 250 to 500 g), the amount of water lost by transpiration during seedling production increases.
  • the paddy rice nursery soil of the present invention has excellent weather resistance (particularly UV resistance) in addition to good water retention, and good water retention is maintained by this excellent weather resistance. Also, it is possible to reduce the irrigation load by using the paddy rice rearing and cultivating soil of the present invention.
  • the seedling-raising soil of the present invention may be used for either one of floor soil (soil introduced into a paddy rice nursery box before sowing seed rice) or covering soil (soil covered from above after seeding rice seeds), both May be used for. When used for both, the composition of the paddy rice rearing soil may or may not be the same in the bed soil and the cover soil.
  • a paddy rice seedling box into which paddy rice seedling cultivation soil and water have been introduced can be produced, for example, by any of the following methods (1) and (2), and the present invention also covers these methods.
  • a method comprising a step of introducing a paddy rice seedling cultivating soil containing a water absorbent resin and cultivated soil into a nursery box, and a step of irrigating to swell the water absorbent resin contained in the paddy rice seedling cultivating soil.
  • a step of swelling the water absorbent resin by mixing the water absorbent resin and water A method comprising: a step of mixing a swollen water-absorbent resin and a cultivating soil to obtain a paddy rice seedling cultivating soil containing water; and a step of introducing the paddy rice seedling cultivating soil containing water into a nursery box.
  • the production of paddy rice nursery boxes is usually carried out in line using a belt conveyor or the like. Therefore, the paddy rice nursery soil or the water absorbent resin is required to have a certain water absorption rate.
  • the water absorption rate of the paddy rice seedling cultivating soil or the water absorbent resin of the present invention can exhibit an excellent water absorption rate that sufficiently meets the demand.
  • the above method (2) may further include a step of irrigating a seedling raising box into which the paddy rice raising seedling soil containing water is introduced, if necessary.
  • the present invention is also directed to mat seedlings containing the paddy rice rearing soil of the present invention.
  • the paddy rice seedling cultivation medium of the present invention contains the water-absorbent resin, it is possible to realize weight reduction and / or reduction of irrigation load.
  • the water-absorbent resin contained in the paddy rice nursery soil of the present invention has excellent weather resistance, and thus the decomposed water-absorbent resin flows out due to irrigation to lower water retention, or during the period between irrigation and irrigation. Problems such as inhibition of root growth are unlikely to occur, the seed paddy sown in the paddy rice nursery box germinates and grows well, and the roots of paddy rice grow sufficiently and can be intertwined with each other.
  • the mat seedling of the present invention has properties suitable for setting in a rice transplanter (for example, tensile strength, mountability to a rice transplanter, scraping property, standing of seedling during scraping, and seedling during scraping). It is possible to have a difficulty in collapse, etc.).
  • the washed resin was introduced into a 500 mL four-necked separable flask equipped with a reflux condenser and a stirring blade, 180 mL of methanol, 11.6 mL of ion-exchanged water, and 16.8 mL of 8 mol / L potassium hydroxide aqueous solution were added, and the mixture was refluxed. The reaction was allowed to proceed for 2 hours. The resin was taken out by filtration, washed with 200 mL of methanol 6 times, and vacuum dried at 40 ° C. for 6 hours to obtain a desired water absorbent resin (hereinafter, referred to as “water absorbent resin a”).
  • water absorbent resin a water absorbent resin
  • water-absorbent resin b water-absorbent resin
  • the water-absorbent resins b to d were used instead of the water-absorbent resin a, and the elution amount (A) of each of the water-absorbent resins b to d in pure water was also determined in the same manner as the water-absorbent resin a.
  • the results are summarized in Table 1.
  • the water-absorbent resins b to d were used in place of the water-absorbent resin a, and the elution amount (B) of each of the water-absorbent resins b to d after ultraviolet irradiation into pure water was also determined in the same manner as the water-absorbent resin a.
  • the results are summarized in Table 1.
  • the number of moles of the xyl group, the number of moles of the hydroxyl group, and the number of moles of the vinyl acetate unit were determined, and the amount of the carboxyl group and the amount of the carboxyl group derived from acrylic acid or its salt were calculated according to the following formulas.
  • the amount of carboxyl groups was 15 mol%, and the amount of carboxyl groups derived from acrylic acid or a salt thereof was 0 mol%.
  • the water absorbent resin b was measured in the same manner as the water absorbent resin a. In the water absorbent resin b, the amount of carboxyl groups was 5.2 mol% and the amount of carboxyl groups derived from acrylic acid or a salt thereof was 5.2 mol%.
  • ⁇ Average particle size of granular soil> Thirty particles were randomly selected from the granular soil A, the diameter of each particle was measured using a caliper, and the average value was used as the average particle diameter of the granular soil. When the particles are not spherical, the average value of the longest side and the shortest side is defined as the diameter of the particle.
  • Mold generation condition Mold generation was visually observed and evaluated according to the following criteria.
  • (3) Sprouting rate The number of sprouts (N1) that sprouted and appeared on the soil cover was visually counted. The emergence rate was calculated according to the following formula using the number of seeded germinated rice (N2).
  • Budding rate [%] (N1 / N2) ⁇ 100 ⁇ Growth survey (21 days after sowing)> (4) Plant height From 10 randomly sampled seedlings, the length from the upper surface of the paddy rice rearing soil to the upper end of the seedling was measured, and the average value was adopted as the plant height. (5) Leaf Color For 10 seedlings sampled at random, the leaf color was measured using a leaf color scale (Fujihira Kogyo Co., Ltd.), and the average value was adopted as the leaf color. (6) Leaf age About 10 seedlings sampled at random, the leaf age was visually measured, and the average value was adopted as the leaf age.
  • Example 1 The water absorbent resin a and the granular soil were mixed to prepare paddy rice seedling soil.
  • Example 3 In the same manner as in Example 2 except that the water-absorbent resin a was changed to the water-absorbent resin b, a paddy-rice seedling raising box in which paddy-rice seedling raising soil and water were introduced was prepared, and seedlings were raised and investigated. The results are shown in Table 1.
  • Example 4 In the same manner as in Example 2 except that the water-absorbent resin b30 g was used instead of the water-absorbent resin a30 g and the granular soil A600 g was used instead of the granular soil A1500 g, a paddy rice nursery box into which paddy rice seedling cultivating soil and water were introduced was prepared. They were produced, and seedlings were raised and surveyed. The results are shown in Table 1.
  • Example 5 In the same manner as in Example 2 except that the water absorbent resin c was used in place of the water absorbent resin a, a paddy rice nursery box in which paddy rice seedling cultivation soil and water were introduced was prepared, and seedlings were raised and investigated. The results are shown in Table 1.
  • Example 6 30 g of the water absorbent resin a was added to 600 mL of water to prepare a gel. This gel and 1500 g of granular soil A were uniformly mixed to prepare paddy rice nursery soil. Subsequent work was performed in the same manner as in Example 2, to prepare a paddy rice seedling raising box in which paddy rice seedling raising soil and water were introduced, and seedling raising and investigation were performed. The results are shown in Table 1.
  • Comparative Example 1 In the same manner as in Example 2 except that the water absorbent resin d was used in place of the water absorbent resin a, a paddy rice seedling box in which paddy rice seedling cultivation soil and water were introduced was prepared, and seedlings were raised and investigated. The results are shown in Table 1.
  • Comparative Example 2 In the same manner as in Example 2 except that the water absorbent resin a was not used, and 3000 g was used instead of 1500 g of the granular soil A, a paddy rice nursery box in which paddy rice seedling cultivating soil and water were introduced was prepared, and seedling raising and I conducted a survey. The results are shown in Table 1.
  • the paddy rice seedling cultivation soil of the present invention (Examples 2 to 6) is better than the paddy rice seedling cultivation soil (Comparative Example 1) using the water-absorbent resin not satisfying the formula (I).
  • the germination rate and the degree of growth were shown.
  • the paddy rice seedling cultivation soil of the present invention brought about the same excellent germination and growth as the paddy rice seedling cultivation soil containing no water-absorbent resin (Comparative Example 2). This is because the paddy rice nursery soil of the present invention hardly decomposed during the growing period due to good weather resistance, and thus the decomposed resin hinders root growth or the decomposed resin flows out by irrigation to retain water.
  • the paddy rice seedling cultivating soil of the present invention contains the water absorbent resin, and thus is lighter in weight than the paddy rice seedling cultivating soil (Comparative Example 1) containing no water absorbent resin. Further, since the paddy rice seedling cultivation soil of the present invention has excellent water absorption, it showed a water absorption rate sufficient for producing a paddy rice seedling box, and thereby the irrigation load could be reduced. In addition, when the water-absorbent resin contains a vinyl alcohol-based polymer (Examples 2 to 4 and 6), the germination rate and growth are higher than when the water-absorbent resin does not contain a vinyl alcohol-based polymer (Example 5). Was better. Furthermore, the paddy rice rearing seedling soil of the present invention (Examples 2 to 6) showed excellent tensile strength of mat seedlings as compared with Comparative Examples 1 and 2.
  • the paddy rice seedling cultivating soil of the present invention is suitable as a paddy rice seedling cultivating soil satisfying the demands of agricultural workers because it does not hinder the growth of plants while realizing weight saving and / or reduction of irrigation load of paddy rice seedling raising boxes and mat seedlings Available for

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

本発明は、吸水性樹脂と培土を含む水稲育苗培土であって、吸水性樹脂の純水への溶出量(A)及び吸水性樹脂とその50倍の質量の純水との混合物に積算照度14.4MJ/mの紫外線を照射した後の吸水性樹脂の純水への溶出量(B)が下記式:溶出量(B)-溶出量(A)<50質量%を満たす、水稲育苗培土に関する。

Description

水稲育苗培土
 本発明は、吸水性樹脂と培土を含む水稲育苗培土に関する。
 昨今、農業従事者の高齢化に伴い、農作業の負担の軽減がますます望まれている。また、慢性的な水資源の枯渇に伴い、農業用水を有効かつ適切に利用すること、及び従来よりも少量の灌漑水量若しくはより低い潅水頻度でも農産物の収穫量を維持若しくは増大させる技術を確立することが望まれている。通常、水稲育苗は育苗箱に培土及び種籾を導入して行うが、育苗箱は重く、また一日に複数回もの潅水を行わなければならず、農業従事者に大きな負担を強いる作業を伴う。
 これらの課題を解決するための試みとして、高吸水性樹脂を用いた検討がなされている(例えば、特許文献1を参照)。高吸水性樹脂は、自重の数十倍から数百倍という極めて多量の水を保持できることから、培土の軽量化及び/又は潅水負荷の低減といった利点をもたらす。特許文献1では、ポリアクリル酸塩ゲルを主成分とする高吸水性樹脂を農業用保水材として用いることが開示されている。しかしながら、従来の高吸水性樹脂は、種子の出芽又は植物体、特に根の生長に悪影響を与えることが明らかになっている(特許文献2又は非特許文献1)。
 このような課題を解決する手段として、特許文献2には、特定の電気伝導率、0.9%食塩水吸水速度、及びイオン交換水の吸水倍率を有する高吸水性樹脂が開示されており、植物生育用保水材に適応できることが開示されている。
 また、特許文献3には、32メッシュ標準篩を通過しない大きさの吸水性樹脂粉末を床土に対して0.01~5.0重量%混合することを特徴とする水稲育苗法が開示されており、そのような水稲育苗法を採用することにより、培土の通気性を改善できることが開示されている。
 さらに、特許文献4には、土壌を主成分として0.01~10重量%の吸水性高分子物質及び0.01~1重量%の水溶性高分子物質を含有し、粒状であることを特徴とする植物育成用培土が開示されており、そのような植物育成用培土は高い保水力及び高い通気性を有することが開示されている。
国際公開第1998/005196号パンフレット 特開2009-148163号公報 特公平08-022185号公報 特公昭62-034363号公報
杉村順夫ら、緑化工用資材としての高吸水性ポリマーの利用、緑化工技術、9(2)、11-15、1983
 しかし、本発明者らの検討によれば、特許文献2に開示された高吸水性樹脂には、葉の黄化、又は根と直接触れることに起因した根の伸長の阻害という課題がある。また、特許文献3に開示された水稲育苗法では、通気性を改善するために気相部割合を高くする必要があり、潅水の際、高吸水性樹脂の膨張に伴い培土全体の体積が著しく増大する。このため、種子又は根の位置がずれてしまい、出芽及び生長に悪影響を与える。さらに、特許文献4に開示された植物生育用培土では、水溶性高分子がバインダーとして粒状培土に結合し、粒状培土から肥料が溶出しにくくなることに起因して出芽及び生長に悪影響が及ぼされる。また、粒状培土が崩壊しにくくなるため培土全体の空隙が高く、生育した水稲マット苗の強度が低下し、田植時の作業性の低下を招く。
 これらに鑑み、発明が解決しようとする課題は、従来の課題が解決された水稲育苗培土、即ち、農作業の負担を低減(例えば、軽量化及び/又は潅水負荷の低減等)しつつも植物体の生育を阻害しない水稲育苗培土を提供することである。
 本発明者らは、前記課題を解決するために、水稲育苗培土について詳細に検討を重ね、本発明を完成させるに至った。
 即ち、本発明は、以下の好適な態様を包含する。
〔1〕吸水性樹脂と培土を含む水稲育苗培土であって、吸水性樹脂の純水への溶出量(A)及び吸水性樹脂とその50倍の質量の純水との混合物に積算照度14.4MJ/mの紫外線を照射した後の吸水性樹脂の純水への溶出量(B)が下記式(I):
  溶出量(B)-溶出量(A)<50質量%  (I)
を満たす、水稲育苗培土。
〔2〕吸水性樹脂と培土を含む水稲育苗培土であって、吸水性樹脂は、重合体としてビニルアルコール系重合体の全構成単位に対して0.1~80モル%のカルボキシル基を含むビニルアルコール系重合体を含み、当該カルボキシル基のうちアクリル酸又はその塩に由来するカルボキシル基の量がビニルアルコール系重合体の全構成単位に対して20モル%以下である、水稲育苗培土。
〔3〕ビニルアルコール系重合体はカウンターカチオンとしてカリウムイオンを有する、前記〔2〕に記載の水稲育苗培土。
〔4〕ビニルアルコール系重合体のビニルアルコール単位がグリオキシル酸及びグリオキシル酸誘導体からなる群から選択される1種以上のアセタール化剤によりアセタール化されている、前記〔2〕又は〔3〕に記載の水稲育苗培土。
〔5〕吸水性樹脂の含有量が水稲育苗培土の総質量に基づいて0.0001~80質量%である、前記〔1〕~〔4〕のいずれかに記載の水稲育苗培土。
〔6〕平均粒径が0.2~20mmの粒状培土をさらに含む、前記〔1〕~〔5〕のいずれかに記載の水稲育苗培土。
〔7〕ピートモス、バーミキュライト、ココピート、パーライト、肥料、農薬及び種籾からなる群から選択される1種以上の成分をさらに含む、前記〔1〕~〔6〕のいずれかに記載の水稲育苗培土。
〔8〕前記〔1〕~〔7〕のいずれかに記載の水稲育苗培土を含む、マット苗。
〔9〕前記〔1〕~〔7〕のいずれかに記載の水稲育苗培土及び水が導入された水稲育苗箱。
〔10〕前記〔9〕に記載の水稲育苗箱の製造方法であって、
吸水性樹脂及び培土を含む水稲育苗培土を育苗箱に導入する工程、及び
潅水し、水稲育苗培土に含まれる吸水性樹脂を膨潤させる工程
を含む、方法。
〔11〕前記〔9〕に記載の水稲育苗箱の製造方法であって、
吸水性樹脂と水とを混合して吸水性樹脂を膨潤させる工程、
膨潤した吸水性樹脂と培土とを混合して水を含む水稲育苗培土を得る工程、及び
水を含む水稲育苗培土を育苗箱に導入する工程
を含む、方法。
 本発明によれば、従来の課題が解決された水稲育苗培土、即ち、農作業の負担を低減(例えば、軽量化及び/又は潅水負荷の低減等)しつつも植物体の生育を阻害しない水稲育苗培土を提供することができる。
 以下、本発明の実施態様について説明するが、本発明は、本実施態様に限定されない。
 本発明の水稲育苗培土は吸水性樹脂と培土を含有する。吸水性樹脂の純水への溶出量(A)及び吸水性樹脂とその50倍の質量の純水との混合物に積算照度14.4MJ/mの紫外線を照射した後の吸水性樹脂の純水への溶出量(B)は、下記式(I):
  溶出量(B)-溶出量(A)<50質量%  (I)
を満たす。
 水稲育苗培土には、種籾の良好な出芽及び生長をもたらすことが求められる。即ち、水稲育苗培土に種籾を播種し、一定時間(通常は2~3週間程度)経過した後、生長した水稲の根が互いに絡み合うよう張り巡らされて、田植機にセットするのに適したマット苗をもたらすことが求められる。そのため、本発明者らは、水稲育苗培土に含まれる保水材としての吸水性樹脂に求められる性質として、保水性以外にも、耐候性(特に耐紫外線性)が非常に重要であることを見出した。十分な耐候性を有さない吸水性樹脂が水稲育苗培土に含まれると、種籾の出芽及び生長のための期間中に実施される潅水により、分解した吸水性樹脂が流出して保水性が低下したり、潅水と潅水との間の期間中に、分解した吸水性樹脂が根の生育を阻害したりし得ることにより、所望のマット苗を得ることはできないおそれがある。本発明では、優れた耐候性を示す指標として、吸水性樹脂の純水への溶出量(A)と、積算照度14.4MJ/mの紫外線を照射した後の吸水性樹脂の純水への溶出量(B)との差に着目し、規定する。ここで、上記した積算照度14.4MJ/mとは、屋外における太陽光の約3週間分の照度に相当する。
[吸水性樹脂]
 本発明における吸水性樹脂は、式(I)を満たす吸水性樹脂であれば特に限定されない。「溶出量(B)-溶出量(A)」の値は、好ましくは40質量%未満、より好ましくは30質量%未満、特に好ましくは20質量%未満、最も好ましくは10質量%未満である。「溶出量(B)-溶出量(A)」の値は、例えば、紫外線に対するモル吸光係数が低い〔通常0.4L/(mol・cm)以下(紫外線の波長300nmにおける値)の紫外線に対するモル吸光係数を有する〕吸水性樹脂を使用することにより前記上限値未満に調整できる。また、吸水性樹脂が重合体としてビニルアルコール系重合体を含むことにより前記上限値未満に調整できる。この場合、ビニルアルコール系重合体は、アクリル酸又はその塩に由来するカルボキシル基の量がビニルアルコール系重合体の全構成単位に対して20モル%以下であることが好ましい。この値の下限値は特に限定されない。「溶出量(B)-溶出量(A)」の値は、通常0.01質量%以上である。溶出量(A)及び溶出量(B)の測定は、後述の実施例に記載の方法に従って実施される。
 本発明の水稲育苗培土に含まれる吸水性樹脂は、1以上の重合体からなるか、又は1以上の重合体に加えて添加剤を含有する。そのような添加剤の例としては、例えば、デンプン、変性デンプン、アルギン酸ナトリウム、キチン、キトサン、セルロース及びその誘導体等の多糖類;ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリスチレン、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリ塩化ビニル、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリコハク酸、ポリアミド6、ポリアミド6・6、ポリアミド6・10、ポリアミド11、ポリアミド12、ポリアミド6・12、ポリヘキサメチレンジアミンテレフタルアミド、ポリヘキサメチレンジアミンイソフタルアミド、ポリノナメチレンジアミンテレフタルアミド、ポリフェニレンエーテル、ポリオキシメチレン、ポリエチレングリコール、ポリプロピレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、ポリウレタン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリアクリル酸、ポリアクリル酸エステル、ポリアクリル酸塩、ポリメタクリル酸、ポリメタクリル酸エステル、ポリメタクリル酸塩、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-アクリル酸塩共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、及びエチレン-メタクリル酸塩共重合体等の樹脂類;天然ゴム、合成イソプレンゴム、クロロプレンゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、及びアミド系熱可塑性エラストマー等のゴム・エラストマー類;紫外線吸収剤、酸化防止剤、光安定剤、可塑剤、有機溶媒、消泡剤、増粘剤、界面活性剤、滑剤、防カビ剤及び帯電防止剤等が挙げられる。これらの添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。吸水性樹脂が添加剤を含有する場合、その合計量は本発明の効果を損なわない範囲であればよく、吸水性樹脂の総質量に対して通常は30質量%以下、好ましくは20質量%以下である。
 本発明に用いられる吸水性樹脂は粒子であることが好ましい。本発明に用いられる吸水性樹脂が粒子であるとき、該粒子の平均粒子径は好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、さらに好ましくは300μm以下である。上記平均粒子径が前記下限値以上であると優れた取扱い性を得やすく、前記上限値以下であると優れた吸水速度を得やすい。前記平均粒子径は、レーザー回折/散乱で測定できる。
 吸水性樹脂の含有量は、水稲育苗培土の総質量に基づいて、好ましくは0.0001~80質量%、より好ましくは0.05~30質量%、特に好ましくは0.1~20質量%、さらに好ましくは0.2~10質量%である。吸水性樹脂の含有量が前記範囲内であると、軽量化及び/又は潅水負荷の低減を実現しつつも植物体の生育が阻害されないといった効果を得やすい。なお、前記含有量は乾燥状態における含有量である。本発明において「乾燥状態」とは、吸水性樹脂が水又は有機溶媒等の揮発成分を含んでいない状態のことを言う。例えば、吸水性樹脂の質量が恒量となるまで40℃で真空乾燥を行うことで、吸水性樹脂を乾燥状態とすることができる。
〔ビニルアルコール系重合体〕
 本発明に用いられる吸水性樹脂は、重合体として、好ましくはビニルアルコール系重合体〔以下、ビニルアルコール系重合体(A)と称することがある〕を含む。ビニルアルコール系重合体(A)としては、例えばポリビニルアルコール、エチレン-ビニルアルコール共重合体、及びそれらのビニルアルコール単位がアセタール化剤によりアセタール化されたものが挙げられる。中でも、優れた吸水性又は吸水速度を発現させやすい観点から、上記ビニルアルコール系重合体(A)はカルボキシル基を有することが好ましい。吸水性樹脂におけるビニルアルコール系重合体(A)の含有量は、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上であり、100質量%であってもよい。
 ビニルアルコール系重合体(A)がカルボキシル基を有する場合、ビニルアルコール系重合体(A)としては、例えば(i)カルボキシル基を有するモノマー及び該モノマーの誘導体から選ばれる1種以上とビニルエステルとの共重合体のケン化物;(ii)ビニルアルコール系重合体と、ヒドロキシル基と反応可能な官能基(b1)とカルボキシル基及び/又はカルボキシル基に誘導可能な官能基(b2)とを有する化合物(B)との反応物;等が挙げられる。
 上記(i)において、カルボキシル基を有するモノマーとしては特に制限はないが、例えばアクリル酸、メタクリル酸、イタコン酸、及びマレイン酸等が挙げられる。また、上記カルボキシル基を有するモノマーの誘導体としては、該モノマーの無水物、エステル化物、及び中和物等が挙げられ、例えば、アクリル酸メチル、メタクリル酸メチル、イタコン酸ジメチル、マレイン酸モノメチル、及び無水マレイン酸等が用いられる。
 上記(i)において、ビニルエステルとしては特に制限はないが、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ステアリン酸ビニル、安息香酸ビニル、トリフルオロ酢酸ビニル、及びピバル酸ビニル等が挙げられ、酢酸ビニルが好ましい。
 上記(i)のケン化物を製造する方法に特に制限はなく、カルボキシル基を有するモノマー及び該モノマーの誘導体から選ばれる1種以上とビニルエステルとを、公知の重合開始剤を用いて公知の重合反応を行い、次いで公知の方法でケン化反応を行うことで製造できる。
 上記(ii)で用いる、ヒドロキシル基と反応可能な官能基(b1)とカルボキシル基及び/又はカルボキシル基に誘導可能な官能基(b2)とを有する化合物(B)において、ヒドロキシル基と反応可能な官能基(b1)としては特に制限はないが、例えばアルデヒド基、カルボキシル基、アミノ基及びこれらの官能基の誘導体等が挙げられる。中でも、製造容易性、又は吸水性樹脂の耐久性の観点から、アルデヒド基及びアルデヒド基の誘導体が好ましい。即ち、前記化合物(B)としては、カルボキシル基を有するアルデヒド及び/又は該アルデヒドの誘導体が好ましい。
 即ち、上記(ii)の反応物としては、カルボキシル基を有するアルデヒド及び/又は該アルデヒドの誘導体から選ばれる1種以上により少なくとも一部のビニルアルコール単位がアセタール化されたビニルアルコール系重合体〔以下、ビニルアルコール系重合体(A-1)と称することがある〕が好ましい。
 前記化合物(B)である、上記カルボキシル基を有するアルデヒドとしては特に制限はないが、例えばグリオキシル酸、2-ホルミルプロパン酸、3-ホルミルプロパン酸、及びフタルアルデヒド酸等が挙げられる。中でも、入手容易性及び生分解性の観点から、グリオキシル酸が好ましい。また、前記化合物(B)である、上記カルボキシル基を有するアルデヒドの誘導体としては、該アルデヒドの無水物、水和物、エステル化物、アセタール化物、及び中和物等が挙げられ、例えばグリオキシル酸塩、グリオキシル酸一水和物、グリオキシル酸エステル及びグリオキシル酸ジメチルアセタール等が用いられる。従って、本発明の好ましい一実施態様では、ビニルアルコール系重合体のビニルアルコール単位は、グリオキシル酸及びグリオキシル酸誘導体からなる群から選択される1種以上のアセタール化剤によりアセタール化されている。
 上記グリオキシル酸塩のカウンターカチオンとしては、ナトリウムイオン、カリウムイオン、及びリチウムイオン等のアルカリ金属イオン;カルシウムイオン、及びマグネシウムイオン等のアルカリ土類金属イオン;アンモニウムイオン、アルキルアンモニウムイオン等の有機カチオン:等が挙げられる。中でも、より優れた吸水速度を発現させやすい観点から、カリウムイオン、カルシウムイオン、及びマグネシウムイオンが好ましい。土壌中に含まれる二価イオンとの接触時の吸水性を維持しやすい観点からはカルシウムイオンがより好ましく、水稲の生育の観点からはカリウムイオンがより好ましい。
 上記グリオキシル酸エステルとしては、例えばグリオキシル酸メチル、グリオキシル酸エチル、グリオキシル酸プロピル、グリオキシル酸イソプロピル、グリオキシル酸ブチル、グリオキシル酸イソブチル、グリオキシル酸sec-ブチル、グリオキシル酸tert-ブチル、グリオキシル酸ヘキシル、グリオキシル酸オクチル、及びグリオキシル酸2-エチルヘキシル等が挙げられる。
 ビニルアルコール系重合体(A-1)の製造方法としては、吸水性樹脂の溶出量(A)及び(B)が式(I)を満たす限り特に制限はなく、公知の手法で製造されたビニルアルコール系重合体の少なくとも一部のビニルアルコール単位を、触媒の存在下又は不存在下で、カルボキシル基を有するアルデヒド及び該アルデヒドの誘導体から選ばれる1種以上によりアセタール化することで製造できる。
 上記触媒としては、例えば塩酸、硫酸、及びリン酸等の無機酸;カルボン酸、及びスルホン酸等の有機酸;陽イオン交換樹脂、及びヘテロポリ酸等の固体酸;等が挙げられる。これらの触媒は単独で用いてもよく、複数種を組み合わせて用いてもよい。なお、グリオキシル酸はアセタール化反応を促進する酸でもあるため、ビニルアルコール系重合体(A-1)を製造する際には触媒としても作用する。即ち、反応後の処理の容易性の観点からは、ビニルアルコール系重合体(A-1)の製造に際して、カルボキシル基を有するアルデヒドとしてグリオキシル酸を用いる方法が好ましい。
 ビニルアルコール系重合体(A-1)の製造において原料として用いるビニルアルコール系重合体は、工業的に製造された市販品;酢酸ビニル等のカルボン酸ビニル及び必要に応じて他のモノマーを共存させて、公知の重合開始剤を用いて公知の重合反応を行い、次いで公知の方法でケン化反応を行って製造したもの;ビニルエーテルのカチオン重合反応及び加水分解反応により製造したもの;アセトアルデヒドの直接重合により製造したもの;等のいずれでもよいが、酢酸ビニルを重合したポリ酢酸ビニルをケン化して製造したものが好ましい。上記原料として用いるビニルアルコール系重合体のケン化度は30モル%以上が好ましく、60モル%以上がより好ましく、本発明の一実施態様において適量のカルボキシル基を導入しやすい観点からは、80モル%以上がさらに好ましい。
 ビニルアルコール系重合体(A-1)のアセタール化度は0.01モル%以上85モル%以下であることが好ましい。アセタール化度が前記範囲内であると、水の吸収性を向上させやすい。前記観点からアセタール化度は好ましくは0.1モル%以上、より好ましくは1モル%以上、さらに好ましくは5モル%以上、よりさらに好ましくは8モル%以上、特に好ましくは10モル%以上であり、そして、好ましくは80モル%以下、より好ましくは70モル%以下、さらに好ましくは60モル%以下、よりさらに好ましくは50モル%以下、特に好ましくは45モル%以下、一層好ましくは40モル%以下である。
 吸水性樹脂の水稲育苗時における溶出を抑制しやすい観点から、ビニルアルコール系重合体(A-1)の製造において、カルボキシル基を有するアルデヒド及び該アルデヒドの誘導体以外の他のアルデヒドを併用してアセタール化反応を行ってもよい。かかる他のアルデヒドとしては、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、i-ブチルアルデヒド、sec-ブチルアルデヒド、及びtert-ブチルアルデヒド等の脂肪族アルデヒド;ベンズアルデヒド、アニスアルデヒド、ケイ皮アルデヒド、4-ベンジルオキシベンズアルデヒド、3-ベンジルオキシベンズアルデヒド、4-アミルオキシベンズアルデヒド、及び3-アミルオキシベンズアルデヒド等の芳香族アルデヒド;等が挙げられる。中でも、製造容易性又は得られる吸水性樹脂の吸水性の観点から、ホルムアルデヒド、アセトアルデヒド、及びn-ブチルアルデヒドが好ましい。他のアルデヒドを併用する場合、その使用量に特に制限はないが、カルボン酸を有するアルデヒド及び該アルデヒドの誘導体の合計に対して通常0.01~30モル%、好ましくは0.1~10モル%、さらに好ましくは1~5モル%である。他のアルデヒドの使用量が前記上限値以下であると、得られる吸水性樹脂の吸水性が優れる傾向があり、前記下限値以上であると、他のアルデヒドを併用することによる吸水性樹脂の水稲育苗時における溶出を抑制する効果を得やすい。なお、前記他のアルデヒドは、例えばアセタール体等の誘導体として用いてもよい。
 本発明の一実施態様において、ビニルアルコール系重合体(A)がカルボキシル基を有する場合、カルボキシル基の一部又は全部がカルボン酸塩の形態であってもよい。カルボン酸塩の対カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、及びセシウムイオン等のアルカリ金属イオン;マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、及びバリウムイオン等のアルカリ土類金属イオン;アルミニウムイオン、及び亜鉛イオン等のその他金属イオン;アンモニウムイオン、イミダゾリウム類、ピリジニウム類、及びホスホニウムイオン類等のオニウムカチオン;等が挙げられる。中でも、農業用保水材として用いる場合には、カリウムイオン、カルシウムイオン、及びアンモニウムイオンが好ましく、土壌中に含まれる二価イオンとの接触時の吸水性を維持しやすい観点からはカルシウムイオンがより好ましく、植物の生育の観点からはカリウムイオンがより好ましい。従って、本発明の好ましい一実施態様では、ビニルアルコール系重合体(A)はカウンターイオンとしてカリウムイオンを有する。カルボキシル基の一部又は全部がカルボン酸塩であるビニルアルコール系重合体(A)の製造方法としては、例えば、上記(i)においてカルボキシル基を有するモノマーの中和物を用いる方法;上記(ii)においてヒドロキシル基と反応可能な官能基とカルボキシル基とを有する化合物の中和物を用いる方法;上述の各種方法等によりカルボキシル基を有するビニルアルコール系重合体(A)を製造した後、中和する方法;等が挙げられる。
 本発明の一実施態様において、ビニルアルコール系重合体(A)がカルボキシル基を有する場合、該ビニルアルコール系重合体(A)中のカルボキシル基の量は、上記ビニルアルコール系重合体(A)の全構成単位に対して好ましくは0.1モル%以上、より好ましくは1モル%以上、特に好ましくは3モル%以上、最も好ましくは5モル%以上であり、好ましくは80モル%以下、より好ましくは50モル%以下、より好ましくは40モル%以下、より好ましくは30モル%以下、さらに好ましくは25モル%以下、特に好ましくは20モル%以下、最も好ましくは18モル%未満である。上記カルボキシル基の量が前記下限値以上であると、本発明に用いられる吸水性樹脂の吸水性がより優れ、前記上限値以下であると、土壌中に含まれる二価イオンとの接触時にも吸水性を維持しやすい。また、上記カルボキシル基のうちアクリル酸又はその塩に由来するカルボキシル基の量は、ビニルアルコール系重合体の全構成単位に対して、好ましくは20モル%以下、より好ましくは20モル%未満、さらに好ましくは15モル%以下、特に好ましくは10モル%以下であり、0モル%であってもよい。上記カルボキシル基のうちアクリル酸又はその塩に由来するカルボキシル基の量が前記上限値以下であると、より優れた耐候性(特に耐紫外線性)を得やすい。
 従って、本発明はまた、吸水性樹脂と培土を含む水稲育苗培土であって、吸水性樹脂は、重合体としてビニルアルコール系重合体の全構成単位に対して0.1~80モル%のカルボキシル基を含むビニルアルコール系重合体を含み、当該カルボキシル基のうちアクリル酸又はその塩に由来するカルボキシル基の量がビニルアルコール系重合体の全構成単位に対して20モル%以下である、水稲育苗培土を対象とする。このような水稲育苗培土における吸水性樹脂は、式(I)を満たすことができる。
 ビニルアルコール系重合体(A)中の上記カルボキシル基の量及び当該カルボキシル基のうちのアクリル酸又はその塩に由来するカルボキシル基の量は、例えば固体NMR(核磁気共鳴分光法)、FTIR(フーリエ変換赤外分光法)、酸塩基滴定等によって測定できる。なお、本発明において「構成単位」は重合体を構成する繰り返し単位のことを意味し、例えばビニルアルコール単位は「1単位」、2単位のビニルアルコール単位がアセタール化された構造は「2単位」と数えることとする。ビニルアルコール系重合体(A)中の上記カルボキシル基の量及び当該カルボキシル基のうちのアクリル酸又はその塩に由来するカルボキシル基の量は、後述の実施例に記載の方法で算出できる。
 ビニルアルコール系重合体(A)の平均残存水酸基量は、上記ビニルアルコール系重合体(A)の全構成単位に対して好ましくは20モル%超、より好ましくは50モル%以上、さらに好ましくは60モル%以上であり、好ましくは98モル%以下、より好ましくは95モル%以下、さらに好ましくは90モル%以下である。上記平均残存水酸基量は、例えばFTIR(フーリエ変換赤外分光法)、固体NMR(核磁気共鳴分光法)等により測定できるほか、一定量の無水酢酸と反応させた際の無水酢酸の消費量から算出することもできる。
 ビニルアルコール系重合体(A)は、ビニルアルコール単位、カルボキシル基を有する構成単位以外の他の構成単位を含んでいてもよい。上記他の構成単位の例としては、酢酸ビニル、及びピバル酸ビニル等のカルボン酸ビニル由来の構成単位;エチレン、1-ブテン、及びイソブチレン等のオレフィン由来の構成単位;アクリル酸及びその誘導体、メタクリル酸及びその誘導体、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、マレイン酸及びその誘導体、及びマレイミド誘導体等に由来する構成単位;等が挙げられる。上記他の構成単位は1種を含有していても複数種を含有していてもよい。上記他の構成単位の含有量は、ビニルアルコール系重合体(A)の全構成単位に対して好適には50モル%以下、より好適には30モル%以下、さらに好適には15モル%以下であり、0モル%であってもよい。上記他の構成単位の含有量が前記上限値以下であると、本発明に用いられる吸水性樹脂のより優れた吸水性及び吸水速度を得やすい。
 ビニルアルコール系重合体(A)の粘度平均重合度に特に制限はないが、製造容易性の観点から、好ましくは20,000以下、より好ましくは10,000以下、さらに好ましくは4000以下、特に好ましくは3000以下である。一方、吸水性樹脂の力学特性及び水への耐溶出性の観点からは、好ましくは100以上、より好ましくは200以上、さらに好ましくは400以上である。ビニルアルコール系重合体(A)の粘度平均重合度は、例えばJIS K 6726に準拠した方法により測定できる。
 本発明に用いられる吸水性樹脂は、吸水性樹脂の水稲育苗時の溶出を防ぐ観点から、架橋構造を含むことが好ましい。本発明に用いられる吸水性樹脂が架橋構造を含む場合、吸水時にはゲル状態となる。架橋構造の形態に特に制限はなく、例えばエステル結合、エーテル結合、アセタール結合、及び炭素-炭素結合等による架橋構造が挙げられる。
 上記エステル結合の例としては、ビニルアルコール系重合体(A)がカルボキシル基を有する場合に、ビニルアルコール系重合体(A)が有する水酸基とカルボキシル基との間で形成されるエステル結合が挙げられる。上記エーテル結合の例としては、ビニルアルコール系重合体(A)が有する水酸基間の脱水縮合により形成されるエーテル結合が挙げられる。上記アセタール結合の例としては、ビニルアルコール系重合体(A)の製造においてカルボキシル基を有するアルデヒドを用いた場合に、2つのビニルアルコール系重合体(A)が有する水酸基同士が上記アルデヒドとアセタール化反応することにより形成されるアセタール結合が挙げられる。上記炭素-炭素結合としては、例えば活性エネルギー線を吸水性樹脂に照射したときに生じる、ビニルアルコール系重合体(A)の炭素ラジカル間のカップリングにより形成される炭素-炭素結合が挙げられる。これらの架橋構造は単独で含まれていても、複数種が含まれていてもよい。中でも、製造容易性の観点からエステル結合、アセタール結合による架橋構造が好ましく、水稲育苗時における保水性維持及び耐紫外線性の観点から、アセタール結合による架橋構造がより好ましい。
 このような架橋構造は、例えばカルボキシル基を有するアルデヒド及び該アルデヒド誘導体から選ばれる1種以上により少なくとも一部のビニルアルコール単位をアセタール化する工程において、アセタール化反応と同時に形成されてもよいし、別の工程において形成されてもよいが、本発明においては架橋剤をさらに添加することにより架橋構造を形成することが好ましい。
 架橋剤としては、グリオキサール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、1,9-ノナンジアール、アジポアルデヒド、マレアルデヒド、タルタルアルデヒド、シトルアルデヒド、フタルアルデヒド、イソフタルアルデヒド、及びテレフタルアルデヒド等が挙げられる。
 架橋剤を添加する場合、ビニルアルコール系重合体(A)中の架橋剤量としては、土壌中での保水性を維持しやすい観点から、好ましくは0.001モル%以上、より好ましくは0.005モル%以上、さらに好ましくは0.01モル%以上、よりさらに好ましくは0.03モル%以上であり、好ましくは0.5モル%以下、より好ましくは0.4モル%以下、さらに好ましくは0.3モル%以下である。
[培土]
 本発明の水稲育苗培土は、吸水性樹脂に加えて、培土を含む。水稲育苗培土が培土を含有することにより、培土の間隙に根が生長することで適当に根が互いに絡み合いやすくなり、また、水稲育苗培土の優れた排水性及び通気性を得やすくなる。培土は特に限定されず、市販の水稲用培土の1種を単独で又は2種以上を組み合わせて用いることができる。また、培土に、後述する任意成分を常法(例えば、任意成分の溶液又は分散液を培土に噴霧した後に乾燥させる方法)で付着させ、用いることもできる。
 より優れた排水性及び通気性を得やすい観点から、培土は粒状であることが好ましい。粒状培土の平均粒径は、好ましくは0.2~20mm、より好ましくは0.5~10mm、特に好ましくは1~5mmである。粒状培土の平均粒径を前記範囲内に調整するため、市販の水稲用粒状培土を篩過して用いることもできる。粒状培土の製造には圧縮造粒法、押し出し造粒法、転動造粒法、流動層造粒法等の造粒法を用いることができる。粒状培土の平均粒径は、次の方法で測定できる。粒状培土から粒子をランダムに30個選び、ノギスを用いて各粒子の直径を測定し、その平均値を粒状培土の平均粒径とする。なお、粒子が球状ではない場合、最も長い辺と最も短い辺の平均値をその粒子の直径とする。
 培土の含有量は、水稲育苗培土の総質量に対して、好ましくは20~99.9999質量%、より好ましくは70~99.95質量%、特に好ましくは80~99.9質量%、最も好ましくは90~99.8質量%である。なお、前記含有量は水稲育苗培土の構成材料(吸水性樹脂、培土及び任意成分)の乾燥状態における含有量である。
 吸水性樹脂と培土との混合物は、培土原料(例えば山土)に水又は水溶性高分子を含む水溶液を噴霧して転動造粒法等により造粒した後、吸水性樹脂を添加して乾燥させる方法;培土原料と吸水性樹脂とを予め混合し、水又は水溶性高分子を含む水溶液を噴霧して転動造粒法等により造粒し乾燥させる方法等により製造できる。
 吸水性樹脂は培土の粒子間に分散していてもよく、培土の表面に付着していてもよく、培土の内部に含まれていてもよい。吸水速度及び均一性の観点から、吸水性樹脂が培土の表面に付着していることが好ましい。
 後述する任意成分は、予め培土原料と混合して造粒する方法;造粒した培土に任意成分の溶液又は分散液を噴霧する方法;予め吸水性樹脂と混合し、培土に添加する方法;吸水性樹脂と培土の混合物に任意成分の溶液又は分散液を噴霧する方法等により配合できる。
[任意成分]
 本発明の水稲育苗培土は、吸水性樹脂及び培土に加えて、任意成分を含んでもよい。そのような任意成分としては、泥炭、草炭、ピート、ピートモス、ココピート、籾殻、腐植酵質資材、木炭、珪藻土焼成粒、貝化石粉末、貝殻粉末、カニがら、VA菌根菌、微生物資材等の動植物質;バーミキュライト、パーライト、ベントナイト、天然ゼオライト、合成ゼオライト、石こう、フライアッシュ、ロックウール、カオリナイト、スメクタイト、モンモリロナイト、セリサイト、クロライト、グローコナイト及びタルク等の鉱物質;肥料及びこれらの組み合わせが挙げられる。これらは、必要に応じて消毒又は殺菌して用いてもよく、pH調整剤又は農薬と一緒に用いてもよい。水稲育苗培土が任意成分を含有する場合、その合計量は本発明の効果を損なわない範囲であればよく、水稲育苗培土の総質量に対して通常は50質量%以下、好ましくは30質量%以下である。
 肥料の例としては、窒素系肥料、リン系肥料及びカリウム系肥料の三大肥料;カルシウム、マグネシウム、硫黄、鉄、銅、マンガン、亜鉛、ホウ素、モリブデン、塩素、ニッケル等の植物に必須の要素を含む肥料;バーク堆肥、牛ふん、豚ぷん、鶏ふん、生ごみ及び剪定クズ等の堆肥等が挙げられる。窒素系肥料としては、硫安、塩安、硝安、硝酸ソーダ、硝酸石灰、腐植酸アンモニア肥料、尿素、石灰窒素、硝酸アンモニア石灰、硝酸アンモニアソーダ、硝酸苦土肥;リン系肥料としては、過リン酸石灰、重過リン酸石灰、熔性リン肥、腐植酸リン酸肥、焼リン、重焼リン、リンスター、苦土過リン酸、混合リン酸肥料、副産リン酸肥料、高濃度リン酸;カリウム系肥料としては、硫酸カリ、塩化カリ、硫酸カリ苦土、炭酸カリ、重炭酸カリ、ケイ酸カリ等が挙げられる。これらの肥料は固形、ペースト、液体、溶液等の状態として用いてもよく、被覆肥料として用いてもよい。
 農薬の例としては、殺虫剤、殺菌剤、殺虫殺菌剤、除草剤、殺鼠剤、防腐剤、植物生長調整剤等が挙げられる。
 本発明の水稲育苗培土が肥料を含む場合、好ましい一態様では、肥料は被覆肥料として用いられる。被覆肥料は肥料を樹脂でコートしたものである。樹脂としては例えばポリオレフィンが挙げられる。被覆肥料を用いる場合、樹脂の分解に伴い継時的に土壌へ肥料を供給できる。また被覆肥料が粒状である場合、得られるマット苗の強度が高くなる傾向がある。被覆肥料の平均粒径は好ましくは1mm~10mm、より好ましくは3mm~6mmである。被覆肥料を用いる場合、水稲育苗培土における被覆肥料の含有量は、好ましくは10~99.99質量%、より好ましくは15~90質量%、特に好ましくは20~80質量%、最も好ましくは30~60質量%である。被覆肥料を用いる場合、水稲育苗培土における培土の含有量は20~80質量%であってもよい。なお、前記含有量は水稲育苗培土の構成材料(吸水性樹脂、培土及び被覆肥料等)の乾燥状態における含有量である。
 本発明の水稲育苗培土には、種籾を播種することができる。従って、本発明の一実施態様では、本発明の水稲育苗培土は種籾をさらに含む。種籾の播種は、水稲育苗培土が導入された水稲育苗箱に対して行うことが多い。従って、本発明はまた、本発明の水稲育苗培土及び水が導入された水稲育苗箱を対象とする。通常、種籾の量は水稲育苗箱(縦28cm×横58cm)1箱あたり100~700g(例えば100~500g)である。種籾の量が250~700g(例えば250~500g)と多い場合、育苗中に蒸散によって失われる水の量が増加する。本発明の水稲育苗培土は良好な保水性に加えて優れた耐候性(特に耐紫外線性)を有しており、この優れた耐候性によって良好な保水性が保持されるため、このような場合も、本発明の水稲育苗培土を用いることにより潅水負荷を低減することが可能である。
 本発明の育苗培土は、床土(種籾を播種する前に水稲育苗箱に導入されている土)又は覆土(種籾を播種した後に上から覆う土)のいずれか一方に用いてもよく、両方に用いてもよい。両方に用いる場合、水稲育苗培土の組成は床土と覆土で同一であっても、同一でなくてもよい。
 水稲育苗培土及び水が導入された水稲育苗箱は、例えば下記方法(1)及び(2)のいずれかの方法で製造でき、本発明はこれらの方法もまた対象とする。
(1)吸水性樹脂及び培土を含む水稲育苗培土を育苗箱に導入する工程、及び
潅水し、水稲育苗培土に含まれる吸水性樹脂を膨潤させる工程
を含む、方法。
(2)吸水性樹脂と水とを混合して吸水性樹脂を膨潤させる工程、
膨潤した吸水性樹脂と培土とを混合して水を含む水稲育苗培土を得る工程、及び
水を含む水稲育苗培土を育苗箱に導入する工程
を含む、方法。
 水稲育苗箱の製造は通常、ベルトコンベヤー等を用いて流れ作業で行われることが多い。このため、水稲育苗培土又は吸水性樹脂にはある程度の吸水速度が求められる。本発明の水稲育苗培土又は吸水性樹脂の吸水速度は、その要求に十分応える優れた吸水速度を示すことができる。
 上記方法(2)は、必要に応じて、水を含む水稲育苗培土が導入された育苗箱に潅水する工程等をさらに含むことができる。
 本発明はまた、本発明の水稲育苗培土を含むマット苗も対象とする。本発明の水稲育苗培土が吸水性樹脂を含むことにより、軽量化及び/又は潅水負荷の低減を実現できる。さらに、本発明の水稲育苗培土に含まれる吸水性樹脂は耐候性に優れたるため、分解した吸水性樹脂が潅水により流出して保水性が低下したり、潅水と潅水との間の期間中に根の生育を阻害したりする問題が起こりにくく、水稲育苗箱に播種された種籾は良好に出芽及び生長し、水稲の根は十分生長して互いに絡み合うことができる。これにより、本発明のマット苗は、田植機にセットするのに適した性質(例えば、引張強度、田植機への装着性、掻き取り性、掻き取り時の苗の立ち及び掻き取り時の苗の崩れにくさ等)を有することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されない。
<<用いた吸水性樹脂及びその合成例>>
[原料]
 グリオキシル酸一水和物、40質量%グリオキサール水溶液、25質量%グルタルアルデヒド水溶液、アセトニトリル、メタノール、酢酸ビニル、水酸化ナトリウム、アクリル酸メチル、及びアゾビスイソブチロニトリル;以上、和光純薬工業株式会社製
 ポリビニルアルコールA;クラレアメリカ社製ELVANOL(登録商標)71-30
[吸水性樹脂aの合成]
 還流冷却管及び撹拌翼を備えた容量500mLの四つ口セパラブルフラスコに、グリオキシル酸一水和物12.55g、40質量%グリオキサール水溶液0.11g、イオン交換水12.55g、アセトニトリル150mL及びポリビニルアルコールA40.0gを導入し、23℃で1時間撹拌した。得られた混合物を70℃に昇温した後、25質量%硫酸水溶液16.87gを10分かけて滴加し、70℃に保持したまま6時間反応させた。次いで30℃に冷却した後、イオン交換水150mLを加え、ろ過により樹脂を取り出した。続いて、ろ取した樹脂を200mLのメタノールで5回洗浄した。洗浄した樹脂を還流冷却管及び撹拌翼を備えた容量500mLの四つ口セパラブルフラスコに導入し、メタノール180mL、イオン交換水11.6mL及び8mol/L水酸化カリウム水溶液16.8mLを加え、還流下で2時間反応させた。ろ過により樹脂を取り出し、200mLのメタノールで6回洗浄し、40℃で6時間真空乾燥を行い、目的の吸水性樹脂(以下、「吸水性樹脂a」と称する)を得た。
[吸水性樹脂bの合成]
 撹拌機、還流冷却管、窒素導入管、及び開始剤の添加口を備えた反応器に、酢酸ビニル602g、アクリル酸メチル1.21g、メタノール254gを導入し、窒素バブリングをしながら30分間反応器内を不活性ガス置換した。水浴を用いて反応器の昇温を開始し、反応器の内部温度が60℃となったところで、開始剤としてアゾビスイソブチロニトリル(AIBN)を0.16g添加し、重合を開始させた。適宜サンプリングを行い、その固形分濃度から重合の進行を確認し、導入した酢酸ビニルとアクリル酸メチルの合計質量に対する、重合により消費された酢酸ビニルとアクリル酸メチルの合計質量である、消費率を求めた。消費率が4%に到達したところで、反応器の内部温度を30℃まで冷却して重合を停止させた。真空ラインに接続し、残留する酢酸ビニルをメタノールとともに30℃で減圧留去した。反応器内を目視で確認しながら、粘度が上昇したところで適宜メタノールを添加しながら留去を続け、5.2mol%のアクリル酸構成単位を含有するポリ酢酸ビニルを得た。アクリル酸構成単位の含有量はNMRを用いて測定した。
 次に、上記と同様の反応器に、得られたアクリル酸構成単位含有ポリ酢酸ビニル1gとメタノール18.2gを添加し、アクリル酸構成単位含有ポリ酢酸ビニルを溶解させた。水浴を用いて反応器の昇温を開始し、反応器の内部温度が70℃になるまで撹拌しながら加熱した。ここに水酸化ナトリウムのメタノール溶液(メタ苛性、濃度15質量%)0.78gを添加し、70℃で2時間ケン化を行った。得られた溶液をろ過し、5.2mol%のアクリル酸構成単位を含有するビニルアルコール系重合体(以下、「ビニルアルコール系重合体B」と称する)を得た。
 還流冷却管及び撹拌翼を備え付けた三つ口セパラブルフラスコに、アセトニトリル58.9g、イオン交換水6.28g、25質量%グルタルアルデヒド水溶液0.171g、ビニルアルコール系重合体B20gを導入し、23℃で撹拌し、ビニルアルコール系重合体Bを分散させた。16.9質量%硫酸水溶液12.38gを15分かけて滴加し、65℃に昇温して6時間反応させた。反応後、ろ過により樹脂を取り出した後、ろ取した樹脂を160gのメタノールで6回洗浄した。洗浄後の樹脂を還流冷却管及び撹拌翼を備え付けた三つ口セパラブルフラスコに導入し、メタノール71g、イオン交換水13.3g、水酸化カリウム5.7gを加え、65℃で2時間反応させた。反応後、ろ過により樹脂を取り出した後、ろ取した樹脂を160gのメタノールで6回洗浄し、40℃で12時間真空乾燥を行い、目的の吸水性樹脂(以下、「吸水性樹脂b」と称する)を得た。
 吸水性樹脂cとして、株式会社クラレ製 KIゲル、イソブチレン-無水マレイン酸共重合体〔組成比50:50(モル)〕の水酸化ナトリウム中和物の架橋体を用いた。
 吸水性樹脂dとして、ポリアクリル酸-ポリアクリル酸ナトリウム共重合体〔組成比46:54(モル)の架橋物〕を用いた。
[評価項目及び評価方法]
<吸水性樹脂の純水への溶出量(A)>
 吸水性樹脂a0.10gと純水100gとを混合し、23℃で16時間静置した。次いで、テトロン280メッシュを用いてろ過を行い、固形物を40℃で16時間真空乾燥させた後、質量w(g)を測定した。
  溶出量(質量%)=〔{0.10(g)-w(g)}/0.10(g)〕×100
 測定を3回行い、その平均値を溶出量(A)として採用した。溶出量は15質量%であった。
 吸水性樹脂aに代えて吸水性樹脂b~dを各々用いて、吸水性樹脂b~d各々の純水への溶出量(A)も吸水性樹脂aと同様に求めた。
 これらの結果をまとめて表1に示す。
<紫外線照射後の吸水性樹脂の純水への溶出量(B)>
 吸水性樹脂a0.10gと純水5gとを混合し、9mLガラス製スクリュー瓶(アズワン株式会社製、ラボランパック)に入れ、密閉した。スクリュー瓶をスガ試験機株式会社製キセノンウェザーメーターSX75に取り付け、スクリュー瓶放射照度130W/m(測定波長300~400nm)、槽内温度25℃、槽内湿度50%RH、ブラックパネル温度60℃の条件で、積算放射照度が14.4MJ/m(屋外における太陽光の約3週間分に相当する照度)となるまで照射した。照射後のサンプルに純水95mLを加え、23℃で16時間静置した。テトロン280メッシュを用いてろ過を行い、固形物を40℃で16時間真空乾燥させた後、質量w(g)を測定した。
  溶出量(質量%)=〔{0.10(g)-w(g)}/0.10(g)〕×100
 測定を3回行い、その平均値を溶出量(B)として採用した。溶出量は17質量%であった。
 吸水性樹脂aに代えて吸水性樹脂b~dを各々用いて、紫外線照射後の吸水性樹脂b~d各々の純水への溶出量(B)も吸水性樹脂aと同様に求めた。
 これらの結果をまとめて表1に示す。
 吸水性樹脂aの溶出量(B)と溶出量(A)との差〔溶出量(B)-溶出量(A)〕は、2質量%であった。
 吸水性樹脂b~dについても吸水性樹脂aと同様に、溶出量(B)と溶出量(A)との差を求めた。
 これらの結果をまとめて表1に示す。
<カルボキシル基の量、及びアクリル酸又はその塩に由来するカルボキシル基の量>
 吸水性樹脂aについて、固体13C-NMR測定を行った(日本電子株式会社製 機種名ECZ-500R、500MHz)。得られた13C-NMRスペクトルにおいて、カルボキシル基のカルボニル炭素に相当するピーク(通常160~190ppmで観測される)、アクリル酸又はその塩に由来するカルボキシル基のカルボニル炭素に相当するピーク(通常180~190ppmで観測される)、アクリル酸又はその塩に由来するカルボキシル基が結合したメチン炭素に相当するピーク(通常40~60ppmで観測される)、アクリル酸又はその塩の単位のメチレン炭素に相当するピーク(通常30~50ppmで観測される)、ビニルアルコール単位の水酸基が結合したメチン炭素(通常60~80ppmで観測される)、及び酢酸ビニル単位のビニルエステル基のメチル炭素(通常10~30ppmで観測される)から、吸水性樹脂a中に含まれるカルボキシル基のモル数、水酸基のモル数、及び酢酸ビニル単位のモル数を求め、下記式にしたがってカルボキシル基の量及びアクリル酸又はその塩に由来するカルボキシル基の量を算出した。
  カルボキシル基の量[モル%]=[(カルボキシル基のモル数)/(全構成単位のモル数)]×100
  アクリル酸又はその塩に由来するカルボキシル基の量[モル%]=[(アクリル酸又はその塩の合計のモル数)/(全構成単位のモル数)]×100
 吸水性樹脂aは、カルボキシル基の量が15モル%であり、アクリル酸又はその塩に由来するカルボキシル基の量が0モル%であった。
 吸水性樹脂aと同様にして、吸水性樹脂bの測定を行った。吸水性樹脂bは、カルボキシル基の量が5.2モル%であり、アクリル酸又はその塩に由来するカルボキシル基の量が5.2モル%であった。
<粒状培土の平均粒径>
 粒状培土Aから粒子をランダムに30個選び、ノギスを用いて各粒子の直径を測定し、その平均値を粒状培土の平均粒径とした。なお、粒子が球状ではない場合、最も長い辺と最も短い辺の平均値をその粒子の直径とした。
〔水稲育苗培土の吸水性、出庫調査及び生育調査〕
(1)水稲育苗培土の吸水性
 水稲育苗培土の吸水性を評価するために、じょうろ潅水終了後から、水稲育苗箱内の水面が消えて水稲育苗培土が露出するまでの時間を測定した。水面が存在する状態で播種を行うと、催芽籾(水稲種子)の位置がずれて水稲育苗箱内における出芽の均一性が低下する。このため、吸水完了時間が短いほど育苗箱作製の生産性が向上する。吸水完了時間は好ましくは12秒以下である。
<出庫調査(播種から2日後)>
(2)カビの発生具合
 カビの発生を目視により観察し、下記基準により評価した。
 A:カビの発生は確認できなかった
 B:カビの発生は確認できたが、カビに覆われている水稲育苗培土の上面(地表に現れている覆土表面)の面積は5%以下であった。
 C:カビの発生が確認でき、カビに覆われている水稲育苗培土の上面の面積が5%超であった。
(3)出芽率
 出芽して覆土の上に出てきている芽の数(N1)を目視により数えた。播種した催芽籾の数(N2)を用い、下記式に従い出芽率を算出した。
    出芽率[%]=(N1/N2)×100
<生育調査(播種から21日後)>
(4)草丈
 ランダムにサンプリングした苗10本について、水稲育苗培土の上面から苗の上端までの長さを測定し、その平均値を草丈として採用した。
(5)葉色
 ランダムにサンプリングした苗10本について、葉色カラースケール(富士平工業株式会社製)を用いて葉色を測定し、その平均値を葉色として採用した。
(6)葉齢
 ランダムにサンプリングした苗10本について、目視により葉齢を測定し、その平均値を葉齢として採用した。
(7)マット苗の引張強度
 マット苗を6cm×10cmの短冊状に切断し、短辺の一方を固定し(固定した範囲:6cm×2cm)、もう一方をバネばかりに接続した(接続した範囲:6cm×2cm)。マット苗が破断するまでバネばかりを引張り、最大応力を測定した。マット苗の引張強度が高いほどマット苗は崩れにくく、田植え機への装着性が向上する。
実施例1
 吸水性樹脂aと粒状培土とを混合し、水稲育苗培土を作製した。
実施例2
 吸水性樹脂a30gと粒状培土A(肥料としてN-P-KO=0.5-1.5-0.5g/kgを含む、平均粒径2.7mm)1500gとを均一に混合し、水稲育苗培土を作製した。この水稲育苗培土の60質量%を、内寸19cm×28cmの水稲育苗箱に敷き詰め、1000mLの水をじょうろで5秒間かけて潅水した。催芽籾(品種:コシヒカリ)200gを均一に撒いた後、その上に残りの水稲育苗培土(作製した水稲育苗培土の40質量%)を均一に敷き詰め、水稲育苗培土及び水が導入された水稲育苗箱を作製した。以上の操作をさらに2回行い、同じ、水稲育苗培土及び水が導入された水稲育苗箱を3個作製した。30℃、湿度100%の出芽庫にて2日間かけて出芽を行った後、出庫調査を行った。引き続き育苗を行い、播種から21日後に生育調査を行った。調査は3個の育苗箱それぞれで行い、数値で評価できるものはその平均値を採用した。カビの発生具合については3個の育苗箱で最も評価が悪いものを採用した。結果を表1に示す。
実施例3
 吸水性樹脂aを吸水性樹脂bに変更したこと以外は実施例2と同様にして、水稲育苗培土及び水が導入された水稲育苗箱を作製し、育苗及び調査を行った。結果を表1に示す。
実施例4
 吸水性樹脂a30gに代えて吸水性樹脂b48gを用い、粒状培土A1500gに代えて粒状培土A600gを用いたこと以外は実施例2と同様にして、水稲育苗培土及び水が導入された水稲育苗箱を作製し、育苗及び調査を行った。結果を表1に示す。
実施例5
 吸水性樹脂aに代えて吸水性樹脂cを用いたこと以外は実施例2と同様にして、水稲育苗培土及び水が導入された水稲育苗箱を作製し、育苗及び調査を行った。結果を表1に示す。
実施例6
 吸水性樹脂a30gを水600mLに加え、ゲルを調製した。このゲルと粒状培土A1500gとを均一に混合し、水稲育苗培土を作製した。その後の作業は実施例2と同様にして、水稲育苗培土及び水が導入された水稲育苗箱を作製し、育苗及び調査を行った。結果を表1に示す。
比較例1
 吸水性樹脂aに代えて吸水性樹脂dを用いたこと以外は実施例2と同様にして、水稲育苗培土及び水が導入された水稲育苗箱を作製し、育苗及び調査を行った。結果を表1に示す。
比較例2
 吸水性樹脂aを用いなかったこと、及び粒状培土A1500gに代えて3000gを用いたこと以外は実施例2と同様にして、水稲育苗培土及び水が導入された水稲育苗箱を作製し、育苗及び調査を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、本発明の水稲育苗培土(実施例2~6)は、式(I)を満たさない吸水性樹脂を用いた水稲育苗培土(比較例1)と比べて、良好な出芽率及び生育の程度を示した。また、本発明の水稲育苗培土は、吸水性樹脂を含まない水稲育苗培土(比較例2)と同程度に優れた出芽及び生長をもたらした。これは、本発明の水稲育苗培土が、良好な耐候性に起因して生育期間中にほとんど分解しなかったため、分解した樹脂が根の生長を妨げたり、分解した樹脂が潅水により流出して保水性が低下したりする問題が起こらなかったためと考えられる。さらに、本発明の水稲育苗培土は、吸水性樹脂を含むことにより、吸水性樹脂を含まない水稲育苗培土(比較例1)より軽量である。また、本発明の水稲育苗培土は、優れた吸水性を有するため、水稲育苗箱の製造に十分な吸水速度を示し、これにより潅水負荷も低減できるものであった。また、吸水性樹脂がビニルアルコール系重合体を含む場合(実施例2~4及び6)、吸水性樹脂がビニルアルコール系重合体を含まない場合(実施例5)と比べて、出芽率及び生育がより優れていた。さらに、本発明の水稲育苗培土(実施例2~6)は、比較例1~2と比べて、優れたマット苗の引張強度を示した。
 本発明の水稲育苗培土は、水稲育苗箱及びマット苗の軽量化及び/又は潅水負荷の低減を実現しつつも植物体の生育を阻害しないため、農業従事者の要望を満たす水稲育苗培土として好適に利用できる。

Claims (11)

  1.  吸水性樹脂と培土を含む水稲育苗培土であって、吸水性樹脂の純水への溶出量(A)及び吸水性樹脂とその50倍の質量の純水との混合物に積算照度14.4MJ/mの紫外線を照射した後の吸水性樹脂の純水への溶出量(B)が下記式(I):
      溶出量(B)-溶出量(A)<50質量%  (I)
    を満たす、水稲育苗培土。
  2.  吸水性樹脂と培土を含む水稲育苗培土であって、吸水性樹脂は、重合体としてビニルアルコール系重合体の全構成単位に対して0.1~80モル%のカルボキシル基を含むビニルアルコール系重合体を含み、当該カルボキシル基のうちアクリル酸又はその塩に由来するカルボキシル基の量がビニルアルコール系重合体の全構成単位に対して20モル%以下である、水稲育苗培土。
  3.  ビニルアルコール系重合体はカウンターカチオンとしてカリウムイオンを有する、請求項2に記載の水稲育苗培土。
  4.  ビニルアルコール系重合体のビニルアルコール単位がグリオキシル酸及びグリオキシル酸誘導体からなる群から選択される1種以上のアセタール化剤によりアセタール化されている、請求項2又は3に記載の水稲育苗培土。
  5.  吸水性樹脂の含有量が水稲育苗培土の総質量に基づいて0.0001~80質量%である、請求項1~4のいずれかに記載の水稲育苗培土。
  6.  平均粒径が0.2~20mmの粒状培土をさらに含む、請求項1~5のいずれかに記載の水稲育苗培土。
  7.  ピートモス、バーミキュライト、ココピート、パーライト、肥料、農薬及び種籾からなる群から選択される1種以上の成分をさらに含む、請求項1~6のいずれかに記載の水稲育苗培土。
  8.  請求項1~7のいずれかに記載の水稲育苗培土を含む、マット苗。
  9.  請求項1~7のいずれかに記載の水稲育苗培土及び水が導入された水稲育苗箱。
  10.  請求項9に記載の水稲育苗箱の製造方法であって、
    吸水性樹脂及び培土を含む水稲育苗培土を育苗箱に導入する工程、及び
    潅水し、水稲育苗培土に含まれる吸水性樹脂を膨潤させる工程
    を含む、方法。
  11.  請求項9に記載の水稲育苗箱の製造方法であって、
    吸水性樹脂と水とを混合して吸水性樹脂を膨潤させる工程、
    膨潤した吸水性樹脂と培土とを混合して水を含む水稲育苗培土を得る工程、及び
    水を含む水稲育苗培土を育苗箱に導入する工程
    を含む、方法。
PCT/JP2019/039700 2018-10-09 2019-10-08 水稲育苗培土 WO2020075725A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018191126 2018-10-09
JP2018-191126 2018-10-09
JP2019-076924 2019-04-15
JP2019076924A JP2022002467A (ja) 2018-10-09 2019-04-15 水稲育苗培土

Publications (1)

Publication Number Publication Date
WO2020075725A1 true WO2020075725A1 (ja) 2020-04-16

Family

ID=70163657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039700 WO2020075725A1 (ja) 2018-10-09 2019-10-08 水稲育苗培土

Country Status (2)

Country Link
TW (1) TW202023362A (ja)
WO (1) WO2020075725A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112273188A (zh) * 2020-11-02 2021-01-29 湖北省农业科学院农产品加工与核农技术研究所 一种水稻基质及其制备方法
EP3992217A4 (en) * 2019-06-28 2023-07-05 Kuraray Co., Ltd. WATER ABSORBENT COPOLYMER
JP7411573B2 (ja) 2018-12-28 2024-01-11 株式会社クラレ ポリビニルアルコール系架橋共重合体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234363B2 (ja) * 1979-06-28 1987-07-27 Sumitomo Kagaku Kogyo Kk
JPH0279911A (ja) * 1988-09-14 1990-03-20 Sanyo Chem Ind Ltd 土壌保水剤および保水方法
JP2003062460A (ja) * 2001-01-26 2003-03-04 Nippon Shokubai Co Ltd 吸水剤およびその製法、並びに吸水体
JP2018145326A (ja) * 2017-03-07 2018-09-20 株式会社クラレ 吸水性樹脂
JP2018145328A (ja) * 2017-03-07 2018-09-20 株式会社クラレ 吸水性樹脂およびその製造方法
JP2018145329A (ja) * 2017-03-07 2018-09-20 株式会社クラレ 吸水性樹脂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234363B2 (ja) * 1979-06-28 1987-07-27 Sumitomo Kagaku Kogyo Kk
JPH0279911A (ja) * 1988-09-14 1990-03-20 Sanyo Chem Ind Ltd 土壌保水剤および保水方法
JP2003062460A (ja) * 2001-01-26 2003-03-04 Nippon Shokubai Co Ltd 吸水剤およびその製法、並びに吸水体
JP2018145326A (ja) * 2017-03-07 2018-09-20 株式会社クラレ 吸水性樹脂
JP2018145328A (ja) * 2017-03-07 2018-09-20 株式会社クラレ 吸水性樹脂およびその製造方法
JP2018145329A (ja) * 2017-03-07 2018-09-20 株式会社クラレ 吸水性樹脂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411573B2 (ja) 2018-12-28 2024-01-11 株式会社クラレ ポリビニルアルコール系架橋共重合体
EP3992217A4 (en) * 2019-06-28 2023-07-05 Kuraray Co., Ltd. WATER ABSORBENT COPOLYMER
CN112273188A (zh) * 2020-11-02 2021-01-29 湖北省农业科学院农产品加工与核农技术研究所 一种水稻基质及其制备方法

Also Published As

Publication number Publication date
TW202023362A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
US10064345B2 (en) Culture medium for plant cultivation
WO2020075725A1 (ja) 水稲育苗培土
WO2010044281A1 (ja) ポリアクリル酸(塩)系吸水性樹脂を主成分とする植物育成用粒子状吸水剤
JP2018145328A (ja) 吸水性樹脂およびその製造方法
US11787751B2 (en) Water-absorbent resin and agricultural water-retaining material
JP2024071783A (ja) 保水材の製造方法
JP7010435B2 (ja) 吸水性樹脂及び農業用保水材
JP2018145326A (ja) 吸水性樹脂
JP2018145329A (ja) 吸水性樹脂
WO2021002442A1 (ja) 保水材
JP7181842B2 (ja) 農業用保水材
WO2021066177A1 (ja) 水稲育苗用積層体、マット苗、水稲育苗箱、及び水稲育苗箱の製造方法
JP2022002467A (ja) 水稲育苗培土
WO2022145274A1 (ja) 農業用保水材およびその製造方法
JP7531489B2 (ja) 吸水性共重合体
WO2019132029A1 (ja) 吸水性樹脂及び農業用保水材
JP4694810B2 (ja) 吸水性樹脂を主成分とする植物育成用保水材
JP7253463B2 (ja) ビニルアルコール系架橋共重合体
JP2021103957A (ja) 農業用保水材
JP2021103958A (ja) 農業用保水材
JP2024022704A (ja) 農業用保水材およびその製造方法
JP2024022705A (ja) 農業用保水材およびその製造方法
JPS58201903A (ja) 育苗方法
JPH05292833A (ja) 育苗用培土

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP