WO2020071098A1 - 半導体モジュール - Google Patents

半導体モジュール

Info

Publication number
WO2020071098A1
WO2020071098A1 PCT/JP2019/036257 JP2019036257W WO2020071098A1 WO 2020071098 A1 WO2020071098 A1 WO 2020071098A1 JP 2019036257 W JP2019036257 W JP 2019036257W WO 2020071098 A1 WO2020071098 A1 WO 2020071098A1
Authority
WO
WIPO (PCT)
Prior art keywords
overlapping
island
semiconductor element
lower arm
relay
Prior art date
Application number
PCT/JP2019/036257
Other languages
English (en)
French (fr)
Inventor
鈴木 啓介
高志 増澤
浩志 瀧
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019004930.5T priority Critical patent/DE112019004930T5/de
Publication of WO2020071098A1 publication Critical patent/WO2020071098A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present disclosure relates to a semiconductor module including a pair of semiconductor elements and a laminated substrate on which the semiconductor elements are mounted.
  • This semiconductor module has been known a semiconductor module having a pair of semiconductor elements, an upper arm semiconductor element and a lower arm semiconductor element, and a stacked substrate on which the semiconductor elements are mounted (see FIG. 19).
  • This semiconductor module is electrically connected to a DC power supply.
  • the semiconductor device is configured to perform a switching operation to convert DC power supplied from a DC power supply into AC power.
  • the laminated substrate includes an insulating substrate made of an insulating material, an element-side metal layer formed on a semiconductor element-side main surface of the insulating substrate, and an opposite-side metal layer formed on an opposite main surface. .
  • the element-side metal layer is etched to form a plurality of islands. Semiconductor elements are mounted on these islands.
  • one large island is formed by the metal layer on the opposite side (see FIG. 18).
  • a high-frequency alternating current flows through the semiconductor element and the element-side metal layer. Accordingly, an eddy current is generated in the opposite metal layer.
  • the magnetic flux generated around the eddy current cancels the magnetic flux generated around the alternating current, so that the inductance can be reduced. Therefore, it is possible to suppress a large surge from being applied to the semiconductor element.
  • the semiconductor module has a problem that the laminated substrate is easily warped. That is, in the semiconductor module, since one large island is formed by the opposite metal layer, the island shapes of the element-side metal layer and the opposite metal layer are greatly different. Therefore, when the temperature rises, the amount of elongation (hereinafter, also referred to as the amount of thermal expansion) of the two metal layers caused by thermal expansion greatly differs, and the laminated substrate is easily warped. As a result, stress may be concentrated on the junction between the semiconductor element and the element-side metal layer, and the life of the semiconductor module may be reduced.
  • Patent Document 1 it has been studied to equalize the thickness and the island shape of the element-side metal layer and the opposite-side metal layer (see Patent Document 1 below).
  • the opposite side metal layer is etched to have the same pattern as the element side metal layer (see FIG. 20). By doing so, it is considered that the thermal expansion amounts of the two metal layers become equal, and the warpage of the laminated substrate can be suppressed.
  • the opposite-side metal layer is finely divided.
  • an alternating current flows through the element-side metal layer, and an eddy current that cancels a magnetic flux generated around the alternating current is induced in the opposite metal layer.
  • the metal layer is divided, the path through which the eddy current flows is restricted (see FIG. 20), and the eddy current is less likely to flow along the path of the alternating current. Therefore, the effect of canceling the magnetic flux due to the eddy current is reduced. As a result, the parasitic inductance increases, and the surge voltage applied to the semiconductor element increases.
  • the present disclosure is intended to provide a semiconductor module capable of suppressing warpage of a laminated substrate and reducing inductance.
  • One embodiment of the present disclosure is electrically connected in series with each other, an upper arm semiconductor element and a lower arm semiconductor element, at least a pair of semiconductor elements, A positive terminal electrically connected to the upper arm semiconductor element, and a negative terminal electrically connected to the lower arm semiconductor element, a pair of DC terminals,
  • An insulating substrate made of an insulating material; an element-side metal layer formed on the main surface of the insulating substrate on the semiconductor element side; and a main surface of the insulating substrate opposite to the side on which the element-side metal layer is provided.
  • a laminated substrate having an opposite metal layer formed on A plurality of islands are formed by the element-side metal layer, and at least a part of the plurality of islands has the semiconductor element mounted thereon and forms a path for a current flowing through the semiconductor element.
  • the opposite metal layer includes a plurality of overlapping portions overlapping with the individual islands when viewed from a thickness direction of the insulating substrate, and a connection connecting at least two of the plurality of overlapping portions. Department and When an alternating current flows between the pair of DC terminals through the pair of semiconductor elements and the islands in accordance with the switching operation of the semiconductor element, an eddy current is connected to the plurality of overlapping portions and the plurality of overlapping portions.
  • a semiconductor module configured to flow in a path including the part.
  • the overlapping portion and the connecting portion are formed by the metal layer on the opposite side of the laminated substrate. Therefore, the inductance can be reduced while suppressing the warpage of the laminated substrate. That is, the overlap portion is configured to overlap with the island formed by the element-side metal layer when viewed from the thickness direction. Therefore, the patterns of the element-side metal layer and the opposite-side metal layer can be approximated. Therefore, the thermal expansion amounts of these metal layers are substantially equal, and the warpage of the laminated substrate can be suppressed.
  • the connecting portion since the connecting portion is formed, the eddy current can flow between the plurality of overlapping portions via the connecting portion when the alternating current flows. Therefore, the path of the eddy current is less likely to be restricted, and the eddy current is more likely to flow along the path of the alternating current. Therefore, the magnetic flux of the alternating current can be effectively canceled by the magnetic flux of the eddy current, and the inductance can be reduced. Therefore, it is possible to suppress a large surge from being applied to the semiconductor element.
  • FIG. 1 is a perspective view of a semiconductor module according to the first embodiment
  • FIG. 2 is a plan view of the semiconductor module according to the first embodiment, and is a view taken in the direction of arrow II in FIG.
  • FIG. 3 is a sectional view taken along the line III-III of FIG.
  • FIG. 4 is a plan view of the semiconductor module in Embodiment 1 from which a case has been removed.
  • FIG. 5 is a rear view of FIG.
  • FIG. 6 is a circuit diagram of a semiconductor module according to the first embodiment
  • FIG. 7 is a rear view of the semiconductor module according to the second embodiment;
  • FIG. 8 is a back view of the semiconductor module according to the third embodiment;
  • FIG. 9 is a back view of the semiconductor module according to the fourth embodiment;
  • FIG. 10 is a plan view of sample A in simulation example 1
  • FIG. 11 is a back view of sample A in simulation example 1
  • FIG. 12 is a back view of sample B in simulation example 1
  • FIG. 13 is a back view of Sample C in Simulation Example 1
  • FIG. 14 is an enlarged view of a main part of FIG.
  • FIG. 15 shows the calculation result of the amount of warpage in the simulation example 1.
  • FIG. 16 shows a calculation result of the inductance in the simulation example 1.
  • FIG. 17 is a circuit diagram of a semiconductor module in simulation example 1, FIG.
  • FIG. 18 is a rear view of the semiconductor module according to Comparative Embodiment 1, and is a view taken in the direction of the arrow XVIII in FIG.
  • FIG. 19 is a cross-sectional view of a semiconductor module in Comparative Embodiment 1.
  • FIG. 20 is a back view of the semiconductor module according to the second comparative example.
  • the semiconductor module 1 of the present embodiment includes a pair of semiconductor elements 2, a pair of DC terminals 3, and a laminated substrate 10.
  • the semiconductor elements 2 include an upper arm semiconductor element 2 U (see FIG. 6) arranged on the upper arm side and a lower arm semiconductor element 2 L arranged on the lower arm side.
  • the pair of semiconductor elements 2 U and 2 L are connected in series with each other.
  • the DC terminal 3 there are a positive terminal 3 P in electrical connection to the upper arm semiconductor element 2 U, and the negative terminal 3 N in electrical connection to the lower arm semiconductor element 2 L is.
  • the laminated substrate 10 includes an insulating substrate 4 made of an insulating material, an element-side metal layer 50, and an opposite-side metal layer 60.
  • the element-side metal layer 50 is formed on the main surface S 1 of the insulating substrate 4 on the semiconductor element 2 side. Further, the side opposite the metal layer 60, the insulating substrate 4, is formed on the main surface S 2 on the opposite side to the side provided with the element-side metal layer 50.
  • a plurality of islands 5 are formed by the element-side metal layer 50.
  • the semiconductor element 2 is mounted on some of the islands 5 ( 5U , 5L ) among the plurality of islands 5.
  • the islands 5 U and 5 L form a path for a current flowing through the semiconductor element 2.
  • the opposite side metal layer 60 includes a plurality of overlapping portions 6 and a connecting portion 61.
  • the overlapping portion 6 overlaps with the individual islands 5 (see FIG. 4) when viewed from the thickness direction (Z direction) of the insulating substrate 4.
  • the peripheral edge 69 of the overlapping portion coincides with the peripheral edge 59 of the island 5.
  • the connecting portion 61 connects the plurality of overlapping portions 6.
  • the eddy current i is configured to flow through a path including the plurality of overlapping portions 6 and the connecting portion 61.
  • the semiconductor module 1 of the present embodiment is a vehicle-mounted semiconductor module to be mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • an inverter circuit 19 (see FIG. 17) is configured using three semiconductor modules 1. The switching operation of each semiconductor element 2 converts DC power supplied from a DC power supply into AC power. Thus, the three-phase AC motor is driven to drive the vehicle.
  • the semiconductor module 1 of the present embodiment includes a frame 7.
  • the semiconductor element 2 and the like are arranged in the frame 7.
  • the inside of the frame 7 is filled with a sealing member 12 (see FIG. 3) made of silicon resin or the like.
  • the island 5 is an upper arm mounted Island 5 U, and the lower arm mounting Island 5 L, and the relay Island 5 H, and the frame island 5 F is.
  • Yes mounted upper arm semiconductor element 2 U in the upper arm mounted Island 5 U it is equipped with a lower arm semiconductor element 2 L to the lower arm mounting island 5 L.
  • the solder layer 18 by using the solder layer 18 (see FIG. 3), it is connected to the semiconductor element 2 island 5 (5 U, 5 L) .
  • the relay Island 5 H, the semiconductor element 2 is not mounted.
  • Relay Island 5 H are conductive member 8 through (8 B), and is electrically connected to the lower arm semiconductor element 2 L.
  • the relay Island 5 H via the bonding wires 11 are electrically connected to the negative terminal 3 N.
  • Frame Island 5 F encloses an upper arm mounted Island 5 U, and the lower arm mounting Island 5 L, and a relay island 5 H. Frame Island 5 F, when viewed from the Z direction, overlaps with the frame 7. The frame island 5F is formed for bonding the frame 7 to the laminated substrate 10.
  • the semiconductor module 1 of this embodiment in addition to the DC terminal 3 P, 3 N, comprises a AC terminal 39 for outputting the AC power.
  • the DC terminal 3 and the AC terminal 39 are electrically connected to the semiconductor element 2 via the bonding wires 11.
  • the conductive member 8 (8 A, 8 B) are arranged.
  • the first conductive member 8 A, and the source electrode of the upper arm semiconductor element 2 U (MOSFET), and a lower arm mounted Island 5 L are electrically connected.
  • the second conductive member 8 B is electrically connected to the source electrode of the lower arm semiconductor element 2 L relay Island 5 H.
  • the positive electrode terminal 3 P is electrically connected to the upper arm mounting island 5 U via the bonding wire 11. Moreover, the negative terminal 3 N via a bonding wire 11 is electrically connected to the relay Island 5 H. In this embodiment, direct negative terminal 3 N to the lower arm semiconductor element 2 L, not connected, via the relay Island 5 H, is electrically connected to the lower arm semiconductor element 2 L. Thus, heat generated from the lower arm semiconductor element 2 L is so that not transmitted directly to the negative terminal 3 N.
  • the AC current I having a frequency of, for example, several kHz or more is superimposed on the ON current as a noise component.
  • the alternating current I flows between the two DC terminals 3 P and 3 N through the semiconductor element 2, the conductive member 8, the islands 5 (5 U , 5 L , 5 H ) and the like.
  • the alternating current I tends to flow on a path where the inductance is minimized.
  • the alternating currents I are close to each other, and the magnetic fields cancel each other out, so that the inductance is small. Therefore, the alternating current I easily flows through the path shown in FIG.
  • the eddy current i flows between the plurality of overlapping portions 6 via the connecting portion 61. Like that.
  • the magnetic flux generated around the eddy current i can cancel the magnetic flux generated around the alternating current I. Therefore, the inductance between the pair of DC terminals 3 P and 3 N can be reduced, and the application of a high surge to the semiconductor element 2 can be suppressed.
  • the overlapping portion 6 includes an upper arm overlapping portion 6U , a lower arm overlapping portion 6L , a relay overlapping portion 6H, and a frame overlapping portion 6F .
  • Upper arm overlapping portion 6 U when viewed from the Z direction are formed at positions overlapping with the upper arm mounted Island 5 U (see FIG. 4).
  • lower arm overlap 6 L overlaps the lower arm mounting Island 5 L
  • relay overlapping portion 6 H is formed at a position overlapping the relay Island 5 H.
  • the frame overlapping unit 6 F is formed at a position overlapping the frame island 5 F.
  • connecting portions 61 are formed.
  • the first connecting portion 61 A and connects the upper arm overlapping section 6 U and the lower arm overlapping part 6 L.
  • the second connecting portion 61 B is coupled to the lower arm overlapping portion 6 L relay overlapping section 6 H.
  • Third connecting portion 61 C couples the relay overlapping portion 6 H and the frame overlapping unit 6 F.
  • the fourth connection portion 61 D couples the frame overlapping unit 6 F and upper arm overlapping section 6 U.
  • the opposite side metal layer 60 is in contact with a not-shown cooler. Since the semiconductor element 2 generates heat when it is switched, the semiconductor element 2 is cooled using this cooler. Further, no heat sink is interposed between the cooler and the opposite metal layer 60. When the heat sink is provided, heat is less likely to be transmitted to the cooler due to the heat resistance of the heat sink. Therefore, in this embodiment, the heat sink is not provided, and the opposite metal layer 60 is directly in contact with the cooler. The opposite metal layer 60 may be brought into direct contact with the cooling water.
  • the overlapping portion 6 and the connecting portion 61 are formed by the opposite metal layer 60. Therefore, the inductance can be reduced while suppressing the warpage of the laminated substrate 10. That is, the overlapping portion 6 is configured to overlap the island 5 formed by the element-side metal layer 50 when viewed from the Z direction. Therefore, the patterns of the element-side metal layer 50 and the opposite-side metal layer 60 can be approximated. Therefore, the thermal expansion amounts of these metal layers 50 and 60 become substantially equal, and the warpage of the laminated substrate 10 can be suppressed.
  • the connecting portion 61 since the connecting portion 61 is formed, when the AC current I flows, the eddy current i can flow between the plurality of overlapping portions 6 via the connecting portion 61. . Therefore, the path of the eddy current i is less likely to be restricted, and the eddy current i can easily flow along the path of the alternating current I. Therefore, the magnetic flux of the AC current I can be effectively canceled by the magnetic flux of the eddy current i, and the inductance can be reduced. Therefore, it is possible to suppress a large surge from being applied to the semiconductor element 2.
  • the metal layer 60 on the opposite side In the conventional semiconductor module 1, as shown in FIGS. 18 and 19, one large island is formed by the metal layer 60 on the opposite side. Therefore, the area difference between the element-side metal layer 50 and the opposite-side metal layer 60 was large, and the difference in the amount of thermal expansion was large. Therefore, when the semiconductor element 2 generates heat and the temperature rises, the laminated substrate 10 is easily warped.
  • the overlapping portion 6 and the connecting portion 61 are formed as in the present embodiment, the difference in the amount of thermal expansion between the element-side metal layer 50 and the opposite-side metal layer 60 is reduced. Since the eddy current i flows between the plurality of overlapping portions 6 via the connecting portions 61, the path of the eddy current i is not easily limited. Therefore, the eddy current i easily flows along the path of the AC current I, and the magnetic flux of the AC current I can be effectively canceled by the magnetic flux of the eddy current i. Therefore, the inductance can be reduced, and the application of a large surge to the semiconductor element 2 can be suppressed.
  • the semiconductor module 1 of this embodiment comprises an upper arm overlapping section 6 U, and the lower arm overlapping section 6 L, the relay overlapping section 6 H, and a frame overlapping unit 6 F. Then, using the connecting portion 61, and between the upper arm overlapping portion 6 U and the lower arm overlapping section 6 L, and between the lower arm overlapping section 6 L relay overlapping section 6 H, a relay overlapping section 6 H It is connected and between the frame overlapping unit 6 F, and between the frame overlapping unit 6 F and upper arm overlapping section 6 U. In this way, the eddy current i can flow over the long distance along the alternating current I. Therefore, the magnetic flux generated from the AC current I can be effectively canceled by the magnetic flux of the eddy current i, and the inductance can be effectively reduced.
  • the present disclosure is not limited to this. That is, the upper arm mounted Island 5 U and the lower arm mounting Island 5 L, it may be formed only two islands 5. Further, four or more islands 5 may be formed.
  • the semiconductor module 1 pair of semiconductor elements in 2 (2 U, 2 L) was sealed, this disclosure is not limited thereto. That is, three pairs of semiconductor elements 2 may be sealed in one semiconductor module 1 as in a simulation result described later. Further, two pairs, four or more pairs of semiconductor elements may be sealed in one semiconductor module 1.
  • one upper arm semiconductor element 2 U and the one lower arm semiconductor element 2 L of the serially connected to each other is not limited thereto. That is, two or more upper arm semiconductor elements 2 U are connected in parallel with each other to form an upper arm semiconductor element group, and two or more lower arm semiconductor elements 2 L are connected in parallel with each other to form a lower arm semiconductor element group.
  • the two semiconductor element groups may be connected in series with each other.
  • Embodiment 2 This embodiment is an example in which the shape of the opposite metal layer 60 is changed.
  • the side opposite the metal layer 60 of this embodiment similarly to Embodiment 1, includes a plurality of overlapping portions 6, and a plurality of connecting portions 61 (61 A, 61 B, 61 E).
  • the first connecting portion 61 A are connected to the upper arm overlapping section 6 U and the lower arm overlapping part 6 L.
  • the second connecting portion 61 B are connected to the lower arm overlapping portion 6 L relay overlapping section 6 H.
  • another connecting portion 61 E it is connected to the relay overlapping portion 6 H and the upper arm overlapping section 6 U.
  • the relay overlapping portion 6 H and the frame overlapping unit 6 F and between the frame overlapping unit 6 F and upper arm overlapping section 6 U is not connected.
  • the number of connecting portions 61 can be reduced as compared with the first embodiment. Therefore, the pattern of the element-side metal layer 50 and the pattern of the opposite-side metal layer 60 can be more approximated, and the warpage of the laminated substrate 10 can be more effectively suppressed.
  • the eddy current i can be caused to flow along the alternating current I over a relatively long distance. Therefore, the magnetic flux of the alternating current I can be effectively canceled by the magnetic flux of the eddy current i, and the inductance can be effectively reduced.
  • the second embodiment has the same configuration, operation and effect as those of the first embodiment.
  • the semiconductor module 1 of the present embodiment includes four connecting portions 61 (61 A to 61 D ) as in the first embodiment. These connecting portions 61 allow the frame overlap between the upper arm overlapping portion 6U and the lower arm overlapping portion 6L , between the lower arm overlapping portion 6L and the relay overlapping portion 6H, and between the relay overlapping portion 6H and the frame overlapping portion. and between the parts 6 F, it is connected between the frame overlapping unit 6 F and upper arm overlapping section 6 U.
  • one connecting portion 61 (first connecting portion 61 A ) is formed at a position overlapping with the alternating current I when viewed from the Z direction.
  • one connecting portion 61 (first connecting portion 61 A ) of the plurality of connecting portions 61 is formed at a position overlapping with the alternating current I when viewed from the Z direction. It is. In this way, the eddy current i can flow over the longer distance along the alternating current I. Therefore, the effect of canceling out the magnetic flux due to the eddy current i can be further enhanced, and the inductance can be further reduced.
  • the second embodiment has the same configuration, operation and effect as those of the first embodiment.
  • one connecting portion 61 (first connecting portion 61 A ) of the plurality of connecting portions 61 is formed at a position overlapping with the alternating current I when viewed from the Z direction.
  • the present invention is not limited to this, and two or more connecting portions 61 may be formed at positions overlapping with the alternating current I.
  • the first connecting portion 61 A of the present embodiment when viewed from the Z direction, its all of the sites have been configured to overlap with the alternating current I, the present disclosure is not limited thereto, the first only a part of the connecting portion 61 a may be configured to overlap with the alternating current I. In this manner, at least one of the plurality of connecting portions 61 can be configured so that at least a portion thereof overlaps with the alternating current I when viewed from the Z direction.
  • connecting portions 61 are provided, but the present disclosure is not limited to this. That is, as in the second embodiment, three connecting portions 61 are provided, and at least one of the three connecting portions 61 overlaps with the AC current I when viewed in the Z direction. You may comprise.
  • the semiconductor module 1 of the present embodiment includes four connecting portions 61 (61 A to 61 D ) as in the first embodiment. These connecting portions 61 allow the frame overlap between the upper arm overlapping portion 6 U and the lower arm overlapping portion 6 L , between the lower arm overlapping portion 6 L and the relay overlapping portion 6 H, and between the relay overlapping portion 6 H and the frame overlapping portion. and between the parts 6 F, it is connected between the frame overlapping unit 6 F and upper arm overlapping section 6 U. Further, in the present embodiment, all the connecting portions 61 A to 61 D are formed at positions overlapping with the alternating current I when viewed from the Z direction. Each connecting portion 61 is configured such that all portions thereof overlap the alternating current I when viewed from the Z direction. Note that, when viewed from the Z direction, only a part of each of the connection portions 61 may be configured to overlap with the alternating current I.
  • the present embodiment all the connecting portions 61 A to 61 D are formed at positions overlapping with the alternating current I when viewed from the Z direction. Therefore, the eddy current i can flow over the longer distance along the alternating current I. Therefore, the effect of canceling out the magnetic flux by the eddy current i can be further enhanced, and the inductance can be reduced more effectively.
  • the second embodiment has the same configuration, operation and effect as those of the first embodiment.
  • Sample A as shown in FIG. 10 comprises a three upper arm semiconductor element 2 U, 3 and a lower arm semiconductor element 2 L. These semiconductor elements 2 form an inverter circuit 19 (see FIG. 17).
  • the sample A includes one positive terminal 3 P and two negative terminals 3 N.
  • Sample A as islands 5, an arm mounted Island 5 U on mounting the upper arm semiconductor element 2 U, and the lower arm mounting islands 5 L equipped with a lower arm semiconductor element 2 L, and the relay Island 5 H, and a frame island 5 F.
  • Relay Island 5 H via a conductive member 8 B, it is electrically connected to the source electrode of the lower arm semiconductor element 2 L.
  • a lower arm mounted Island 5 L, AC terminal 39 is connected.
  • the element-side groove portion 58 to insulate them is formed.
  • the opposite metal layer 60 (not shown) of the sample A has a so-called solid pattern as shown in FIG.
  • the configuration of the sample B on the semiconductor element 2 side is the same as that of the sample A (see FIG. 10).
  • the metal layer 60 on the opposite side of the sample B has the same pattern as the metal layer 50 on the element side as shown in FIG. More specifically, the element-side metal layer 50 is provided with upper arm overlapping section 6 U, and the lower arm overlapping section 6 L, the relay overlapping section 6 H, and a frame overlapping unit 6 F. These overlapping portions 6 are not connected by the connecting portion 61. Therefore, in the sample B, the eddy current i does not flow between the plurality of overlapping portions 6, and the path of the eddy current i is easily limited. Therefore, the eddy current i does not easily flow along the alternating current I.
  • the configuration of the sample C on the semiconductor element 2 side is the same as that of the sample A (see FIG. 10).
  • a plurality of overlapping portions 6 and a connecting portion 61 are formed on the opposite metal layer 60.
  • the connecting portion 61 between the upper arm overlapping portion 6 U and the lower arm overlapping section 6 L, a plurality of lower arm overlapping portion 6 L together, between the lower arm overlapping portion 6 L relay overlapping portion 6 H coupled ing.
  • opposite side groove portion 68 is formed.
  • a connecting portion 61 is also formed at the tip 68 P of the opposite groove portion 68.
  • the connecting portion 61 connects the upper arm overlapping portion 6U and the relay overlapping portion 6H .
  • the eddy current i flows between the plurality of overlapping portions 6 by forming the plurality of connecting portions 61 in this manner.
  • FIG. 16 the simulation result of the inductance is shown in FIG. In this graph, when the inductance of sample A is set to 1, the inductance of samples B and C is expressed as a ratio. From FIG. 16, it can be seen that the sample B in which the connecting portion 61 is not formed has a high inductance. Further, it can be seen that the sample C in which the connecting portion 61 is formed can reduce the inductance, and has substantially the same value as the sample A. This is considered to be because the connecting portion 61 is formed in the sample C, so that the eddy current i easily flows along the path of the alternating current I, and the magnetic flux of the alternating current I can be effectively canceled.
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the gist of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Inverter Devices (AREA)

Abstract

互いに直列に接続された一対の半導体素子(2)と、一対の直流端子(3)と、積層基板(10)とを備える。積層基板(10)は、絶縁材料からなる絶縁基板(4)と、該絶縁基板(4)の半導体素子(2)側の主面(S1)に形成された素子側金属層(50)と、反対側の主面(S2)に形成された反対側金属層(60)とを備える。素子側金属層(50)によって、複数のアイランド(5)が形成されている。反対側金属層(60)は、複数の重複部(6)と、連結部(61)とを備える。重複部(6)は、絶縁基板(4)の厚さ方向から見たときに、個々のアイランド(5)と重なり合う。連結部(61)は、複数の重複部(6)を連結している。

Description

半導体モジュール 関連出願の相互参照
 本出願は、2018年10月1日に出願された日本出願番号2018-186698号に基づくもので、ここにその記載内容を援用する。
 本開示は、一対の半導体素子と、該半導体素子を搭載した積層基板とを有する半導体モジュールに関する。
 従来から、上アーム半導体素子と下アーム半導体素子との一対の半導体素子と、該半導体素子を搭載した積層基板とを有する半導体モジュールが知られている(図19参照)。この半導体モジュールは、直流電源に電気接続される。そして、上記半導体素子をスイッチング動作させることにより、直流電源から供給される直流電力を交流電力に変換するよう構成されている。
 上記積層基板は、絶縁材料からなる絶縁基板と、該絶縁基板の、半導体素子側の主面に形成された素子側金属層と、反対側の主面に形成された反対側金属層とを備える。上記素子側金属層をエッチングして、複数のアイランドを形成してある。これらのアイランドに半導体素子が搭載される。
 また、上記積層基板では、反対側金属層によって、一つの大型のアイランドを形成してある(図18参照)。半導体素子をスイッチング動作させると、半導体素子や素子側金属層に、周波数の高い交流電流が流れる。これに伴って、反対側金属層に渦電流が発生する。この渦電流の周囲に発生した磁束によって、上記交流電流の周囲に発生した磁束が相殺されるため、インダクタンスを低減することができる。そのため、半導体素子に大きなサージが加わることを抑制できる。
 しかしながら、上記半導体モジュールは、積層基板が反りやすいという課題がある。すなわち、上記半導体モジュールでは、反対側金属層によって一つの大型のアイランドを形成してあるため、素子側金属層と反対側金属層との、アイランドの形状が大きく異なる。そのため、温度が上昇したときに、2枚の金属層の、熱膨張によって生じる延び量(以下、熱膨張量とも記す)が大きく異なり、積層基板が反りやすくなる。その結果、半導体素子と素子側金属層との接合部等へ応力が集中し、半導体モジュールの寿命が低下する可能性が考えられる。
 この課題を解決するため、素子側金属層および反対側金属層の、厚さとアイランド形状を等しくすることが検討されている(下記特許文献1参照)。例えば、反対側金属層をエッチングして、素子側金属層と同じパターンにする(図20参照)。このようにすれば、2枚の金属層の熱膨張量が等しくなり、積層基板の反りを抑制できると考えられる。
特許第5928485号公報
 素子側金属層と反対側金属層とを同じパターンにすると、反対側金属層が細かく分割される。上述したように、半導体素子をスイッチング動作したときに、素子側金属層に交流電流が流れ、この交流電流の周囲に発生した磁束を打ち消す渦電流が反対側金属層に誘起されるが、反対側金属層を分割すると、渦電流が流れる経路が制限され(図20参照)、渦電流が、交流電流の経路に沿って流れにくくなる。したがって、渦電流による磁束の打ち消し効果が低下する。その結果、寄生インダクタンスが大きくなり、半導体素子に加わるサージ電圧が増加する。
 本開示は、積層基板の反りを抑制でき、かつインダクタンスを低減できる半導体モジュールを提供しようとするものである。
 本開示の一態様は、互いに直列に電気接続された、上アーム半導体素子と下アーム半導体素子との、少なくとも一対の半導体素子と、
 上記上アーム半導体素子に電気接続した正極端子と、上記下アーム半導体素子に電気接続した負極端子との、一対の直流端子と、
 絶縁材料からなる絶縁基板と、該絶縁基板の上記半導体素子側の主面に形成された素子側金属層と、上記絶縁基板の、上記素子側金属層を設けた側とは反対側の主面に形成された反対側金属層と、を有する積層基板とを備え、
 上記素子側金属層によって複数のアイランドが形成され、該複数のアイランドのうち少なくとも一部の該アイランドは、上記半導体素子が搭載され、該半導体素子を流れる電流の経路をなしており、
 上記反対側金属層は、上記絶縁基板の厚さ方向から見たときに、個々の上記アイランドと重なり合う複数の重複部と、該複数の重複部のうち少なくとも2個の該重複部を連結する連結部とを備え、
 上記半導体素子のスイッチング動作に伴って、交流電流が、上記一対の直流端子の間に、上記一対の半導体素子および上記アイランドを介して流れたとき、渦電流が、上記複数の重複部と上記連結部とを含む経路に流れるよう構成されている、半導体モジュールにある。
 上記半導体モジュールでは、積層基板の上記反対側金属層によって、上記重複部と、上記連結部とを形成してある。そのため、積層基板の反りを抑制しつつ、インダクタンスを低減できる。
 すなわち、上記重複部は、上記厚さ方向から見たときに、素子側金属層によって形成されたアイランドと重なり合うよう構成されている。そのため、素子側金属層と反対側金属層のパターンを近似させることができる。したがって、これらの金属層の熱膨張量が略等しくなり、積層基板の反りを抑制できる。
 また、上記半導体モジュールでは、上記連結部を形成してあるため、上記交流電流が流れたときに、渦電流を、連結部を介して、複数の重複部の間に流すことができる。そのため、渦電流の経路が制限されにくくなり、渦電流を、交流電流の経路に沿って流しやすくなる。したがって、交流電流の磁束を、渦電流の磁束によって効果的に打ち消すことができ、インダクタンスを低減することが可能になる。そのため、半導体素子に大きなサージが加わることを抑制できる。
 以上のごとく、上記態様によれば、積層基板の反りを抑制でき、インダクタンスを低減できる半導体モジュールを提供することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、半導体モジュールの斜視図であり、 図2は、実施形態1における、半導体モジュールの平面図であって、図3のII矢視図であり、 図3は、図2のIII-III断面図であり、 図4は、実施形態1における、ケースを取り除いた半導体モジュールの平面図であり、 図5は、図4の裏面図であり、 図6は、実施形態1における、半導体モジュールの回路図であり、 図7は、実施形態2における、半導体モジュールの裏面図であり、 図8は、実施形態3における、半導体モジュールの裏面図であり、 図9は、実施形態4における、半導体モジュールの裏面図であり、 図10は、シミュレーション例1における、サンプルAの平面図であり、 図11は、シミュレーション例1における、サンプルAの裏面図であり、 図12は、シミュレーション例1における、サンプルBの裏面図であり、 図13は、シミュレーション例1における、サンプルCの裏面図であり、 図14は、図13の要部拡大図であり、 図15は、シミュレーション例1における、反り量の計算結果であり、 図16は、シミュレーション例1における、インダクタンスの計算結果であり、 図17は、シミュレーション例1における、半導体モジュールの回路図であり、 図18は、比較形態1における、半導体モジュールの裏面図であって、図19のXVIII矢視図であり、 図19は、比較形態1における、半導体モジュールの断面図であり、 図20は、比較形態2における、半導体モジュールの裏面図である。
(実施形態1)
 上記半導体モジュールに係る実施形態について、図1~図6を参照して説明する。図1~図3に示すごとく、本形態の半導体モジュール1は、一対の半導体素子2と、一対の直流端子3と、積層基板10とを備える。半導体素子2には、上アーム側に配された上アーム半導体素子2U(図6参照)と、下アーム側に配された下アーム半導体素子2Lとがある。これら一対の半導体素子2U,2Lは、互いに直列に接続されている。
 図1、図2に示すごとく、直流端子3には、上アーム半導体素子2Uに電気接続した正極端子3Pと、下アーム半導体素子2Lに電気接続した負極端子3Nとがある。
 図3に示すごとく、積層基板10は、絶縁材料からなる絶縁基板4と、素子側金属層50と、反対側金属層60とを備える。素子側金属層50は、絶縁基板4の、半導体素子2側の主面S1に形成されている。また、反対側金属層60は、絶縁基板4の、素子側金属層50を設けた側とは反対側の主面S2に形成されている。
 図2、図4に示すごとく、素子側金属層50によって複数のアイランド5が形成されている。複数のアイランド5のうち一部のアイランド5(5U,5L)に、半導体素子2が搭載されている。このアイランド5U,5Lは、半導体素子2に流れる電流の経路をなしている。
 図5に示すごとく、反対側金属層60は、複数の重複部6と、連結部61とを備える。重複部6は、絶縁基板4の厚さ方向(Z方向)から見たときに、個々のアイランド5(図4参照)と重なり合う。重複部の周縁部69は、アイランド5の周縁部59と一致している。連結部61は、複数の重複部6を連結している。
 図2、図4に示すごとく、半導体素子2のスイッチング動作に伴って、交流電流Iが、一対の直流端子3の間に、一対の半導体素子2およびアイランド5を介して流れたとき、図5に示すごとく、渦電流iが、複数の重複部6と連結部61とを含む経路に流れるよう構成されている。
 本形態の半導体モジュール1は、電気自動車やハイブリッド車等の車両に搭載するための、車載用半導体モジュールである。本形態では、3個の半導体モジュール1を用いて、インバータ回路19(図17参照)を構成してある。個々の半導体素子2をスイッチング動作させることにより、直流電源から供給される直流電力を交流電力に変換している。これにより、三相交流モータを駆動し、上記車両を走行させている。
 図1に示すごとく、本形態の半導体モジュール1は、フレーム7を備える。このフレーム7内に、半導体素子2等が配されている。フレーム7の内部には、シリコン樹脂等からなる封止部材12(図3参照)を充填してある。
 また、図1、図2、図4に示すごとく、アイランド5には、上アーム搭載アイランド5Uと、下アーム搭載アイランド5Lと、中継アイランド5Hと、フレームアイランド5Fとがある。上アーム搭載アイランド5Uに上アーム半導体素子2Uを搭載してあり、下アーム搭載アイランド5Lに下アーム半導体素子2Lを搭載してある。本形態では、はんだ層18(図3参照)を用いて、半導体素子2をアイランド5(5U,5L)に接続してある。
 中継アイランド5Hには、半導体素子2が搭載されていない。中継アイランド5Hは、導電部材8(8B)を介して、下アーム半導体素子2Lに電気接続されている。また、中継アイランド5Hは、ボンディングワイヤ11を介して、負極端子3Nに電気接続されている。
 フレームアイランド5Fは、上アーム搭載アイランド5Uと、下アーム搭載アイランド5Lと、中継アイランド5Hとを取り囲んでいる。フレームアイランド5Fは、Z方向から見たときに、フレーム7と重なる。フレームアイランド5Fは、フレーム7を積層基板10に接着するために形成されている。
 図1、図2に示すごとく、本形態の半導体モジュール1は、上記直流端子3P,3Nの他に、交流電力を出力する交流端子39を備える。直流端子3及び交流端子39は、ボンディングワイヤ11を介して、半導体素子2に電気接続されている。
 また、フレーム7内には、上記導電部材8(8A,8B)が配されている。第1導電部材8Aは、上アーム半導体素子2U(MOSFET)のソース電極と、下アーム搭載アイランド5Lとを電気接続している。また、第2導電部材8Bは、下アーム半導体素子2Lのソース電極と中継アイランド5Hとを電気接続している。
 正極端子3Pは、ボンディングワイヤ11を介して、上アーム搭載アイランド5Uに電気接続している。また、負極端子3Nは、ボンディングワイヤ11を介して、中継アイランド5Hに電気接続している。本形態では、負極端子3Nを下アーム半導体素子2Lに直接、接続せず、中継アイランド5Hを介して、下アーム半導体素子2Lに電気接続している。これにより、下アーム半導体素子2Lから発生した熱が、負極端子3Nに直接、伝わらないようにしている。
 半導体素子2をスイッチング動作させると、半導体素子2やアイランド5U,5Lにオン電流が流れる。このオン電流に、周波数が例えば数kHz以上の上記交流電流Iが、ノイズ成分として重畳する。交流電流Iは、2つの直流端子3P,3Nの間を、半導体素子2、導電部材8、アイランド5(5U,5L,5H)等を通って流れる。
 交流電流Iは、インダクタンスが最小になる経路を流れやすい。図4に示す電流経路は、交流電流I同士が接近しており、磁界が互いに打ち消されるため、インダクタンスが小さい。したがって、交流電流Iは、図4に示す経路を流れやすい。
 上述したように本形態では、図5に示すごとく、直流端子3P,3N間に交流電流Iが流れたとき、複数の重複部6間に、連結部61を介して渦電流iが流れるようにしている。この渦電流iの周囲に発生した磁束によって、交流電流Iの周囲に発生した磁束を打ち消すことができる。そのため、一対の直流端子3P,3N間のインダクタンスを低減でき、半導体素子2に高いサージが加わることを抑制できる。
 図5に示すごとく、重複部6には、上アーム重複部6Uと、下アーム重複部6Lと、中継重複部6Hと、フレーム重複部6Fとがある。上アーム重複部6Uは、Z方向から見たときに、上アーム搭載アイランド5U(図4参照)と重なる位置に形成されている。同様に、下アーム重複部6Lは、下アーム搭載アイランド5Lと重なり、中継重複部6Hは、中継アイランド5Hと重なる位置に形成されている。また、フレーム重複部6Fは、フレームアイランド5Fと重なる位置に形成されている。
 図5に示すごとく、本形態では、4個の連結部61を形成してある。第1連結部61Aは、上アーム重複部6Uと下アーム重複部6Lとを連結している。第2連結部61Bは、下アーム重複部6Lと中継重複部6Hとを連結している。第3連結部61Cは、中継重複部6Hとフレーム重複部6Fとを連結している。また、第4連結部61Dは、フレーム重複部6Fと上アーム重複部6Uとを連結している。これらの連結部61A~61Dは、Z方向から見たときに、交流電流Iの経路から外れた位置に形成されている。
 反対側金属層60は、図示しない冷却器に接触している。半導体素子2をスイッチング動作させると発熱するため、この冷却器を用いて、半導体素子2を冷却している。また、冷却器と反対側金属層60との間には、ヒートシンクが介在していない。ヒートシンクを設けると、ヒートシンクの熱抵抗によって熱が冷却器に伝わりにくくなる。そのため本形態では、ヒートシンクを設けず、反対側金属層60を冷却器に直接、接触させている。なお、反対側金属層60を直接、冷却水に接触させても良い。
 本形態の作用効果について説明する。図5に示すごとく、本形態では、反対側金属層60によって、重複部6と連結部61とを形成してある。そのため、積層基板10の反りを抑制しつつ、インダクタンスを低減できる。
 すなわち、重複部6は、Z方向から見たときに、素子側金属層50によって形成されたアイランド5と重なり合うよう構成されている。そのため、素子側金属層50と反対側金属層60のパターンを近似させることができる。したがって、これらの金属層50,60の熱膨張量が略等しくなり、積層基板10の反りを抑制できる。
 また、本形態では、連結部61を形成してあるため、上記交流電流Iが流れたときに、渦電流iを、連結部61を介して、複数の重複部6の間に流すことができる。そのため、渦電流iの経路が制限されにくくなり、渦電流iを、交流電流Iの経路に沿って流しやすくなる。したがって、交流電流Iの磁束を、渦電流iの磁束によって効果的に打ち消すことができ、インダクタンスを低減することが可能になる。そのため、半導体素子2に大きなサージが加わることを抑制できる。
 従来の半導体モジュール1は、図18、図19に示すごとく、反対側金属層60によって1つの大型のアイランドを形成していた。そのため、素子側金属層50と反対側金属層60の面積差が大きく、熱膨張量の差が大きかった。したがって、半導体素子2が発熱して温度が上昇したときに、積層基板10が反りやすかった。
 この問題を解決するため、図20に示すごとく、反対側金属層60を素子側金属層50と同じパターンにすると、熱膨張量の差を低減でき、積層基板10の反りを抑制できるものの、個々の重複部6が分断されてしまうため、渦電流iの経路が制限され、渦電流iが、交流電流Iに沿って流れにくくなる。そのため、磁束の打ち消し効果が低減し、インダクタンスが大きくなりやすい。
 これに対して、図5に示すごとく、本形態のように、重複部6と連結部61とを形成すれば、素子側金属層50と反対側金属層60との、熱膨張量の差を低減でき、積層基板10の反りを低減できると共に、渦電流iが、連結部61を介して複数の重複部6間に流れるため、渦電流iの経路が制限されにくい。そのため、渦電流iが、交流電流Iの経路に沿って流れやすくなり、交流電流Iの磁束を、渦電流iの磁束によって効果的に打ち消すことができる。そのため、インダクタンスを低減でき、半導体素子2に大きなサージが加わることを抑制できる。
 また、本形態の半導体モジュール1は、図5に示すごとく、上アーム重複部6Uと、下アーム重複部6Lと、中継重複部6Hと、フレーム重複部6Fとを備える。そして、連結部61を用いて、上アーム重複部6Uと下アーム重複部6Lとの間と、下アーム重複部6Lと中継重複部6Hとの間と、中継重複部6Hとフレーム重複部6Fとの間と、フレーム重複部6Fと上アーム重複部6Uとの間とを連結している。
 このようにすると、渦電流iを、交流電流Iに沿って、長い距離にわたって流すことができる。そのため、交流電流Iから発生した磁束を、渦電流iの磁束によって効果的に打ち消すことができ、インダクタンスを効果的に低減することができる。
 以上のごとく、本形態によれば、積層基板の反りを抑制でき、インダクタンスを低減できる半導体モジュールを提供することができる。
 なお、本形態では、図4に示すごとく、4個のアイランド5を形成したが、本開示はこれに限るものではない。すなわち、上アーム搭載アイランド5Uと下アーム搭載アイランド5Lとの、2個のアイランド5のみ形成してもよい。また、4個以上のアイランド5を形成してもよい。
 また、本形態では、図1に示すごとく、半導体モジュール1内に一対の半導体素子2(2U,2L)を封止したが、本開示はこれに限るものではない。すなわち、後述するシミュレーション結果のように、3対の半導体素子2を1個の半導体モジュール1に封止してもよい。また、2対、或いは、4対以上の半導体素子を1個の半導体モジュール1に封止してもよい。
 また、本形態では、1個の上アーム半導体素子2Uと1個の下アーム半導体素子2Lとを互いに直列に接続したが、本開示はこれに限るものではない。すなわち、2個以上の上アーム半導体素子2Uを互いに並列接続して上アーム半導体素子群を構成すると共に、2個以上の下アーム半導体素子2Lを互いに並列接続して下アーム半導体素子群を構成し、これら2つの半導体素子群を互いに直列に接続してもよい。
 以下の実施形態においては、図面に用いた符号のうち、実施形態1において用いた符号と同一のものは、特に示さない限り、実施形態1と同様の構成要素等を表す。
(実施形態2)
 本形態は、反対側金属層60の形状を変更した例である。図7に示すごとく、本形態の反対側金属層60は、実施形態1と同様に、複数の重複部6と、複数の連結部61(61A,61B,61E)とを備える。第1連結部61Aによって、上アーム重複部6Uと下アーム重複部6Lとを連結してある。また、第2連結部61Bによって、下アーム重複部6Lと中継重複部6Hとを連結してある。さらに、別の連結部61Eによって、中継重複部6Hと上アーム重複部6Uと連結している。本形態では、実施形態1と異なり、中継重複部6Hとフレーム重複部6Fとの間、及びフレーム重複部6Fと上アーム重複部6Uとの間は、連結していない。
 本形態の作用効果について説明する。上記構成にすると、実施形態1と比べて、連結部61の数を少なくすることができる。そのため、素子側金属層50と反対側金属層60のパターンを、より近似させることができ、積層基板10の反りをより効果的に抑制できる。また、上記構成を採用した場合も、渦電流iを、交流電流Iに沿って、比較的長い距離にわたって流すことができる。そのため、交流電流Iの磁束を、渦電流iの磁束によって効果的に打ち消すことができ、インダクタンスを効果的に低減できる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態3)
 本形態は、反対側金属層60の形状を変更した例である。図8に示すごとく、本形態の半導体モジュール1は、実施形態1と同様に、4個の連結部61(61A~61D)を備える。これらの連結部61によって、上アーム重複部6Uと下アーム重複部6Lとの間と、下アーム重複部6Lと中継重複部6Hとの間と、中継重複部6Hとフレーム重複部6Fとの間と、フレーム重複部6Fと上アーム重複部6Uとの間を連結している。また、本形態では、1個の連結部61(第1連結部61A)を、Z方向から見たときに、交流電流Iと重なる位置に形成してある。
 本形態の作用効果について説明する。上述したように、本形態では、複数の連結部61のうち、1個の連結部61(第1連結部61A)を、Z方向から見たときに、交流電流Iと重なる位置に形成してある。
 このようにすると、渦電流iを、交流電流Iに沿って、より長い距離にわたって流すことができる。そのため、渦電流iによる磁束の打ち消し効果をより高めることができ、インダクタンスをより低減できる。
 その他、実施形態1と同様の構成および作用効果を備える。
 なお、本形態では、複数の連結部61のうち、1個の連結部61(第1連結部61A)を、Z方向から見たときに交流電流Iと重なる位置に形成したが、本開示はこれに限るものではなく、2個以上の連結部61を、交流電流Iと重なる位置に形成してもよい。
 また、本形態の第1連結部61Aは、Z方向から見たときに、その全ての部位が交流電流Iと重なるよう構成されているが、本開示はこれに限るものではなく、第1連結部61Aの一部のみが交流電流Iと重なるよう構成してもよい。
 このように、複数の連結部61のうち、少なくとも1個の連結部61を、その少なくとも一部が、Z方向から見たときに交流電流Iと重なるよう構成することができる。
 また、本形態では4個の連結部61を設けたが、本開示はこれに限るものではない。すなわち、実施形態2のように、3個の連結部61を設け、これら3個の連結部61のうち、少なくとも1個の連結部61を、Z方向から見たときに交流電流Iと重なるよう構成してもよい。
(実施形態4)
 本形態は、反対側金属層60の形状を変更した例である。図9に示すごとく、本形態の半導体モジュール1は、実施形態1と同様に、4個の連結部61(61A~61D)を備える。これらの連結部61によって、上アーム重複部6Uと下アーム重複部6Lとの間と、下アーム重複部6Lと中継重複部6Hとの間と、中継重複部6Hとフレーム重複部6Fとの間と、フレーム重複部6Fと上アーム重複部6Uとの間を連結している。また、本形態では、全ての連結部61A~61Dを、Z方向から見たときに、交流電流Iと重なる位置に形成してある。
 個々の連結部61は、Z方向から見たときに、その全ての部位が、交流電流Iと重なるよう構成されている。なお、Z方向から見たときに、個々の連結部61の、一部のみが交流電流Iと重なるよう構成してもよい。
 本形態の作用効果について説明する。上述したように、本形態では、全ての連結部61A~61Dを、Z方向から見たときに、交流電流Iと重なる位置に形成してある。
 そのため、渦電流iを、交流電流Iに沿って、より長い距離にわたって流すことができる。したがって、渦電流iによる磁束の打ち消し効果をより高めることができ、インダクタンスをより効果的に低減できる。
 その他、実施形態1と同様の構成および作用効果を備える。
(シミュレーション例)
 本開示の効果を確認するためのシミュレーションを行った。まず、シミュレータ上で、半導体モジュール1の3個のサンプル(サンプルA、サンプルB、サンプルC)を作成した。サンプルAは、図10に示すごとく、3個の上アーム半導体素子2Uと、3個の下アーム半導体素子2Lとを備える。これらの半導体素子2によって、インバータ回路19(図17参照)を形成してある。また、サンプルAは、1本の正極端子3Pと、2本の負極端子3Nとを備える。さらに、サンプルAは、アイランド5として、上アーム半導体素子2Uを搭載した上アーム搭載アイランド5Uと、下アーム半導体素子2Lを搭載した下アーム搭載アイランド5Lと、中継アイランド5Hと、フレームアイランド5Fとを備える。中継アイランド5Hは、導電部材8Bを介して、下アーム半導体素子2Lのソース電極に電気接続している。下アーム搭載アイランド5Lに、交流端子39が接続している。また、中継アイランド5Hと上アーム搭載アイランド5Uとの間には、これらを絶縁する素子側溝部58が形成されている。サンプルAの反対側金属層60(図示しない)は、図11に示すごとく、所謂ベタパターンになっている。
 図10に示すごとく、半導体素子2をスイッチング動作させると、交流電流Iが、正極端子3Pと負極端子3Nとの間を流れる。交流電流Iは、一対の半導体素子2U,2Lと、導電部材8と、アイランド5(5U,5L,5H)を通過する。交流電流Iが流れると、図11に示すごとく、反対側金属層60に渦電流iが発生する。サンプルAでは、反対側金属層60をベタパターンにしてあるため、渦電流iの経路が制限を受けにくい。したがって、渦電流iは、交流電流Iの経路に沿って流れる。
 次に、サンプルBの説明を行う。サンプルBの、半導体素子2側の構成は、サンプルA(図10参照)と同一である。サンプルBの反対側金属層60は、図12に示すごとく、素子側金属層50のパターンと同一にしてある。より詳しくは、素子側金属層50は、上アーム重複部6Uと、下アーム重複部6Lと、中継重複部6Hと、フレーム重複部6Fとを備える。これらの重複部6は、連結部61によって連結されていない。そのため、サンプルBでは、渦電流iが、複数の重複部6の間を流れず、渦電流iの経路が制限を受けやすい。したがって、渦電流iは、交流電流Iに沿って流れにくい。
 次に、サンプルCの説明を行う。サンプルCの、半導体素子2側の構成は、サンプルA(図10参照)と同一である。図13に示すごとく、サンプルCでは、反対側金属層60に、複数の重複部6と、連結部61とを形成してある。この連結部61により、上アーム重複部6Uと下アーム重複部6Lとの間、複数の下アーム重複部6L同士、下アーム重複部6Lと中継重複部6Hの間を連結している。また、中継重複部6Hと上アーム重複部6Uとの間には、反対側溝部68が形成されている。図13、図14に示すごとく、反対側溝部68の先端68Pにも、連結部61が形成されている。この連結部61により、上アーム重複部6Uと中継重複部6Hとを連結している。サンプルCでは、このように複数の連結部61を形成することにより、複数の重複部6の間に渦電流iが流れるようにしてある。
 上記3個のサンプルについてシミュレーションを行い、反り量とインダクタンスを算出した。まず、上記3個のサンプルを-40℃から150℃に温度変化させ、積層基板10の反り量を算出した。その結果を図15に示す。このグラフでは、サンプルA(すなわち、反対側金属層60をベタパターンにしたサンプル)の反り量を1としたときの、サンプルB、Cの反り量を比率にして表している。図15から、反対側金属層60をベタパターンにすると反り量が大きいことが分かる。また、サンプルB、Cは、反り量が少ないことが分かる。これは、素子側金属層50と反対側金属層60との、熱膨張量が略等しいためだと考えられる。
 次に、インダクタンスのシミュレーション結果を図16に示す。このグラフでは、サンプルAのインダクタンスを1としたときの、サンプルB、Cのインダクタンスを比率にして表している。図16から、連結部61を形成しないサンプルBは、インダクタンスが高いことが分かる。また、連結部61を形成したサンプルCは、インダクタンスを低減でき、サンプルAと略同じ値になることが分かる。これは、サンプルCでは連結部61を形成したため、渦電流iを、交流電流Iの経路に沿って流しやすくなり、交流電流Iの磁束を効果的に打ち消すことができるからだと考えられる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (4)

  1.  互いに直列に電気接続された、上アーム半導体素子(2U)と下アーム半導体素子(2L)との、少なくとも一対の半導体素子(2)と、
     上記上アーム半導体素子に電気接続した正極端子(3P)と、上記下アーム半導体素子に電気接続した負極端子(3N)との、一対の直流端子(3)と、
     絶縁材料からなる絶縁基板(4)と、該絶縁基板の上記半導体素子側の主面(S1)に形成された素子側金属層(50)と、上記絶縁基板の、上記素子側金属層を設けた側とは反対側の主面(S2)に形成された反対側金属層(60)と、を有する積層基板(10)とを備え、
     上記素子側金属層によって複数のアイランド(5)が形成され、該複数のアイランドのうち少なくとも一部の該アイランドは、上記半導体素子が搭載され、該半導体素子を流れる電流の経路をなしており、
     上記反対側金属層は、上記絶縁基板の厚さ方向(Z)から見たときに、個々の上記アイランドと重なり合う複数の重複部(6)と、該複数の重複部のうち少なくとも2個の該重複部を連結する連結部(61)とを備え、
     上記半導体素子のスイッチング動作に伴って、交流電流が、上記一対の直流端子の間に、上記一対の半導体素子および上記アイランドを介して流れたとき、渦電流が、上記複数の重複部と上記連結部とを含む経路に流れるよう構成されている、半導体モジュール(1)。
  2.  複数の上記連結部を備え、上記アイランドとして、上記上アーム半導体素子を搭載した上アーム搭載アイランド(5U)と、上記下アーム半導体素子を搭載した下アーム搭載アイランド(5L)と、上記半導体素子が搭載されず導電部材(8)を介して上記半導体素子に電気接続した中継アイランド(5H)とを備え、上記重複部として、上記厚さ方向から見たときに上記上アーム搭載アイランドと重なる上アーム重複部(6U)と、上記下アーム搭載アイランドと重なる下アーム重複部(6L)と、上記中継アイランドと重なる中継重複部(6H)とを備え、個々の上記連結部によって、上記上アーム重複部と上記下アーム重複部との間と、該下アーム重複部と上記中継重複部との間と、該中継重複部と上記上アーム重複部との間を、それぞれ連結してある、請求項1に記載の半導体モジュール。
  3.  複数の上記連結部を備え、上記アイランドとして、上記上アーム半導体素子を搭載した上アーム搭載アイランドと、上記下アーム半導体素子を搭載した下アーム搭載アイランドと、上記半導体素子が搭載されず導電部材を介して上記半導体素子に電気接続した中継アイランドと、上記上アーム搭載アイランドと上記下アーム搭載アイランドと上記中継アイランドとを取り囲むフレームアイランド(5F)とを備え、上記重複部として、上記厚さ方向から見たときに上記上アーム搭載アイランドと重なる上アーム重複部と、上記下アーム搭載アイランドと重なる下アーム重複部と、上記中継アイランドと重なる中継重複部と、上記フレームアイランドと重なるフレーム重複部(6F)とを備え、個々の上記連結部によって、上記上アーム重複部と上記下アーム重複部との間と、該下アーム重複部と上記中継重複部との間と、該中継重複部と上記フレーム重複部との間と、該フレーム重複部と上記上アーム重複部との間とを、それぞれ連結してある、請求項1に記載の半導体モジュール。
  4.  上記複数の連結部のうち少なくとも一個の該連結部は、その少なくとも一部が、上記厚さ方向から見たときに、上記交流電流の経路と重なるよう構成されている、請求項2又は3に記載の半導体モジュール。
PCT/JP2019/036257 2018-10-01 2019-09-16 半導体モジュール WO2020071098A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019004930.5T DE112019004930T5 (de) 2018-10-01 2019-09-16 Halbleitermodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-186698 2018-10-01
JP2018186698A JP6908012B2 (ja) 2018-10-01 2018-10-01 半導体モジュール

Publications (1)

Publication Number Publication Date
WO2020071098A1 true WO2020071098A1 (ja) 2020-04-09

Family

ID=70054844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036257 WO2020071098A1 (ja) 2018-10-01 2019-09-16 半導体モジュール

Country Status (3)

Country Link
JP (1) JP6908012B2 (ja)
DE (1) DE112019004930T5 (ja)
WO (1) WO2020071098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199639A1 (ja) * 2022-04-13 2023-10-19 富士電機株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254387A (ja) * 2010-06-03 2011-12-15 Rohm Co Ltd 交流スイッチ
JP2014528167A (ja) * 2011-09-16 2014-10-23 エスエムエー ソーラー テクノロジー アーゲー 振動傾向を低減する回路配置
JP2017099231A (ja) * 2015-11-27 2017-06-01 株式会社デンソー 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254387A (ja) * 2010-06-03 2011-12-15 Rohm Co Ltd 交流スイッチ
JP2014528167A (ja) * 2011-09-16 2014-10-23 エスエムエー ソーラー テクノロジー アーゲー 振動傾向を低減する回路配置
JP2017099231A (ja) * 2015-11-27 2017-06-01 株式会社デンソー 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199639A1 (ja) * 2022-04-13 2023-10-19 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
DE112019004930T5 (de) 2021-06-17
JP2020058126A (ja) 2020-04-09
JP6908012B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
JP5259016B2 (ja) パワー半導体モジュール
JP4660214B2 (ja) 電力用半導体装置
JP6717270B2 (ja) 半導体モジュール
JP6400201B2 (ja) パワー半導体モジュール
JP2017208547A (ja) ハーフブリッジを設けるパワーモジュール、ならびにパワーモジュールおよびキャパシタの配置
JP6288769B2 (ja) 半導体パワーモジュール、電力変換装置、およびこれを用いた移動体
WO2016035651A1 (ja) パワーモジュール
JP7010167B2 (ja) 半導体装置
JP6154104B2 (ja) 少なくとも一つの電子部品を、第1および第2端子の間のループインダクタンスを低減する手段を含む電力供給装置に電気的に相互接続するための装置
WO2020184053A1 (ja) 半導体装置
JP4220731B2 (ja) 電力用半導体装置
JP7428017B2 (ja) 半導体モジュール
JP2015018943A (ja) パワー半導体モジュールおよびそれを用いた電力変換装置
CN116325135A (zh) 半导体封装、半导体装置以及电力变换装置
CN110663110A (zh) 半导体功率模块
WO2020184051A1 (ja) 半導体装置
JP2005252305A (ja) 電力用半導体装置
JP6123722B2 (ja) 半導体装置
WO2020071098A1 (ja) 半導体モジュール
US11227845B2 (en) Power module and method of manufacturing same
US10304770B2 (en) Semiconductor device with stacked terminals
WO2019064904A1 (ja) 半導体モジュール
US20170288564A1 (en) Power conversion apparatus and method for manufacturing the same
WO2020184050A1 (ja) 半導体装置
JP2014096412A (ja) 半導体モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869313

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19869313

Country of ref document: EP

Kind code of ref document: A1