WO2020075278A1 - 医療用のマルチルーメンチューブ、および、その製造方法 - Google Patents

医療用のマルチルーメンチューブ、および、その製造方法 Download PDF

Info

Publication number
WO2020075278A1
WO2020075278A1 PCT/JP2018/037982 JP2018037982W WO2020075278A1 WO 2020075278 A1 WO2020075278 A1 WO 2020075278A1 JP 2018037982 W JP2018037982 W JP 2018037982W WO 2020075278 A1 WO2020075278 A1 WO 2020075278A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
resin
outer layer
inner layer
lumen tube
Prior art date
Application number
PCT/JP2018/037982
Other languages
English (en)
French (fr)
Inventor
南帆 増田
翔太 遠藤
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to CN201880098444.XA priority Critical patent/CN112805055B/zh
Priority to EP18936306.2A priority patent/EP3865172A4/en
Priority to JP2020549911A priority patent/JP7049475B2/ja
Priority to PCT/JP2018/037982 priority patent/WO2020075278A1/ja
Publication of WO2020075278A1 publication Critical patent/WO2020075278A1/ja
Priority to US17/206,680 priority patent/US20210205579A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • A61M25/0053Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids having a variable stiffness along the longitudinal axis, e.g. by varying the pitch of the coil or braid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements

Definitions

  • the present invention relates to a medical multi-lumen tube and a method for manufacturing the same.
  • Patent Document 1 discloses a multi-lumen tube including a first lumen inside the inner tube and a second lumen between the outer side of the inner tube and the inner side of the outer tube.
  • Patent Document 2 discloses a multi-lumen tube having four lumens.
  • Patent Document 3 discloses a multi-lumen tube in which a groove portion is formed on the outer peripheral surface of a tubular body forming a main lumen, and a hollow tube forming a sub-lumen is arranged in the groove portion. .
  • a multi-lumen tube is formed by joining resins having different properties in the outer layer.
  • the outer layer may be broken at the joining portion in a blood vessel having a tortuous and complicated path or in a branched blood vessel portion.
  • a rigidity gap in which the bending rigidity largely changes is likely to occur in the vicinity of the joint portion, and stress concentrates near the joint portion in the blood vessel or the branch blood vessel portion, which easily causes a kink or breakage.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a technique for suppressing the occurrence of breakage and kink in a multi-lumen tube.
  • the present invention has been made to solve at least a part of the above problems, and can be realized as the following modes.
  • a multi-lumen tube for medical use includes a plurality of inner layer tubes and an outer layer that covers the plurality of inner layer tubes, and the outer layer has a first region and a second region formed of resins having different characteristics from each other. Are arranged in the axial direction, and a wavy pattern is formed by the resin in one region advancing to the other region at the joint between the first region and the second region.
  • the bonding area between the resin in the first region and the resin in the second region of the outer layer can be increased, so that the bonding strength at the bonding portion between the first region and the second region can be improved. it can.
  • the change from the resin forming one region to the resin forming the other region becomes gradual, so that the change in bending rigidity can be made smooth. it can.
  • a rigidity gap of bending rigidity in the vicinity of the joint is less likely to occur, and thus it is possible to suppress the occurrence of kinks and breaks.
  • the plurality of inner layer tubes include a first inner layer tube having a relatively large outer diameter and a second inner layer tube having a relatively small outer diameter,
  • first inner layer tube having a relatively large outer diameter
  • second inner layer tube having a relatively small outer diameter
  • the resin in the one region is advanced to the other region on both sides of the second inner layer pipe.
  • the corrugated pattern may be formed by advancing the resin on both sides of the inner layer tube 2. According to this configuration, it is possible to further suppress the positional deviation of the second inner layer pipe when forming the outer layer.
  • the outer layer has a third region formed of a resin having a characteristic different from that of the resin of the second region, and the second region and the third region are The second joint portion different from the joint portion is connected, and in the second joint portion, a wave pattern due to the resin in one of the second region and the third region advancing to the other region is formed. It may be formed. According to this configuration, the bonding area between the resin in the second region and the resin in the third region of the outer layer can be increased, so that the bonding strength at the second bonding portion can be improved.
  • the switching from the resin forming one region to the resin forming the other region becomes gradual, so that the rigidity of the bending rigidity in the vicinity of the second joint is increased.
  • a gap can be made hard to occur.
  • a catheter is provided.
  • This catheter is provided with the multi-lumen tube of the above-mentioned form, the 1st field of the above-mentioned multi-lumen tube is the tip side of the catheter rather than the 2nd field, and the hardness of the resin of the 1st field is the above-mentioned. It is lower than the hardness of the resin in the two areas. According to this configuration, the rigidity can be gently increased from the distal end to the proximal end of the catheter, so that the passability of the catheter through a tubular organ such as a blood vessel can be improved.
  • the present invention can be implemented in various modes, for example, a catheter including a multi-lumen tube, a balloon catheter, an endoscope, a multi-lumen tube manufacturing apparatus, a multi-lumen tube manufacturing method, and the like. Can be achieved with.
  • FIG. 1 is an explanatory diagram illustrating the appearance of the catheter 1.
  • FIG. 2 is an explanatory view illustrating the AA cross section of FIG. 1 in the multi-lumen tube 10.
  • the left side (the tip 15 side) of FIG. 1 is called the “tip side” of the catheter 1
  • the right side (the connector 17 side) of FIG. 1 is called the “proximal side” of the catheter 1.
  • the distal end side of the catheter 1 is a side to be inserted into the body (distal side), and the proximal end side of the catheter 1 is a side to be operated by an operator such as a doctor (proximal side).
  • the catheter 1 is used for diagnosing or treating a stenosis or an occlusion. For example, it is used when it is inserted into a blood vessel of a heart in which a narrowed portion is formed and the narrowed portion in the blood vessel is expanded.
  • the catheter 1 includes a multi-lumen tube 10, a distal tip 15, a balloon 16 and a connector 17, and is configured as a balloon catheter here.
  • the multi-lumen tube 10 is a long member having two lumens inside, and includes an outer layer 20, a first inner layer tube 30, a reinforcing body 40, and a second inner layer tube 50. And have.
  • the tip 15 is provided at the tip of the catheter 1 and has an opening (not shown) communicating with the first inner layer tube 30.
  • the balloon 16 is provided between the multi-lumen tube 10 and the tip 15, and the internal space of the balloon 16 and the second inner layer tube 50 communicate with each other.
  • the connector 17 is connected to the base end of the multi-lumen tube 10 and has an opening (not shown) communicating with the first inner layer tube 30 and the second inner layer tube 50.
  • a guide wire or another catheter inserted from the opening of the connector 17 can be taken out from the opening of the distal tip 15 via the inside of the first inner layer tube 30. Further, the catheter 1 can supply fluid from the opening of the connector 17 to the internal space of the balloon 16 via the second inner layer tube 50.
  • the first inner layer tube 30 is a tube made of resin, and a lumen into which a guide wire or another catheter is inserted is formed inside.
  • the resin material forming the first inner layer tube 30 is not particularly limited, but for example, PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), PFA (perfluoroalkoxy alkane), FEP (perfluoroethylene propene). ), ETFE (ethylene tetrafluoroethylene), PE (polyethylene), and PP (polypropylene).
  • the outer diameter of the first inner layer tube 30 is configured to be larger than the outer diameter of the second inner layer tube 50.
  • the reinforcing body 40 is a braided body (metal blade layer) in which the first wire and the second wire are woven in a mesh shape, and is arranged on the outer periphery of the first inner layer pipe 30 and the outer layer 20. It is covered (embedded) with.
  • the reinforcing body 40 may cover the entire first inner layer pipe 30 or may partially cover the first inner layer pipe 30.
  • the second inner layer pipe 50 is a tube made of resin, and has a lumen formed therein for allowing fluid to flow therethrough.
  • the resin material forming the second inner layer pipe 50 is not particularly limited.
  • the second inner layer pipe 50 may be formed of the same type of resin as the first inner layer pipe 30, or may be formed of a different type of resin.
  • the outer diameter of the second inner layer pipe 50 is configured to be smaller than the outer diameter of the first inner layer pipe 30.
  • the outer layer 20 is made of resin and covers the first inner layer pipe 30, the reinforcing body 40, and the second inner layer pipe 50.
  • the outer layer 20 is formed by arranging seven kinds of resins having different characteristics in the axial direction and adjoining adjacent resins, and is formed by seven areas (first area N1 to seventh area) formed by each resin, which will be described later. It has a region N7).
  • the resin material forming each region of the outer layer 20 is not particularly limited, but examples thereof include polyamide, polyamide elastomer, polyester, polyurethane, and polyurethane elastomer.
  • the resin forming the outer layer 20 may contain tungsten powder, and the hardness of the resin may be changed depending on the content thereof.
  • the respective regions formed of resins having different characteristics are sequentially arranged from the front end side to the base end side of the outer layer 20 in the order of the front end region N0, the first region N1, the second region N2, and the third region N2. It is also called a region N3, a fourth region N4, a fifth region N5, and a sixth region N6.
  • the front end side of the front end region N0 of the outer layer 20 is connected to the base end side of the balloon 16, and the base end side of the front end region N0 is connected to the front end side of the first region N1.
  • the tip end side of the second region N2 of the outer layer 20 is connected to the base end side of the first region N1, and the base end side of the second region N2 is connected to the tip end side of the third region N3.
  • the tip end side of the fourth region N4 of the outer layer 20 is connected to the base end side of the third region N3, and the base end side of the fourth region N4 is connected to the tip end side of the fifth region N5.
  • the tip side of the sixth region N6 of the outer layer 20 is connected to the base end side of the fifth region N5, and the base end side of the sixth region N6 is connected to the connector 17.
  • the outer layer 20 has a hardness H0 of the resin 21 forming the tip region N0, a hardness H1 of the resin 22 forming the first region N1, a hardness H2 of the resin 23 forming the second region N2, and a resin forming the third region N3.
  • the hardness H3 of 24, the hardness H4 of the resin 25 forming the fourth region N4, the hardness H5 of the resin 26 forming the fifth region N5, and the hardness H6 of the resin 27 forming the sixth region N6 are expressed by the following formula (1). Is configured to meet.
  • the catheter 1 is configured so that the hardness of the resin of the outer layer 20 increases from the distal end side toward the proximal end side. As a result, the passability of the catheter 1 through tubular organs such as blood vessels can be improved.
  • the bending rigidity of the catheter gradually increases from the distal end to the proximal end. Since the tip portion has relatively high flexibility, it is possible to make it difficult to damage the inner surface of the blood vessel even in the branch portion of the blood vessel at a steep angle. On the other hand, since the proximal end portion has relatively high rigidity, it is possible to enhance the torque transmissibility that transmits the rotational movement of the catheter by the operator to the distal end portion side. Further, by making the change in the rigidity of the catheter in the axial direction as close as possible to constant, it is possible to suppress the occurrence of kinks and the like due to the rigidity gap. Therefore, the catheter can improve the passability of the catheter 1 through a tubular organ such as a blood vessel by gently increasing the bending rigidity from the distal end portion toward the proximal end portion.
  • the “hardness of resin” is not limited to the hardness of the resin itself, but means the total hardness obtained by adding the hardness of the material to be kneaded with the resin to the hardness of the resin itself. Therefore, the method of causing the difference in the hardness of the resin is not limited to making the type of the resin different, and may also be caused by changing the amount of the material to be kneaded with the resin of the same type.
  • FIG. 3 is an explanatory view of the portion X of FIG. 1 in the multi-lumen tube 10 as seen from the direction D1 of FIG.
  • FIG. 4 is an explanatory view of the portion X of FIG. 1 in the multi-lumen tube 10 seen from the direction D2 of FIG.
  • FIG. 2 when the outer surface of the outer layer 20 is divided into an upper side (the second inner layer tube 50 side) and a lower side (the first inner layer tube 30 side), the upper side of the outer surface of the outer layer 20 is shown in FIG. Half is shown and in FIG. 4 the lower half of the outer surface of the outer layer 20 is shown.
  • FIG. when the outer layer 20 is divided into the side on which the first inner layer tube 30 is located and the side on which the second inner layer tube 50 is located along the circumferential direction of the outer layer 20, FIG. , The side where the second inner layer pipe 50 is located (the side of the second inner layer pipe 50 of the outer layer 20) is displayed, and in FIG. 4, the side where the first inner layer pipe 30 is located (the first inner layer pipe 30 of the outer layer 20) is shown. 1 inner layer tube 30 side) is displayed.
  • the resin 22 in the first region N1 should advance to the second region N2 at the joint C1 between the first region N1 and the second region N2.
  • the wavy pattern is formed.
  • a portion of the resin 22 that has advanced to the second region N2 is also referred to as an advanced resin 221.
  • the advancing resin 221 is provided on each side of the second inner layer pipe 50 in the circumferential direction of the outer layer 20.
  • the resin 22 in the first region N1 advances to the second region N2 on both sides of the second inner layer pipe 50, and the resin on both sides of the second inner layer pipe 50
  • a wave pattern is formed by the advance of 22.
  • the corrugated pattern may be formed by alternately repeating a portion having the advancing resin 221 and a portion having no advancing resin 221, or changing the advancing distance of the advancing resin 221 in the circumferential direction of the outer layer 20 (of the advancing resin 221). It may be formed by changing the edge position).
  • the resin 22 in the first region N1 substantially advances to the second region N2 at the joint C1 between the first region N1 and the second region N2.
  • No wavy pattern is formed. Therefore, the boundary between the first region N1 and the second region N2 is substantially linear along the circumferential direction of the outer layer 20.
  • the first region A wave pattern may be formed by the resin 22 of N1 advancing to the second region N2.
  • FIG. 5 is an explanatory diagram illustrating the BB cross section of FIG. 3 in the multi-lumen tube 10.
  • FIG. 6 is an explanatory view illustrating the CC cross section of FIG. 3 in the multi-lumen tube 10.
  • the advancing resin 221 advancing into the second region N2 is located on both sides of the second inner layer pipe 50 and is in contact with the reinforcing body 40 and the first inner layer pipe 30.
  • the advance resin 221 is covered with the resin 23.
  • the advancing resin 221 can be visually recognized through the resin 23.
  • FIG. 5 is an explanatory diagram illustrating the BB cross section of FIG. 3 in the multi-lumen tube 10.
  • FIG. 6 is an explanatory view illustrating the CC cross section of FIG. 3 in the multi-lumen tube 10.
  • FIG. 7 is an explanatory view illustrating the manufacturing process of the multi-lumen tube 10.
  • a first inner layer tube 30 having a reinforcing body 40 arranged on the outer periphery thereof and a second inner layer tube 50 are prepared.
  • the outer layer pipe 200 is arranged outside the prepared first inner layer pipe 30 and second inner layer pipe 50.
  • the outer layer pipe 200 is a tubular member formed of a resin that is a raw material of the outer layer 20, and is prepared for each type of resin of the outer layer 20.
  • an outer layer pipe 204 formed by the resin 24 in the third region N3, an outer layer pipe (not shown) formed by the resin 25 in the fourth region N4, and an outer layer formed by the resin 26 in the fifth region N5 A pipe (not shown) and an outer layer pipe (not shown) formed of the resin 27 in the sixth region N6 are prepared.
  • the first inner layer tube 30 and the second inner layer tube 50 are sequentially inserted into the inside of these seven outer layer tubes 200 thus prepared, and the assembly 100 shown in FIG. 7C is manufactured.
  • FIG. 8 is an explanatory view illustrating a cross section of the assembly 100. Since the inner diameter of the outer layer pipe 200 is larger than the sum of the two outer diameters of the first inner layer pipe 30 and the second inner layer pipe 50, in the assembly 100, the first inner layer pipe 30 and the second inner layer pipe 20 accommodated in the outer layer pipe 200. There is a gap between the outer circumference of the inner layer tube 50 and the inner circumference of the outer layer tube 200. In particular, since the outer diameter of the second inner layer pipe 50 is smaller than the outer diameter of the first inner layer pipe 30, a relatively large gap Sp is formed on both sides of the second inner layer pipe 50.
  • the outer layer tube 200 is heated from the outside to form the outer layer tube 200, as shown in FIGS. 7D and 7E.
  • the resin is melted to form the outer layer 20. That is, by heating the outer layer pipe 200, the molten resin is poured between the outer peripheries of the first inner layer pipe 30 and the second inner layer pipe 50 and the inner periphery of the outer layer pipe 200 to fill the gap.
  • the seven outer layer tubes 200 are not heated at the same time, but are heated one by one in order. As the order of heating, in the present embodiment, heating is performed in order from the distal end side to the proximal end side.
  • FIG. 7D shows a state in which the outer layer tube 202 is heated to melt the resin.
  • FIG. 7E shows a state where the outer layer tube 203 is heated to melt the resin.
  • FIG. 9 is an explanatory view illustrating a vertical cross section of the assembly 100 when the outer layer pipe 202 is melted.
  • the outer layer pipe 202 is heated to melt the resin, a part of the melted resin flows into the inside of the outer layer pipe 203 adjacent to the base end side by the flow. As a result, the advance resin 221 is formed.
  • a relatively large gap Sp (see FIG. 8) is formed on both sides of the second inner layer pipe 50 inside the outer layer pipe 203, the resin flows into the gap Sp and a relatively large advance resin 221. Is formed.
  • the outer layer tube 203 is heated to melt the resin. At this time, a part of the melted resin flows into the inside of the outer layer pipe 204 adjacent on the base end side by the flow. As a result, the second region N2 of the outer layer 20 is formed and the advancing resin 231 is formed. In this way, by heating the seven outer layer tubes 200 in order from the outer layer tube on the tip side, as shown in FIG. 7 (F), the resin in the tip side area has advanced to the adjacent base end side area. The lumen tube 10 is completed.
  • the outer layer 20 of the multi-lumen tube 10 includes a joint between the tip region N0 and the first region N1, a joint between the second region N2 and the third region N3, a joint between the third region N3 and the fourth region N4,
  • the respective configurations of the joint between the fourth region N4 and the fifth region N5 and the joint between the fifth region N5 and the sixth region N6 are the same as those of the first region N1 and the second region shown in FIGS.
  • the structure is the same as that of the joint C1 with the region N2.
  • the advancing resin 221 (FIG. 3) forms a wavy pattern at the joint C1 between the first region N1 and the second region N2 of the outer layer 20.
  • the joining area can be increased more than when the joining portion is linear.
  • the bonding strength at the bonding portion C1 between the first region N1 and the second region N2 can be improved.
  • the switching from the resin 22 forming the first region N1 to the resin 23 forming the second region N2 becomes gradual in the joint portion C1, so that the outer layer 20 is formed.
  • the change in bending rigidity due to the difference in resin type can be made smooth. As a result, since a rigidity gap of bending rigidity in the vicinity of the joint C1 is unlikely to occur, it is possible to suppress the occurrence of kinks and breakage due to stress concentration.
  • a wave pattern is formed on the second inner layer tube 50 side of the outer layer 20 in the joint C1 (FIG. 3) of the first region N1 and the second region N2. ing. Therefore, the bending rigidity of the outer layer 20 can be gently changed around the second inner layer pipe 50. As a result, a rigid gap is less likely to occur around the second inner layer pipe 50, so that the crush resistance of the second inner layer pipe 50 can be further improved.
  • FIG. 7 (D) the position of the second inner layer tube 50 inside the outer layer tube 203 is fixed by the advancing resin 221, so that the outer layer tube 203 can be fixed as shown in FIG. 7 (E).
  • the outer layer 20 is formed by heating, it is possible to prevent the second inner layer tube 50 from being pushed and displaced by the molten resin.
  • the resin 22 advances on both sides of the second inner layer pipe 50.
  • a wave pattern is formed by the (extending resin 221).
  • the advancing resin 221 on both sides of the second inner layer pipe 50 regulates the movement of the second inner layer pipe 50, so that when the outer layer 20 is formed, the positional displacement of the second inner layer pipe 50 can be further suppressed. it can.
  • the advancing resin 231 also forms a wave pattern in the second joint portion between the second region N2 and the third region N3 of the outer layer 20, so that the second joint is formed.
  • the joint area of the portion can be increased and the joint strength can be improved.
  • the switching from the resin 23 forming the second region N2 to the resin 24 forming the third region N3 becomes gradual in the second joining portion, so that the second joining portion is formed. It is possible to prevent a rigid gap in the vicinity from occurring.
  • the hardness H1 of the resin 22 in the first area N1 is lower than the hardness H2 of the resin 23 in the second area N2.
  • the rigidity can be gently increased from the distal end to the proximal end of the catheter 1, so that the passability of the catheter 1 through a tubular organ such as a blood vessel can be improved.
  • the catheter can be improved in passability of the catheter 1 through a tubular organ such as a blood vessel by gently increasing bending rigidity from the distal end portion toward the proximal end portion.
  • the hardness H1 of the resin 22 in the first region N1 is made lower than the hardness H2 of the resin 23 in the second region N2, so that the bending rigidity changes in the axial direction of the catheter 1.
  • the rigidity can be gently increased from the distal end to the proximal end of the catheter 1, it is possible to improve the passability of the catheter 1 through a tubular organ such as a blood vessel while suppressing the occurrence of a rigidity gap. .
  • FIG. 10 is an explanatory view illustrating the vicinity of the joint C1 of the multi-lumen tube 10A of the second embodiment.
  • FIG. 10 corresponds to FIG. 4 of the first embodiment.
  • the resin 22 in the first region N1 substantially advances to the second region N2 at the joint C1. No wavy pattern was formed.
  • the first inner layer tube 30 side of the outer layer 20 also has a first portion at the joint C1 similar to the second inner layer tube 50 side of the outer layer 20.
  • the resin 22 in the region N1 may advance to the second region N2 and a wave pattern may be formed.
  • the bonding area between the resin 22 in the first region N1 and the resin 23 in the second region N2 of the outer layer 20 can be further increased.
  • the advancing resin 221 is arranged in a more balanced manner in the circumferential direction of the outer layer 20, it is possible to further improve the bonding strength at the bonding portion C1 between the first region N1 and the second region N2.
  • the first inner layer pipe 30 is also advanced.
  • FIG. 11 is an explanatory view illustrating the vicinity of the joint C1 of the multi-lumen tube 10B of the third embodiment.
  • FIG. 11 corresponds to FIG. 3 of the first embodiment.
  • the resin 22 in the first region N1 is filled with the second region N2. It is assumed that a wave pattern has been formed.
  • the second inner layer tube 50 side of the outer layer 20 on the second inner layer tube 50 side of the outer layer 20, only one side of the second inner layer tube 50 has the resin 22 in the first area N1 in the second area N2. May have advanced to.
  • the corrugated pattern is formed by the portion where the resin 22 has advanced into the second region N2 (advancing resin 221) and the portion where it has not advanced, the joint C1 becomes linear.
  • the bonding area can be increased more than in the case of the above. Thereby, the bonding strength at the bonding portion C1 between the first region N1 and the second region N2 can be improved.
  • the resin 22 may advance to the second region N2 on both sides of the second inner layer tube 50.
  • the resin 22 may advance to the second region N2 only on one side of the second inner layer pipe 50.
  • the resin 22 may advance to the second region N2 only in the portion where the second inner layer pipe 50 is located, or in the portion where the second inner layer pipe 50 is located and on both sides thereof.
  • the resin 22 may have advanced to the second region N2.
  • FIG. 12 is an explanatory view illustrating the manufacturing process of the multi-lumen tube 10C of the fourth embodiment.
  • FIG. 12 corresponds to FIG. 7 of the first embodiment.
  • the steps shown in FIGS. 12A to 12C are the same as the steps shown in FIGS. 7A to 7C.
  • the seven outer layer pipes 200 are heated in order from the outer layer pipe on the tip side.
  • the seven outer layer tubes 200 are heated in order from the proximal end side to the distal end side.
  • the outer layer pipe of the sixth region N6 (not shown), the outer layer pipe of the fifth region N5 (not shown), the outer layer pipe of the fourth region N4 (not shown), the outer layer pipe 204 of the third region N3,
  • the outer layer pipe 203 in the second region N2, the outer layer pipe 202 in the first region N1, and the outer layer pipe (not shown) in the tip region N0 are heated in this order.
  • FIG. 12D shows a state in which the outer layer pipe 204 is heated to melt the resin.
  • the outer layer pipe 204 is heated to melt the resin, a part of the melted resin flows into the inner side of the outer layer pipe 203 adjacent on the tip side by flow. As a result, the advance resin 242 is formed.
  • a relatively large gap Sp (see FIG. 8) is formed on both sides of the second inner layer pipe 50 inside the outer layer pipe 203, the resin flows into the gap Sp and the relatively large advancing resin 242 is formed. Is formed.
  • the outer layer pipe 203 is heated to melt the resin, as shown in FIG. 12 (E). At this time, a part of the melted resin flows into the inside of the outer layer pipe 202 adjacent on the tip side by flow. Thereby, the advancing resin 232 is similarly formed. In this way, by heating the seven outer layer pipes 200 in order from the outer layer pipes on the base end side, as shown in FIG. 12 (F), the resin in the base end side region has advanced to the adjacent tip end side region. Multi-lumen tube 10C is completed.
  • the resin forming the proximal end region may advance to the distal end region.
  • the advancing resin that has advanced from the base end side to the tip end side forms a wavy pattern in the joint portion of two regions of the outer layer 20 that are adjacent to each other, so that the joint portion is linear.
  • the joining area can be increased more than in the case.
  • the change in bending rigidity due to the difference in the type of resin can be smoothed at the joint between two adjacent regions. As a result, since a rigidity gap of bending rigidity in the vicinity of the joint is less likely to occur, it is possible to suppress the occurrence of kinks and fractures due to stress concentration.
  • FIG. 13 is an explanatory view illustrating the manufacturing process of the multi-lumen tube 10D of the fifth embodiment.
  • FIG. 13 corresponds to FIG. 7 of the first embodiment.
  • the steps shown in FIGS. 13A to 13C are the same as the steps shown in FIGS. 7A to 7C.
  • the seven outer layer tubes 200 are heated sequentially from the outer layer tube on the tip side.
  • the order of heating the seven outer layer tubes 200 is not limited to the order from one end of the assembly 100 to the other end.
  • the order of heating the seven outer layer tubes 200 can be set arbitrarily.
  • a plurality of outer layer tubes 200 may be heated at the same time.
  • the outer layer pipe 202 in the first region N1 and the outer layer pipe 204 in the third region N3 are heated at the same time, and thereafter, as shown in FIG. As shown in (E), the outer layer tube 203 in the second region N2 is heated.
  • the outer layer pipe in the tip region N0 and the outer layer pipe in the fifth region N5 are sequentially heated, and then the outer layer pipe in the fourth region N4 and the outer layer pipe in the sixth region N6 are simultaneously heated.
  • the resin in each region forming the outer layer 20 may advance to the adjacent distal end side region or to the adjacent proximal end side region. You may. Even in these cases, in the two regions adjacent to each other, the resin advancing from one of the base end side and the tip end side advances to the other region, so that a wavy pattern is formed in the joint portion. . Thereby, the bonding area can be increased and the bonding strength at the bonding portion can be improved as compared with the case where the bonding portion is linear.
  • FIG. 14 is explanatory drawing which illustrated the external appearance of the catheter 1E provided with the multi-lumen tube 10E of 6th Embodiment.
  • FIG. 14 corresponds to FIG. 1 of the first embodiment.
  • the outer layer 20 of the multi-lumen tube 10 of the first embodiment has seven regions N0 to N6 formed of resins having different characteristics.
  • the number of regions that the outer layer 20 of the multi-lumen tube 10 has is not limited to seven, and can be any number of two or more.
  • the example in which the multi-lumen tube 10 is applied to the balloon catheter is shown, but the multi-lumen tube 10 can be applied to a catheter other than the balloon catheter.
  • the sixth embodiment shown in FIG. 14 shows an example in which the multi-lumen tube 10E is applied to a catheter having no balloon.
  • the multi-lumen tube 10E of the present embodiment includes two regions in the outer layer 20 that are made of different resins.
  • the outer layer 20 is also referred to as a first region N1 and a second region N2 in order from the front end side to the base end side.
  • the tip end side of the first region N1 of the outer layer 20 is connected to the tip tip 15, and the base end side of the first region N1 is connected to the tip end side of the second region N2.
  • the proximal end side of the second region N2 of the outer layer 20 is connected to the connector 17.
  • the outer layer 20 is configured such that the hardness H1 of the resin 22 forming the first region N1 and the hardness H2 of the resin 23 forming the second region N2 satisfy the following expression (2). H1 ⁇ H2 (2) That is, the catheter 1 is configured so that the hardness of the resin of the outer layer 20 increases from the distal end side toward the proximal end side. As a result, the passability of the catheter 1 through tubular organs such as blood vessels can be improved. Similar to the first embodiment, the joint C1 between the first region N1 and the second region N2 of the outer layer 20 has a wavy pattern formed by the resin 22 in the first region N1 advancing to the second region N2. There is. The configuration of the joint portion C1 between the first region N1 and the second region N2 of the outer layer 20 is the same as that of FIG. 3 and FIG. 4 of the first embodiment.
  • the number of types of resin forming the outer layer 20, that is, the number of regions included in the outer layer 20 can be set to an arbitrary number of 2 or more.
  • the resin advancing from one of the base end side and the tip end side advances into the other area, so that a wavy pattern is formed in the joint portion.
  • the bonding area can be increased and the bonding strength at the bonding portion can be improved as compared with the case where the bonding portion is linear.
  • FIG. 15 is explanatory drawing which illustrated the cross section of the multi-lumen tube 10F of 7th Embodiment.
  • FIG. 15 corresponds to FIG. 2 of the first embodiment.
  • the reinforcing body 40 is arranged outside the first inner layer tube 30.
  • the reinforcing body may not be arranged outside the first inner layer tube 30.
  • the joint C1 becomes linear.
  • the bonding area can be increased more than in the case of the above. Thereby, the bonding strength at the bonding portion C1 between the first region N1 and the second region N2 can be improved.
  • FIG. 16 is explanatory drawing which illustrated the cross section of the multi-lumen tube 10G of 8th Embodiment.
  • FIG. 16 corresponds to FIG. 2 of the first embodiment.
  • the outer diameter of the second inner layer tube 50 is smaller than the outer diameter of the first inner layer tube 30.
  • the outer diameter of the second inner layer tube 51 may be equal to the outer diameter of the first inner layer tube 31.
  • FIG. 17 is explanatory drawing which illustrated the cross section of the multi-lumen tube 10H of 9th Embodiment.
  • FIG. 17 corresponds to FIG. 2 of the first embodiment.
  • the multi-lumen tube 10 of the first embodiment is provided with two inner layer tubes (first inner layer tube 30 and second inner layer tube 50).
  • the number of inner layer tubes included in the multi-lumen tube 10 is not limited to two, and may be any number.
  • three inner layer tubes of a first inner layer tube 32, a second inner layer tube 52, and a third inner layer tube 60 may be provided.
  • the outer layer tubes 200 are heated one by one in the manufacturing process of the multi-lumen tubes 10 and 10C, and in the fifth embodiment (FIG. 13), the two outer layer tubes are heated. 200 were to be heated simultaneously. However, in the manufacturing process, three or more outer layer tubes 20 may be simultaneously heated. Even in this case, the advancing resin can form a wave pattern in the joint C1 between the first region N1 and the second region N2, and the joint area can be increased. Note that it is preferable to heat a plurality of outer layer pipes 200 that are not adjacent to each other at the same time, as compared with the outer layer pipes 200 that are adjacent to each other, because it is easy to form the advancing resin.
  • the number of inner layer tubes (number of lumens) included in the multi-lumen tube is set to 2 to 3.
  • the number of inner layer tubes included in the multi-lumen tube is not limited to 2 to 3.
  • the multi-lumen tube may include four or more inner layer tubes.
  • the present embodiment can also be applied to a single lumen tube having one lumen. Even in this case, the advancing resin can form a wave pattern in the joint C1 between the first region N1 and the second region N2, and the joint area can be increased.
  • the number of types of resin forming the outer layer 20, that is, the number of regions included in the outer layer 20 may be eight or more.
  • the hardness of the resin forming the distal end side region of the catheter 1 may be higher than the hardness of the resin forming the proximal end side region.
  • the advancing resin may not be covered with the resin on the advancing side and may be exposed.
  • the outer diameter of the multi-lumen tube may be constant or may vary in the axial direction.
  • a visible wave pattern is formed at the joint C1 of the outer layer 20.
  • the wave pattern formed at the joint C1 may not necessarily be visible. Even in this case, if the advancing resin can increase the joint area, the joint strength can be improved.
  • the shape of the pattern formed on the joint C1 by the advancing resin does not necessarily have to be a wavy pattern. For example, it may have a mountain shape or a rectangular shape. Even in these cases, the advancing resin can improve the bonding strength.
  • the multi-lumen tube of the above-mentioned embodiment does not have a coil body outside the inner layer tube.
  • the multi-lumen tube may include a coil body outside the inner layer tube.
  • the outer diameter of the inner layer pipe may be constant or may vary in the axial direction.
  • each region is formed of a different type of resin.
  • each region may be made of the same type of resin, and the amounts of the materials to be kneaded with the resin may be different from each other. Even in this case, since the hardness of the resin can be changed, the rigidity can be gradually increased from the distal end side to the proximal end side of the multi-lumen tube 10.
  • at least two or more regions of each region of the outer layer 20 may be formed of the same type of resin and have the same hardness. For example, two adjacent regions may be formed of the same type of resin. Even in this case, since the advancing resin increases the joint area, the joint strength can be increased.
  • the inner layer pipe can be prevented from being displaced by the molten resin.
  • the change in rigidity at the joint C1 can be made smooth.
  • the order of heating is the same as the order of melting the resin in each region of the outer layer 20.
  • the resin in the adjacent region may be melted first with respect to the order of heating, and the resin in the adjacent melted region may flow into the region where the overheating is started first to form a wave pattern.
  • the resin with low hardness in the region adjacent to the distal end side melts earlier than the resin with high hardness on the proximal end side, and flows into the region on the proximal end side.
  • a wave pattern may be formed. Even in this case, the resin having low hardness flows into the resin region having high hardness, so that the change in rigidity at the joint C1 can be smoothed.
  • the catheter 1 of this embodiment may or may not have a resin coating formed further outside the outer layer 20.
  • the resin coating is formed on the outer side of the outer layer 20, different types of resin coatings may be formed in at least a part of each region of the outer layer, or the same type of resin coating may be formed in all areas. Good.
  • the configuration of the present embodiment can be applied to medical devices other than balloon catheters.
  • the configuration of this embodiment can be applied to a multi-lumen catheter without a balloon, a single-lumen catheter, a dilator, an endoscope, a guide wire, and the like.
  • each of the configurations of the multi-lumen tubes illustrated in the first to ninth embodiments can be partially combined as appropriate and can be appropriately removed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

医療用のマルチルーメンチューブは、複数の内層管と、複数の内層管を被覆する外層管と、を備え、外層管は、外層管の長軸方向に並ぶとともに、互いに特性の異なる樹脂によって形成される第1領域と第2領域とを有しており、第1領域と第2領域との接合部において、一方の領域の樹脂が他方の領域に進出することによる波模様が形成されている。

Description

医療用のマルチルーメンチューブ、および、その製造方法
 本発明は、医療用のマルチルーメンチューブ、および、その製造方法に関する。
 従来から、複数のルーメンを備える医療用のマルチルーメンチューブが知られている。マルチルーメンチューブは、カテーテルや内視鏡などに使用され、血管、消化管、尿管等の人体の管状器官や体内組織中に挿入される。例えば、特許文献1には、内管の内側に第1のルーメンを備え、内管の外側と外管の内側との間に第2のルーメンを備えるマルチルーメンチューブが開示されている。また、例えば、特許文献2には、4つのルーメンを有するマルチルーメンチューブが開示されている。また、例えば、特許文献3には、メインルーメンを形成する管状本体の外周面に溝部が形成され、その溝部内にサブルーメンを形成する中空管が配置されるマルチルーメンチューブが開示されている。
特開平9-192235号公報 特開2014-18531号公報 特開2013-138809号公報
 マルチルーメンチューブには、外層において、互いに特性の異なる樹脂が接合されて形成されたものが知られている。このようなマルチルーメンチューブでは、接合部の接合強度が十分ではないと、曲がりくねった複雑な経路の血管内や分岐血管部において、外層が接合部で破断するおそれがあった。また、接合部付近において曲げ剛性が大きく変化する剛性ギャップが生じやすく、血管内や分岐血管部において、接合部付近に応力が集中してキンクや破断が生じやすい問題があった。
 本発明は、上述した課題を解決するためになされたものであり、マルチルーメンチューブにおいて、破断やキンクの発生を抑制する技術の提供を目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
 (1)本発明の一形態によれば、医療用のマルチルーメンチューブが提供される。このマルチルーメンチューブは、複数の内層管と、前記複数の内層管を被覆する外層と、を備え、前記外層は、互いに特性の異なる樹脂によって形成された第1領域と第2領域とが前記外層の軸線方向に並んでおり、前記第1領域と前記第2領域との接合部において、一方の領域の樹脂が他方の領域に進出することによる波模様が形成されている。
 この構成によれば、外層の第1領域の樹脂と第2領域の樹脂との接合面積を増加させることができるため、第1領域と第2領域との接合部における接合強度を向上させることができる。また、外層の第1領域と第2領域との間において、一方の領域を構成する樹脂から他方の領域を構成する樹脂への切り替わりが緩やかになるため、曲げ剛性の変化をなだらかにすることができる。これにより、接合部付近における曲げ剛性の剛性ギャップが生じにくくなるため、キンクや破断の発生を抑制できる。
 (2)上記形態のマルチルーメンチューブにおいて、前記複数の内層管には、外径が相対的に大きい第1内層管と、外径が相対的に小さい第2内層管とが含まれており、前記外層を、前記外層の周方向に沿って、前記第1内層管が位置している側と、前記第2内層管が位置している側とに分けた場合、少なくとも前記第2内層管が位置している側に前記波模様が形成されていてもよい。この構成によれば、第2内層管の耐潰れ性をより向上させることができる。また、外層形成時における第2内層管の位置ずれを抑制することができる。
 (3)上記形態のマルチルーメンチューブにおいて、前記外層は、前記外層の周方向において、前記第2内層管の両側で、前記一方の領域の樹脂が前記他方の領域に進出しており、前記第2内層管の両側における前記樹脂の進出によって前記波模様が形成されていてもよい。この構成によれば、外層形成時における第2内層管の位置ずれをより抑制することができる。
 (4)上記形態のマルチルーメンチューブにおいて、前記外層は、前記第2領域の樹脂と特性の異なる樹脂によって形成された第3領域を有しており、前記第2領域と前記第3領域とが前記接合部とは異なる第2接合部で接続され、前記第2接合部において、前記第2領域と前記第3領域のうちの一方の領域の樹脂が他方の領域に進出することによる波模様が形成されていてもよい。この構成によれば、外層の第2領域の樹脂と第3領域の樹脂との接合面積を増加させることができるため、第2接合部における接合強度を向上させることができる。また、外層の第2領域と第3領域との間において、一方の領域を構成する樹脂から他方の領域を構成する樹脂への切り替わりが緩やかになるため、第2接合部付近における曲げ剛性の剛性ギャップが生じにくくすることができる。
 (5)本発明の他の一形態によれば、カテーテルが提供される。このカテーテルは、上記形態のマルチルーメンチューブを備え、前記マルチルーメンチューブの前記第1領域は、前記第2領域よりも前記カテーテルの先端側であり、前記第1領域の樹脂の硬度は、前記第2領域の樹脂の硬度よりも低い。この構成によれば、カテーテルの先端から基端に向かって剛性をなだらかに高めることができるため、血管等の管状器官に対するカテーテルの通過性の向上を図ることができる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、マルチルーメンチューブを備えるカテーテル、バルーンカテーテル、内視鏡、マルチルーメンチューブの製造装置、マルチルーメンチューブの製造方法などの形態で実現することができる。
第1実施形態のカテーテルの外観を例示した説明図である。 図1のA-A断面を例示した説明図である。 図1のX部分を図2のD1方向から見た説明図である。 図1のX部分を図2のD2方向から見た説明図である。 図3のB-B断面を例示した説明図である。 図3のC-C断面を例示した説明図である。 マルチルーメンチューブの製造工程を例示した説明図である。 組立体の横断面を例示した説明図である。 外層管を溶融させたときの組立体の縦断面を例示した説明図である。 第2実施形態のマルチルーメンチューブを例示した説明図である。 第3実施形態のマルチルーメンチューブを例示した説明図である。 第4実施形態の製造工程を例示した説明図である。 第5実施形態の製造工程を例示した説明図である。 第6実施形態のカテーテルの外観を例示した説明図である。 第7実施形態のマルチルーメンチューブを例示した説明図である。 第8実施形態のマルチルーメンチューブを例示した説明図である。 第9実施形態のマルチルーメンチューブを例示した説明図である。
<第1実施形態>
 図1および図2を用いて第1実施形態のマルチルーメンチューブ10を備えたカテーテル1の全体構成について説明する。図1は、カテーテル1の外観を例示した説明図である。図2は、マルチルーメンチューブ10における図1のA-A断面を例示した説明図である。以下では、図1の左側(先端チップ15側)をカテーテル1の「先端側」と呼び、図1の右側(コネクタ17側)をカテーテル1の「基端側」と呼ぶ。カテーテル1の先端側は、体内に挿入される側(遠位側)であり、カテーテル1の基端側は、医師等の手技者によって操作される側(近位側)である。カテーテル1は、狭窄部または閉塞部を診断または治療するために用いられる。例えば、狭窄部が形成された心臓の血管内に挿入されて、血管内の狭窄部を押し広げるとき等に使用される。
 図1に示すように、カテーテル1は、マルチルーメンチューブ10と、先端チップ15と、バルーン16と、コネクタ17とを備え、ここでは、バルーンカテーテルとして構成されている。図1および図2に示すように、マルチルーメンチューブ10は、内部に2つのルーメンを有する長尺部材であり、外層20と、第1内層管30と、補強体40と、第2内層管50と、を有している。先端チップ15は、カテーテル1の先端に設けられ、第1内層管30と連通する開口部(不図示)を有している。バルーン16は、マルチルーメンチューブ10と先端チップ15との間に設けられ、バルーン16の内部空間と第2内層管50とが連通している。コネクタ17は、マルチルーメンチューブ10の基端に接続され、第1内層管30および第2内層管50と連通する開口部(不図示)を有している。カテーテル1は、一例としてコネクタ17の開口部から挿入されたガイドワイヤや他のカテーテルを、第1内層管30の内部を経由して先端チップ15の開口部から取り出すことができる。また、カテーテル1は、コネクタ17の開口部から第2内層管50を経由して流体をバルーン16の内部空間に供給することができる。
 第1内層管30は、樹脂によって形成されたチューブであり、内側には、ガイドワイヤや、他のカテーテルが挿入されるルーメンが形成されている。第1内層管30を形成する樹脂材料については、特に限定されないが、例えば、PTFE(ポリテトラフルオロチレン)、PVDF(ポリビニリデンフルオライド)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペン)、ETFE(エチレンテトラフルオロエチレン)、PE(ポリエチレン)、PP(ポリプロピレン)を例示することができる。第1内層管30の外径は、第2内層管50の外径よりも大きくなるように構成されている。
 補強体40は、第1素線と第2素線とが互いに網目状(メッシュ状)に編み込まれた編組体(金属ブレード層)であり、第1内層管30の外周に配置され、外層20に被覆(埋設)されている。補強体40は、第1内層管30の全体を覆っていてもよいし、1内層管30の一部を覆っていてもよい。
 第2内層管50は、樹脂によって形成されたチューブであり、内側には、流体が流通するためのルーメンが形成されている。第2内層管50を形成する樹脂材料については、特に限定されない。第2内層管50は、第1内層管30と同じ種類の樹脂によって形成されていてもよいし、異なる種類の樹脂によって形成されていてもよい。第2内層管50の外径は、第1内層管30の外径よりも小さくなるように構成されている。
 外層20は、樹脂によって形成されており、第1内層管30、補強体40、および、第2内層管50を被覆している。外層20は、互いに特性の異なる7種類の樹脂が軸線方向に並び、隣接する樹脂同士が接合されて形成されており、各樹脂によって形成される後述する7つの領域(第1領域N1~第7領域N7)を有している。外層20の各領域を形成する樹脂材料については、特に限定されないが、例えば、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリウレタン、ポリウレタンエラストマー等を例示することができる。また、外層20を形成する樹脂には、タングステン粉末を含有させ、その含有量によって樹脂の硬度を変化させてもよい。外層20を形成する樹脂に放射線不透過性の粉末であるタングステン粉末を含有させることで、冠動脈造影時に医師等の手技者がカテーテル1の位置を正確に把握することができる。
 ここでは、外層20において、互いに特性の異なる樹脂によって形成される各領域を、外層20の先端側から基端側に向かって順に、先端領域N0、第1領域N1、第2領域N2、第3領域N3、第4領域N4、第5領域N5、第6領域N6、とも呼ぶ。外層20の先端領域N0の先端側は、バルーン16の基端側に接続され、先端領域N0の基端側は、第1領域N1の先端側に接続されている。外層20の第2領域N2の先端側は、第1領域N1の基端側に接続され、第2領域N2の基端側は、第3領域N3の先端側に接続されている。外層20の第4領域N4の先端側は、第3領域N3の基端側に接続され、第4領域N4の基端側は、第5領域N5の先端側に接続されている。外層20の第6領域N6の先端側は、第5領域N5の基端側に接続され、第6領域N6の基端側は、コネクタ17に接続されている。
 外層20は、先端領域N0を形成する樹脂21の硬度H0、第1領域N1を形成する樹脂22の硬度H1、第2領域N2を形成する樹脂23の硬度H2、第3領域N3を形成する樹脂24の硬度H3、第4領域N4を形成する樹脂25の硬度H4、第5領域N5を形成する樹脂26の硬度H5、第6領域N6を形成する樹脂27の硬度H6が以下の式(1)を満たすように構成されている。
  H0<H1<H2<H3<H4<H5<H6  ・・・(1)
 すなわち、カテーテル1は、先端側から基端側に向かって外層20の樹脂の硬度が高くなるように構成されている。これにより、血管等の管状器官に対するカテーテル1の通過性を向上させることができる。
 一般的に、カテーテルは、先端部から基端部に向かってなだらかに曲げ剛性が増加することが好ましい。先端部が相対的に高い柔軟性を有することにより、血管の急な角度の分岐部内であっても血管内面を傷つけ難くすることができる。一方、基端部が相対的に高い剛性を有することにより、手技者によるカテーテルの回転動作を先端部側に伝達するトルク伝達性を高めることができる。また、カテーテルの軸線方向における剛性の変化をできるだけ一定に近づけることによって、剛性ギャップによるキンクなどの発生を抑制することができる。よって、カテーテルは、先端部から基端部に向かって曲げ剛性をなだらかに高めることによって、血管等の管状器官に対するカテーテル1の通過性の向上をさせることができる。
 なお、本実施形態において、「樹脂の硬度」とは、樹脂そのものの硬度に限られず、樹脂そのものの硬度に、樹脂に混練する材質の硬度を加えた全体の硬度を意味する。そのため、樹脂の硬度の違いを生じさせる方法としては、樹脂の種類を異ならせることに限定されず、同一種類の樹脂に対して、樹脂に混練する材質の量を変えることによっても生じ得る。
 図3~図6を用いて、外層20の第1領域N1と第2領域N2との接合部付近の構成について説明する。図3は、マルチルーメンチューブ10における図1のX部分を図2のD1方向から見た説明図である。図4は、マルチルーメンチューブ10における図1のX部分を図2のD2方向から見た説明図である。図2において、外層20の外表面を上方側(第2内層管50側)と、下方側(第1内層管30側)に分けた場合、図3には、外層20の外表面の上方側半分が示されており、図4には、外層20の外表面の下方側半分が示されている。言い換えれば、外層20を、外層20の周方向に沿って、第1内層管30が位置している側と、第2内層管50が位置している側とに分けた場合、図3には、第2内層管50が位置している側(外層20の第2内層管50側)が表示されており、図4には、第1内層管30が位置している側(外層20の第1内層管30側)が表示されている。
 図3に示すように、外層20の第2内層管50側では、第1領域N1と第2領域N2との接合部C1において、第1領域N1の樹脂22が第2領域N2に進出することによる波模様が形成されている。樹脂22のうち、第2領域N2に進出している部分を進出樹脂221とも呼ぶ。進出樹脂221は、外層20の周方向において、第2内層管50の両側にそれぞれ設けられている。言い換えれば、外層20は、外層20の周方向において、第2内層管50の両側で、第1領域N1の樹脂22が第2領域N2に進出しており、第2内層管50の両側における樹脂22の進出によって波模様が形成されている。波模様は、進出樹脂221が有る部分と無い部分とが交互に繰り返されることによって形成されてもよいし、外層20の周方向において、進出樹脂221の進出距離が変化すること(進出樹脂221の端辺位置が変化すること)によって形成されてもよい。
 図4に示すように、外層20の第1内層管30側では、第1領域N1と第2領域N2との接合部C1において、第1領域N1の樹脂22は第2領域N2にほぼ進出しておらず、波模様が形成されていない。そのため、第1領域N1と第2領域N2との境界は、外層20の周方向に沿ってほぼ直線状となっている。なお、外層20の第1内層管30側においても、外層20の第2内層管50側(図3)と同様に、第1領域N1と第2領域N2との接合部C1において、第1領域N1の樹脂22が第2領域N2に進出することによる波模様が形成されていてもよい。
 図5は、マルチルーメンチューブ10における図3のB-B断面を例示した説明図である。図6は、マルチルーメンチューブ10における図3のC-C断面を例示した説明図である。図5に示すように、第2領域N2に進出している進出樹脂221は、第2内層管50の両側に位置しており、補強体40および第1内層管30と接触している。また、進出樹脂221は、樹脂23に被覆されている。外層20の外表面では、樹脂23を介して、進出樹脂221を視認することができる。図6に示すように、外層20の第2領域N2に進出している進出樹脂221は、後述するマルチルーメンチューブ10の製造時において、第1領域N1の樹脂22が第2領域N2側に流れ込むことによって形成される。そのため、ここでは、進出樹脂221は、第1領域N1から離れるにつれて(基端方向に向かって)厚さが薄くなっている。
 図7~図9を用いて、マルチルーメンチューブ10の製造方法について説明する。図7は、マルチルーメンチューブ10の製造工程を例示した説明図である。マルチルーメンチューブ10を製造するにあたり、まず、図7(A)に示すように、補強体40を外周に配置した第1内層管30と、第2内層管50とを準備する。次に、図7(B)に示すように、準備した第1内層管30と第2内層管50の外側に外層管200を配置する。外層管200とは、外層20の原料となる樹脂によって形成された筒状部材であり、外層20の樹脂の種類ごとに用意される。ここでは、先端領域N0の樹脂21によって形成された外層管(不図示)と、第1領域N1の樹脂22によって形成された外層管202と、第2領域N2の樹脂23によって形成された外層管203と、第3領域N3の樹脂24によって形成された外層管204と、第4領域N4の樹脂25によって形成された外層管(不図示)と、第5領域N5の樹脂26によって形成された外層管(不図示)と、第6領域N6の樹脂27によって形成された外層管(不図示)と、を準備する。準備したこれら7つの外層管200の内側に、順次、第1内層管30と第2内層管50を挿通させ、図7(C)に示す組立体100を作製する。
 図8は、組立体100の横断面を例示した説明図である。外層管200の内径は、第1内層管30と第2内層管50の2つの外径の合計よりも大きいため、組立体100では、外層管200に収容された第1内層管30および第2内層管50の外周と、外層管200の内周との間には隙間が生じている。特に、第2内層管50の外径は、第1内層管30の外径よりも小さいため、第2内層管50のの両側には比較的大きな隙間Spが生じる。
 図7に戻り、図7(C)の組立体100を作製した後、図7(D)および図7(E)に示すように、外層管200を外側から加熱し、外層管200を構成する樹脂を溶融させて外層20を形成する。すなわち、外層管200を加熱することによって、第1内層管30および第2内層管50の外周と、外層管200の内周との間に溶融した樹脂を流し込み隙間を埋める。ここでは、7つの外層管200をすべて同時に加熱するのではなく、1つずつ順番に加熱する。加熱する順番としては、本実施形態では、先端側から基端側に向かって順に加熱する。すなわち、ここでは、先端領域N0の外層管(不図示)、第1領域N1の外層管202、第2領域N2の外層管203、第3領域N3の外層管204、第4領域N4の外層管(不図示)、第5領域N5の外層管(不図示)、第6領域N6の外層管(不図示)、の順に加熱する。図7(D)では、外層管202を加熱して樹脂を溶融させた状態が示されている。図7(E)では、外層管203を加熱して樹脂を溶融させた状態が示されている。
 図9は、外層管202を溶融させたときの組立体100の縦断面を例示した説明図である。外層管202を加熱して樹脂を溶融させると、溶融した樹脂の一部は、流動によって基端側で隣接する外層管203の内側に流れ込む。これによって、進出樹脂221が形成される。特に、外層管203の内側のうち、第2内層管50の両側には比較的大きな隙間Sp(図8参照)が形成されているため、この隙間Sp内に樹脂が流れ込み比較的大きな進出樹脂221が形成される。
 図7に戻り、外層管202を溶融させて外層20の第1領域N1を形成した後、図7(E)に示すように、外層管203を加熱して樹脂を溶融させる。このとき、溶融した樹脂の一部は、流動によって基端側で隣接する外層管204の内側に流れ込む。これにより、外層20の第2領域N2が形成されるとともに、進出樹脂231が形成される。このように、7つの外層管200を先端側の外層管から順に加熱することで、図7(F)に示すように、先端側の領域の樹脂が隣接する基端側の領域に進出したマルチルーメンチューブ10が完成する。マルチルーメンチューブ10の外層20は、先端領域N0と第1領域N1との接合部、第2領域N2と第3領域N3との接合部、第3領域N3と第4領域N4との接合部、第4領域N4と第5領域N5との接合部、および、第5領域N5と第6領域N6との接合部のそれぞれの構成は、図3、図4に示す、第1領域N1と第2領域N2との接合部C1の構成と同様である。
<本実施形態の効果例>
 以上説明した、本実施形態のマルチルーメンチューブ10によれば、進出樹脂221(図3)によって、外層20の第1領域N1と第2領域N2との接合部C1に波模様が形成されるため、接合部が直線状になっている場合よりも、接合面積を増加させることができる。これにより、第1領域N1と第2領域N2との接合部C1における接合強度を向上させることができる。また、進出樹脂221が形成されることによって、接合部C1において、第1領域N1を構成する樹脂22から第2領域N2を構成する樹脂23への切り替わりが緩やかになるため、外層20を形成する樹脂の種類の違いによる曲げ剛性の変化をなだらかにすることができる。これにより、接合部C1付近における曲げ剛性の剛性ギャップが生じにくくなるため、応力集中によるキンクや破断の発生を抑制できる。
 また、本実施形態のマルチルーメンチューブ10によれば、第1領域N1と第2領域N2との接合部C1(図3)のうち、外層20の第2内層管50側に波模様が形成されている。そのため、第2内層管50の周囲において、外層20の曲げ剛性の変化をなだらかにすることができる。これにより、第2内層管50の周囲に剛性ギャップが生じにくくなるため、第2内層管50の耐潰れ性をより向上させることができる。また、図7(D)に示すように、外層管203の内側の第2内層管50は、進出樹脂221によって位置が固定されるため、図7(E)に示すように、外層管203を加熱して外層20を形成するとき、溶融した樹脂によって第2内層管50が押されて位置ずれすることを抑制できる。
 特に、本実施形態のマルチルーメンチューブ10によれば、図3に示すように、第1領域N1と第2領域N2との接合部C1のうち、第2内層管50の両側における樹脂22の進出(進出樹脂221)によって波模様が形成されている。これにより、第2内層管50の両側の進出樹脂221によって、第2内層管50の移動が規制されるため、外層20の形成時において、第2内層管50の位置ずれをより抑制することができる。
 また、本実施形態のマルチルーメンチューブ10によれば、進出樹脂231によって、外層20の第2領域N2と第3領域N3との第2接合部にも波模様が形成されるため、第2接合部の接合面積を増加し、接合強度を向上させることができる。また、進出樹脂231が形成されることによって、第2接合部において、第2領域N2を構成する樹脂23から第3領域N3を構成する樹脂24への切り替わりが緩やかになるため、第2接合部付近における剛性ギャップを生じにくくすることができる。
 さらに、本実施形態のカテーテル1は、第1領域N1の樹脂22の硬度H1が第2領域N2の樹脂23の硬度H2よりも低い。この構成によれば、カテーテル1の先端から基端に向かって剛性をなだらかに高めることができるため、血管等の管状器官に対するカテーテル1の通過性の向上を図ることができる。記述のように、カテーテルは、先端部から基端部に向かって曲げ剛性をなだらかに高めることによって、血管等の管状器官に対するカテーテル1の通過性の向上をさせることができる。本実施形態のカテーテル1は、第1領域N1の樹脂22の硬度H1を、第2領域N2の樹脂23の硬度H2よりも低くすることによって、カテーテル1の軸線方向において、曲げ剛性が変化する箇所を多段化することができる。これにより、カテーテル1の先端から基端に向かって剛性をなだらかに高めることができるため、剛性ギャップの発生を抑制しつつ、血管等の管状器官に対するカテーテル1の通過性の向上を図ることができる。
<第2実施形態>
 図10は、第2実施形態のマルチルーメンチューブ10Aの接合部C1付近を例示した説明図である。図10は、第1実施形態の図4に対応している。第1実施形態のマルチルーメンチューブ10は、図4に示すように、外層20の第1内層管30側では、接合部C1において、第1領域N1の樹脂22が第2領域N2にほぼ進出しておらず、波模様が形成されていないものとした。しかし、図10に示す第2実施形態のマルチルーメンチューブ10Aのように、外層20の第1内層管30側も、外層20の第2内層管50側と同様に、接合部C1において、第1領域N1の樹脂22が第2領域N2に進出し、波模様が形成されていてもよい。
 この場合、外層20の第1領域N1の樹脂22と第2領域N2の樹脂23との接合面積をさらに増加させることができる。また、外層20の周方向において、進出樹脂221がよりバランスよく配置されるため、第1領域N1と第2領域N2との接合部C1における接合強度をより向上させることができる。このように、本実施形態のマルチルーメンチューブ10Aによれば、外層20の第1内層管30側では、接合部C1において、第1領域N1の樹脂22が第2領域N2に進出していてもよいし、進出していなくてもいい。ただし、第1内層管30側でも進出している方が好ましい。
<第3実施形態>
 図11は、第3実施形態のマルチルーメンチューブ10Bの接合部C1付近を例示した説明図である。図11は、第1実施形態の図3に対応している。第1実施形態のマルチルーメンチューブ10は、図3に示すように、外層20の第2内層管50側では、第2内層管50の両側で、第1領域N1の樹脂22が第2領域N2に進出し、波模様が形成されているものとした。しかし、図11に示す第3実施形態のマルチルーメンチューブ10Bのように、外層20の第2内層管50側において、第2内層管50の片側のみ第1領域N1の樹脂22が第2領域N2に進出していてもよい。この場合であっても、樹脂22が第2領域N2に進出している部分(進出樹脂221)と、進出していない部分とによって波模様が形成されるため、接合部C1が直線状になっている場合よりも、接合面積を増加させることができる。これにより、第1領域N1と第2領域N2との接合部C1における接合強度を向上させることができる。
 このように、本実施形態のマルチルーメンチューブ10Bによれば、外層20の第1内層管30側では、第2内層管50の両側で樹脂22が第2領域N2に進出していてもよいし、第2内層管50の片側のみにおいて樹脂22が第2領域N2に進出していてもよい。ただし、第2内層管50の両側で、第1領域N1の樹脂22が第2領域N2に進出して波模様が形成される方が好ましい。なお、外層20の外周面において、第2内層管50が位置する部分のみ、樹脂22が第2領域N2に進出していてもよいし、第2内層管50が位置する部分と、その両側で樹脂22が第2領域N2に進出していてもよい。
<第4実施形態>
 図12は、第4実施形態のマルチルーメンチューブ10Cの製造工程を例示した説明図である。図12は、第1実施形態の図7に対応している。図12(A)~(C)に示す工程は、図7(A)~(C)の工程と同じである。第1実施形態のマルチルーメンチューブ10の製造工程では、図7(D)、(E)に示すように、7つの外層管200を先端側の外層管から順に加熱するものとした。しかし、図12に示す第4実施形態のマルチルーメンチューブ10Cの製造工程では、7つの外層管200を加熱する順番として、基端側から先端側に向かって順に加熱する。すなわち、ここでは、第6領域N6の外層管(不図示)、第5領域N5の外層管(不図示)、第4領域N4の外層管(不図示)、第3領域N3の外層管204、第2領域N2の外層管203、第1領域N1の外層管202、先端領域N0の外層管(不図示)、の順に加熱する。
 図12(D)では、外層管204を加熱して樹脂を溶融させた状態が示されている。外層管204を加熱して樹脂を溶融させると、溶融した樹脂の一部は、流動によって先端側で隣接する外層管203の内側に流れ込む。これによって、進出樹脂242が形成される。特に、外層管203の内側のうち、第2内層管50の両側には比較的大きな隙間Sp(図8参照)が形成されているため、この隙間Sp内に樹脂が流れ込み比較的大きな進出樹脂242が形成される。
 外層管204を溶融させて外層20の第3領域を形成した後、図12(E)に示すように、外層管203を加熱して樹脂を溶融させる。このとき、溶融した樹脂の一部は、流動によって先端側で隣接する外層管202の内側に流れ込む。これにより、同様に、進出樹脂232が形成される。このように、7つの外層管200を基端側の外層管から順に加熱することで、図12(F)に示すように、基端側の領域の樹脂が隣接する先端側の領域に進出したマルチルーメンチューブ10Cが完成する。
 このように、本実施形態のマルチルーメンチューブ10Cによれば、外層20を構成する各領域の樹脂は、基端側の領域を構成する樹脂が先端側の領域に進出していてもよい。この場合であっても、基端側から先端側に進出した進出樹脂によって、外層20の互いに隣接する2つの領域の接合部に波模様が形成されるため、接合部が直線状になっている場合よりも、接合面積を増加させることができる。これにより、隣接する2つの領域の接合部における接合強度を向上させることができる。また、隣接する2つの領域の接合部において、樹脂の種類の違いによる曲げ剛性の変化をなだらかにすることができる。これにより、接合部付近における曲げ剛性の剛性ギャップが生じにくくなるため、応力集中によるキンクや破断の発生を抑制できる。
<第5実施形態>
 図13は、第5実施形態のマルチルーメンチューブ10Dの製造工程を例示した説明図である。図13は、第1実施形態の図7に対応している。図13(A)~(C)に示す工程は、図7(A)~(C)の工程と同じである。第1実施形態のマルチルーメンチューブ10の製造工程では、7つの外層管200を先端側の外層管から順に加熱するものとした。しかし、7つの外層管200を加熱する順番は、組立体100の一方の端部から他方の端部に向かう順番に限定されない。7つの外層管200を加熱する順番は任意に設定することができる。また、7つの外層管200は、互いに隣接していない外層管200であれば、複数を同時に加熱してもよい。
 図13(D)に示すように、第5実施形態のマルチルーメンチューブ10Dの製造工程では、第1領域N1の外層管202と第3領域N3の外層管204を同時に加熱し、その後、図13(E)に示すように、第2領域N2の外層管203を加熱する。次に、図示を省略するが、先端領域N0の外層管、第5領域N5の外層管を順に加熱し、その後、第4領域N4の外層管と第6領域N6の外層管を同時に加熱する。
 図13(D)に示すように、外層管202を加熱して樹脂を溶融させると、溶融した樹脂の一部は、流動によって後端側で隣接する外層管203の内側に流れ込む。これによって、進出樹脂221が形成される。また、外層管204を加熱して樹脂を溶融させると、溶融した樹脂の一部は、流動によって先端側で隣接する外層管203の内側に流れ込む。これによって、進出樹脂242が形成される。外層管202と外層管204を溶融させた後、図13(E)に示すように、外層管203を加熱して樹脂を溶融させる。このように、外層管203を加熱する前に、外層管203の両側の外層管202、203を加熱することで、図13(F)に示すように、第1領域N1および第3領域N3からそれぞれ樹脂が第2領域N2に進出したマルチルーメンチューブ10Dが完成する。
 このように、本実施形態のマルチルーメンチューブ10Dによれば、外層20を構成する各領域の樹脂は、隣接する先端側の領域に進出してもよいし、隣接する基端側の領域に進出してもよい。これらの場合であっても、互いに隣接する2つの領域において、基端側または先端側の一方の領域から進出した進出樹脂が他方の領域に進出することによって、接合部に波模様が形成される。これにより、接合部が直線状になっている場合よりも、接合面積を増加させることができ、接合部における接合強度を向上させることができる。
<第6実施形態>
 図14は、第6実施形態のマルチルーメンチューブ10Eを備えたカテーテル1Eの外観を例示した説明図である。図14は、第1実施形態の図1に対応している。第1実施形態のマルチルーメンチューブ10の外層20は、互いに特性の異なる樹脂によって形成される7つの領域N0~N6を有しているものとした。しかし、マルチルーメンチューブ10の外層20が有する領域の数は、7つに限定されず、2以上の任意の数とすることができる。また、第1実施形態では、マルチルーメンチューブ10をバルーンカテーテルに適用した例を示したが、マルチルーメンチューブ10は、バルーンカテーテル以外のカテーテルにも適用することができる。
 図14に示す第6実施形態では、マルチルーメンチューブ10Eを、バルーンを備えていないカテーテルに適用した例を示している。また、本実施形態のマルチルーメンチューブ10Eは、外層20において、互いに異なる樹脂によって形成される2つの領域を備えている。ここでは、外層20の先端側から基端側に向かって順に、第1領域N1、第2領域N2とも呼ぶ。外層20の第1領域N1の先端側は、先端チップ15に接続され、第1領域N1の基端側は、第2領域N2の先端側に接続されている。外層20の第2領域N2の基端側は、コネクタ17に接続されている。
 外層20は、第1領域N1を形成する樹脂22の硬度H1、第2領域N2を形成する樹脂23の硬度H2が以下の式(2)を満たすように構成されている。
  H1<H2  ・・・(2)
 すなわち、カテーテル1は、先端側から基端側に向かって外層20の樹脂の硬度が高くなるように構成されている。これにより、血管等の管状器官に対するカテーテル1の通過性を向上させることができる。外層20の第1領域N1と第2領域N2との接合部C1は、第1実施形態と同様に、第1領域N1の樹脂22が第2領域N2に進出することによる波模様が形成されている。外層20の第1領域N1と第2領域N2との接合部C1の構成は、第1実施形態の図3、図4と同様である。
 このように、本実施形態のマルチルーメンチューブ10Eによれば、外層20を構成する樹脂の種類数、すなわち、外層20が有する領域の数は、2以上の任意の数とすることができる。どの場合であっても、互いに隣接する2つの領域において、基端側または先端側の一方の領域から進出した進出樹脂が他方の領域に進出することによって、接合部に波模様が形成される。これにより、接合部が直線状になっている場合よりも、接合面積を増加させることができ、接合部における接合強度を向上させることができる。
<第7実施形態>
 図15は、第7実施形態のマルチルーメンチューブ10Fの横断面を例示した説明図である。図15は、第1実施形態の図2に対応している。第1実施形態のマルチルーメンチューブ10は、図2に示すように、第1内層管30の外側に補強体40が配置されているものとした。しかし、図15に示す第7実施形態のマルチルーメンチューブ10Fのように、第1内層管30の外側には、補強体が配置されていなくてもよい。この場合であっても、第1実施形態の外層20と同様に、第1領域N1と第2領域N2との接合部C1に波模様が形成されていれば、接合部C1が直線状になっている場合よりも、接合面積を増加させることができる。これにより、第1領域N1と第2領域N2との接合部C1における接合強度を向上させることができる。
<第8実施形態>
 図16は、第8実施形態のマルチルーメンチューブ10Gの横断面を例示した説明図である。図16は、第1実施形態の図2に対応している。第1実施形態のマルチルーメンチューブ10は、図2に示すように、第2内層管50の外径が第1内層管30の外径よりも小さいものとした。しかし、図16に示す第8実施形態のマルチルーメンチューブ10Gのように、第2内層管51の外径は第1内層管31の外径と等しくてもよい。この場合であっても、マルチルーメンチューブ10Gの製造時において、第2内層管51および第1内層管31と、外層管200との間に隙間ができるため(図8参照)、その隙間に溶融した外層管の樹脂を流し込むことで、進出樹脂を形成することができる。これにより、第1実施形態の外層20と同様に、第1領域N1と第2領域N2との接合部C1に波模様が形成されて接合面積が増加しするため、接合部C1における接合強度を向上させることができる。なお、図16に示すように、第1内層管31と第2内層管51のそれぞれの外周には、補強体41、42が配置されていてもよいし、第1内層管31と第2内層管51の少なくとも一方の外周に補強体が配置されていなくてもよい。
<第9実施形態>
 図17は、第9実施形態のマルチルーメンチューブ10Hの横断面を例示した説明図である。図17は、第1実施形態の図2に対応している。第1実施形態のマルチルーメンチューブ10は、図2に示すように、2つの内層管(第1内層管30と第2内層管50)を備えているものとした。しかし、マルチルーメンチューブ10が備える内層管の数は2に限定されず、任意の数とすることができる。例えば、図17に示す第9実施形態のマルチルーメンチューブ10Hのように、第1内層管32と、第2内層管52と、第3内層管60の3つの内層管を備えていてもよい。この場合であっても、マルチルーメンチューブ10Hの製造時において、3つの内層管32、52、60と、外層管200との間に隙間ができるため(図8参照)、その隙間に溶融した外層管200の樹脂を流し込むことで、進出樹脂を形成することができる。これにより、第1実施形態の外層20と同様に、第1領域N1と第2領域N2との接合部C1に波模様が形成されて接合面積が増加するため、接合部C1における接合強度を向上させることができる。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
 [変形例1]
 第1、4実施形態(図7、図12)では、マルチルーメンチューブ10、10Cの製造工程において、外層管200が1つずつ加熱され、第5実施形態(図13)では、2つの外層管200が同時に加熱されるものとした。しかし、製造工程では、3つ以上の外層管20が同時に加熱されてもよい。この場合であっても、進出樹脂によって第1領域N1と第2領域N2との接合部C1に波模様が形成でき、接合面積を増加させることができる。なお、互いに隣接する外層管200よりも、互いに隣接しない複数の外層管200を同時に加熱するほうが、進出樹脂を形成しやすく好ましい。
 [変形例2]
 上述の実施形態では、マルチルーメンチューブが備える内層管の数(ルーメンの数)は、2~3とした。しかし、マルチルーメンチューブが備える内層管の数は2~3に限定されない。マルチルーメンチューブは、内層管を4以上備えていてもよい。なお、本実施形態はルーメンが1つのシングルルーメンチューブにも適用可能である。この場合であっても、進出樹脂によって第1領域N1と第2領域N2との接合部C1に波模様が形成でき、接合面積を増加させることができる。
 [変形例3]
 外層20を構成する樹脂の種類数、すなわち、外層20が有する領域の数は、8以上の数であってもよい。また、外層20が複数の領域を有する場合、カテーテル1の先端側の領域を構成する樹脂の硬度が、基端側の領域を構成する樹脂の硬度よりも高くてもよい。また、進出樹脂は、進出されている側の樹脂に覆われていなくてもよく、露出していてもよい。また、マルチルーメンチューブの外径は、軸線方向で一定であってもよいし、変化していてもよい。
 [変形例4]
 上述の実施形態のマルチルーメンチューブは、外層20の接合部C1に視認可能な波模様が形成されるものとした。しかし、接合部C1に形成される波模様は、必ずしも視認できなくてもよい。この場合であっても、進出樹脂によって、接合面積を増加させることができていれば、接合強度を向上させることができる。また、進出樹脂によって、接合部C1に形成される模様の形状は、必ずしも波模様でなくてもよい。例えば、山形形状であってもよいし、矩形形状であってもよい。これらの場合であっても、進出樹脂によって、接合強度を向上させることができる。
 [変形例5]
 上述の実施形態のマルチルーメンチューブは、内層管の外側にコイル体を備えていないものとした。しかし、マルチルーメンチューブは、内層管の外側にコイル体を備えていてもよい。また、内層管の外径は、軸線方向で一定であってもよいし、変化してもよい。
 [変形例6]
 本実施形態の外層20は、各領域が異なる種類の樹脂によって形成されているものとした。しかし、各領域は、互いに同じ種類の樹脂であって、樹脂に混練する材質の量が互いに異なるように構成されていてもよい。この場合であっても、樹脂の硬度を変化させることができるため、マルチルーメンチューブ10の先端側から基端側に向かって剛性を徐々に高めることができる。なお、外層20の各領域のうちの少なくとも2以上の領域は、同じ種類の樹脂で形成され、硬度が同じであってもよい。例えば、隣接する2つの領域が同じ種類の樹脂で形成されていてもよい。この場合であっても、進出樹脂によって接合面積が増加するため、接合強度を高めることができる。さらに、一方の外層管200を加熱して溶融した樹脂を内層管周辺に流し込むとき、内層管が溶融した樹脂によって位置ずれすることを抑制できる。外層20の隣接する2つの領域が種類の異なる樹脂によって形成されている場合には、接合部C1における剛性の変化をなだらかにすることができる。
 [変形例7]
 本実施の形態の外層20は、加熱の順序と外層20の各領域の樹脂の溶融する順序は一致するものとした。しかし、加熱の順序に対して隣接する領域の樹脂が先に溶融し、先に過熱を開始した領域に先に溶融した隣接領域の樹脂が流れ込み、波模様が形成されるのであって良い。例えばカテーテル1の基端側から加熱を開始した場合に、基端側の硬度の高い樹脂よりも、先端側に隣接する領域の硬度の低い樹脂が先に溶融し、基端側の領域に流れ込み、波模様が形成されるのであっても良い。その場合であっても、硬度の低い樹脂が硬度の高い樹脂領域に流れ込むことで、接合部C1における剛性の変化をなだらかにすることができる。
 [変形例8]
 本実施形態のカテーテル1は、外層20のさらに外側に樹脂被膜が形成されていてもよいし、形成されていなくてもよい。外層20の外側に樹脂被膜が形成されている場合、外層の各領域の少なくとも一部において、異なる種類の樹脂皮膜が形成されていてもよいし、すべて同じ種類の樹脂皮膜が形成されていてもよい。
 [変形例9]
 本実施形態の構成は、バルーンカテーテル以外の医療器具に対しても適用することができる。例えば、本実施形態の構成は、バルーンを備えていないマルチルーメンカテーテル、シングルルーメンカテーテル、ダイレータ、内視鏡、ガイドワイヤなどにおいても適用することができる。また、第1~第9実施形態で例示したマルチルーメンチューブの各構成は、その一部を適宜組み合わせることができるとともに、適宜除くことができる。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1…カテーテル
  10、10A~H…マルチルーメンチューブ
  15…先端チップ
  16…バルーン
  17…コネクタ
  20…外層
  21~27…樹脂
  30~32…第1内層管
  40、41…補強体
  50~52…第2内層管
  60…第3内層管
  100…組立体
  200、202~204…外層管
  221、231、232、242…進出樹脂

Claims (6)

  1.  医療用のマルチルーメンチューブであって、
     複数の内層管と、
     前記複数の内層管を被覆する外層と、を備え、
     前記外層は、互いに特性の異なる樹脂によって形成された第1領域と第2領域とが前記外層の軸線方向に並んでおり、前記第1領域と前記第2領域との接合部において、一方の領域の樹脂が他方の領域に進出することによる波模様が形成されている、
     マルチルーメンチューブ。
  2.  請求項1に記載のマルチルーメンチューブであって、
     前記複数の内層管には、外径が相対的に大きい第1内層管と、外径が相対的に小さい第2内層管とが含まれており、
     前記外層を、前記外層の周方向に沿って、前記第1内層管が位置している側と、前記第2内層管が位置している側とに分けた場合、少なくとも前記第2内層管が位置している側に前記波模様が形成されている、
     マルチルーメンチューブ。
  3.  請求項2に記載のマルチルーメンチューブであって、
     前記外層は、前記外層の周方向において、前記第2内層管の両側で、前記一方の領域の樹脂が前記他方の領域に進出しており、前記第2内層管の両側における前記樹脂の進出によって前記波模様が形成されている、
     マルチルーメンチューブ。
  4.  請求項1から請求項3までのいずれか一項に記載のマルチルーメンチューブであって、
     前記外層は、前記第2領域の樹脂と特性の異なる樹脂によって形成された第3領域を有しており、前記第2領域と前記第3領域とが前記接合部とは異なる第2接合部で接続され、前記第2接合部において、前記第2領域と前記第3領域のうちの一方の領域の樹脂が他方の領域に進出することによる波模様が形成されている、
     マルチルーメンチューブ、
  5.  カテーテルであって、
     請求項1から請求項4までのいずれか一項に記載のマルチルーメンチューブを備え、
     前記マルチルーメンチューブの前記第1領域は、前記第2領域よりも前記カテーテルの先端側であり、前記第1領域の樹脂の硬度は、前記第2領域の樹脂の硬度よりも低い、
     カテーテル。
  6.  医療用のマルチルーメンチューブの製造方法であって、
     複数の内層管を準備する工程と、
     前記複数の内層管の一部分を樹脂によって被覆して外層の第1領域を形成する工程と、
     前記複数の内層管の他の一部分を前記第1領域の樹脂と特性の異なる樹脂によって被覆して、前記第1領域に隣接する位置に前記外層の第2領域を形成する工程と、
     前記外層の前記第1領域と前記第2領域との接合部において、溶融した一方の領域の樹脂を他方の領域に向けて流動させることによって、前記外層に波模様を形成する工程と、を備える、
     製造方法。
PCT/JP2018/037982 2018-10-11 2018-10-11 医療用のマルチルーメンチューブ、および、その製造方法 WO2020075278A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880098444.XA CN112805055B (zh) 2018-10-11 2018-10-11 医疗用的多腔管、以及医疗用的多腔管的制造方法
EP18936306.2A EP3865172A4 (en) 2018-10-11 2018-10-11 MULTI-LUMEN TUBE FOR MEDICAL PURPOSES AND PROCESS FOR ITS MANUFACTURE
JP2020549911A JP7049475B2 (ja) 2018-10-11 2018-10-11 医療用のマルチルーメンチューブ、および、その製造方法
PCT/JP2018/037982 WO2020075278A1 (ja) 2018-10-11 2018-10-11 医療用のマルチルーメンチューブ、および、その製造方法
US17/206,680 US20210205579A1 (en) 2018-10-11 2021-03-19 Medical multi-lumen tube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037982 WO2020075278A1 (ja) 2018-10-11 2018-10-11 医療用のマルチルーメンチューブ、および、その製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,680 Continuation US20210205579A1 (en) 2018-10-11 2021-03-19 Medical multi-lumen tube and method for producing the same

Publications (1)

Publication Number Publication Date
WO2020075278A1 true WO2020075278A1 (ja) 2020-04-16

Family

ID=70163847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037982 WO2020075278A1 (ja) 2018-10-11 2018-10-11 医療用のマルチルーメンチューブ、および、その製造方法

Country Status (5)

Country Link
US (1) US20210205579A1 (ja)
EP (1) EP3865172A4 (ja)
JP (1) JP7049475B2 (ja)
CN (1) CN112805055B (ja)
WO (1) WO2020075278A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152798A1 (ja) 2022-02-08 2023-08-17 朝日インテック株式会社 バルーンカテーテルおよびバルーンカテーテルの製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192235A (ja) 1996-01-18 1997-07-29 Terumo Corp 血管拡張器具およびカテーテル
JPH09322940A (ja) * 1996-06-05 1997-12-16 Nippon Zeon Co Ltd カテーテルチューブ及びバルーンカテーテル
US5891090A (en) * 1994-03-14 1999-04-06 Advanced Cardiovascular Systems, Inc. Perfusion dilatation catheter with expanded support coil
JP2001269411A (ja) * 2000-03-27 2001-10-02 Jiima Kk カテーテル用チューブ
JP2006333966A (ja) * 2005-05-31 2006-12-14 Kaneka Corp 塞栓コイルデリバリー用カテーテルチューブ
JP2008092969A (ja) * 2006-10-05 2008-04-24 Kaneka Corp 医療用マルチルーメンチューブ
JP2008229160A (ja) * 2007-03-22 2008-10-02 Kaneka Corp カテーテル
JP2013138809A (ja) 2012-01-06 2013-07-18 Sumitomo Bakelite Co Ltd 医療機器および医療機器の製造方法
JP2014018531A (ja) 2012-07-20 2014-02-03 Japan Lifeline Co Ltd 電極カテーテルおよびその製造方法
JP2014530073A (ja) * 2011-10-14 2014-11-17 ヴォルカノ コーポレイションVolcano Corporation 医療用チューブ及び関連する装置、システム及び方法
WO2017149974A1 (ja) * 2016-02-29 2017-09-08 テルモ株式会社 医療用デバイス
JP2017202042A (ja) * 2016-05-10 2017-11-16 英孝 和田 マイクロカテーテル
US20180015248A1 (en) * 2016-07-13 2018-01-18 NeuVT Limited High flexibility, kink resistant catheter shaft

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334242A (ja) * 2004-05-26 2005-12-08 Kaneka Corp 医療用カテーテルチューブならびにその製造方法
CN102112175B (zh) * 2008-08-11 2013-08-07 泰尔茂株式会社 医疗器械
JP5053397B2 (ja) 2010-02-18 2012-10-17 Ckd株式会社 電動真空弁
JP6247536B2 (ja) * 2011-11-25 2017-12-13 テルモ株式会社 医療用チューブおよびカテーテル
JP5975486B2 (ja) * 2013-02-15 2016-08-23 朝日インテック株式会社 カテーテル
JP2014188216A (ja) * 2013-03-27 2014-10-06 Sumitomo Bakelite Co Ltd 医療用機器および医療用機器の製造方法
EP3056238B1 (en) * 2015-02-13 2019-08-28 Asahi Intecc Co., Ltd. Catheter
KR102163659B1 (ko) * 2016-08-23 2020-10-08 아사히 인텍크 가부시키가이샤 접합 구조 및 그 접합 구조를 가지는 카테터

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891090A (en) * 1994-03-14 1999-04-06 Advanced Cardiovascular Systems, Inc. Perfusion dilatation catheter with expanded support coil
JPH09192235A (ja) 1996-01-18 1997-07-29 Terumo Corp 血管拡張器具およびカテーテル
JPH09322940A (ja) * 1996-06-05 1997-12-16 Nippon Zeon Co Ltd カテーテルチューブ及びバルーンカテーテル
JP2001269411A (ja) * 2000-03-27 2001-10-02 Jiima Kk カテーテル用チューブ
JP2006333966A (ja) * 2005-05-31 2006-12-14 Kaneka Corp 塞栓コイルデリバリー用カテーテルチューブ
JP2008092969A (ja) * 2006-10-05 2008-04-24 Kaneka Corp 医療用マルチルーメンチューブ
JP2008229160A (ja) * 2007-03-22 2008-10-02 Kaneka Corp カテーテル
JP2014530073A (ja) * 2011-10-14 2014-11-17 ヴォルカノ コーポレイションVolcano Corporation 医療用チューブ及び関連する装置、システム及び方法
JP2013138809A (ja) 2012-01-06 2013-07-18 Sumitomo Bakelite Co Ltd 医療機器および医療機器の製造方法
JP2014018531A (ja) 2012-07-20 2014-02-03 Japan Lifeline Co Ltd 電極カテーテルおよびその製造方法
WO2017149974A1 (ja) * 2016-02-29 2017-09-08 テルモ株式会社 医療用デバイス
JP2017202042A (ja) * 2016-05-10 2017-11-16 英孝 和田 マイクロカテーテル
US20180015248A1 (en) * 2016-07-13 2018-01-18 NeuVT Limited High flexibility, kink resistant catheter shaft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865172A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152798A1 (ja) 2022-02-08 2023-08-17 朝日インテック株式会社 バルーンカテーテルおよびバルーンカテーテルの製造方法

Also Published As

Publication number Publication date
EP3865172A1 (en) 2021-08-18
CN112805055B (zh) 2023-04-25
CN112805055A (zh) 2021-05-14
JP7049475B2 (ja) 2022-04-06
US20210205579A1 (en) 2021-07-08
EP3865172A4 (en) 2022-06-08
JPWO2020075278A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
US8702680B2 (en) Double helix reinforced catheter
EP2450077B1 (en) Micro catheter
JP6643522B2 (ja) カテーテル
US11077285B2 (en) Catheter construction
WO2006107919A1 (en) Catheter device with varying flexibility
JP6250051B2 (ja) カテーテルおよびその製造方法
EP3338994B1 (en) Extrusion with preferential bend axis
CN113018638A (zh) 增强管体近端推送性和远端柔顺性的微导管及其制作方法
WO2020075278A1 (ja) 医療用のマルチルーメンチューブ、および、その製造方法
EP3695871B1 (en) Shaft for a catheter and fabrication method
JP2007075655A (ja) マーカー付きカテーテル
KR20190131009A (ko) 관상체 및 그 관상체를 구비한 카테터
JP6108626B2 (ja) カテーテル
JP2006181258A (ja) マイクロカテーテルの製造方法及びマイクロカテーテル
JP6132113B2 (ja) カテーテル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018936306

Country of ref document: EP

Effective date: 20210511