WO2020070899A1 - 半導体パッケージ - Google Patents

半導体パッケージ

Info

Publication number
WO2020070899A1
WO2020070899A1 PCT/JP2018/037492 JP2018037492W WO2020070899A1 WO 2020070899 A1 WO2020070899 A1 WO 2020070899A1 JP 2018037492 W JP2018037492 W JP 2018037492W WO 2020070899 A1 WO2020070899 A1 WO 2020070899A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
semiconductor package
peripheral side
side wall
upper plate
Prior art date
Application number
PCT/JP2018/037492
Other languages
English (en)
French (fr)
Inventor
伊東 弘晃
優太 市倉
渡邉 尚威
田多 伸光
匠太 田代
麻美 水谷
関谷 洋紀
久里 裕二
尚隆 飯尾
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2020551068A priority Critical patent/JP7087099B2/ja
Priority to EP18936098.5A priority patent/EP3863388A4/en
Priority to PCT/JP2018/037492 priority patent/WO2020070899A1/ja
Priority to CN201880097289.XA priority patent/CN112655285B/zh
Publication of WO2020070899A1 publication Critical patent/WO2020070899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device

Definitions

  • Embodiments of the present invention relate to a semiconductor package on which a semiconductor element is mounted.
  • the semiconductor chip is sealed with resin. If a short-circuit fault occurs in the semiconductor chip due to some factor, a large current flows into the semiconductor chip, and the semiconductor chip may burst. In this case, melting and vaporization of the components in the sub-module cause a large rupture of the resin sealing the semiconductor chip, and the contents squirt from the rupture portion at a high pressure.
  • the space in which the submodules are arranged is a closed space.
  • the pressure in the sealed space rapidly increases, and there is a possibility that the exterior of the semiconductor package may burst.
  • the semiconductor package of the present embodiment provides a semiconductor package in which the possibility of rupture of the exterior is suppressed even when a part of the internal semiconductor chip is short-circuited.
  • a semiconductor package includes a plurality of sub-modules each having a semiconductor chip therein, and in a semiconductor package including the sub-module electrically connected in parallel, the sub-module is paired with the sub-module.
  • An electrode post that supports the electrode post, a plate-shaped metal pedestal that fixes the electrode post to one surface, a resin outer peripheral side wall that stands upright from the pedestal, and surrounds the plurality of submodules, A metal upper plate closing an opening formed by the outer peripheral side wall, a first fastening member fixing the pedestal and the outer peripheral side wall by fastening, and a second fastening member fixing the upper plate and the outer peripheral side wall by fastening.
  • the pedestal, the outer peripheral side wall, and the upper plate seal a space containing a plurality of sub-modules.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the semiconductor package according to the first embodiment.
  • FIG. 2 is a perspective view illustrating a configuration of a submodule according to the first embodiment.
  • FIG. 2 is a top view of the inside of the semiconductor package according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the semiconductor package according to the first embodiment. It is sectional drawing of the submodule which shows a mode that the content erupted. It is the figure which showed the relationship between the pressure which the content which ejected from the open surface gives to an outer peripheral side wall, and distance.
  • FIG. 1 is a cross-sectional view illustrating a configuration of the semiconductor package according to the first embodiment.
  • FIG. 2 is a perspective view illustrating a configuration of a submodule according to the first embodiment.
  • FIG. 2 is a top view of the inside of the semiconductor package according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating
  • FIG. 4 is a cross-sectional view of the semiconductor package showing a relationship between an upper plate thickness and a stress when a pressure is applied inside the semiconductor package 100.
  • 9 is a graph showing a relationship between a distance between a ruptured submodule and an outer peripheral side wall and a stress applied to the outer peripheral side wall. It is sectional drawing of the semiconductor package in 2nd Embodiment. It is sectional drawing of the semiconductor package in 2nd Embodiment. It is sectional drawing of the semiconductor package in 3rd Embodiment. It is sectional drawing of the semiconductor package in other embodiment.
  • FIG. 1 is a sectional view illustrating a configuration of a semiconductor package according to the first embodiment.
  • FIG. 2 is a perspective view illustrating a configuration of a submodule according to the first embodiment.
  • FIG. 3 is a top view of the inside of the semiconductor package according to the first embodiment.
  • the semiconductor package 100 includes a plurality of submodules 1 each having a semiconductor chip therein.
  • the submodule 1 forms a single semiconductor package 100 by being electrically connected in parallel.
  • the semiconductor package 100 includes an electrode post 2, a cooler 3 serving as a pedestal, an outer peripheral side wall 4, and an upper plate 5.
  • the cooler 3, the outer peripheral side wall 4, and the upper plate 5 are fixed by a fastening member 6, thereby sealing a space in which the submodule 1 is arranged.
  • the sub-module 1 electrically connects the electrode terminals 11 via the bus bars 7.
  • the submodule 1 houses the semiconductor chip 21 inside.
  • the semiconductor chip 21 includes, for example, a power semiconductor element used for power conversion.
  • a power semiconductor element is, for example, a switching element having a control electrode such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), or a diode such as an FRD (Fast Recovery Diode).
  • a chip of a switching element and a chip of a diode may be mixed.
  • the submodule 1 has an electrode plate 22 bonded to both surfaces of a semiconductor chip 21 housed in a metal reinforcing case 23, and is entirely sealed with a resin 24.
  • the sub-module 1 has an electrode terminal 11 for connecting to the bus bar 7 as a current supply path.
  • the electrode terminal 11 is connected to one of the two electrode plates 22 (hereinafter, referred to as an electrode plate 22a).
  • a gate connector 25 for transmitting a signal to the semiconductor chip 21 protrudes.
  • One surface of the submodule 1 is a case opening surface 26 of the reinforcing case 23.
  • the electrode terminal 11 and the gate connector 25 extend from the case opening surface 26 and protrude outside the submodule 1.
  • FIG. 3 is a schematic diagram of the internal layout of the semiconductor package 100 as viewed from above. As shown in FIG. 3, inside the semiconductor package 100, a number of submodules 1 are electrically connected in parallel via a bus bar and mounted.
  • the bus bar 7 electrically connects the electrode terminals 11 of the submodule 1 in the semiconductor package 100.
  • the bus bar 7 includes a main shaft disposed between the two sub-modules 1 arranged so that the case opening surfaces 26 face each other, and a connection shaft connecting the main shafts.
  • Many sub-modules 1 are collectively arranged in one area (area E in FIG. 3) covered by the outer peripheral side wall 4.
  • the sub-module 1 is mounted between the case opening surface 26 and the outer peripheral side wall 4 in a direction in which an intervening object serving as a shield is arranged.
  • the inclusion is another submodule 1. Since the case opening surfaces 26 of the submodules 1 are arranged so as to face each other, in all the submodules 1, another submodule 1 is interposed between the case opening surface 26 and the outer peripheral side wall 4.
  • the cooler 3 is made of a metal material having high electrical conductivity and thermal conductivity. Further, since it is made of metal, it has higher rigidity and ductility than general resin materials. Cooler 3 contains iron, stainless steel, copper, or aluminum as a main component.
  • the cooler 3 is a plate-shaped member, and a plurality of electrode posts 2 are fixed to one surface of the plate.
  • the electrode post 2 is a columnar member made of a material having high electrical conductivity and thermal conductivity. One end of the electrode post 2 is fixed to the cooler 3, and the other end is buried in the sub-module 1.
  • the electrode post 2 may be integrated with the cooler 3.
  • the electrode posts 2 are electrically connected to one surface of the semiconductor chip 21, and come into contact with an electrode plate 22 to which the electrode terminals 11 are not connected (hereinafter referred to as an electrode plate 22b). That is, the cooler 3 is mechanically and electrically connected to the sub-module 1 via the electrode post 2 and functions as a radiator for radiating heat generated in the sub-module 1 and an electrode of the semiconductor chip 21. I do.
  • the thickness of the cooler 3 is set to a thickness capable of forming a gap inside.
  • the heat may be dissipated from the cooler 3 by circulating a coolant such as pure water in the space inside the cooler 3.
  • Cooling fins may be provided on the surface of the cooler 3 opposite to the surface on which the electrode posts 2 are fixed. The cooling fins are provided to increase a heat transfer area, and improve heat dissipation efficiency.
  • the surface of the cooler 3 to which the electrode posts 2 are fixed is filled with an insulating resin 8.
  • the insulating resin 8 is also filled between the cooler 3 and the bus bar 7, and insulates the cooler 3 from the bus bar 7.
  • the outer peripheral side wall 4 is a resin member that stands up from the surface of the cooler 3 to which the electrode posts 2 are fixed.
  • the outer peripheral side wall 4 has a shape that covers the periphery of the area E where the plurality of sub-modules 1 are arranged without a gap.
  • the outer peripheral side wall 4 is fastened to the cooler 3 by a fastening member 6a such as a bolt.
  • the fastening member 6a for fastening the outer peripheral side wall 4 and the cooler 3 is a first fastening member in the claims.
  • FIG. 4 is a cross-sectional view illustrating the configuration of the semiconductor package according to the first embodiment.
  • a notch is provided in a part of the outer peripheral side wall 4, and a sealing adhesive 9 is circumferentially wrapped around the notch to be bonded.
  • the notch may be formed by cutting out a part of the contact surface between the outer peripheral side wall 4 and the cooler 3 to create a step having a height different from the contact surface. Since the outer peripheral side wall 4 covers the periphery of the area E without a gap, the notch also covers the periphery of the area E. Further, after the seal adhesive 9 is cured, an adhesive cured layer formed by curing the seal adhesive 9 is formed.
  • the adhesive cured layer also covers the periphery of the area E while being present in the notch.
  • a silicon adhesive or an epoxy adhesive can be used in consideration of adhesive strength and durability.
  • a silicone adhesive TSE series is desirable.
  • the upper plate 5 is a thin plate-shaped member that is thinner than the cooler 3.
  • the upper plate 5 is a metal material, like the cooler 3, and has higher rigidity and ductility than general resin materials.
  • the upper plate 5 contains iron, stainless steel, or aluminum as a main component.
  • the outer peripheral side wall 4 covers the periphery of the area E without a gap
  • the outer peripheral side wall 4 includes the area E on the inner side, and can be said as a cylindrical member having both ends opened.
  • a pedestal is fixed to one of the openings of the outer peripheral side wall 4, and an upper plate 5 is fixed to the other opening.
  • the upper plate 5 is fastened to the outer peripheral side wall 4 by a fastening member 6b such as a bolt.
  • the fastening member 6b for fastening the upper plate 5 and the outer peripheral side wall 4 is a second fastening member in the claims.
  • a cutout is provided in the contact surface of the outer peripheral side wall 4 with the upper plate 5 similarly to the contact surface of the pedestal.
  • a seal adhesive 9 is wound around the notch and adhered.
  • the semiconductor device of the present embodiment has a reinforcing case 23.
  • the reinforcing case 23 serves as an electrode separation suppressing member for preventing separation between the electrode plate 22a and the electrode plate 22b in the event of a short-circuit failure of the semiconductor chip 21, and the direction of ejection of contents ejected from the submodule 1 in the event of a failure.
  • an ejection direction regulating member for regulating the pressure.
  • the semiconductor chip 21 causes a short-circuit failure due to some factor and a large current flows into the semiconductor chip 21 and thereby ruptures the semiconductor chip 21
  • the rupture force generated by the rupture of the semiconductor chip 21 causes the upper and lower electrode plates 22 to break. Receive a load in the direction in which they separate.
  • the metal reinforcing case 23 disposed inside the submodule 1 suppresses the separation of the electrode plates 22 due to its rigidity.
  • the reinforcing case 23 is a metal rectangular parallelepiped having the case opening surface 26 on one surface. Of the four surfaces erected from the end of a surface (an ejection direction regulating surface described later) erected from the surface facing the case opening surface 26, two parallel surfaces are electrode separation suppressing members, and The plate 22 is prevented from separating in the vertical direction.
  • the distance between the two electrodes does not change even after the semiconductor chip 21 is short-circuited due to the electrode separation suppressing member that sandwiches the two electrodes from above and below and the side surface of the reinforcing case 23 that fixes their relative positions. There is no. As a result, the joining member (solder) and the electrode plate 22 in the vicinity of the failure location are melted and solidified, and the conductive state can be maintained.
  • FIG. 5 is a cross-sectional view of the sub-module showing a state in which the contents are ejected.
  • the ejection pressure from the submodule 1 reaches a pressure of several tens of MPa, and a pressure that increases the pressure inside the semiconductor package 100 by several hundred kPa is generated. If this pressure is to be suppressed without breaking only by a resin case that is a brittle material having a high insulating property, it is necessary to design the upper plate 5 very thick, and the semiconductor package 100 becomes large and heavy. Inevitable.
  • FIG. 6 derives the relationship between the upper plate thickness and the stress when pressure is applied to the inside of the semiconductor package 100 when the upper plate 5 is made of resin under certain conditions. From this result, it can be seen that when the upper plate 5 is made of resin, a plate thickness of at least 30 to 40 mm is required.
  • FIG. 7 is a cross-sectional view illustrating a state where a short-circuit fault occurs inside the semiconductor package 100 and the internal pressure increases.
  • the entire upper plate 5 can be deformed while being largely curved with the end fixed by the fastening member 6 as a fulcrum.
  • the load on the fixed portion is reduced by receiving the load while the upper plate 5 is deformed in this manner, it is not necessary to use a conventional mechanism for pressing with a large load.
  • the load applied to the seal adhesive 9 is relatively small. Therefore, by applying the sealing adhesive 9 to the inside of the fastening members 6a and 6b and joining the upper plate 5 and the outer peripheral side wall 4, the contents inside the semiconductor package 100 are prevented from being ejected to the outside. It becomes possible.
  • the direction of the ejection of the contents ejected from the submodule 1 is regulated by the reinforcing case 23. That is, the direction of the open surface 26 is the ejection direction. That is, on the mounting plane of the semiconductor chip 21, a surface facing the case opening surface 26 of the reinforcing case 23 (hereinafter, referred to as the ejection direction regulating surface) is located.
  • the ejection direction regulating surface serves as an ejection direction regulating member, and regulates the ejection direction of the content ejected from the submodule 1.
  • the outer peripheral side wall 4 does not need to have a strength that directly withstands a high pressure load, and a sufficient strength that does not break the internal pressure of the semiconductor package 100 is sufficient. Becomes
  • FIG. 8 is a view showing the relationship between the pressure applied to the outer peripheral side wall 4 by the contents ejected from the case opening surface 26 of the submodule 1 and the distance. Under these conditions, the pressure is about several hundred kPa at a distance of about 15 to 25 mm from the ejection part, and is about the same as the internal pressure of the semiconductor package 100 when the semiconductor chip 21 ruptures.
  • the influence of the direct action due to the pressure can be reduced.
  • the influence of the pressure of the ejected material on the outer peripheral side wall 4 is reduced. Can be suppressed.
  • the present embodiment provides excellent operation continuity by preventing separation of the electrode plates 22a and 22b in the event of a short-circuit failure of the semiconductor chip 21, and the sub-module due to contents ejected from the sub-module 1. It has the effect of destruction of the semiconductor package due to a rise in the pressure inside the semiconductor device and the contents ejected.
  • Each of these effects alone or in combination, can realize a semiconductor package with excellent safety and continuous operation.
  • FIG. 9 is a partial cross-sectional view of the semiconductor package 101 according to the second embodiment.
  • an upper plate 31 whose end is bent is disposed in place of the upper plate 5.
  • FIG. 11 is a partial cross-sectional view of the semiconductor package 103 according to the third embodiment.
  • an upper plate 33 having a protruding portion 33 a is disposed at the end of the adhesive application portion.
  • a concave portion 34a is provided in the upper plate joining portion of the outer peripheral side wall 4 so as to fit into the projecting portion 33a, and a labyrinth structure is formed by the projecting portion 33a and the concave portion 34a.
  • a seal adhesive 35 is filled so as to fill a gap formed by the upper plate protrusion 33a and the outer peripheral side wall recess 34a.
  • the upper plate protruding portion 33a obtains a rib effect against bending deformation, so that bending rigidity is improved, and deformation of the upper plate 33 is suppressed. It is possible to suppress the occurrence of a gap in the space.
  • FIG. 12 is a cross-sectional view showing an example of the present embodiment, and is a cross-sectional view taken along line AA in FIG.
  • the electrode plate 22b is connected to the emitter of the semiconductor chip 21.
  • the upper plate 5 is electrically connected to the bus bar 7 at the potential connection portion B.
  • the upper plate 5 has the same potential as the energization path EP1 including the electrode plate 22b and the bus bar 7.
  • the upper plate 5 it is possible to prevent the upper plate 5 from being independent from the conduction path EP1 including the electrode plate 22b and the bus bar 7, and the electric path EP2 passing through the electrode plate 22b, the electrode post 212, and the cooler 32.
  • the upper plate 5 is not included in another energizing circuit, some potential is generated due to the influence of the surrounding environment. When a large potential is generated, an unexpected discharge may occur, which poses a safety problem.
  • the upper plate 5 is connected to one of the ground-side conducting path EP1 and the electric path EP2. Thereby, it is possible to realize the semiconductor package 100 in which the potential of the upper plate 5 is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

【課題】内部の半導体チップの一部が短絡故障を起こした場合であっても、外装の破裂の虞を抑制した半導体パッケージを提供する。 【解決手段】半導体パッケージは、サブモジュール(1)を固定する金属製の冷却器(3)と、冷却器(3)に固定される樹脂製の外周側壁(4)と、外周側壁(4)に固定される金属製の上板(5)を備える。冷却器(3)と外周側壁(4)は、締結部材(6a)により締結され、上板(5)と外周側壁(4)は、締結部材(6b)により締結される。サブモジュール内の圧力が急激に上昇した場合には、上板(5)全体が大きく湾曲しながら変形し、内圧の上昇による半導体パッケージの破壊を防止する。

Description

半導体パッケージ
 本発明の実施形態は、半導体素子を搭載した半導体パッケージに関する。
 数キロボルト(kV)の高電圧や、数キロアンペア(kA)の大電流を取り扱う半導体装置では、動作時の温度上昇を極力抑制することが求められ、スイッチング素子を多数並列接続して動作させる場合がある。
 この動作の為に、少なくとも1つのスイッチング素子からなるサブモジュールを複数並列に接続し、単一のパッケージとした半導体パッケージがある。このような半導体パッケージでは、低熱抵抗を実現するとともに、高い信頼性の確保が求められる。
特許第3258200号公報 特許第4385324号公報
 上記のような半導体パッケージに含まれるサブモジュールでは、半導体チップは樹脂により封止されている。何らかの要因により半導体チップが短絡故障を起こすと、半導体チップに大電流が流れ込み、半導体チップが破裂する可能性がある。この場合には、サブモジュール内の部品の溶融や気化によって、半導体チップを封止する樹脂に大きな破裂が生じると共に、破裂部分より内容物が高圧で噴出する。
 半導体パッケージにおいて、サブモジュールが配置される空間は密閉された空間である。サブモジュールから内容物が高圧噴出すると、密閉空間の圧力が急激に高まり、半導体パッケージの外装を破裂する虞がある。
 半導体チップの短絡故障による外装の破裂は、噴出したサブモジュールの内容物が半導体パッケージ外部へ流出の原因となるだけでなく、安全性や運転継続性の観点からも好ましくない。
 本実施形態の半導体パッケージは、内部の半導体チップの一部が短絡故障を起こした場合であっても、外装の破裂の虞を抑制した半導体パッケージを提供する。
 実施形態に係る半導体パッケージは、内部に半導体チップを有する複数のサブモジュールを有し、電気的に並列接続された前記サブモジュールを内包する半導体パッケージにおいて、前記サブモジュールと対になり、前記サブモジュールを支持する電極ポストと、前記電極ポストを一方の面に固定する平板状の金属製の台座と、前記台座より立設し、前記複数のサブモジュールの周囲を囲う樹脂製の外周側壁と、前記外周側壁が形成する開口を塞ぐ金属製の上板と、前記台座と前記外周側壁を締結により固定する第1締結部材と前記上板と前記外周側壁を締結により固定する第2締結部材と、を備え、前記台座、外周側壁、及び上板は、複数のサブモジュールを内包する空間を密閉していること、を特徴とする。
第1実施形態における半導体パッケージの構成を示す断面図である。 第1実施形態におけるサブモジュールの構成を示す斜視図である。 第1実施形態における半導体パッケージ内部の上面図である。 第1実施形態における半導体パッケージの構成を示す断面図である。 内容物が噴出した様子を示すサブモジュールの断面図である。 開放面から噴出した内容物が外周側壁に与える圧力と距離の関係を示した図である。 半導体パッケージ100内部に圧力がかかったときの上板厚さと応力の関係を示す半導体パッケージの断面図である。 破裂したサブモジュールと外周側壁の距離と外周側壁が受ける応力との関係を示すグラフである。 第2実施形態における半導体パッケージの断面図である。 第2実施形態における半導体パッケージの断面図である。 第3実施形態における半導体パッケージの断面図である。 他の実施形態における半導体パッケージの断面図である。
 以下、実施形態について図面を参照しながら説明する。図面中の同一部分には、同一番号を付してその詳しい説明は適宜省略し、異なる部分について説明する。なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。また、説明の便宜上、あえて厳密な断面図とせず、部分的に簡略な表現方法を用いる場合もある。
[1.第1実施形態]
[1-1.構成]
 図1は、第1実施形態における半導体パッケージの構成を示す断面図であり、図2は、第1実施形態におけるサブモジュールの構成を示す斜視図である。図3は、第1実施形態における半導体パッケージ内部の上面図である。
 図1に示すように、半導体パッケージ100は、内部に半導体チップを有するサブモジュール1を複数配置する。サブモジュール1は、電気的に並列接続されることで単一の半導体パッケージ100を構成する。半導体パッケージ100は、電極ポスト2、台座となる冷却器3、外周側壁4、上板5を備える。冷却器3、外周側壁4、上板5は、締結部材6により固定することで、サブモジュール1が配置される空間を密閉する。サブモジュール1は、バスバー7を介して電極端子11を電気的に接続する。
 サブモジュール1は、内部に半導体チップ21を収納している。半導体チップ21は、例えば電力変換に用いられるパワー半導体素子を含む。そのようなパワー半導体素子は、例えばIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の制御電極を有するスイッチング素子、またはFRD(Fast Recovery Diode)等のダイオードである。1つのサブモジュール1内に、スイッチング素子のチップとダイオードのチップとが混在していてもよい。
 図2に示すように、サブモジュール1は、半導体チップ21の両面に接合された電極板22を金属製の補強ケース23の内部に収めて、全体を樹脂24で封止している。サブモジュール1は、通電経路としてバスバー7に接続するための電極端子11を有している。電極端子11は、2枚の電極板22のうちの片方の電極板(以降、電極板22aとする。)と接続する。また、半導体チップ21がスイッチング素子である場合には、半導体チップ21に信号を伝達するためのゲートコネクタ25が突出している。
 サブモジュール1のうち一面は、補強ケース23のケース開放面26となっている。このケース開放面26からは、電極端子11やゲートコネクタ25が延び、サブモジュール1の外部に突き出している。
 図3は、半導体パッケージ100を上から見た内部レイアウトの模式図である。図3に示すように、半導体パッケージ100の内部では、バスバーを介して多数のサブモジュール1を電気的に並列に接続して実装している。
 バスバー7は、半導体パッケージ100内のサブモジュール1の電極端子11を電気的に接続する。バスバー7は、ケース開放面26が互いに対向するように配置される2つのサブモジュール1の間に配置される主軸と、主軸同士を接続する接続軸とからなる。多数のサブモジュール1は、外周側壁4に覆われた1つのエリア(図3のエリアE)に纏まって配置される。
 また、サブモジュール1のケース開放面26と外周側壁4の間に、遮蔽物となる介在物が配置される向きに実装している。図3において、介在物は、他のサブモジュール1である。各サブモジュール1のケース開放面26が互いに対向するように配置しているため、全てのサブモジュール1においては、ケース開放面26と外周側壁4との間に他のサブモジュール1が介在する。
 図1へ戻り、冷却器3は、高い導電率及び熱導電率を有する金属材料からなる。また、金属製であるため、一般の樹脂素材より高い剛性及び延性を有している。冷却器3は、鉄、ステンレス鋼、銅、またはアルミニウムを主成分として含む。
 冷却器3は、平板形状の部材であり、平板の一方の面には、複数の電極ポスト2が固定される。電極ポスト2は、導電率、熱導電率が高い材料からなる柱状の部材である。電極ポスト2の一方の端部は冷却器3に対して固定され、他方の端部はサブモジュール1内に埋没する。なお電極ポスト2は、冷却器3と一体構造となっていてもよい。サブモジュール1内で電極ポスト2は、半導体チップ21の片面と電気的に接続され、電極端子11が接続されない電極板22(以降、電極板22bとする。)と接触する。つまり、冷却器3は、電極ポスト2を介してサブモジュール1と機械的、電気的に接合されており、サブモジュール1内で発生した熱を放熱する放熱体、及び半導体チップ21の電極として機能する。
 冷却器3の厚さは、内部に空隙を形成可能な厚さとする。冷却器3内部の空隙には、純水などの冷却液を循環させることで、冷却器3から熱を放散させても良い。冷却器3の電極ポスト2が固定される面とは反対の面に、冷却フィンを設けても良い。冷却フィンは、伝熱面積を広げるために設けられ、熱の放散効率を向上させる。
 また、冷却器3の電極ポスト2が固定される面には、絶縁樹脂8が充填される。絶縁樹脂8は、冷却器3とバスバー7との間にも充填され、冷却器3とバスバー7とを絶縁する。
 外周側壁4は、冷却器3の電極ポスト2が固定される面より、立設する樹脂部材である。外周側壁4は、複数のサブモジュール1が配置されるエリアEの周囲を隙間なく覆う形状である。外周側壁4は、冷却器3に対してボルト等の締結部材6aで締結される。外周側壁4と冷却器3とを締結する締結部材6aが、請求項における第1締結部材となる。
 図4は、第1実施形態における半導体パッケージの構成を示す断面図である。図4に示すように、外周側壁4の一部に切欠きを設けて、その切欠き部にシール接着剤9を周状に巡らせて接着する。外周側壁4と冷却器3との接触面の一部を切り取ることで、接触面とは高さが異なる段差を作成することで、切欠きを形成しても良い。外周側壁4は、エリアEの周囲を隙間なく覆っているため、切欠きもエリアEの周囲を覆う。また、シール接着剤9が硬化した後には、シール接着剤9が硬化することで形成される接着剤硬化層が形成される。接着剤硬化層も切欠き内に存在しながら、エリアEの周囲を覆う。シール接着剤9としては、接着強度、耐久性を踏まえて、例えば、シリコン系接着剤、エポキシ系接着剤を利用することが可能である。特にシリコーン接着剤(TSEシリーズ)等が望ましい。
 上板5は、冷却器3と比較すると厚さの薄い薄板形状の部材である。上板5は、冷却器3と同様に、金属材料であり、一般の樹脂素材より高い剛性及び延性を有している。上板5は、鉄、ステンレス鋼、またはアルミニウムを主成分として含む。
 外周側壁4は、エリアEの周囲を隙間なく覆うため、外周側壁4は内側にエリアEを含み、両端が開口した筒部材とも言い換えることができる。外周側壁4の開口の一方には台座が固定され、他方の開口は上板5が固定される。
 上板5は、外周側壁4に対してボルト等の締結部材6bで締結される。上板5と外周側壁4とを締結する締結部材6bが、請求項における第2締結部材となる。また、外周側壁4の上板5との接触面には、台座の接触面と同様に、切欠きを設ける。切欠きには、シール接着剤9を周状に巡らせて接着する。
 締結部材6a、締結部材6b及びシール接着剤9を用いることで、台座と外周側壁4、及び上板5と外周側壁4とは、気密性を有する状態で接合している。つまり、台座、外周側壁4及び上板5で囲われ、サブモジュール1を内包する空間は密閉される。
[1-2.作用効果]
 以上のような本実施形態の半導体装置では、半導体チップ21の短絡故障の際の電極板22a、22bの離間の防止と、サブモジュール1から噴出する内容物によるサブモジュール1内の圧力上昇や噴出物の直接的な影響による半導体パッケージの破壊を防止する。以下、それぞれの観点から作用効果を説明する。
(電極板の離間防止)
 本実施形態の半導体装置は、補強ケース23を有する。補強ケース23は、半導体チップ21の短絡故障の際に電極板22aと電極板22bとの離間を防止する電極離間抑制部材となると共に、故障の際にサブモジュール1から噴出する内容物の噴出方向を規制する噴出方向規制部材となる。例えば、何らかの要因により半導体チップ21が短絡故障を起こし、半導体チップ21に大電流が流れ込み、これにより半導体チップ21が破裂した場合、半導体チップ21が破裂により発生した破裂力によって、上下の電極板22が離間する向きに荷重を受ける。
 半導体チップ21が短絡故障して破裂した際における上下電極板22の離間に関しては、サブモジュール1の内部に配設された金属製の補強ケース23が、その剛性によって電極板22の離間を抑制する。つまり、補強ケース23は、1面にケース開放面26を有する金属製の直方体である。ケース開放面26と対向する面に対して立設する面(後述の噴出方向規面)の端部より立設する4つの面のうち、平行となる2つの面が電極離間抑制部材となり、電極板22が上下方向へ離れることを防止している。すなわち、2つ電極を上下方向から挟む電極離間抑制部材とそれらの相対位置を固定する補強ケース23の側面により、半導体チップ21が短絡故障した後でも、2つの電極間の距離が変化することは無い。これにより、故障箇所近傍の接合部材(はんだ)や電極板22が溶融・凝固し、導通状態を維持することができる。
(内圧上昇による半導体パッケージの破壊防止)
 また、半導体チップ21が破裂した場合、内部部品の溶融・気化によってサブモジュール1の内部で大きな破裂が生じ、内容物が高圧でサブモジュール1から噴出される。
 サブモジュール1のケース開放面26からはサブモジュール1内部で高圧となった内容物が図5に示すように噴出する。図5は、内容物が噴出した様子を示すサブモジュールの断面図である。サブモジュール1からの噴出圧力は、数十MPaにも及ぶ圧力となり、半導体パッケージ100内部の圧力を数百kPa上昇させるほどの圧力が生じる。仮にこの圧力を、絶縁性は高いが脆性材料である樹脂ケースのみで破断なく抑えようとした場合には、上板5を非常に厚く設計する必要があり、半導体パッケージ100の大型化や重量化を避けられなくなる。
 図6は、ある条件において上板5を樹脂で構成した際に半導体パッケージ100内部に圧力がかかったときの上板厚さと応力の関係を導出したものである。この結果から、上板5を樹脂で構成した場合には、少なくとも30~40mm以上の板厚が必要であることがわかる。
 上板5をアルミニウム等の延性材料である金属で構成した場合には、降伏応力を超えてからも塑性変形によって破断せずに変形が増大するため、破断なしに荷重を受けることが可能となる。図7は、半導体パッケージ100内部で短絡故障が生じ、内部圧力が上昇したときの状態を示す断面図である。
 上板5を延性材料からなる金属で構成した場合には、締結部材6で固定された端部を支点として、上板5全体が大きく湾曲しながら変形することが可能となる。また、このように上板5が変形しながら荷重を受けることによって、固定部における荷重も緩和されるため、従来のような大荷重で押圧する機構を用いなくてもよい。さらに、荷重の大部分を締結部材6a、bで受けることになるため、シール接着剤9に加わる荷重は相対的に小さくなる。したがって、締結部材6a、bの内側に周状にシール接着剤9を塗布して上板5と外周側壁4を接合することにより、半導体パッケージ100内部の内容物が、外部に噴出することを防ぐことが可能となる。
(噴出物による外周側壁4の破壊防止)
 図3に示すようにサブモジュール1のケース開放面26が外周側壁4に直接対向しないように配置することで、サブモジュール1から噴出される高圧力が直接外周側壁4に作用することはなくなる。
 サブモジュール1から噴出される内容物の噴射方向は、補強ケース23により規制される。つまり、開放面26の向きが噴射方向となる。つまり、半導体チップ21の実装平面上には、補強ケース23のケース開放面26と対向する面(以降、噴出方向規面とする)が位置する。この噴出方向規面が噴出方向規制部材となり、サブモジュール1から噴出する内容物の噴出方向を規制する。半導体チップ21が破裂した場合には、一部の内容物は噴出方向規面に衝突することで、噴出方向がケース開放面26側へと変化する。加えて、ケース開放面26を外周側壁4へと向けないことで、外周側壁4は直接高圧力の荷重に耐える強度は不要となり、半導体パッケージ100の内圧上昇に対して破断しない程度の強度で十分となる。
 図8にサブモジュール1のケース開放面26から噴出した内容物が外周側壁4に与える圧力と距離の関係を示した図である。この条件においては、噴出部から15~25mm程度離れたところで、数百kPa程度となり、半導体チップ21の破裂時における半導体パッケージ100内部圧力と同程度となる。
 したがって、外周側壁4をサブモジュール1のケース開放面26から、20mm程度の距離を確保することで、圧力による直接作用の影響を小さくすることができる。例えば、サブモジュール1の一辺が30mmの場合には、ケース開放面26と、外周側壁4との間に他のサブモジュール1を介在させることで、噴出物の圧力による外周側壁4への影響を抑制することができる。
 以上のように、本実施形態は、半導体チップ21の短絡故障の際に電極板22a、22bの離間を防止させたことによる優れた運転継続性、及びサブモジュール1から噴出する内容物によるサブモジュール内の圧力上昇や噴出する内容物による半導体パッケージの破壊の効果を有する。それぞれの効果は、単独または複合的に影響することで、安全性や運転継続性に優れた半導体パッケージを実現することが可能となる。
[2.第2実施形態]
[2-1.構成]
 以下では、図9を参照しつつ本実施形態に係る半導体パッケージについて説明する。図9は、第2の実施形態における半導体パッケージ101の部分断面図である。
 本実施例においては、上板5に替えて、端部を折り曲げ加工した上板31を配置する。このように上板31の端部に折り曲げ部31aを設けることにより、上板31が半導体パッケージ101の内圧上昇によって変形する際、変形を抑制するリブ効果を有することになる。
[2-2.作用効果]
 半導体チップ24が破裂した際の圧力によって内容物が噴出する際には、外周側壁4と上板31の接合部に隙間が生じることが要因となるため、本実施例のようにこの接合部近傍の曲げ剛性を上げることで、内容物の噴出を抑制しやすくなる。
 同様の効果を得るために、上板の端部に折り曲げ部を設けるのではなく、図10に示すように、上板32の外周側壁4の内側に凹凸部32aを設けることで、上板32全体の曲げ剛性を向上させ、上板32が半導体パッケージ102内部の圧力上昇で膨らむ変形を抑制することができる。このような構成とした場合でも、上板32と外周側壁4の接合部における隙間を抑制する効果が得られ、内容物の噴出を抑制しやすくなる。
[3.第3実施形態]
[3-1.構成]
 以下では、図11を参照しつつ本実施形態に係る半導体パッケージについて説明する。図11は、第3の実施形態における半導体パッケージ103の部分断面図である。
 本実施例において上板5に替えて、端部の接着剤塗布部に突出部33aを有する上板33を配置する。また、突出部33aに勘合する形で外周側壁4の上板接合部に凹部34aを設け、突出部33aと凹部34aによって、ラビリンス構造を形成する。さらに、上板突出部33aと外周側壁凹部34aで形成される隙間を埋めるようにシール接着剤35を充填する。
[3-2.作用効果]
 このような構成とすることにより、上板突出部33aが曲げ変形に対してリブ効果を得るため、曲げ剛性が向上し、上板33の変形が抑制されることで、外周側壁4との間に隙間が生じることを抑制することができる。
 また、仮に上板34が変形して外周側壁4との間に隙間が生じようとした場合でも、突出部33aと凹部34aによってラビリンス構造が形成されるとともに、その隙間に接着剤35が充填されていることから、突出部33aが凹部34aから抜けるほど大きな変形とならない限り、内容物が半導体パッケージ103の外部に噴出することをなくすことができる。
[4.他の実施形態]
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 また、第1実施形態乃至第3実施形態に記載した上板5、上板31、上板32及び上板33の電位を、半導体チップ21の片側の電位と等電位にする構成を加えても良い。
 図12は、本実施形態の一例を示す断面図であり、図3におけるA-A断面図である。図12においては、電極板22bは半導体チップ21のエミッタと接続される。上板5は、バスバー7と電位接続部Bにおいて、電気的に接続する。上板5は、電極板22b及びバスバー7を含む通電経路EP1と等電位となっている。
 このようにすることで、上板5を、電極板22b及びバスバー7を含む通電経路EP1や、電極板22b、電極ポスト212、及び冷却器32を経由する電気経路EP2から独立させないことが可能となる。例えば、上板5が他の通電回路に含まれない場合には、周囲の環境の影響により、いくらかの電位が生じることになる。大きな電位が生じると、思いがけない放電が起きる可能性があり、安全上問題がある。
 そこで、上板5の電位を制御するために、接地側の通電経路EP1及び電気経路EP2の何れかと接続する。これにより、上板5の電位を制御した半導体パッケージ100を実現することが可能となる。
100…半導体パッケージ
101…半導体パッケージ
102…半導体パッケージ
103…半導体パッケージ
1…サブモジュール
2…電極ポスト
3…冷却器
4…外周側壁
5…上板
6…締結部材
7…バスバー
8…絶縁樹脂
11…電極端子
21…半導体チップ
22…電極板
23…補強ケース
25…ゲートコネクタ
26…ケース開放面
31…上板
31a…折り曲げ部
32…上板
32a…凹凸部
33…上板
33a…突出部
33a…上板突出部
34…上板
34a…凹部
34…外周側壁
34a…外周側壁凹部
35…シール接着剤

Claims (11)

  1.  内部に半導体チップを有する複数のサブモジュールを有し、
     電気的に並列接続された前記サブモジュールを内包する半導体パッケージにおいて、
     前記サブモジュールと対になり、前記サブモジュールを支持する電極ポストと、
     前記電極ポストを一方の面に固定する平板状の金属製の台座と、
     前記台座より立設し、前記複数のサブモジュールの周囲を囲う樹脂製の外周側壁と、
     前記外周側壁が形成する開口を塞ぐ金属製の上板と、
     前記台座と前記外周側壁を締結により固定する第1締結部材と
     前記上板と前記外周側壁を締結により固定する第2締結部材と、
     を備え、
     前記台座、外周側壁、及び上板は、複数の前記サブモジュールを内包する空間を密閉していること、
     を特徴とすることを特徴とする半導体パッケージ。
  2.  前記台座と前記外周側壁、及び前記上板と前記外周側壁の少なくとも一方は、前記締結部材による締結とともに、接着剤で接着されていること、
     を特徴とする請求項1記載の半導体パッケージ。
  3.  前記外周側壁は、
     前記台座または前記上板と接触する前記外周側壁の接触面の一部を削る切欠き部を備え、
     前記切欠き部には、前記接着剤が硬化することで形成される接着剤硬化層が形成されることを特徴とする請求項2に記載の半導体パッケージ。
  4.  前記サブモジュールは、前記半導体チップの実装平面において、
     前記半導体チップを中心に放射状に延長した延長面の少なくとも一部には、金属製の噴出方向規制部材が配置されることを特徴とする請求項1乃至3のいずれか1項に記載の半導体パッケージ。
  5.  前記サブモジュールは、前記半導体チップの実装平面に対して平行、且つ前記半導体チップの上下に配置される2枚の電極と、
     前記2枚の電極を挟んで配置される2枚の金属板を有する電極離間抑制部材と、
     を備え、
     前記噴出方向規制部材は、前記電極離間抑制部材の1つであり、電極離間抑制部材である2枚の金属板の相対位置を固定することを特徴とする請求項4に記載の半導体パッケージ。
  6.  前記電極離間抑制部材は、1面に開口を設けた開放面を有する金属製の直方体であり、
     前記噴出方向規制部材は、開放面と対向する前記直方体の1つの面であり、
     前記2枚の金属板は、前記噴出方向規制部材となる前記直方体の1つの面から立設する4つ面のうち、平行となる2つの面を構成する金属板であること、
     を特徴とする請求項5に記載の半導体パッケージ。
  7.  前記半導体チップの実装平面において、
     前記半導体チップを中心に放射状に延長した延長面の少なくとも一部には、金属部材が配置されない開放面を有し、
     前記開放面と前記外周側壁との間に他のサブモジュールを配置したこと、
     を特徴とする請求項1乃至6の何れか1項に記載の半導体パッケージ。
  8.  前記上板及び前記台座の少なくとも一方は、端部もしくは内部の一部が屈曲する屈曲部を備えること、
     を特徴とする請求項1乃至7の何れか1項に記載の半導体パッケージ。
  9.  前記上板及び前記台座の少なくとも一方は、端部もしくは内部の一部に突出部を備えること、
     を特徴とする請求項1乃至8の何れか1項に記載の半導体パッケージ。
  10.  前記外周側壁において、
     前記前記上板及び前記台座との接触面の少なくとも一方には、前記突出部と嵌合する凹部が形成されること、
     を特徴とする請求項9に記載の半導体パッケージ。
  11.  前記凹部の内部には、前記突出部が挿入されると共に接着剤硬化層が形成されること、
     を特徴とする請求項10に記載の半導体パッケージ。
PCT/JP2018/037492 2018-10-05 2018-10-05 半導体パッケージ WO2020070899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020551068A JP7087099B2 (ja) 2018-10-05 2018-10-05 半導体パッケージ
EP18936098.5A EP3863388A4 (en) 2018-10-05 2018-10-05 SEMICONDUCTOR HOUSING
PCT/JP2018/037492 WO2020070899A1 (ja) 2018-10-05 2018-10-05 半導体パッケージ
CN201880097289.XA CN112655285B (zh) 2018-10-05 2018-10-05 半导体封装

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037492 WO2020070899A1 (ja) 2018-10-05 2018-10-05 半導体パッケージ

Publications (1)

Publication Number Publication Date
WO2020070899A1 true WO2020070899A1 (ja) 2020-04-09

Family

ID=70055308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037492 WO2020070899A1 (ja) 2018-10-05 2018-10-05 半導体パッケージ

Country Status (4)

Country Link
EP (1) EP3863388A4 (ja)
JP (1) JP7087099B2 (ja)
CN (1) CN112655285B (ja)
WO (1) WO2020070899A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7576002B2 (ja) 2021-06-09 2024-10-30 株式会社Tmeic 半導体素子の積層構造体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420574B (zh) * 2022-03-31 2022-06-21 威海嘉瑞光电科技股份有限公司 一种柔性封装构件及其形成方法
CN116093500A (zh) * 2022-12-23 2023-05-09 浙江极氪智能科技有限公司 电池模组以及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899836U (ja) * 1981-12-26 1983-07-07 東立通信工業株式会社 大電力半導体素子の爆発破片飛散防止装置
JP3258200B2 (ja) 1995-05-31 2002-02-18 株式会社東芝 圧接型半導体装置
JP2003069270A (ja) * 2001-08-24 2003-03-07 Nissan Motor Co Ltd 冷却筐体
JP2004095929A (ja) * 2002-09-02 2004-03-25 Nissan Motor Co Ltd 電子部品の筐体構造
JP4385324B2 (ja) 2004-06-24 2009-12-16 富士電機システムズ株式会社 半導体モジュールおよびその製造方法
WO2017038316A1 (ja) * 2015-09-04 2017-03-09 日立オートモティブシステムズ株式会社 車載制御装置
JP2018110218A (ja) * 2017-01-05 2018-07-12 株式会社東芝 半導体装置およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977251B1 (en) * 1997-02-10 2011-11-16 Panasonic Corporation Resin sealed semiconductor device and method for manufacturing the same
JP4885425B2 (ja) * 2004-01-28 2012-02-29 京セラ株式会社 半導体素子収納パッケージ
JP4278680B2 (ja) * 2006-12-27 2009-06-17 三菱電機株式会社 電子制御装置
US8264079B2 (en) * 2007-06-28 2012-09-11 Panasonic Corporation Semiconductor device mounted structure and its manufacturing method, semiconductor device mounting method, and pressing tool
JP2014033092A (ja) * 2012-08-03 2014-02-20 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP6356450B2 (ja) * 2014-03-20 2018-07-11 株式会社東芝 半導体装置および電子回路装置
US20170117874A1 (en) * 2014-03-31 2017-04-27 Nagase Chemtex Corporation Circuit member and mounting structure having hollow space, and method for producing the mounting structure
KR20160035916A (ko) * 2014-09-24 2016-04-01 삼성전기주식회사 전력 모듈 패키지 및 그 제조방법
KR102424402B1 (ko) * 2015-08-13 2022-07-25 삼성전자주식회사 반도체 패키지 및 그 제조방법
CN204927049U (zh) * 2015-09-14 2015-12-30 安徽富吉电容有限责任公司 一种内置式防爆电容器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899836U (ja) * 1981-12-26 1983-07-07 東立通信工業株式会社 大電力半導体素子の爆発破片飛散防止装置
JP3258200B2 (ja) 1995-05-31 2002-02-18 株式会社東芝 圧接型半導体装置
JP2003069270A (ja) * 2001-08-24 2003-03-07 Nissan Motor Co Ltd 冷却筐体
JP2004095929A (ja) * 2002-09-02 2004-03-25 Nissan Motor Co Ltd 電子部品の筐体構造
JP4385324B2 (ja) 2004-06-24 2009-12-16 富士電機システムズ株式会社 半導体モジュールおよびその製造方法
WO2017038316A1 (ja) * 2015-09-04 2017-03-09 日立オートモティブシステムズ株式会社 車載制御装置
JP2018110218A (ja) * 2017-01-05 2018-07-12 株式会社東芝 半導体装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3863388A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7576002B2 (ja) 2021-06-09 2024-10-30 株式会社Tmeic 半導体素子の積層構造体

Also Published As

Publication number Publication date
JP7087099B2 (ja) 2022-06-20
EP3863388A1 (en) 2021-08-11
CN112655285A (zh) 2021-04-13
CN112655285B (zh) 2022-04-01
EP3863388A4 (en) 2022-06-15
JPWO2020070899A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020070899A1 (ja) 半導体パッケージ
US8637979B2 (en) Semiconductor device
JP5382049B2 (ja) 半導体装置
JP6233507B2 (ja) パワー半導体モジュールおよび複合モジュール
JP4581885B2 (ja) 半導体装置
US8610263B2 (en) Semiconductor device module
US20140367842A1 (en) Power semiconductor device and method of manufacturing the same
JPWO2012143964A1 (ja) 半導体装置及びこれを備えたインバータ装置、並びにこれらを備えた車両用回転電機
JP2018110218A (ja) 半導体装置およびその製造方法
US9209099B1 (en) Power semiconductor module
WO2017130370A1 (ja) 半導体装置
JP6860453B2 (ja) パワー半導体モジュール
JP6576609B1 (ja) 半導体装置
JP6818636B2 (ja) パワー半導体モジュール
WO2021009856A1 (ja) 半導体装置
JP2019047081A (ja) 半導体装置及び半導体装置用サブモジュール
JP6922002B2 (ja) 半導体装置
JP2019004023A (ja) 半導体ユニット
US20240244796A1 (en) Circuit device
JP2019021831A (ja) 半導体装置及び半導体装置用サブモジュール
JP2019046839A (ja) パワー半導体モジュール
JP7576002B2 (ja) 半導体素子の積層構造体
JP6730450B2 (ja) 半導体装置
JP2022180181A (ja) 半導体装置
JP2020038893A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018936098

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018936098

Country of ref document: EP

Effective date: 20210506