WO2020066916A1 - 熱可塑性ノルボルネン系樹脂、成形体及びその製造方法 - Google Patents
熱可塑性ノルボルネン系樹脂、成形体及びその製造方法 Download PDFInfo
- Publication number
- WO2020066916A1 WO2020066916A1 PCT/JP2019/037035 JP2019037035W WO2020066916A1 WO 2020066916 A1 WO2020066916 A1 WO 2020066916A1 JP 2019037035 W JP2019037035 W JP 2019037035W WO 2020066916 A1 WO2020066916 A1 WO 2020066916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- norbornene
- stretching
- optical film
- hydride
- thermoplastic norbornene
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a thermoplastic norbornene-based resin containing a hydride of a norbornene-based polymer, a molded article thereof, and a method for producing the molded article.
- Patent Documents 1 to 5 disclose optical films formed of a thermoplastic norbornene-based resin.
- an optical film for application to an image display device such as a liquid crystal display device has been required to have excellent retardation development, and in particular, a film excellent in thickness direction retardation Rth development is required.
- a film excellent in thickness direction retardation Rth development is required.
- thermoplastic norbornene-based resin excellent in the development of birefringence is required.
- an optical film using a thermoplastic norbornene-based resin is generally manufactured as a stretched film.
- a stretched film formed of a thermoplastic norbornene-based resin tends to have low adhesive strength when bonded to another film. Therefore, development of a thermoplastic norbornene-based resin capable of obtaining an optical film having high adhesive strength is also required.
- the present invention has been made in view of the above problems, and is a thermoplastic norbornene-based resin having excellent birefringence and capable of obtaining high adhesive strength after stretching; and the thermoplastic norbornene-based resin. It is an object to provide a molded article formed of a resin and a method for producing the same.
- the present inventor has made intensive studies to solve the above-mentioned problems. As a result, the inventor of the present invention has determined that the weight average molecular weight Mw is within a predetermined range, the hydride of a norbornene-based polymer having a low molecular weight of less than 10,000 is included, and the glass transition temperature Tg within a predetermined range.
- the present inventors have found that a thermoplastic norbornene-based resin having excellent birefringence and high adhesive strength after stretching can be obtained, thereby completing the present invention. That is, the present invention includes the following.
- thermoplastic norbornene-based resin containing a hydride of a norbornene-based polymer The glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following formula (1), The weight average molecular weight Mw of the hydride satisfies the following formula (2);
- thermoplastic norbornene-based resin in which a ratio L of the hydride having a molecular weight of 10,000 or less to 100% of the amount of the hydride contained in the thermoplastic norbornene-based resin satisfies the following formula (3).
- thermoplastic norbornene resin Tg + 15 ° C., the birefringence [Delta] n R expressed when subjected to free end uniaxial stretching at 1.5 times in one minute, satisfies the following expression (4), (1) 4.
- the molded article according to [3] which is an optical film.
- thermoplastic norbornene-based resin that is excellent in expressing birefringence and can obtain high adhesive strength after stretching; and a molded article formed of the thermoplastic norbornene-based resin and production thereof A method;
- nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and in a direction giving the maximum refractive index.
- ny represents a refractive index in the in-plane direction and a direction orthogonal to the direction of nx.
- nz represents the refractive index in the thickness direction.
- d represents the thickness of the film.
- the measurement wavelength is 550 nm unless otherwise specified.
- a “long” film refers to a film having a length of 5 times or more with respect to the width of the film, preferably having a length of 10 times or more, and specifically, Refers to a film that is long enough to be wound up in a roll and stored or transported.
- the upper limit of the ratio of the length to the width of the film is not particularly limited, but may be, for example, 100,000 times or less.
- polarizing plate includes not only a rigid member but also a flexible member such as a resin film, unless otherwise specified.
- thermoplastic norbornene-based resin is a thermoplastic resin containing a hydride of a norbornene-based polymer.
- a hydride of a norbornene-based polymer contained in a thermoplastic norbornene-based resin may be appropriately referred to as a “norbornene-based hydride”.
- the thermoplastic norbornene resin satisfies the following first to third requirements.
- the glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following equation (1). (1) 105 ° C ⁇ Tg ⁇ 120 ° C
- the weight average molecular weight Mw of the norbornene-based hydride contained in the thermoplastic norbornene-based resin satisfies the following formula (2). (2) 36000 ⁇ Mw
- the ratio L of the norbornene-based hydride having a molecular weight of 10,000 or less with respect to 100% of the norbornene-based hydride contained in the thermoplastic norbornene-based resin satisfies the following formula (3).
- the above ratio L may be referred to as “low molecular ratio L”.
- thermoplastic norbornene-based resin according to the present embodiment that satisfies the above first to third requirements is excellent in birefringence due to stretching.
- thermoplastic norbornene-based resin can obtain high adhesive strength after stretching. Therefore, by using the thermoplastic norbornene-based resin according to the present embodiment, an optical film having large retardation in the thickness direction and high adhesive strength can be obtained.
- the norbornene-based hydride contained in the thermoplastic norbornene-based resin according to the present embodiment is a polymer having a structure obtained by hydrogenating a norbornene-based polymer obtained by polymerizing a norbornene-based monomer. Therefore, the norbornene-based hydride usually includes a structure obtained by hydrogenating a repeating structure obtained by polymerizing a norbornene-based monomer.
- a norbornene-based hydride is, for example, selected from the group consisting of a ring-opened polymer of a norbornene-based monomer and a ring-opened copolymer of a norbornene-based monomer and any monomer.
- a hydride of one or more ring-opening polymers one or more selected from the group consisting of an addition polymer of a norbornene-based monomer, and an addition copolymer of a norbornene-based monomer and an arbitrary monomer. Hydrides of addition polymers.
- the number of the norbornene-based hydride contained in the thermoplastic norbornene-based resin may be one, or two or more.
- the norbornene-based monomer is a monomer containing a norbornene structure in a molecule.
- Examples of the norbornene-based monomer include bicyclo [2.2.1] hept-2-ene (common name: norbornene) and tricyclo [4.3.0.1 2,5 ] deca-3,7- Diene (common name: dicyclopentadiene), tetracyclo [4.4.0.1 2,5 .
- dodeca-3-ene (common name: tetracyclododecene), norbornene-based monomer having no aromatic ring structure; 5-phenyl-2-norbornene, 5- (4-methylphenyl) Norbornene-based monomers having an aromatic substituent, such as -2-norbornene, 5- (1-naphthyl) -2-norbornene, and 9- (2-norbornen-5-yl) -carbazole; 1,4-methano -1,4,4a, 4b, 5,8,8a, 9a-octahydrofluorene, 1,4-methano-1,4,4a, 9a-tetrahydrofluorene (common name: methanotetrahydrofluorene), 1,4- Methano-1,4,4a, 9a-tetrahydrodibenzofuran, 1,4-methano-1,4,4a, 9a-tetrahydroc
- Examples of the substituent include an alkyl group such as a methyl group, an ethyl group, a propyl group, and an isopropyl group; an alkylidene group; an alkenyl group;
- Examples of the polar group include a hetero atom and an atomic group having a hetero atom.
- Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
- the polar group include a halogen group such as a fluoro group, a chloro group, a bromo group, and an iodo group; a carboxyl group; a carbonyloxycarbonyl group; an epoxy group; a hydroxy group; an oxy group; an alkoxy group; an ester group; A silyl group; an amino group; a nitrile group; a sulfone group; a cyano group; an amide group; an imide group;
- the number of substituents may be one or two or more.
- the types of two or more substituents may be the same or different.
- the norbornene-based monomer preferably has a small amount of a polar group, and more preferably has no polar group.
- One of the norbornene-based monomers may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
- the specific type and polymerization ratio of the above-mentioned norbornene-based monomer are desirably selected so as to obtain a thermoplastic norbornene-based resin having a desired glass transition temperature Tg.
- the glass transition temperature of the norbornene-based hydride depends on the type and the polymerization ratio of the norbornene-based monomer which is a raw material of the norbornene-based hydride. Therefore, the glass transition temperature of the norbornene-based hydride can be adjusted by appropriately adjusting the type and polymerization ratio of the norbornene-based monomer, and thus the glass transition temperature Tg of the thermoplastic norbornene-based resin containing the norbornene-based hydride. Can be adjusted to satisfy Expression (1).
- the norbornene-based hydride is preferably a hydride of a polymer of a monomer containing a tetracyclododecene-based monomer.
- Such a norbornene-based hydride is usually a structure obtained by hydrogenating a repeating structure obtained by polymerizing a tetracyclododecene-based monomer (hereinafter, appropriately referred to as a “tetracyclododecene-based hydrogenated structure”). Is included.)
- the tetracyclododecene-based monomer represents a monomer selected from the group consisting of tetracyclododecene and a tetracyclododecene derivative.
- a tetracyclododecene derivative is a compound having a structure in which a substituent is bonded to a ring of tetracyclododecene.
- the number of substituents may be one or two or more.
- the types of two or more substituents may be the same or different.
- Preferred tetracyclododecene derivatives include, for example, 8-ethylidene-tetracyclo [4.4.0.1 2,5 .
- the ratio (polymerization ratio) of the tetracyclododecene-based monomer contained in the total amount of the monomer as a raw material of the norbornene-based hydride to 100% by weight is preferably 10% by weight or more, and more preferably 15% by weight or more.
- % By weight or more more preferably 20% by weight or more, particularly preferably 25% by weight or more, preferably 50% by weight or less, more preferably 45% by weight or less, further preferably 40% by weight or less, particularly preferably 35% by weight or less. % By weight or less.
- the glass transition temperature of the norbornene-based hydride can be increased, so that the glass transition temperature Tg of the thermoplastic norbornene-based resin falls within the range of the formula (1). Easy to fit.
- the proportion of the repeating structure (monomer unit) derived from a certain monomer in the norbornene-based hydride coincides with the proportion (polymerization ratio) of the monomer in all the monomers. Therefore, usually, the ratio of the tetracyclododecene-based hydrogenated structure in the norbornene-based hydride corresponds to the polymerization ratio of the tetracyclododecene-based monomer to the total amount of the monomer.
- the ratio of the tetracyclododecene-based hydrogenated structure to 100% by weight of the norbornene-based hydride preferably falls within the same range as the polymerization ratio of the tetracyclododecene-based monomer.
- the norbornene-based hydride is preferably a polymer hydride of a monomer containing a dicyclopentadiene-based monomer.
- a norbornene-based hydride is usually a structure obtained by hydrogenating a repeating structure obtained by polymerizing a dicyclopentadiene-based monomer (hereinafter sometimes referred to as “dicyclopentadiene-based hydrogenated structure” as appropriate). .)including.
- Dicyclopentadiene-based monomer represents a monomer selected from the group consisting of dicyclopentadiene and dicyclopentadiene derivatives.
- a dicyclopentadiene derivative is a compound having a structure in which a substituent is bonded to a ring of dicyclopentadiene.
- the number of substituents may be one or two or more.
- the types of two or more substituents may be the same or different.
- One type of dicyclopentadiene-based monomer may be used alone, or two or more types may be used in combination.
- the ratio (polymerization ratio) of the dicyclopentadiene-based monomer contained in the total amount of the monomer as a raw material of the norbornene-based hydride to 100% by weight is preferably 50% by weight or more, more preferably 55% by weight. % Or more, more preferably 60% by weight or more, particularly preferably 65% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less, further preferably 80% by weight or less, and particularly preferably 75% by weight or less. It is as follows.
- the glass transition temperature of the norbornene-based hydride can be increased, so that the glass transition temperature Tg of the thermoplastic norbornene-based resin falls within the range of the formula (1). easy.
- the ratio of the dicyclopentadiene-based hydrogenated structure in the norbornene-based hydride corresponds to the polymerization ratio of the dicyclopentadiene-based monomer to the total amount of the monomers. Therefore, the ratio of the dicyclopentadiene-based hydrogenated structure to 100% by weight of the norbornene-based hydride preferably falls within the same range as the polymerization ratio of the dicyclopentadiene-based monomer.
- the ratio of the amounts thereof is preferably in a predetermined range.
- the amount of the dicyclopentadiene-based monomer is preferably 100 parts by weight or more, more preferably 125 parts by weight or more, and particularly preferably 150 parts by weight or more. It is at least 500 parts by weight, preferably at most 500 parts by weight, more preferably at most 450 parts by weight, particularly preferably at most 400 parts by weight.
- the amount of the dicyclopentadiene-based hydrogenated structure is preferably 100 parts by weight or more, more preferably 125 parts by weight or more, with respect to 100 parts by weight of the tetracyclododecene-based hydrogenated structure. It is preferably at least 150 parts by weight, preferably at most 500 parts by weight, more preferably at most 450 parts by weight, particularly preferably at most 400 parts by weight.
- the glass transition temperature of the norbornene-based hydride can be increased, so that the glass transition temperature Tg of the thermoplastic norbornene-based resin can be easily set in the range of the formula (1).
- the type of the arbitrary monomer is not limited as long as a thermoplastic norbornene-based resin having a desired glass transition temperature Tg can be obtained.
- the optional monomer capable of ring-opening copolymerization with the norbornene-based monomer include monocyclic olefins such as cyclohexene, cycloheptene and cyclooctene and derivatives thereof; and cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene.
- Examples of the optional monomer capable of addition copolymerization with the norbornene-based monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene and 1-butene and derivatives thereof; cyclobutene and cyclopentene , Cyclohexene and the like, and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene;
- One kind of the arbitrary monomer may be used alone, or two or more kinds may be used in combination.
- the norbornene-based hydride may be one in which non-aromatic unsaturated bonds in the norbornene-based polymer are hydrogenated, or one in which aromatic unsaturated bonds in the norbornene-based polymer are hydrogenated. Both the non-aromatic unsaturated bond and the aromatic unsaturated bond in the norbornene-based polymer may be hydrogenated. Above all, a norbornene-based hydride in which both a non-aromatic unsaturated bond and an aromatic unsaturated bond in the norbornene-based polymer are hydrogenated is preferable.
- the photoelastic coefficient can be reduced. Further, usually, the properties such as mechanical strength, moisture resistance and heat resistance of the thermoplastic norbornene resin can be effectively improved.
- the glass transition temperature of the norbornene-based hydride is preferably 105 ° C. or higher, more preferably 106 ° C. or higher, particularly preferably 107 ° C. or higher, preferably 120 ° C. or lower, more preferably 118 ° C. or lower, and particularly preferably 117 ° C. or lower. It is as follows.
- a thermoplastic norbornene-based resin containing a norbornene-based hydride in which the type and the polymerization ratio of the norbornene-based monomer are adjusted so as to have a glass transition temperature in the above-mentioned range can increase the birefringence due to stretching.
- thermoplastic norbornene-based resin it is possible to obtain an optical film having a large retardation Rth in the thickness direction.
- a norbornene-based hydride having such a high glass transition temperature relaxation of the orientation of the norbornene-based hydride in a high-temperature environment can be suppressed. Therefore, since excellent heat resistance can be achieved, a change in the retardation Rth in the thickness direction of the optical film in a high-temperature environment can be suppressed.
- the glass transition temperature of the norbornene-based hydride can be measured using a differential scanning calorimeter in accordance with JIS K 6911 at a heating rate of 10 ° C./min.
- the glass transition temperature of the norbornene-based hydride can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based hydride, and furthermore, the low molecular ratio L.
- the norbornene hydride has a weight average molecular weight Mw that satisfies the formula (2).
- the weight average molecular weight Mw of the norbornene hydride is usually 36,000 or more, preferably 37000 or more, and particularly preferably 38000 or more.
- the thermoplastic norbornene-based resin can increase birefringence by stretching. Further, when the weight average molecular weight Mw of the norbornene-based hydride is large, the adhesive strength of the stretched thermoplastic norbornene-based resin can be increased.
- the upper limit of the weight average molecular weight Mw of the norbornene hydride is not particularly limited, but is preferably 50,000 or less, more preferably 47000 or less, and particularly preferably 45,000 or less.
- the weight average molecular weight Mw of the norbornene-based hydride is equal to or less than the above upper limit, the moldability of the thermoplastic norbornene-based resin can be improved.
- the weight average molecular weight Mw of the norbornene hydride can be measured by gel permeation chromatography using cyclohexane as an eluent in terms of polyisoprene.
- toluene can be used as an eluent.
- the weight average molecular weight Mw can be measured in terms of polystyrene.
- the weight average molecular weight Mw of the norbornene-based hydride in the above range is, for example, a method of adjusting the polymerization conditions of the norbornene-based polymer so as to obtain a high-molecular-weight norbornene-based polymer, and a method of separating the norbornene-based hydride by an appropriate separation method. It can be realized by a method of removing low molecular weight components, and the like.
- a method of adjusting the polymerization conditions of the norbornene-based polymer so as to obtain a norbornene-based polymer having a high molecular weight for example, a method of reducing the amount of the chain transfer material can be mentioned.
- a method of removing low molecular weight components from norbornene-based hydride by an appropriate separation method for example, a method of dissolving norbornene-based hydride in a good solvent, then adding a poor solvent, and removing only the precipitated high-molecular-weight component Is mentioned.
- the ratio (low molecular weight) L of the norbornene-based hydride having a molecular weight of 10,000 or less to 100% of the norbornene-based hydride contained in the thermoplastic norbornene-based resin satisfies the following formula (3).
- the low molecular weight L is usually 10.5% or less, preferably 10.3% or less, particularly preferably 10% or less.
- a small low molecular ratio L as described above indicates that the low molecular weight component having a molecular weight of 10,000 or less contained in the norbornene-based hydride is small.
- the thermoplastic norbornene-based resin can increase birefringence by stretching. Furthermore, when the low molecular weight component of the norbornene-based hydride is small, the adhesive strength of the stretched thermoplastic norbornene-based resin can be increased.
- the lower limit of the low molecular weight L is not particularly limited and is ideally 0%, but is usually 1% or more.
- the low molecular weight L can be calculated by measuring the molecular weight of the norbornene hydride by the gel permeation chromatography and integrating the amount of the component having a molecular weight of 10,000 or less from the measured value.
- the low-molecular ratio L of the norbornene-based hydride in the above range is, for example, a method of adjusting the polymerization conditions of the norbornene-based polymer so as to obtain a high-molecular-weight norbornene-based polymer, and a method of separating the norbornene-based hydride from an appropriate separation method. It can be realized by a method of removing low molecular weight components, and the like.
- a method of adjusting the polymerization conditions of the norbornene-based polymer so as to obtain a norbornene-based polymer having a high molecular weight for example, a method of reducing the amount of the chain transfer material can be mentioned.
- the molecular weight distribution Mw / Mn of the norbornene hydride is preferably 2.4 or less, more preferably 2.3 or less, and particularly preferably 2.2 or less.
- the molecular weight distribution is a ratio between the weight average molecular weight and the number average molecular weight, and is represented by “weight average molecular weight Mw / number average molecular weight Mn”.
- the lower limit of the molecular weight distribution of the norbornene-based hydride is usually 1.0 or more.
- the molecular weight distribution Mw / Mn of the norbornene hydride can be calculated from the weight average molecular weight Mw and the number average molecular weight Mn of the norbornene hydride.
- the number average molecular weight Mn of the norbornene-based hydride can be measured in terms of polyisoprene by gel permeation chromatography using cyclohexane as an eluent.
- toluene can be used as an eluent.
- the number average molecular weight Mn can be measured in terms of polystyrene.
- Norbornene-based hydride is excellent in the manifestation of birefringence by stretching. Therefore, the norbornene-based hydride usually has a large evaluation birefringence.
- the evaluation birefringence indicates a birefringence developed when a certain material is subjected to a free-end uniaxial stretching at a stretching temperature 15 ° C. higher than the glass transition temperature of the material by 1.5 times in one minute.
- the evaluation birefringence of the norbornene-based hydride is preferably 0.0025 or more, more preferably 0.00255 or more, and particularly preferably 0.0026 or more.
- a thermoplastic norbornene-based resin containing a norbornene-based hydride having such a large evaluation birefringence can exhibit large birefringence by stretching. Therefore, an optical film having a large retardation Rth in the thickness direction can be easily manufactured.
- the upper limit of the evaluation birefringence of the norbornene-based hydride is not particularly limited, but is preferably 0.006 or less, more preferably 0.005 or less, and particularly preferably 0.004 or less. When the evaluation birefringence of the norbornene-based hydride is equal to or less than the above upper limit, the retardation of the norbornene-based hydride can be easily adjusted.
- the evaluation birefringence of the norbornene-based hydride can be measured by the following method.
- a sheet is obtained by molding a norbornene-based hydride. This sheet is subjected to free-end uniaxial stretching.
- the free-end uniaxial stretching is stretching in one direction, and means stretching in which a restraining force is not applied to a sheet other than the stretching direction.
- the stretching temperature of the free-end uniaxial stretching is a temperature 15 ° C. higher than the glass transition temperature of the norbornene-based hydride.
- the stretching time is 1 minute, and the stretching ratio of the free-end uniaxial stretching is 1.5 times.
- the in-plane retardation of the central portion of the sheet is measured at a measurement wavelength of 550 nm, and the in-plane retardation is divided by the thickness of the central portion of the sheet to obtain an evaluation birefringence.
- the evaluation birefringence of the norbornene-based hydride can be adjusted, for example, by the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based hydride, and the weight-average molecular weight Mw and the low-molecular ratio L of the norbornene-based hydride. .
- the stress birefringence of the norbornene hydride is preferably at least 2150 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably at least 2200 ⁇ 10 ⁇ 12 Pa ⁇ 1 , particularly preferably at least 2250 ⁇ 10 ⁇ 12 Pa ⁇ 1 , It is preferably at most 4000 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably at most 3600 ⁇ 10 ⁇ 12 Pa ⁇ 1 , particularly preferably at most 3200 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
- the stress birefringence of the norbornene-based hydride is equal to or more than the lower limit of the above range, the birefringence due to the stretching of the thermoplastic norbornene-based resin can be increased.
- an optical film having a large retardation Rth in the thickness direction can be easily manufactured using the thermoplastic norbornene-based resin. Further, when the stress birefringence of the norbornene-based hydride is equal to or less than the upper limit of the above range, the retardation Re and Rth of the optical film manufactured using the thermoplastic norbornene-based resin can be easily controlled, and the retardation The variation in the inside can be suppressed.
- the stress birefringence of a norbornene-based hydride can be measured by the following method.
- the norbornene-based hydride is formed into a sheet to obtain a sheet.
- a weight having a predetermined weight (for example, 55 g) is fixed to one of the clips.
- a sheet is placed in an oven set at a predetermined temperature (for example, a temperature higher by 15 ° C. than the glass transition temperature of the norbornene-based hydride) for a predetermined time (for example, 1 hour) with the clip having the unfixed weight as a starting point.
- a stretching process is performed.
- the stretched sheet is cooled slowly and returned to room temperature.
- the in-plane retardation at the center of the sheet is measured at a measurement wavelength of 650 nm, and this in-plane retardation is divided by the thickness at the center of the sheet to calculate a ⁇ n value. Then, the ⁇ n value is divided by the stress applied to the sheet (in the above case, the stress applied when a predetermined weight is fixed) to obtain the stress birefringence.
- the stress birefringence of the norbornene-based hydride can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based hydride, and the weight-average molecular weight Mw and the low-molecular ratio L of the norbornene-based hydride. .
- the norbornene-based polymer can be produced, for example, by a production method including polymerizing a norbornene-based monomer and any monomer used as needed in the presence of a suitable catalyst. Then, the obtained norbornene-based polymer is contacted with hydrogen in the presence of a hydrogenation catalyst containing a transition metal such as nickel, palladium, or ruthenium to hydrogenate carbon-carbon unsaturated bonds. According to the method, the above-mentioned norbornene-based hydride can be produced.
- the proportion of the norbornene-based hydride contained in the thermoplastic norbornene-based resin is not particularly limited. From the viewpoint of utilizing the excellent characteristics of the norbornene-based hydride, the proportion of the norbornene-based hydride contained in the thermoplastic norbornene-based resin is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight. And particularly preferably from 95% by weight to 100% by weight.
- thermoplastic norbornene-based resin may include any component other than the norbornene-based hydride in combination with the norbornene-based hydride.
- optional components for example, ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, reinforcing agents, antiblocking agents, Examples include anti-fogging agents, release agents, pigments, organic or inorganic fillers, neutralizing agents, lubricants, decomposers, metal deactivators, stain inhibitors, antibacterial agents and the like.
- One type of optional component may be used alone, or two or more types may be used in combination at an arbitrary ratio.
- thermoplastic norbornene resin has a glass transition temperature Tg that satisfies the above formula (1).
- the glass transition temperature Tg of the thermoplastic norbornene-based resin is usually 105 ° C or higher, preferably 106 ° C or higher, particularly preferably 107 ° C or higher, usually 120 ° C or lower, preferably 118 ° C or lower, particularly preferably 117 ° C. or lower.
- a thermoplastic norbornene-based resin having a glass transition temperature Tg in the above range can increase birefringence by stretching. Therefore, by using this thermoplastic norbornene-based resin, it is possible to obtain an optical film having a large retardation Rth in the thickness direction.
- thermoplastic norbornene-based resin having such a high glass transition temperature Tg
- relaxation of the orientation of the norbornene-based hydride in a high-temperature environment can be suppressed. Therefore, since excellent heat resistance can be achieved, a change in the retardation Rth in the thickness direction of the optical film in a high-temperature environment can be suppressed.
- thermoplastic norbornene-based resin can be measured using a differential scanning calorimeter in accordance with JIS K 6911 at a heating rate of 10 ° C / min.
- the glass transition temperature Tg of the thermoplastic norbornene-based resin can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based hydride, the low molecular ratio L, and the content of the norbornene-based hydride. .
- thermoplastic norbornene-based resins have high birefringence due to stretching. Therefore, when the thermoplastic norbornene-based resin is stretched, large birefringence appears.
- thermoplastic norbornene-based resin preferably has an evaluation birefringence [Delta] n R satisfying the following formula (4). (4) 0.0025 ⁇ ⁇ n R
- evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is preferably 0.0025 or more, more preferably 0.00255 or more, and particularly preferably 0.0026 or more.
- the thermoplastic norbornene-based resin having such a large evaluation birefringence ⁇ n R can exhibit large birefringence by stretching. Therefore, an optical film having a large retardation Rth in the thickness direction can be easily manufactured.
- the upper limit of the evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is no particular restriction is not, preferably 0.006 or less, more preferably 0.005 or less, particularly preferably 0.004 or less. If the evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is more than the upper limit of the above, it is possible to easily adjust the retardation of the thermoplastic norbornene resin.
- thermoplastic norbornene resin Evaluation birefringence [Delta] n R of the thermoplastic norbornene resin can be measured by the following methods.
- a sheet is obtained by molding a thermoplastic norbornene-based resin. This sheet is subjected to free-end uniaxial stretching.
- the stretching temperature of the free-end uniaxial stretching is a temperature 15 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene-based resin (that is, Tg + 15 ° C.).
- the stretching time is 1 minute, and the stretching ratio of the free-end uniaxial stretching is 1.5 times.
- the in-plane retardation Re (a) at the center of the sheet is measured at a measurement wavelength of 550 nm, and the in-plane retardation Re (a) is divided by the thickness T (a) at the center of the sheet to evaluate.
- a birefringence ⁇ n R is obtained.
- the evaluation birefringence ⁇ n R of the thermoplastic norbornene-based resin is, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based hydride, the weight-average molecular weight Mw and the low-molecular ratio L of the norbornene-based hydride, and And the content of norbornene-based hydride.
- thermoplastic norbornene resin has excellent adhesive strength after stretching. Therefore, when the thermoplastic norbornene-based resin is stretched and the stretched thermoplastic norbornene-based resin is adhered to an arbitrary member, delamination can be suppressed.
- the conventional resin containing a norbornene-based polymer or a hydride thereof is generally considered to be easily delaminated after stretching, and the thermoplastic norbornene-based resin according to the present embodiment can suppress delamination after stretching.
- thermoplastic norbornene-based resin Since it has a high glass transition temperature Tg, a thermoplastic norbornene-based resin usually has excellent heat resistance. Therefore, the thermoplastic norbornene-based resin is less likely to cause relaxation of molecular orientation in a high-temperature environment. Therefore, if a thermoplastic norbornene-based resin is used, an optical film capable of suppressing a change in retardation Rth in the thickness direction in a high-temperature environment can be realized.
- Stress birefringence C R of the thermoplastic norbornene resin is preferably 2150 ⁇ 10 -12 Pa -1 or higher, more preferably 2200 ⁇ 10 -12 Pa -1 or higher, particularly preferably 2250 ⁇ 10 -12 Pa -1 or higher And preferably at most 4000 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably at most 3600 ⁇ 10 ⁇ 12 Pa ⁇ 1 , particularly preferably at most 3200 ⁇ 10 ⁇ 12 Pa ⁇ 1 . If stress birefringence C R of the thermoplastic norbornene resin is not less than the lower limit of the range, it can be increased expression of birefringence by stretching the thermoplastic norbornene resin.
- thermoplastic norbornene-based resin an optical film having a large retardation Rth in the thickness direction can be easily manufactured using the thermoplastic norbornene-based resin. Also, if the stress birefringence C R of the thermoplastic norbornene resin is more than the upper limit of the above range, it becomes easy to control the retardation Re and Rth of the optical film produced by using the thermoplastic norbornene resin, Letter Variations in the plane of the gradation can be suppressed.
- Stress birefringence C R of the thermoplastic norbornene resin can be measured by the following method.
- a sheet is obtained by molding a thermoplastic norbornene-based resin into a sheet. After fixing both ends of the sheet with clips, a weight having a predetermined weight (for example, 55 g) is fixed to one of the clips.
- a predetermined temperature for example, a temperature higher by 15 ° C. than the glass transition temperature Tg of the thermoplastic norbornene-based resin
- a predetermined time for example, one hour
- the in-plane retardation Re (b) at the center of the sheet is measured at a measurement wavelength of 650 nm, and this in-plane retardation Re (b) is divided by the thickness T (b) [mm] at the center of the sheet.
- the ⁇ n value is calculated.
- the ⁇ n value (in the above case, stress applied when fixing the predetermined weight) stress applied to the seat by dividing, to calculate stress birefringence C R.
- Stress birefringence C R is, for example, the kind and the polymerization ratio of norbornene-based monomers as the raw material of the norbornene-based hydrides, weight average molecular weight of the norbornene hydride Mw and low molecular proportions L, as well as, norbornene hydride It can be adjusted by the content.
- a molded article according to one embodiment of the present invention is formed of the above-described thermoplastic norbornene-based resin.
- the shape of the molded article is arbitrary, and may be a film, a syringe, a bag, a cup, a tube, or the like.
- a molded article is produced by a production method including stretching. It is preferably a molded product to be produced, more preferably a stretched film, and particularly preferably an optical film.
- the optical film according to one embodiment of the present invention is a film formed of the above-described thermoplastic norbornene-based resin.
- This optical film is preferably a retardation film having retardation, utilizing the excellent birefringence of thermoplastic norbornene resin. Further, it is particularly preferable that the optical film has a large thickness direction retardation Rth.
- the specific thickness direction retardation Rth of the optical film is preferably at least 150 nm, more preferably at least 200 nm, particularly preferably at least 250 nm, preferably at most 450 nm, more preferably at most 400 nm, particularly preferably at most 350 nm. is there.
- the retardation Rth in the thickness direction of the optical film is equal to or more than the lower limit of the above range, the contrast in an oblique direction of an image display device including the optical film can be increased.
- the retardation Rth in the thickness direction of the optical film is equal to or less than the upper limit of the above range, the in-plane variation of the retardation Rth in the thickness direction and the orientation angle of the optical film can be suppressed.
- the optical film preferably has a large retardation Rth in the thickness direction per thickness d of the optical film, utilizing the fact that the thermoplastic norbornene-based resin has high birefringence.
- the thickness d of the optical film and the retardation Rth in the thickness direction of the optical film preferably satisfy the following expression (6). (6) Rth / d ⁇ 3.5 ⁇ 10 ⁇ 3
- the ratio Rth / d is preferably at least 3.5 ⁇ 10 ⁇ 3 , preferably at least 3.7 ⁇ 10 ⁇ 3 , particularly preferably at least 3.8 ⁇ 10 ⁇ 3 .
- the upper limit of the ratio Rth / d is not particularly limited, but is preferably 8.0 ⁇ 10 ⁇ 3 or less, and more preferably 6.0 ⁇ from the viewpoint of reducing the stretching ratio and increasing the orientation angle accuracy of the optical film. 10 ⁇ 3 or less.
- the bonding strength can be increased. Therefore, since the optical film can be hardly peeled off, delamination of the optical film can be suppressed.
- the optical film preferably has a small photoelastic coefficient C.
- the photoelastic coefficient C of the optical film preferably satisfies the following expression (5).
- 1 Brewster 1 ⁇ 10 ⁇ 13 cm 2 / dyn. (5)
- the specific photoelastic coefficient C of the optical film is preferably 10 Brewster or less, more preferably 9 Brewster or less, and particularly preferably 8 Brewster or less.
- the photoelastic coefficient C of the optical film is small, the optical film hardly causes a change in optical characteristics such as retardation even if warpage occurs. Therefore, when the optical film is provided in the liquid crystal display device, it is possible to suppress the occurrence of light leakage due to the warpage of the optical film.
- the light leakage refers to a phenomenon in which, when the liquid crystal display device is set to a black display state, light to be shielded leaks from the screen and the screen becomes bright.
- the lower limit of the photoelastic coefficient is not particularly limited, but is preferably 0 Brewster or more, more preferably 0.5 Brewster or more, and particularly preferably 1 Brewster or more.
- the photoelastic coefficient C of the optical film can be measured by an ellipsometer.
- the optical film having a small photoelastic coefficient C can be realized, for example, by including the norbornene-based hydride in the optical film.
- the in-plane retardation Re of the optical film is optional depending on the use of the optical film.
- the in-plane retardation Re of the optical film is preferably 40 nm or more, more preferably 45 nm or more, particularly preferably 50 nm or more, preferably 80 nm or less, more preferably 75 nm or less, and particularly preferably. Is 70 nm or less.
- the in-plane retardation Re of the optical film is equal to or more than the lower limit of the above range, optical compensation of the liquid crystal cell is easily performed.
- the in-plane retardation Re of the optical film is equal to or less than the upper limit of the above range, the in-plane variation of the retardation can be suppressed.
- the optical film preferably has a high total light transmittance.
- the specific total light transmittance of the optical film is preferably 85% to 100%, more preferably 87% to 100%, and particularly preferably 90% to 100%.
- the total light transmittance can be measured using a commercially available spectrophotometer at a wavelength of 400 nm or more and 700 nm or less.
- the optical film preferably has a small haze from the viewpoint of enhancing the image clarity of the image display device when the optical film is provided in the image display device.
- the haze of the optical film is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less.
- the haze can be measured using a turbidimeter according to JIS K7361-1997.
- the optical film Because it is formed of a thermoplastic norbornene resin having a high glass transition temperature Tg, the optical film usually has excellent heat resistance. Therefore, the molecules of the norbornene-based hydride contained in the optical film hardly cause orientation relaxation even in a high-temperature environment. Therefore, the optical film can normally suppress a change in the retardation Rth in the thickness direction in a high-temperature environment. An optical film having excellent heat resistance can be applied to an image display device that can be used in a high-temperature environment.
- the heat resistance of the optical film can be evaluated by the rate of change of the retardation Rth in the thickness direction by a durability test in a high temperature environment. For example, after measuring the retardation Rth0 in the thickness direction of the optical film, the optical film is subjected to a durability test in which the optical film is stored at 85 ° C. for 500 hours. After the durability test, the retardation Rth1 in the thickness direction of the optical film is measured. Then, the rate of change can be calculated by dividing the amount of change Rth1 ⁇ Rth0 of the retardation in the thickness direction of the optical film by the durability test by the retardation Rth0 in the thickness direction of the optical film before the durability test.
- the rate of change of the retardation Rth in the thickness direction is preferably -3.0% to 3.0%, more preferably -2.9% to 2.9%. Particularly preferably, the content can be reduced to -2.8% to 2.8%.
- the optical film is preferably thin.
- a large thickness direction retardation Rth can be obtained even when the optical film is thin.
- the warpage of the optical film can be suppressed, so that a change in optical characteristics such as retardation due to the warpage can be reduced. Therefore, when the optical film is provided in the liquid crystal display device, it is possible to suppress the occurrence of light leakage due to the warpage of the optical film.
- the specific thickness d of the optical film is preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
- the lower limit of the thickness d is not particularly limited, but is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more from the viewpoint of suppressing delamination.
- the optical film described above can be manufactured by, for example, a manufacturing method including a step of preparing a resin film formed of a thermoplastic norbornene-based resin and a step of stretching the resin film.
- a manufacturing method including a step of preparing a resin film formed of a thermoplastic norbornene-based resin and a step of stretching the resin film.
- a film before stretching in order to distinguish the resin film before being stretched from the optical film obtained after stretching, it may be referred to as “a film before stretching” as appropriate.
- the step of preparing a film before stretching usually includes forming a thermoplastic norbornene-based resin to obtain a film before stretching.
- the molding method of the thermoplastic norbornene resin there is no limitation on the molding method of the thermoplastic norbornene resin.
- the molding method include an extrusion molding method, a solution casting method, and an inflation molding method. Among them, the extrusion molding method and the solution casting method are preferable, and the extrusion molding method is particularly preferable.
- a step of stretching the film before stretching is performed.
- the molecules of the norbornene-based hydride in the film can be oriented, so that an optical film having the above-described optical characteristics is obtained.
- the stretching conditions in the step of stretching the film before stretching can be arbitrarily set as long as a desired optical film can be obtained.
- the stretching mode of the film before stretching may be, for example, uniaxial stretching in which stretching is performed in one direction, or biaxial stretching in which stretching is performed in two non-parallel directions.
- the biaxial stretching may be simultaneous biaxial stretching in which stretching in two directions is performed simultaneously, or sequential biaxial stretching in which stretching is performed in one direction and then stretching in the other direction. You may. Among these, from the viewpoint of easily producing an optical film having a large retardation Rth in the thickness direction, biaxial stretching is preferable, and sequential biaxial stretching is more preferable.
- the stretching direction of the film before stretching can be set arbitrarily.
- the stretching direction may be a vertical direction, a horizontal direction, or an oblique direction.
- the longitudinal direction represents the length direction of the long film
- the horizontal direction represents the width direction of the long film
- the oblique direction is neither parallel nor perpendicular to the length direction of the long film. Indicates the direction.
- the stretching ratio of the film before stretching is preferably 1.8 or more, more preferably 1.9 or more, particularly preferably 2.0 or more, preferably 2.6 or less, more preferably 2.5 or less, and particularly preferably. Is 2.4 or less.
- the stretching ratio is equal to or more than the lower limit of the above range, an optical film having a large retardation Rth in the thickness direction can be easily obtained.
- the stretching ratio is equal to or less than the upper limit of the above range, the orientation angle accuracy of the optical film can be easily increased.
- the stretching temperature of the film before stretching is preferably Tg + 9 ° C. or higher, more preferably Tg + 9.5 ° C. or higher, particularly preferably Tg + 10 ° C. or higher, preferably Tg + 25 ° C. or lower, more preferably Tg + 23 ° C. or lower, and particularly preferably Tg + 20 ° C. It is as follows. When the stretching temperature is in the above range, it is easy to make the thickness of the optical film uniform.
- the optical film can be obtained by stretching the film before stretching, but the manufacturing method may further include an optional step.
- the above manufacturing method may include a step of trimming the optical film, a step of performing a surface treatment on the optical film, and the like.
- optical laminate An optical laminate can be obtained using the above-described optical film.
- This optical laminate includes the above-described optical film and a polarizing plate. Since the thickness of the optical film can be reduced even if the retardation Rth in the thickness direction is large, it is possible to reduce the thickness of the optical laminate or to suppress the warpage of the optical laminate. Further, since the optical film has a high adhesive strength, peeling of the optical film from the polarizing plate can be suppressed. Furthermore, since the optical film has high heat resistance, the optical laminate can also have high heat resistance. Such an optical laminate can be suitably applied to an image display device such as a liquid crystal display device.
- a film having a polarizer layer can be used.
- the polarizer layer for example, a film obtained by performing an appropriate treatment on an appropriate vinyl alcohol-based polymer film in an appropriate order and method can be used.
- a vinyl alcohol-based polymer include polyvinyl alcohol and partially formalized polyvinyl alcohol.
- the film treatment include a dyeing treatment with a dichroic substance such as iodine and a dichroic dye, a stretching treatment, and a crosslinking treatment.
- the polarizer layer is capable of absorbing linearly polarized light having a vibration direction parallel to the absorption axis, and is particularly preferably one having an excellent degree of polarization.
- the thickness of the polarizer layer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
- the polarizing plate may include a protective film layer on one or both sides of the polarizer layer to protect the polarizer layer.
- Any transparent film layer can be used as the protective film layer.
- a resin film layer excellent in transparency, mechanical strength, heat stability, moisture shielding property and the like is preferable.
- examples of such a resin include an acetate resin such as triacetyl cellulose, a polyester resin, a polyether sulfone resin, a polycarbonate resin, a polyamide resin, a polyimide resin, a polyolefin resin, a thermoplastic norbornene-based resin, and a (meth) acrylic resin. .
- thermoplastic norbornene-based resin is particularly preferred from the viewpoints of transparency, low moisture absorption, dimensional stability, and light weight. preferable.
- the polarizing plate can be manufactured by, for example, laminating a polarizer layer and a protective film layer. At the time of bonding, an adhesive may be used as necessary.
- the optical laminate may further include an optional member in combination with the optical film and the polarizing plate.
- the optical laminate may include an adhesive layer for bonding the optical film and the polarizing plate.
- the thickness of the optical laminate is not particularly limited, but is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 130 ⁇ m or less.
- the optical laminate described above can be provided in a liquid crystal display device.
- the optical laminate since the optical film included in the optical laminate can be thin, the optical laminate hardly warps. Therefore, it is possible to suppress the occurrence of light leakage due to a change in the optical characteristics of the optical film in the warped portion. In general, the above-mentioned warpage tends to occur at a corner of a screen of a liquid crystal display device. However, in a liquid crystal display device including the above-described optical laminated body, light leakage at such a corner can be suppressed. Further, since the optical film has high heat resistance, the liquid crystal display device can suppress a change in display characteristics in a high-temperature environment.
- a liquid crystal display device includes a liquid crystal cell, and an optical laminate on at least one side of the liquid crystal cell.
- the optical laminated body is provided so that the liquid crystal cell, the optical film, and the viewing side polarizer are arranged in this order.
- the optical film can function as a viewing angle compensation film.
- the liquid crystal cell includes, for example, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, a continuous spin wheel alignment (CPA) mode, a hybrid alignment nematic (HAN) mode, and a twisted nematic.
- IPS in-plane switching
- VA vertical alignment
- MVA multi-domain vertical alignment
- CPA continuous spin wheel alignment
- HAN hybrid alignment nematic
- twisted nematic twisted nematic
- a liquid crystal cell of any mode such as a (TN) mode, a super twisted nematic (STN) mode, and an optically compensated bend (OCB) mode can be used.
- the measurement was carried out using three Tosoh columns (TSKgelG5000HXL, TSKgelG4000HXL and TSKgelG2000HXL) connected in series at a flow rate of 1.0 mL / min, a sample injection volume of 100 ⁇ L, and a column temperature of 40 ° C.
- the low molecular weight L of the polymer was calculated by integrating the amount of the component having a molecular weight of 10,000 or less from the measured value of the molecular weight measured by GPC in the above (method for measuring the weight average molecular weight Mw of the polymer).
- the glass transition temperature Tg was measured using a differential scanning calorimeter ("DSC6220SII" manufactured by Nanotechnology) based on JIS K 6911 at a heating rate of 10 ° C / min.
- the stretched sample sheet was returned to room temperature to obtain a measurement sample.
- the in-plane retardation Re (a) [nm] at the center of the measurement sample was measured at a measurement wavelength of 550 nm using a phase difference meter (“AXOSCAN” manufactured by AXOMETRICS). Further, the thickness T (a) [mm] of the central portion of the measurement sample was measured.
- Re (a) and T (a) the following equation (X1), and calculates an evaluation birefringence [Delta] n R of a resin.
- ⁇ n R Re (a) ⁇ (1 / T (a)) ⁇ 10 ⁇ 6 (X1)
- the resin was formed into a sheet having a size of 35 mm long ⁇ 10 mm wide ⁇ 1 mm thick to obtain a sample sheet. After fixing both ends of the sample sheet with clips, a 55 g weight was fixed to one of the clips. Next, a stretching process was performed by suspending the sample sheet for one hour in an oven in which the temperature was set to the glass transition temperature of the resin Tg + 15 ° C., starting from the clip on which the weight was not fixed. Thereafter, the sample sheet was slowly cooled and returned to room temperature to obtain a measurement sample.
- the in-plane retardation Re (b) [nm] at the center of the measurement sample was measured at a measurement wavelength of 650 nm using a birefringence meter (“WPA-100” manufactured by Photonic Lattice). Further, the thickness T (b) [mm] of the central portion of the measurement sample was measured.
- a ⁇ n value was calculated by the following equation (X2).
- ⁇ n Re (b) ⁇ (1 / T (b)) ⁇ 10 ⁇ 6 (X2)
- a stress F which added to the ⁇ n value and sample by the following formula (X3), was calculated stress birefringence C R.
- C R ⁇ n / F (X3)
- the thickness of the film was measured with a snap gauge (“ID-C112BS” manufactured by Mitutoyo Corporation).
- the photoelastic coefficient of the optical film was measured by an ellipsometer.
- an unstretched film formed of a resin containing a norbornene-based polymer (“Zeonor film” manufactured by Zeon Corporation, thickness of 100 ⁇ m, glass transition temperature of resin of 160 ° C., not stretched) Prepared.
- One side of the optical film as a film to be measured and one side of the unstretched film were subjected to corona treatment.
- An adhesive UV adhesive CRB series manufactured by Toyochem was attached to both the corona-treated surface of the optical film and the corona-treated surface of the unstretched film. The surfaces to which the adhesive was attached were stuck together.
- the adhesive was irradiated with ultraviolet rays using an electrodeless UV irradiation device (manufactured by Heraeus) to cure the adhesive.
- the ultraviolet irradiation was performed using a D bulb as a lamp under the conditions of a peak illuminance of 100 mW / cm 2 and an integrated light amount of 3000 mJ / cm 2 .
- a sample film having a layer structure of unstretched film / adhesive layer / optical film was obtained.
- the obtained sample film was subjected to a 90-degree peel test according to the following procedure.
- the sample film was cut into a width of 15 mm to obtain a film piece.
- the surface of the film piece on the optical film side was bonded to the surface of a slide glass using an adhesive.
- a double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number “CS9621”) was used as the adhesive.
- An unstretched film included in a film piece is sandwiched between the tip of a high-performance digital force gauge (“ZP-5N” manufactured by Imada) and the unstretched film is moved at a speed of 300 mm / min in a direction normal to the surface of the slide glass. And the magnitude of the traction force was measured as the adhesive strength.
- ZP-5N high-performance digital force gauge
- Example 1 Production of norbornene ring-opening polymer: 200 parts by weight of dehydrated cyclohexane, 0.7 mol% of 1-hexene, 0.15 mol% of diisopropyl ether, and 0.44 mol% was placed in the reactor at room temperature and mixed. Then, while maintaining at 45 ° C., 70% by weight of dicyclopentadiene (DCPD) and 30% by weight of tetracyclododecene (TCD) as monomers and tungsten hexachloride (0.65% by weight toluene solution) were added to the reactor. ) 0.02 mol% was added continuously over 2 hours in parallel and polymerized.
- DCPD dicyclopentadiene
- TCD tetracyclododecene
- the amounts represented by the unit “mol%” are values in which the total amount of the monomers is 100 mol%.
- the weight-average molecular weight Mw of the obtained norbornene-based ring-opened polymer was 3.1 ⁇ 10 4 .
- the conversion of the monomer into the polymer was 100%.
- the reaction solution was subjected to pressure filtration ("Fundaback filter” manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst, thereby obtaining a colorless and transparent solution. .
- the obtained solution was poured into a large amount of isopropanol to precipitate norbornene-based hydride.
- the antioxidant [pentaerythritol-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (100 parts) was used per 100 parts of the norbornene-based hydride.
- Irganox registered trademark
- the weight average molecular weight of the norbornene hydride was 4.4 ⁇ 10 4 , and the low molecular weight L having a molecular weight of 10,000 or less was 10%.
- the glass transition temperature Tg of the thermoplastic norbornene resin is 115.5 ° C.
- evaluation birefringence [Delta] n R is 0.0030
- stress birefringence C R was 2360 ⁇ 10 -12 Pa -1.
- thermoplastic norbornene-based resin obtained in the above step was charged into a twin-screw extruder, and was formed into a strand-like molded body by hot melt extrusion molding. This molded body was cut into pieces using a strand cutter to obtain thermoplastic norbornene-based resin pellets.
- the pellet was dried at 80 ° C for 5 hours. Thereafter, the pellets were supplied to an extruder by a conventional method and melted at 250 ° C. Then, the molten thermoplastic norbornene-based resin was discharged from a die onto a cooling drum to obtain a long, unstretched film having a thickness of 150 ⁇ m.
- the intermediate film is supplied to a transverse stretching machine using a tenter method, and is stretched 1.65 times in the transverse direction while adjusting the take-up tension and the tenter chain tension to obtain a biaxially stretched film.
- the stretching temperature in the above stretching using a transverse stretching machine was 131.5 ° C., which was 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene-based resin (Tg + 16 ° C.).
- the obtained optical film had an in-plane retardation Re of 60 nm, a retardation Rth in the thickness direction of 360 nm, and a thickness d of 78 ⁇ m.
- the obtained optical film was evaluated by the method described above.
- Example 2 The combination of the monomers used in the above step (1-1) was changed to 29% by weight of tetracyclododecene (TCD), 68% by weight of dicyclopentadiene (DCPD), and 3% by weight of ethylidenetetracyclododecene (ETD).
- TCD tetracyclododecene
- DCPD dicyclopentadiene
- ETD ethylidenetetracyclododecene
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.). Except for the above, the production and evaluation of a thermoplastic norbornene-based resin and an optical film were performed by the same operation as in Example 1.
- Example 3 The combination of monomers used in the above step (1-1) was changed to 29% by weight of tetracyclododecene (TCD), 70% by weight of dicyclopentadiene (DCPD), and 1% by weight of norbornene (NB).
- TCD tetracyclododecene
- DCPD dicyclopentadiene
- NB norbornene
- the stretching temperature in the machine direction was changed to 120.5 ° C.
- the stretching temperature was a temperature (Tg + 10 ° C.) higher by 10 ° C. than the glass transition temperature Tg of the thermoplastic norbornene-based resin.
- the stretching temperature in the transverse direction was changed to 126.5 ° C.
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.).
- Example 4 The combination of monomers used in the above step (1-1) was changed to 28% by weight of tetracyclododecene (TCD), 70% by weight of dicyclopentadiene (DCPD), and 2% by weight of norbornene (NB).
- TCD tetracyclododecene
- DCPD dicyclopentadiene
- NB norbornene
- the stretching temperature in the machine direction was changed to 117.6 ° C.
- the stretching temperature was a temperature (Tg + 10 ° C.) higher by 10 ° C. than the glass transition temperature Tg of the thermoplastic norbornene-based resin.
- the stretching temperature in the transverse direction was changed to 123.6 ° C.
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.).
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.). Except for the above, the production and evaluation of a thermoplastic norbornene-based resin and an optical film were performed by the same operation as in Example 1.
- the stretching temperature in the transverse direction was changed to 120.2 ° C.
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.).
- Tg + 16 ° C. glass transition temperature
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.). Except for the above, the production and evaluation of a thermoplastic norbornene-based resin and an optical film were performed by the same operation as in Example 1.
- the stretching temperature in the transverse direction was changed to 129.0 ° C.
- This stretching temperature was a temperature 16 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 16 ° C.).
- Tg + 16 ° C. glass transition temperature
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Polarising Elements (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
ノルボルネン系重合体の水素化物を含む熱可塑性ノルボルネン系樹脂であって、 前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たし、 前記水素化物の重量平均分子量Mwが、下記式(2)を満たし、 前記熱可塑性ノルボルネン系樹脂に含まれる前記水素化物の量100%に対する、分子量10000以下の前記水素化物の割合Lが、下記式(3)を満たす、熱可塑性ノルボルネン系樹脂。 (1)105℃≦Tg≦120℃ (2)36000≦Mw (3)L≦10.5%
Description
本発明は、ノルボルネン系重合体の水素化物を含む熱可塑性ノルボルネン系樹脂及びその成形体、並びに、その成形体の製造方法に関する。
従来、熱可塑性樹脂で形成された光学フィルムが知られている。例えば、特許文献1~5には、熱可塑性ノルボルネン系樹脂で形成された光学フィルムが記載されている。
近年、液晶表示装置等の画像表示装置に適用するための光学フィルムには、レターデーションの発現性に優れることが求められており、特に、厚み方向のレターデーションRthの発現性に優れるフィルムが求められている。そこで、このように厚み方向のレターデーションRthの発現性に優れるフィルムを実現する観点から、複屈折の発現性に優れる熱可塑性ノルボルネン系樹脂の開発が求められる。
また、熱可塑性ノルボルネン系樹脂を用いた光学フィルムは、一般に、延伸フィルムとして製造される。ところが、熱可塑性ノルボルネン系樹脂で形成された延伸フィルムは、他のフィルムと接着した場合の接着強度が低い傾向がある。そのため、接着強度の高い光学フィルムを得ることが可能な熱可塑性ノルボルネン系樹脂の開発も求められる。
本発明は、前記の課題に鑑みて創案されたもので、複屈折の発現性に優れ、且つ、延伸後に高い接着強度を得ることができる熱可塑性ノルボルネン系樹脂;並びに、前記の熱可塑性ノルボルネン系樹脂で形成された成形体及びその製造方法;を提供することを目的とする。
本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、所定の範囲の重量平均分子量Mwを有し、且つ、分子量10000以下の低分子成分が少ないノルボルネン系重合体の水素化物を含み、且つ、所定範囲のガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂が、複屈折の発現性に優れ、且つ、延伸後に高い接着強度を得ることができることを見い出し、本発明を完成させた。
すなわち、本発明は、下記のものを含む。
すなわち、本発明は、下記のものを含む。
〔1〕 ノルボルネン系重合体の水素化物を含む熱可塑性ノルボルネン系樹脂であって、
前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たし、
前記水素化物の重量平均分子量Mwが、下記式(2)を満たし、
前記熱可塑性ノルボルネン系樹脂に含まれる前記水素化物の量100%に対する、分子量10000以下の前記水素化物の割合Lが、下記式(3)を満たす、熱可塑性ノルボルネン系樹脂。
(1)105℃≦Tg≦120℃
(2)36000≦Mw
(3)L≦10.5%
〔2〕 前記熱可塑性ノルボルネン系樹脂に、Tg+15℃、1分間で1.5倍に自由端一軸延伸を施した場合に発現する複屈折ΔnRが、下記式(4)を満たす、〔1〕に記載の熱可塑性ノルボルネン系樹脂。
(4)0.0025≦ΔnR
〔3〕 〔1〕又は〔2〕に記載の熱可塑性ノルボルネン系樹脂で形成された、成形体。
〔4〕 光学フィルムである、〔3〕に記載の成形体。
〔5〕 前記光学フィルムの光弾性係数Cが、下記式(5)を満たす、〔4〕に記載の成形体。
(5)C≦10Brewster
〔6〕 前記光学フィルムの厚み方向のレターデーションRth、及び、前記光学フィルムの厚みdが、下記式(6)を満たす、〔4〕又は〔5〕に記載の成形体。
(6)Rth/d≧3.5×10-3
〔7〕 〔4〕~〔6〕のいずれか一項に記載の成形体の製造方法であって、
〔1〕又は〔2〕に記載の熱可塑性ノルボルネン系樹脂で形成された延伸前フィルムを用意する工程と、
前記延伸前フィルムを、前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tg+9℃以上で、延伸倍率1.8倍以上に延伸する工程と、を含む、成形体の製造方法。
前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たし、
前記水素化物の重量平均分子量Mwが、下記式(2)を満たし、
前記熱可塑性ノルボルネン系樹脂に含まれる前記水素化物の量100%に対する、分子量10000以下の前記水素化物の割合Lが、下記式(3)を満たす、熱可塑性ノルボルネン系樹脂。
(1)105℃≦Tg≦120℃
(2)36000≦Mw
(3)L≦10.5%
〔2〕 前記熱可塑性ノルボルネン系樹脂に、Tg+15℃、1分間で1.5倍に自由端一軸延伸を施した場合に発現する複屈折ΔnRが、下記式(4)を満たす、〔1〕に記載の熱可塑性ノルボルネン系樹脂。
(4)0.0025≦ΔnR
〔3〕 〔1〕又は〔2〕に記載の熱可塑性ノルボルネン系樹脂で形成された、成形体。
〔4〕 光学フィルムである、〔3〕に記載の成形体。
〔5〕 前記光学フィルムの光弾性係数Cが、下記式(5)を満たす、〔4〕に記載の成形体。
(5)C≦10Brewster
〔6〕 前記光学フィルムの厚み方向のレターデーションRth、及び、前記光学フィルムの厚みdが、下記式(6)を満たす、〔4〕又は〔5〕に記載の成形体。
(6)Rth/d≧3.5×10-3
〔7〕 〔4〕~〔6〕のいずれか一項に記載の成形体の製造方法であって、
〔1〕又は〔2〕に記載の熱可塑性ノルボルネン系樹脂で形成された延伸前フィルムを用意する工程と、
前記延伸前フィルムを、前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tg+9℃以上で、延伸倍率1.8倍以上に延伸する工程と、を含む、成形体の製造方法。
本発明によれば、複屈折の発現性に優れ、且つ、延伸後に高い接着強度を得ることができる熱可塑性ノルボルネン系樹脂;並びに、前記の熱可塑性ノルボルネン系樹脂で形成された成形体及びその製造方法;を提供できる。
以下、本発明について、実施形態及び例示物を示して詳細に説明する。ただし、本発明は、以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、550nmである。
以下の説明において、「長尺」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。
以下の説明において、「偏光板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
[1.熱可塑性ノルボルネン系樹脂の概要]
本発明の一実施形態に係る熱可塑性ノルボルネン系樹脂は、ノルボルネン系重合体の水素化物を含む熱可塑性樹脂である。以下の説明において、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系重合体の水素化物を、適宜「ノルボルネン系水素化物」ということがある。熱可塑性ノルボルネン系樹脂は、下記の第一~第三の要件を満たす。
本発明の一実施形態に係る熱可塑性ノルボルネン系樹脂は、ノルボルネン系重合体の水素化物を含む熱可塑性樹脂である。以下の説明において、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系重合体の水素化物を、適宜「ノルボルネン系水素化物」ということがある。熱可塑性ノルボルネン系樹脂は、下記の第一~第三の要件を満たす。
第一に、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たす。
(1)105℃≦Tg≦120℃
(1)105℃≦Tg≦120℃
第二に、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系水素化物の重量平均分子量Mwが、下記式(2)を満たす。
(2)36000≦Mw
(2)36000≦Mw
第三に、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系水素化物の量100%に対する、分子量10000以下のノルボルネン系水素化物の割合Lが、下記式(3)を満たす。以下、前記の割合Lを、「低分子割合L」ということがある。
(3)L≦10.5%
(3)L≦10.5%
前記の第一~第三の要件を満たす本実施形態に係る熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性に優れる。また、この熱可塑性ノルボルネン系樹脂は、延伸後に、高い接着強度を得ることができる。したがって、本実施形態に係る熱可塑性ノルボルネン系樹脂を用いることにより、厚み方向のレターデーションが大きく、且つ、接着強度が高い光学フィルムを得ることができる。
[2.ノルボルネン系重合体の水素化物]
本実施形態に係る熱可塑性ノルボルネン系樹脂が含むノルボルネン系水素化物は、ノルボルネン系単量体を重合させて得られるノルボルネン系重合体に水素添加を行って得られる構造を含む重合体である。よって、ノルボルネン系水素化物は、通常、ノルボルネン系単量体を重合させて得られる繰り返し構造を水素化して得られる構造を含む。このようなノルボルネン系水素化物には、例えば、ノルボルネン系単量体の開環重合体、並びに、ノルボルネン系単量体と任意の単量体との開環共重合体、からなる群より選ばれる1以上の開環重合体の水素化物;ノルボルネン系単量体の付加重合体、並びに、ノルボルネン系単量体と任意の単量体との付加共重合体、からなる群より選ばれる1以上の付加重合体の水素化物;が包含される。また、熱可塑性ノルボルネン系樹脂が含むノルボルネン系水素化物は、1種類でもよく、2種類以上でもよい。
本実施形態に係る熱可塑性ノルボルネン系樹脂が含むノルボルネン系水素化物は、ノルボルネン系単量体を重合させて得られるノルボルネン系重合体に水素添加を行って得られる構造を含む重合体である。よって、ノルボルネン系水素化物は、通常、ノルボルネン系単量体を重合させて得られる繰り返し構造を水素化して得られる構造を含む。このようなノルボルネン系水素化物には、例えば、ノルボルネン系単量体の開環重合体、並びに、ノルボルネン系単量体と任意の単量体との開環共重合体、からなる群より選ばれる1以上の開環重合体の水素化物;ノルボルネン系単量体の付加重合体、並びに、ノルボルネン系単量体と任意の単量体との付加共重合体、からなる群より選ばれる1以上の付加重合体の水素化物;が包含される。また、熱可塑性ノルボルネン系樹脂が含むノルボルネン系水素化物は、1種類でもよく、2種類以上でもよい。
ノルボルネン系単量体は、ノルボルネン構造を分子内に含む単量体である。このノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)等の、芳香環構造を含まないノルボルネン系単量体;5-フェニル-2-ノルボルネン、5-(4-メチルフェニル)-2-ノルボルネン、5-(1-ナフチル)-2-ノルボルネン、9-(2-ノルボルネン-5-イル)-カルバゾール等の、芳香族置換基を有するノルボルネン系単量体;1,4-メタノ-1,4,4a,4b,5,8,8a,9a-オクタヒドロフルオレン、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(慣用名:メタノテトラヒドロフルオレン)、1,4-メタノ-1,4,4a,9a-テトラヒドロジベンゾフラン、1,4-メタノ-1,4,4a,9a-テトラヒドロカルバゾール、1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセン、1,4-メタノ-1,4,4a,9,10,10a-ヘキサヒドロフェナンスレン等の、縮合多環構造中にノルボルネン環構造と芳香環構造とを含むノルボルネン系単量体;並びに、これらの化合物の誘導体(例えば、環に置換基を有するもの);などが挙げられる。
置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロキル基等のアルキル基;アルキリデン基;アルケニル基;極性基;などが挙げられる。極性基としては、例えば、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、フルオロ基、クロル基、ブロモ基、ヨード基等のハロゲン基;カルボキシル基;カルボニルオキシカルボニル基;エポキシ基;ヒドロキシ基;オキシ基;アルコキシ基;エステル基;シラノール基;シリル基;アミノ基;ニトリル基;スルホン基;シアノ基;アミド基;イミド基;などが挙げられる。置換基の数は、1でもよく、2以上でもよい。また、2以上の置換基の種類は、同じでもよく、異なっていてもよい。ただし、飽和吸水率が低く耐湿性に優れる熱可塑性ノルボルネン系樹脂を得る観点では、ノルボルネン系単量体は、極性基の量が少ないことが好ましく、極性基を有さないことがより好ましい。
ノルボルネン系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
前記のノルボルネン系単量体の具体的な種類及び重合比は、所望のガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂が得られるように選択することが望ましい。通常、ノルボルネン系水素化物のガラス転移温度は、当該ノルボルネン系水素化物の原料となるノルボルネン系単量体の種類及び重合比に依存する。よって、ノルボルネン系単量体の種類及び重合比を適切に調整することにより、ノルボルネン系水素化物のガラス転移温度を調整できるので、そのノルボルネン系水素化物を含む熱可塑性ノルボルネン系樹脂のガラス転移温度Tgを式(1)を満たすように調整できる。
熱可塑性ノルボルネン系樹脂のガラス転移温度Tgを式(1)の範囲に収めて高い複屈折発現性を得る観点では、ノルボルネン系単量体として、テトラシクロドデセン系単量体を用いることが好ましい。よって、ノルボルネン系水素化物は、テトラシクロドデセン系単量体を含む単量体の重合体の水素化物が好ましい。このようなノルボルネン系水素化物は、通常、テトラシクロドデセン系単量体を重合させて得られる繰り返し構造を水素化して得られる構造(以下、適宜「テトラシクロドデセン系水素化構造」ということがある。)を含む。
テトラシクロドデセン系単量体は、テトラシクロドデセン及びテトラシクロドデセン誘導体からなる群より選ばれる単量体を表す。テトラシクロドデセン誘導体とは、テトラシクロドデセンの環に置換基が結合した構造を有する化合物である。置換基の数は、1でもよく、2以上でもよい。また、2以上の置換基の種類は、同じでもよく、異なっていてもよい。好ましいテトラシクロドデセン誘導体としては、例えば、8-エチリデン-テトラシクロ〔4.4.0.12,5.17,10〕-ドデカ-3-エン(慣用名:エチリデンテトラシクロドデセン)8-エチル-テトラシクロ〔4.4.0.12,5.17,10〕-ドデカ-3-エン、8-エトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンが挙げられる。テトラシクロドデセン系単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
ノルボルネン系水素化物の原料としての単量体の全量100重量%に対して、それに含まれるテトラシクロドデセン系単量体の割合(重合比)は、好ましくは10重量%以上、より好ましくは15重量%以上、さらに好ましくは20重量%以上で、特に好ましくは25重量%以上であり、好ましくは50重量%以下、より好ましくは45重量%以下、さらに好ましくは40重量%以下、特に好ましくは35重量%以下である。テトラシクロドデセン系単量体の重合比が前記の範囲にある場合、ノルボルネン系水素化物のガラス転移温度を大きくできるので、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgを式(1)の範囲に収め易い。
通常、ある単量体に由来する繰り返し構造(単量体単位)のノルボルネン系水素化物における割合は、その単量体の全単量体における割合(重合比)に一致する。よって、通常、テトラシクロドデセン系水素化構造のノルボルネン系水素化物における割合は、単量体の全量に対するテトラシクロドデセン系単量体の重合比に一致する。したがって、ノルボルネン系水素化物100重量%に対するテトラシクロドデセン系水素化構造の割合は、好ましくは、前記のテトラシクロドデセン系単量体の重合比と同じ範囲に収まる。
さらに、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgを式(1)の範囲に収めて高い複屈折発現性を得る観点では、ノルボルネン系単量体として、ジシクロペンタジエン系単量体を用いることが好ましい。よって、ノルボルネン系水素化物は、ジシクロペンタジエン系単量体を含む単量体の重合体の水素化物が好ましい。このようなノルボルネン系水素化物は、通常、ジシクロペンタジエン系単量体を重合させて得られる繰り返し構造を水素化して得られる構造(以下、適宜「ジシクロペンタジエン系水素化構造」ということがある。)を含む。
ジシクロペンタジエン系単量体は、ジシクロペンタジエン及びジシクロペンタジエン誘導体からなる群より選ばれる単量体を表す。ジシクロペンタジエン誘導体とは、ジシクロペンタジエンの環に置換基が結合した構造を有する化合物である。置換基の数は、1でもよく、2以上でもよい。また、2以上の置換基の種類は、同じでもよく、異なっていてもよい。ジシクロペンタジエン系単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
ノルボルネン系水素化物の原料としての単量体の全量100重量%に対して、それに含まれるジシクロペンタジエン系単量体の割合(重合比)は、好ましくは50重量%以上、より好ましくは55重量%以上、さらに好ましくは60重量%以上、特に好ましくは65重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下、特に好ましくは75重量%以下である。ジシクロペンタジエン系単量体の重合比が前記の範囲にある場合、ノルボルネン系水素化物のガラス転移温度を大きくできるので、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgを式(1)の範囲に収め易い。
通常、ジシクロペンタジエン系水素化構造のノルボルネン系水素化物における割合は、単量体の全量に対するジシクロペンタジエン系単量体の重合比に一致する。したがって、ノルボルネン系水素化物100重量%に対するジシクロペンタジエン系水素化構造の割合は、好ましくは、前記のジシクロペンタジエン系単量体の重合比と同じ範囲に収まる。
特に、ノルボルネン系単量体としてテトラシクロドデセン系単量体及びジシクロペンタジエン系単量体を組み合わせて用いる場合、それらの量の比は、所定の範囲にあることが好ましい。具体的には、テトラシクロドデセン系単量体100重量部に対して、ジシクロペンタジエン系単量体の量は、好ましくは100重量部以上、より好ましくは125重量部以上、特に好ましくは150重量部以上であり、好ましくは500重量部以下、より好ましくは450重量部以下、特に好ましくは400重量部以下である。よって、ノルボルネン系水素化物において、テトラシクロドデセン系水素化構造100重量部に対して、ジシクロペンタジエン系水素化構造の量は、好ましくは100重量部以上、より好ましくは125重量部以上、特に好ましくは150重量部以上であり、好ましくは500重量部以下、より好ましくは450重量部以下、特に好ましくは400重量部以下である。前記の量比が前記範囲にある場合、ノルボルネン系水素化物のガラス転移温度を大きくできるので、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgを式(1)の範囲に収め易い。
ノルボルネン系単量体と共重合させる任意の単量体を用いる場合、その任意の単量体の種類は、所望のガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂が得られる範囲で、制限は無い。ノルボルネン系単量体と開環共重合が可能な任意の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等のモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエン等の環状共役ジエン及びその誘導体;などが挙げられる。また、ノルボルネン系単量体と付加共重合が可能な任意の単量体としては、例えば、エチレン、プロピレン、1-ブテン等の炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン等のシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン等の非共役ジエン;などが挙げられる。任意の単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
ノルボルネン系水素化物は、ノルボルネン系重合体中の非芳香族性の不飽和結合が水素化されたものでもよく、ノルボルネン系重合体中の芳香族性の不飽和結合が水素化されたものでもよく、ノルボルネン系重合体中の非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されたものであってもよい。中でも、ノルボルネン系重合体中の非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されたノルボルネン系水素化物が好ましい。このように非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されたノルボルネン系水素化物を用いることにより、光弾性係数を小さくする事ができる。さらに、通常は、熱可塑性ノルボルネン系樹脂の機械的強度、耐湿性、耐熱性等の特性を効果的に改善することができる。
ノルボルネン系水素化物のガラス転移温度は、好ましくは105℃以上、より好ましくは106℃以上、特に好ましくは107℃以上であり、好ましくは120℃以下、より好ましくは118℃以下、特に好ましくは117℃以下である。前記範囲のガラス転移温度を有するようにノルボルネン系単量体の種類及び重合比を調整されたノルボルネン系水素化物を含む熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性を大きくできる。よって、この熱可塑性ノルボルネン系樹脂を用いることにより、厚み方向のレターデーションRthの大きい光学フィルムを得ることが可能である。また、通常は、このように高いガラス転移温度を有するノルボルネン系水素化物を用いることにより、高温環境におけるノルボルネン系水素化物の配向の緩和を抑制できる。よって、優れた耐熱性を達成できるので、高温環境における光学フィルムの厚み方向のレターデーションRthの変化を抑制できる。
ノルボルネン系水素化物のガラス転移温度は、示差走査熱量分析計を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定できる。
ノルボルネン系水素化物のガラス転移温度は、例えば、ノルボルネン系水素化物の原料としてのノルボルネン系単量体の種類及び重合比、更には低分子割合Lによって調整できる。
ノルボルネン系水素化物は、前記式(2)を満たす重量平均分子量Mwを有する。詳細には、ノルボルネン系水素化物の重量平均分子量Mwは、通常36000以上、好ましくは37000以上、特に好ましくは38000以上である。前記のように大きい重量平均分子量Mwを有するノルボルネン系水素化物を含む場合に、熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性を大きくできる。さらに、このようにノルボルネン系水素化物の重量平均分子量Mwが大きい場合、延伸後の熱可塑性ノルボルネン系樹脂の接着強度を高くできる。ノルボルネン系水素化物の重量平均分子量Mwの上限は、特段の制限はないが、好ましくは50000以下、より好ましくは47000以下、特に好ましくは45000以下である。ノルボルネン系水素化物の重量平均分子量Mwが前記の上限値以下である場合、熱可塑性ノルボルネン系樹脂の成形性を良好にできる。
ノルボルネン系水素化物の重量平均分子量Mwは、溶離液としてシクロヘキサンを用いるゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレン換算で測定できる。ノルボルネン系水素化物がシクロヘキサンに溶解しない場合は、溶離液としてトルエンを用いうる。溶離液がトルエンのとき、重量平均分子量Mwは、ポリスチレン換算で測定できる。
ノルボルネン系水素化物の前記範囲の重量平均分子量Mwは、例えば、ノルボルネン系重合体の重合条件を高分子量のノルボルネン系重合体が得られるように調整する方法、適切な分離方法でノルボルネン系水素化物から低分子量成分を取り除く方法、などによって実現できる。ノルボルネン系重合体の重合条件を高分子量のノルボルネン系重合体が得られるように調整する方法としては、例えば、連鎖移動材の量を減らす方法が挙げられる。また、適切な分離方法でノルボルネン系水素化物から低分子量成分を取り除く方法としては、例えば、ノルボルネン系水素化物を良溶媒に溶かし、その後、貧溶媒を添加し、沈殿した高分子量成分だけを取る方法が挙げられる。
熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系水素化物の量100%に対する、分子量10000以下のノルボルネン系水素化物の割合(低分子割合)Lは、下記式(3)を満たす。詳細には、前記の低分子割合Lは、通常10.5%以下、好ましくは10.3%以下、特に好ましくは10%以下である。前記のように低分子割合Lが小さいことは、ノルボルネン系水素化物に含まれる分子量10000以下の低分子量成分が少ないことを表す。このようにノルボルネン系水素化物の低分子量成分が少ない場合に、熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性を大きくできる。さらに、ノルボルネン系水素化物の低分子量成分が少ない場合に、延伸後の熱可塑性ノルボルネン系樹脂の接着強度を高くできる。前記の低分子割合Lの下限は、特段の制限はなく、理想的には0%であるが、通常は1%以上である。
前記の低分子割合Lは、前記のゲル・パーミエーション・クロマトグラフィーによってノルボルネン系水素化物の分子量を測定し、その測定値から分子量10000以下の成分の量を積分して算出できる。
ノルボルネン系水素化物の前記範囲の低分子割合Lは、例えば、ノルボルネン系重合体の重合条件を高分子量のノルボルネン系重合体が得られるように調整する方法、適切な分離方法でノルボルネン系水素化物から低分子量成分を取り除く方法、などによって実現できる。ノルボルネン系重合体の重合条件を高分子量のノルボルネン系重合体が得られるように調整する方法としては、例えば、連鎖移動材の量を減らす方法が挙げられる。また、適切な分離方法でノルボルネン系水素化物から低分子量成分を取り除く方法としては、例えば、例えば、ノルボルネン系水素化物を良溶媒に溶かし、その後、貧溶媒を添加し、沈殿した高分子量成分だけを取る方法が挙げられる。
ノルボルネン系水素化物の分子量分布Mw/Mnは、好ましくは2.4以下、より好ましくは2.3以下、特に好ましくは2.2以下である。ノルボルネン系水素化物の分子量分布Mw/Mnが前記範囲にある場合、延伸後の熱可塑性ノルボルネン系樹脂の接着強度を効果的に高くできる。分子量分布とは、重量平均分子量と数平均分子量との比であり、「重量平均分子量Mw/数平均分子量Mn」で表される。ノルボルネン系水素化物の分子量分布の下限は、通常1.0以上である。
ノルボルネン系水素化物の分子量分布Mw/Mnは、ノルボルネン系水素化物の重量平均分子量Mw及び数平均分子量Mnから計算により算出できる。また、ノルボルネン系水素化物の数平均分子量Mnは、溶離液としてシクロヘキサンを用いるゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレン換算で測定できる。ノルボルネン系水素化物がシクロヘキサンに溶解しない場合は、溶離液としてトルエンを用いうる。溶離液がトルエンのとき、数平均分子量Mnは、ポリスチレン換算で測定できる。
ノルボルネン系水素化物は、延伸による複屈折の発現性に優れる。よって、ノルボルネン系水素化物は、通常、大きい評価複屈折を有する。評価複屈折は、ある材料に、当該材料のガラス転移温度より15℃高い延伸温度、1分間で、1.5倍に自由端一軸延伸を施した場合に発現する複屈折を表す。
詳細には、ノルボルネン系水素化物の評価複屈折は、好ましくは0.0025以上、より好ましくは0.00255以上、特に好ましくは0.0026以上である。このように大きい評価複屈折を有するノルボルネン系水素化物を含む熱可塑性ノルボルネン系樹脂は、延伸によって大きな複屈折を発現できる。よって、厚み方向のレターデーションRthが大きい光学フィルムを容易に製造できる。ノルボルネン系水素化物の評価複屈折の上限は、特段の制限は無いが、好ましくは0.006以下、より好ましくは0.005以下、特に好ましくは0.004以下である。ノルボルネン系水素化物の評価複屈折が前記の上限値以下である場合、ノルボルネン系水素化物のレターデーションの調整を容易に行うことができる。
ノルボルネン系水素化物の評価複屈折は、下記の方法によって測定できる。
ノルボルネン系水素化物を成形して、シートを得る。このシートに、自由端一軸延伸を施す。自由端一軸延伸とは、一方向への延伸であって、その延伸方向以外にシートに拘束力を加えない延伸を表す。前記の自由端一軸延伸の延伸温度は、ノルボルネン系水素化物のガラス転移温度より15℃高い温度である。また、延伸時間は1分間であり、自由端一軸延伸の延伸倍率は、1.5倍である。延伸後、シート中央部の面内レターデーションを測定波長550nmで測定し、この面内レターデーションをシート中央部の厚みで割算することで、評価複屈折が得られる。
ノルボルネン系水素化物を成形して、シートを得る。このシートに、自由端一軸延伸を施す。自由端一軸延伸とは、一方向への延伸であって、その延伸方向以外にシートに拘束力を加えない延伸を表す。前記の自由端一軸延伸の延伸温度は、ノルボルネン系水素化物のガラス転移温度より15℃高い温度である。また、延伸時間は1分間であり、自由端一軸延伸の延伸倍率は、1.5倍である。延伸後、シート中央部の面内レターデーションを測定波長550nmで測定し、この面内レターデーションをシート中央部の厚みで割算することで、評価複屈折が得られる。
ノルボルネン系水素化物の評価複屈折は、例えば、ノルボルネン系水素化物の原料としてのノルボルネン系単量体の種類及び重合比、並びに、ノルボルネン系水素化物の重量平均分子量Mw及び低分子割合Lによって調整できる。
ノルボルネン系水素化物の応力複屈折は、好ましくは2150×10-12Pa-1以上、より好ましくは2200×10-12Pa-1以上、特に好ましくは2250×10-12Pa-1以上であり、好ましくは4000×10-12Pa-1以下、より好ましくは3600×10-12Pa-1以下、特に好ましくは3200×10-12Pa-1以下である。ノルボルネン系水素化物の応力複屈折が前記範囲の下限値以上である場合、熱可塑性ノルボルネン系樹脂の延伸による複屈折の発現性を大きくできる。よって、その熱可塑性ノルボルネン系樹脂を用いて、厚み方向のレターデーションRthが大きい光学フィルムを容易に製造できる。また、ノルボルネン系水素化物の応力複屈折が前記範囲の上限値以下である場合、熱可塑性ノルボルネン系樹脂を用いて製造される光学フィルムのレターデーションRe及びRthを制御しやすくなり、レターデーションの面内のバラツキを抑えることができる。
ノルボルネン系水素化物の応力複屈折は、下記の方法で測定できる。
ノルボルネン系水素化物をシート状に成形して、シートを得る。このシートの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば55g)の重りを固定する。次いで、所定温度(例えば、ノルボルネン系水素化物のガラス転移温度より15℃高い温度)に設定したオーブン内に、重りを固定していない方のクリップを起点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったシートを、ゆっくりと冷やして室温まで戻す。このシートについて、シート中心部の面内レターデーションを測定波長650nmで測定し、この面内レターデーションをシート中心部の厚みで割算することで、δn値を算出する。そして、このδn値を、シートに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)で割算して、応力複屈折を求めることができる。
ノルボルネン系水素化物をシート状に成形して、シートを得る。このシートの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば55g)の重りを固定する。次いで、所定温度(例えば、ノルボルネン系水素化物のガラス転移温度より15℃高い温度)に設定したオーブン内に、重りを固定していない方のクリップを起点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったシートを、ゆっくりと冷やして室温まで戻す。このシートについて、シート中心部の面内レターデーションを測定波長650nmで測定し、この面内レターデーションをシート中心部の厚みで割算することで、δn値を算出する。そして、このδn値を、シートに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)で割算して、応力複屈折を求めることができる。
ノルボルネン系水素化物の応力複屈折は、例えば、ノルボルネン系水素化物の原料としてのノルボルネン系単量体の種類及び重合比、並びに、ノルボルネン系水素化物の重量平均分子量Mw及び低分子割合Lによって調整できる。
ノルボルネン系重合体は、例えば、ノルボルネン系単量体、及び、必要に応じて用いられる任意の単量体を、適切な触媒の存在下で重合することを含む製造方法により、製造できる。そして、得られたノルボルネン系重合体に対し、ニッケル、パラジウム、ルテニウム等の遷移金属を含む水素化触媒の存在下で水素を接触させて、炭素-炭素不飽和結合を水素化することを含む製造方法により、上述したノルボルネン系水素化物を製造できる。
熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系水素化物の割合は、特段の制限はない。ノルボルネン系水素化物の優れた特性を活用する観点では、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系水素化物の割合は、好ましくは80重量%~100重量%、より好ましくは90重量%~100重量%、特に好ましくは95重量%~100重量%である。
[3.熱可塑性ノルボルネン系樹脂が含みうる任意の成分]
熱可塑性ノルボルネン系樹脂は、ノルボルネン系水素化物に組み合わせて、当該ノルボルネン系水素化物以外の任意の成分を含んでいてもよい。任意の成分としては、例えば、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、強化剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、抗菌剤などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
熱可塑性ノルボルネン系樹脂は、ノルボルネン系水素化物に組み合わせて、当該ノルボルネン系水素化物以外の任意の成分を含んでいてもよい。任意の成分としては、例えば、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、強化剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、抗菌剤などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[4.熱可塑性ノルボルネン系樹脂の特性]
熱可塑性ノルボルネン系樹脂は、前記式(1)を満たすガラス転移温度Tgを有する。詳細には、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、通常105℃以上、好ましくは106℃以上、特に好ましくは107℃以上であり、通常120℃以下、好ましくは118℃以下、特に好ましくは117℃以下である。前記範囲のガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性を大きくできる。よって、この熱可塑性ノルボルネン系樹脂を用いることにより、厚み方向のレターデーションRthの大きい光学フィルムを得ることが可能である。また、通常は、このように高いガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂を用いることにより、高温環境におけるノルボルネン系水素化物の配向の緩和を抑制できる。よって、優れた耐熱性を達成できるので、高温環境における光学フィルムの厚み方向のレターデーションRthの変化を抑制できる。
熱可塑性ノルボルネン系樹脂は、前記式(1)を満たすガラス転移温度Tgを有する。詳細には、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、通常105℃以上、好ましくは106℃以上、特に好ましくは107℃以上であり、通常120℃以下、好ましくは118℃以下、特に好ましくは117℃以下である。前記範囲のガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性を大きくできる。よって、この熱可塑性ノルボルネン系樹脂を用いることにより、厚み方向のレターデーションRthの大きい光学フィルムを得ることが可能である。また、通常は、このように高いガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂を用いることにより、高温環境におけるノルボルネン系水素化物の配向の緩和を抑制できる。よって、優れた耐熱性を達成できるので、高温環境における光学フィルムの厚み方向のレターデーションRthの変化を抑制できる。
熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、示差走査熱量分析計を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定できる。
熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、例えば、ノルボルネン系水素化物の原料としてのノルボルネン系単量体の種類及び重合比、低分子割合L、並びに、ノルボルネン系水素化物の含有率によって調整できる。
熱可塑性ノルボルネン系樹脂は、延伸による複屈折の発現性が大きい。よって、熱可塑性ノルボルネン系樹脂を延伸した場合には、大きな複屈折が発現する。例えば、熱可塑性ノルボルネン系樹脂は、好ましくは、下記式(4)を満たす評価複屈折ΔnRを有する。
(4)0.0025≦ΔnR
(4)0.0025≦ΔnR
詳細には、熱可塑性ノルボルネン系樹脂の評価複屈折ΔnRは、好ましくは0.0025以上、より好ましくは0.00255以上、特に好ましくは0.0026以上である。このように大きい評価複屈折ΔnRを有する熱可塑性ノルボルネン系樹脂は、延伸によって大きな複屈折を発現できる。よって、厚み方向のレターデーションRthが大きい光学フィルムを容易に製造できる。熱可塑性ノルボルネン系樹脂の評価複屈折ΔnRの上限は、特段の制限は無いが、好ましくは0.006以下、より好ましくは0.005以下、特に好ましくは0.004以下である。熱可塑性ノルボルネン系樹脂の評価複屈折ΔnRが前記の上限値以下である場合、熱可塑性ノルボルネン系樹脂のレターデーションの調整を容易に行うことができる。
熱可塑性ノルボルネン系樹脂の評価複屈折ΔnRは、下記の方法によって測定できる。
熱可塑性ノルボルネン系樹脂を成形して、シートを得る。このシートに、自由端一軸延伸を施す。前記の自由端一軸延伸の延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgより15℃高い温度(即ち、Tg+15℃)である。また、延伸時間は1分間であり、自由端一軸延伸の延伸倍率は、1.5倍である。延伸後、シート中央部の面内レターデーションRe(a)を測定波長550nmで測定し、この面内レターデーションRe(a)をシート中央部の厚みT(a)で割算することで、評価複屈折ΔnRが得られる。
熱可塑性ノルボルネン系樹脂を成形して、シートを得る。このシートに、自由端一軸延伸を施す。前記の自由端一軸延伸の延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgより15℃高い温度(即ち、Tg+15℃)である。また、延伸時間は1分間であり、自由端一軸延伸の延伸倍率は、1.5倍である。延伸後、シート中央部の面内レターデーションRe(a)を測定波長550nmで測定し、この面内レターデーションRe(a)をシート中央部の厚みT(a)で割算することで、評価複屈折ΔnRが得られる。
熱可塑性ノルボルネン系樹脂の評価複屈折ΔnRは、例えば、ノルボルネン系水素化物の原料としてのノルボルネン系単量体の種類及び重合比、ノルボルネン系水素化物の重量平均分子量Mw及び低分子割合L、並びに、ノルボルネン系水素化物の含有率によって調整できる。
熱可塑性ノルボルネン系樹脂は、延伸後の接着強度に優れる。よって、熱可塑性ノルボルネン系樹脂を延伸し、その延伸した熱可塑性ノルボルネン系樹脂を任意の部材に接着した場合に、デラミネーションを抑制できる。ノルボルネン系重合体又はその水素化物を含む従来の樹脂は、一般に延伸後にデラミネーションを生じ易かったことに鑑みれば、本実施形態に係る熱可塑性ノルボルネン系樹脂が延伸後のデラミネーションを抑制できることは、優れた利点の一つである。
高いガラス転移温度Tgを有するので、熱可塑性ノルボルネン系樹脂は、通常、耐熱性に優れる。よって、熱可塑性ノルボルネン系樹脂は、高温環境において、分子の配向緩和を生じ難い。よって、熱可塑性ノルボルネン系樹脂を用いれば、高温環境における厚み方向のレターデーションRthの変化の抑制が可能な光学フィルムを実現できる。
熱可塑性ノルボルネン系樹脂の応力複屈折CRは、好ましくは2150×10-12Pa-1以上、より好ましくは2200×10-12Pa-1以上、特に好ましくは2250×10-12Pa-1以上であり、好ましくは4000×10-12Pa-1以下、より好ましくは3600×10-12Pa-1以下、特に好ましくは3200×10-12Pa-1以下である。熱可塑性ノルボルネン系樹脂の応力複屈折CRが前記範囲の下限値以上である場合、熱可塑性ノルボルネン系樹脂の延伸による複屈折の発現性を大きくできる。よって、その熱可塑性ノルボルネン系樹脂を用いて、厚み方向のレターデーションRthが大きい光学フィルムを容易に製造できる。また、熱可塑性ノルボルネン系樹脂の応力複屈折CRが前記範囲の上限値以下である場合、熱可塑性ノルボルネン系樹脂を用いて製造される光学フィルムのレターデーションRe及びRthを制御しやすくなり、レターデーションの面内のバラツキを抑えることができる。
熱可塑性ノルボルネン系樹脂の応力複屈折CRは、下記の方法で測定できる。
熱可塑性ノルボルネン系樹脂をシート状に成形して、シートを得る。このシートの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば55g)の重りを固定する。次いで、所定温度(例えば、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgより15℃高い温度)に設定したオーブン内に、重りを固定していない方のクリップを起点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったシートを、ゆっくりと冷やして室温まで戻す。このシートについて、シート中心部の面内レターデーションRe(b)を測定波長650nmで測定し、この面内レターデーションRe(b)をシート中心部の厚みT(b)[mm]で割算することで、δn値を算出する。そして、このδn値を、シートに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)で割算して、応力複屈折CRを求めることができる。
熱可塑性ノルボルネン系樹脂をシート状に成形して、シートを得る。このシートの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば55g)の重りを固定する。次いで、所定温度(例えば、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgより15℃高い温度)に設定したオーブン内に、重りを固定していない方のクリップを起点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったシートを、ゆっくりと冷やして室温まで戻す。このシートについて、シート中心部の面内レターデーションRe(b)を測定波長650nmで測定し、この面内レターデーションRe(b)をシート中心部の厚みT(b)[mm]で割算することで、δn値を算出する。そして、このδn値を、シートに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)で割算して、応力複屈折CRを求めることができる。
応力複屈折CRは、例えば、ノルボルネン系水素化物の原料としてのノルボルネン系単量体の種類及び重合比、ノルボルネン系水素化物の重量平均分子量Mw及び低分子割合L、並びに、ノルボルネン系水素化物の含有率によって調整できる。
[5.成形体]
本発明の一実施形態に係る成形体は、上述した熱可塑性ノルボルネン系樹脂によって形成されている。成形体の形状は任意であり、フィルム状、シリンジ状、袋状、カップ状、チューブ状等でありうる。中でも、延伸時の複屈折の発現性に優れ、且つ、延伸後に高い接着強度を得ることができるという熱可塑性ノルボルネン系樹脂の利点を活用する観点では、成形体は、延伸加工を含む製造方法で製造される成形体であることが好ましく、延伸フィルムであることがより好ましく、光学フィルムであることが特に好ましい。
本発明の一実施形態に係る成形体は、上述した熱可塑性ノルボルネン系樹脂によって形成されている。成形体の形状は任意であり、フィルム状、シリンジ状、袋状、カップ状、チューブ状等でありうる。中でも、延伸時の複屈折の発現性に優れ、且つ、延伸後に高い接着強度を得ることができるという熱可塑性ノルボルネン系樹脂の利点を活用する観点では、成形体は、延伸加工を含む製造方法で製造される成形体であることが好ましく、延伸フィルムであることがより好ましく、光学フィルムであることが特に好ましい。
[6.光学フィルム]
本発明の一実施形態に係る光学フィルムは、上述した熱可塑性ノルボルネン系樹脂で形成されたフィルムである。熱可塑性ノルボルネン系樹脂の優れた複屈折の発現性を活用して、この光学フィルムは、レターデーションを有する位相差フィルムであることが好ましい。更には、光学フィルムは、大きな厚み方向のレターデーションRthを有することが特に好ましい。
本発明の一実施形態に係る光学フィルムは、上述した熱可塑性ノルボルネン系樹脂で形成されたフィルムである。熱可塑性ノルボルネン系樹脂の優れた複屈折の発現性を活用して、この光学フィルムは、レターデーションを有する位相差フィルムであることが好ましい。更には、光学フィルムは、大きな厚み方向のレターデーションRthを有することが特に好ましい。
光学フィルムの具体的な厚み方向のレターデーションRthは、好ましくは150nm以上、より好ましくは200nm以上、特に好ましくは250nm以上であり、好ましくは450nm以下、より好ましくは400nm以下、特に好ましくは350nm以下である。光学フィルムの厚み方向のレターデーションRthが前記範囲の下限値以上である場合、当該光学フィルムを備える画像表示装置の斜め方向のコントラストを高めることができる。また、光学フィルムの厚み方向のレターデーションRthが前記範囲の上限値以下である場合、当該光学フィルムの厚み方向のレターデーションRth及び配向角の面内におけるバラツキを抑制できる。
さらに、光学フィルムは、熱可塑性ノルボルネン系樹脂の複屈折の発現性が大きいことを活用して、当該光学フィルムの厚みd当たりの厚み方向のレターデーションRthが大きいことが好ましい。具体的には、光学フィルムの厚みd、及び、光学フィルムの厚み方向のレターデーションRthが、下記式(6)を満たすことが好ましい。
(6)Rth/d≧3.5×10-3
(6)Rth/d≧3.5×10-3
詳細には、比Rth/dは、好ましくは3.5×10-3以上、好ましくは3.7×10-3以上、特に好ましくは3.8×10-3以上である。比Rth/dが前記下限値以上である場合、薄く、且つ、厚み方向のレターデーションRthが大きい光学フィルムが実現される。比Rth/dの上限に特段の制限はないが、延伸倍率を小さくして、光学フィルムの配向角精度を高める観点では、好ましくは8.0×10-3以下、より好ましくは6.0×10-3以下である。
また、光学フィルムは、偏光板等のフィルムに対して接着剤を用いて貼り合わせを行う場合に、その接着強度を高くできる。よって、光学フィルムを剥がれ難くできるので、光学フィルムのデラミネーションを抑制できる。
光学フィルムは、小さい光弾性係数Cを有することが好ましい。具体的には、光学フィルムの光弾性係数Cは、下記式(5)を満たすことが好ましい。ここで、1Brewster=1×10-13cm2/dynである。
(5)C≦10Brewster
(5)C≦10Brewster
詳細には、光学フィルムの具体的な光弾性係数Cは、好ましくは10Brewster以下、より好ましくは9Brewster以下、特に好ましくは8Brewster以下である。光学フィルムの光弾性係数Cが小さい場合、その光学フィルムは、反りを生じてもレターデーション等の光学特性に変化を生じ難い。よって、光学フィルムを液晶表示装置に設けた場合に、光学フィルムの反りに起因する光漏れの発生を抑制することができる。光漏れとは、液晶表示装置を黒表示状態にした場合に、遮蔽すべき光が画面から漏れだし、画面が明るくなる現象をいう。光弾性係数の下限は、特段の制限は無いが、好ましくは0Brewster以上、より好ましくは0.5Brewster以上、特に好ましくは1Brewster以上である。
光学フィルムの光弾性係数Cは、エリプソメーターによって測定できる。
小さい光弾性係数Cを有する光学フィルムは、例えば、光学フィルムがノルボルネン系水素化物を含むことによって実現できる。
光学フィルムの面内レターデーションReは、当該光学フィルムの用途に応じて任意である。具体的な範囲を示すと、光学フィルムの面内レターデーションReは、好ましくは40nm以上、より好ましくは45nm以上、特に好ましくは50nm以上であり、好ましくは80nm以下、より好ましくは75nm以下、特に好ましくは70nm以下である。光学フィルムの面内レターデーションReが前記範囲の下限値以上である場合、液晶セルの光学補償をし易い。また、光学フィルムの面内レターデーションReが前記範囲の上限値以下である場合、レターデーションの面内でのバラツキを抑制できる。
光学フィルムは、高い全光線透過率を有することが好ましい。光学フィルムの具体的な全光線透過率は、好ましくは85%~100%、より好ましくは87%~100%、特に好ましくは90%~100%である。全光線透過率は、市販の分光光度計を用いて、波長400nm以上700nm以下の範囲で測定しうる。
光学フィルムは、当該光学フィルムを画像表示装置に設けた場合に当該画像表示装置の画像鮮明性を高める観点から、ヘイズが小さいことが好ましい。光学フィルムのヘイズは、好ましくは1%以下、より好ましくは0.8%以下、特に好ましくは0.5%以下である。ヘイズは、JIS K7361-1997に準拠して、濁度計を用いて測定しうる。
高いガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂で形成されているので、光学フィルムは、通常、耐熱性に優れる。よって、光学フィルムに含まれるノルボルネン系水素化物の分子は、高温環境においても、配向緩和を生じ難い。よって、光学フィルムは、通常、高温環境における厚み方向のレターデーションRthの変化を抑制できる。耐熱性に優れる光学フィルムは、高温環境で使用されうる画像表示装置に対して、適用できる。
光学フィルムの耐熱性は、高温環境での耐久試験による厚み方向のレターデーションRthの変化率によって評価できる。例えば、光学フィルムの厚み方向のレターデーションRth0を測定した後で、その光学フィルムに、85℃の環境で500時間保管する耐久試験を行う。耐久試験の後、光学フィルムの厚み方向のレターデーションRth1を測定する。そして、耐久試験による光学フィルムの厚み方向のレターデーションの変化量Rth1-Rth0を、耐久試験前の光学フィルムの厚み方向のレターデーションRth0で割算して、その変化率を計算できる。本実施形態に係る光学フィルムによれば、前記の厚み方向のレターデーションRthの変化率を、好ましくは-3.0%~3.0%、より好ましくは-2.9%~2.9%、特に好ましくは-2.8%~2.8%にできる。
光学フィルムは、薄いことが好ましい。上述した熱可塑性ノルボルネン系樹脂を用いることにより、光学フィルムが薄くても、大きい厚み方向のレターデーションRthを得ることができる。また、光学フィルムが薄い場合、光学フィルムの反りを抑制できるので、反りによるレターデーション等の光学特性の変化を小さくできる。よって、光学フィルムを液晶表示装置に設けた場合に、光学フィルムの反りに起因する光漏れの発生を抑制することができる。光学フィルムの具体的な厚みdは、好ましくは120μm以下、より好ましくは100μm以下、特に好ましくは80μm以下である。厚みdの下限は、特段の制限は無いが、デラミネーションを抑制する観点では、好ましくは20μm以上、より好ましくは30μm以上、特に好ましくは40μm以上である。
上述した光学フィルムは、例えば、熱可塑性ノルボルネン系樹脂で形成された樹脂フィルムを用意する工程と、この樹脂フィルムを延伸する工程と、を含む製造方法によって、製造できる。延伸される前の樹脂フィルムを、延伸後に得られる光学フィルムと区別するため、以下、適宜「延伸前フィルム」ということがある。
延伸前フィルムを用意する工程は、通常、熱可塑性ノルボルネン系樹脂を成形して延伸前フィルムを得ることを含む。この際、熱可塑性ノルボルネン系樹脂の成形方法に制限は無い。成形方法としては、例えば、押出成形法、溶液キャスト法、インフレーション成型法などが挙げられる。中でも、押出成形法及び溶液キャスト法が好ましく、押出成形法が特に好ましい。
延伸前フィルムを用意した後で、その延伸前フィルムを延伸する工程を行う。この延伸により、フィルム中のノルボルネン系水素化物の分子を配向させられるので、上述した光学特性を有する光学フィルムが得られる。延伸前フィルムを延伸する工程での延伸条件は、所望の光学フィルムが得られる範囲で、任意に設定できる。
延伸前フィルムの延伸の態様は、例えば、1方向に延伸を行う一軸延伸であってもよく、非平行な2方向に延伸を行う二軸延伸であってもよい。また、二軸延伸は、2方向への延伸を同時に行う同時二軸延伸であってもよく、一方の方向への延伸を行った後で他方の方向への延伸を行う逐次二軸延伸であってもよい。これらのうち、厚み方向のレターデーションRthが大きい光学フィルムを容易に製造する観点から、二軸延伸が好ましく、逐次二軸延伸がより好ましい。
延伸前フィルムの延伸方向は、任意に設定しうる。例えば、延伸前フィルムが長尺のフィルムである場合、延伸方向は、縦方向でもよく、横方向でもよく、斜め方向でもよい。縦方向とは、長尺のフィルムの長さ方向を表し、横方向とは、長尺のフィルムの幅方向を表し、斜め方向とは、長尺のフィルムの長さ方向に平行でも垂直でもない方向を表す。
延伸前フィルムの延伸倍率は、好ましくは1.8以上、より好ましくは1.9以上、特に好ましくは2.0以上であり、好ましくは2.6以下、より好ましくは2.5以下、特に好ましくは2.4以下である。延伸倍率が前記範囲の下限値以上である場合、厚み方向のレターデーションRthが大きい光学フィルムを容易に得ることができる。また、延伸倍率が前記範囲の上限値以下である場合、光学フィルムの配向角精度を容易に高めることができる。二軸延伸を行う場合、一方の方向への延伸の延伸倍率と他方の方向への延伸の延伸倍率との積で表される全体の延伸倍率が、前記範囲に収まることが好ましい。
延伸前フィルムの延伸温度は、好ましくはTg+9℃以上、より好ましくはTg+9.5℃以上、特に好ましくはTg+10℃以上であり、好ましくはTg+25℃以下、より好ましくはTg+23℃以下、特に好ましくはTg+20℃以下である。延伸温度が前記範囲である場合、光学フィルムの厚みを均一にし易い。
前記の製造方法では、上述したように、延伸前フィルムを延伸することによって光学フィルムを得ることができるが、前記の製造方法は、更に任意の工程を含んでいてもよい。
例えば、前記の製造方法は、光学フィルムをトリミングする工程、光学フィルムに表面処理を施す工程、などを含んでいてもよい。
例えば、前記の製造方法は、光学フィルムをトリミングする工程、光学フィルムに表面処理を施す工程、などを含んでいてもよい。
[7.光学積層体]
上述した光学フィルムを用いて、光学積層体を得ることができる。この光学積層体は、上述した光学フィルムと、偏光板とを備える。光学フィルムが、厚み方向のレターデーションRthが大きくても厚みを薄くできるので、光学積層体を薄くしたり、光学積層体の反りを抑制したりできる。また、光学フィルムが高い接着強度を有するので、光学フィルムと偏光板との剥離を抑制できる。さらに、光学フィルムが高い耐熱性を有するので、光学積層体も、高い耐熱性を有することができる。このような光学積層体は、液晶表示装置等の画像表示装置に好適に適用できる。
上述した光学フィルムを用いて、光学積層体を得ることができる。この光学積層体は、上述した光学フィルムと、偏光板とを備える。光学フィルムが、厚み方向のレターデーションRthが大きくても厚みを薄くできるので、光学積層体を薄くしたり、光学積層体の反りを抑制したりできる。また、光学フィルムが高い接着強度を有するので、光学フィルムと偏光板との剥離を抑制できる。さらに、光学フィルムが高い耐熱性を有するので、光学積層体も、高い耐熱性を有することができる。このような光学積層体は、液晶表示装置等の画像表示装置に好適に適用できる。
偏光板としては、例えば、偏光子層を備えるフィルムを用いうる。偏光子層としては、例えば、適切なビニルアルコール系重合体のフィルムに、適切な処理を適切な順序及び方式で施したものを用いうる。かかるビニルアルコール系重合体の例としては、ポリビニルアルコール及び部分ホルマール化ポリビニルアルコールが挙げられる。フィルムの処理の例としては、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、及び架橋処理が挙げられる。偏光子層は、吸収軸と平行な振動方向を有する直線偏光を吸収しうるものであり、特に、偏光度に優れるものが好ましい。偏光子層の厚さは、5μm~80μmが一般的であるが、これに限定されない。
偏光板は、偏光子層を保護するために、偏光子層の一側又は両側に、保護フィルム層を備えていてもよい。保護フィルム層としては、任意の透明フィルム層を用いうる。中でも、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂のフィルム層が好ましい。そのような樹脂としては、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、熱可塑性ノルボルネン系樹脂、(メタ)アクリル樹脂等が挙げられる。中でも、複屈折が小さい点でアセテート樹脂、熱可塑性ノルボルネン系樹脂、(メタ)アクリル樹脂が好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、熱可塑性ノルボルネン系樹脂が特に好ましい。
前記の偏光板は、例えば、偏光子層と保護フィルム層とを貼り合わせて製造できる。貼り合わせの際には、必要に応じて、接着剤を用いてもよい。
光学積層体は、光学フィルム及び偏光板に組み合わせて、更に任意の部材を含んでいてもよい。例えば、光学積層体は、光学フィルムと偏光板とを貼り合わせるための接着層を備えていてもよい。
光学積層体の厚みは、特段の制限は無いが、好ましくは30μm以上、より好ましくは50μm以上であり、好ましくは150μm以下、より好ましくは130μm以下である。
[8.液晶表示装置]
上述した光学積層体は、液晶表示装置に設けることができる。上述したように、光学積層体が備える光学フィルムは薄くできるので、光学積層体は反りを生じ難い。よって、反った部分での光学フィルムの光学特性の変化による光漏れの発生を抑制することができる。前記の反りは、一般に液晶表示装置の画面のコーナーにおいて生じ易いが、前記の光学積層体を備える液晶表示装置では、このようなコーナーでの光漏れを抑制することが可能である。また、光学フィルムが高い耐熱性を有するので、液晶表示装置は、高温環境における表示特性の変化を抑制することができる。
上述した光学積層体は、液晶表示装置に設けることができる。上述したように、光学積層体が備える光学フィルムは薄くできるので、光学積層体は反りを生じ難い。よって、反った部分での光学フィルムの光学特性の変化による光漏れの発生を抑制することができる。前記の反りは、一般に液晶表示装置の画面のコーナーにおいて生じ易いが、前記の光学積層体を備える液晶表示装置では、このようなコーナーでの光漏れを抑制することが可能である。また、光学フィルムが高い耐熱性を有するので、液晶表示装置は、高温環境における表示特性の変化を抑制することができる。
通常、液晶表示装置は、液晶セルを備え、この液晶セルの少なくとも片側に光学積層体を備える。中でも、光学積層体は、液晶セル、光学フィルム及び視認側偏光子がこの順に並ぶように設けられることが好ましい。このような構成において、光学フィルムは、視野角補償フィルムとして機能できる。
液晶セルは、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。以下の操作は、別に断らない限り、常温常圧大気中にて行った。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。以下の操作は、別に断らない限り、常温常圧大気中にて行った。
[I.重合体の物性値の測定方法及び算出方法]
(重合体の重量平均分子量Mwの測定方法)
重合体の重量平均分子量Mwは、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。
標準ポリイソプレンとしては、東ソー社製標準ポリイソプレン(Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)を用いた。
測定は、東ソー社製カラム(TSKgelG5000HXL、TSKgelG4000HXL及びTSKgelG2000HXL)を3本直列に繋いで用い、流速1.0mL/分、サンプル注入量100μL、カラム温度40℃の条件で行った。
(重合体の重量平均分子量Mwの測定方法)
重合体の重量平均分子量Mwは、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。
標準ポリイソプレンとしては、東ソー社製標準ポリイソプレン(Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)を用いた。
測定は、東ソー社製カラム(TSKgelG5000HXL、TSKgelG4000HXL及びTSKgelG2000HXL)を3本直列に繋いで用い、流速1.0mL/分、サンプル注入量100μL、カラム温度40℃の条件で行った。
(重合体の低分子割合Lの測定方法)
重合体の低分子割合Lは、前記(重合体の重量平均分子量Mwの測定方法)におけるGPCによって測定した分子量の測定値から、分子量10000以下の成分の量を積分して算出した。
重合体の低分子割合Lは、前記(重合体の重量平均分子量Mwの測定方法)におけるGPCによって測定した分子量の測定値から、分子量10000以下の成分の量を積分して算出した。
(ガラス転移温度Tgの測定方法)
ガラス転移温度Tgは、示差走査熱量分析計(ナノテクノロジー社製「DSC6220SII」)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
ガラス転移温度Tgは、示差走査熱量分析計(ナノテクノロジー社製「DSC6220SII」)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
(評価複屈折ΔnRの測定方法)
樹脂を、縦50mm×横100mm×厚み100μmのシート状に成形して、サンプルシートを得た。このサンプルシートに、恒温槽付引張試験機(インストロン ジャパン カンパニー リミテッド社製「5564型」)を用いて、自由端一軸延伸を施した。この延伸の条件は、下記の通りである。
延伸温度:Tg+15℃
チャック間距離:65mm
延伸倍率:1.5倍(延伸距離32.5mm)
延伸時間:1分
延伸速度:32.5mm/分
樹脂を、縦50mm×横100mm×厚み100μmのシート状に成形して、サンプルシートを得た。このサンプルシートに、恒温槽付引張試験機(インストロン ジャパン カンパニー リミテッド社製「5564型」)を用いて、自由端一軸延伸を施した。この延伸の条件は、下記の通りである。
延伸温度:Tg+15℃
チャック間距離:65mm
延伸倍率:1.5倍(延伸距離32.5mm)
延伸時間:1分
延伸速度:32.5mm/分
延伸処理を行った後、延伸されたサンプルシートを室温に戻し、測定試料を得た。
この測定試料について、位相差計(AXOMETRICS社製「AXOSCAN」)を用いて、測定波長550nmで、測定試料の中心部の面内レターデーションRe(a)[nm]を測定した。また、測定試料の前記中心部の厚みT(a)[mm]を測定した。これらの測定値Re(a)及びT(a)を用いて、下記式(X1)により、樹脂の評価複屈折ΔnRを計算した。
ΔnR=Re(a)×(1/T(a))×10-6 (X1)
ΔnR=Re(a)×(1/T(a))×10-6 (X1)
(応力複屈折CRの測定方法)
樹脂を、縦35mm×横10mm×厚み1mmのシート状に成形して、サンプルシートを得た。このサンプルシートの両端をクリップで固定した後に、片方のクリップに55gの重りを固定した。次いで、樹脂のガラス転移温度Tg+15℃に温度を設定したオーブン内に、重りを固定していない方のクリップを起点にして、1時間サンプルシートを吊るして延伸処理を行った。その後、サンプルシートをゆっくりと冷やして室温まで戻し、測定試料を得た。
樹脂を、縦35mm×横10mm×厚み1mmのシート状に成形して、サンプルシートを得た。このサンプルシートの両端をクリップで固定した後に、片方のクリップに55gの重りを固定した。次いで、樹脂のガラス転移温度Tg+15℃に温度を設定したオーブン内に、重りを固定していない方のクリップを起点にして、1時間サンプルシートを吊るして延伸処理を行った。その後、サンプルシートをゆっくりと冷やして室温まで戻し、測定試料を得た。
この測定試料について、複屈折計(フォトニックラティス製「WPA-100」)を用いて、測定波長650nmで、測定試料の中心部の面内レターデーションRe(b)[nm]を測定した。また、測定試料の前記中心部の厚みT(b)[mm]を測定した。これらの測定値Re(b)及びT(b)を用いて、下記式(X2)により、δn値を算出した。
δn=Re(b)×(1/T(b))×10-6 (X2)
当該δn値及びサンプルに加えた応力Fを用い、下記式(X3)により、応力複屈折CRを計算した。
CR=δn/F (X3)
δn=Re(b)×(1/T(b))×10-6 (X2)
当該δn値及びサンプルに加えた応力Fを用い、下記式(X3)により、応力複屈折CRを計算した。
CR=δn/F (X3)
[II.光学フィルムの特性の評価方法]
(光学フィルムのレターデーションRth,Reの測定方法)
光学フィルムの、厚み方向のレターデーションRth及び面内レターデーションReは、位相差計(AXOMETRICS社製「AXOSCAN」)を用いて、測定波長550nmで測定した。
(光学フィルムのレターデーションRth,Reの測定方法)
光学フィルムの、厚み方向のレターデーションRth及び面内レターデーションReは、位相差計(AXOMETRICS社製「AXOSCAN」)を用いて、測定波長550nmで測定した。
(フィルムの厚みの測定方法)
フィルムの厚みは、スナップゲージ(ミツトヨ社製「ID-C112BS」)により測定した。
フィルムの厚みは、スナップゲージ(ミツトヨ社製「ID-C112BS」)により測定した。
(光学フィルムの光弾性係数の測定方法)
光学フィルムの光弾性係数は、エリプソメーターによって測定した。
光学フィルムの光弾性係数は、エリプソメーターによって測定した。
(85℃、500時間経過後の光学フィルムの厚み方向のレターデーションRthの変化率の測定方法)
後述の耐久試験の前に、光学フィルムの厚み方向のレターデーションRth0を測定した。その後、光学フィルムに、85℃の環境で500時間保管する耐久試験を行った。耐久試験の後、光学フィルムの厚み方向のレターデーションRth1を測定した。これらの測定値Rth0及びRth1から、下記の式(X4)により、耐久試験による光学フィルムの厚み方向のレターデーションの変化率(Rth変化率)を計算した。Rth変化率がゼロに近いほど、光学フィルムの耐熱性が優れることを表す。
Rth変化率(%)={(Rth1-Rth0)/Rth0}×100 (X4)
後述の耐久試験の前に、光学フィルムの厚み方向のレターデーションRth0を測定した。その後、光学フィルムに、85℃の環境で500時間保管する耐久試験を行った。耐久試験の後、光学フィルムの厚み方向のレターデーションRth1を測定した。これらの測定値Rth0及びRth1から、下記の式(X4)により、耐久試験による光学フィルムの厚み方向のレターデーションの変化率(Rth変化率)を計算した。Rth変化率がゼロに近いほど、光学フィルムの耐熱性が優れることを表す。
Rth変化率(%)={(Rth1-Rth0)/Rth0}×100 (X4)
(光学フィルムの接着強度の測定方法)
被着体として、ノルボルネン系重合体を含む樹脂で形成された未延伸フィルム(日本ゼオン社製「ゼオノアフィルム」、厚み100μm、樹脂のガラス転移温度160℃、延伸処理は施されていないもの)を用意した。測定対象フィルムとしての光学フィルムの片面、及び、前記の未延伸フィルムの片面に、コロナ処理を施した。光学フィルムのコロナ処理を施した面、及び、未延伸フィルムのコロナ処理を施した面の両方に、接着剤(トーヨーケム社製のUV接着剤CRBシリーズ)を付着させた。接着剤を付着させた面同士を貼り合わせた。その後、無電極UV照射装置(ヘレウス社製)を用い、接着剤に紫外線照射を行って、接着剤を硬化させた。前記の紫外線照射は、ランプとしてDバルブを使用し、ピーク照度100mW/cm2、積算光量3000mJ/cm2の条件で行った。これにより、未延伸フィルム/接着剤の層/光学フィルムの層構成を有するサンプルフィルムを得た。
被着体として、ノルボルネン系重合体を含む樹脂で形成された未延伸フィルム(日本ゼオン社製「ゼオノアフィルム」、厚み100μm、樹脂のガラス転移温度160℃、延伸処理は施されていないもの)を用意した。測定対象フィルムとしての光学フィルムの片面、及び、前記の未延伸フィルムの片面に、コロナ処理を施した。光学フィルムのコロナ処理を施した面、及び、未延伸フィルムのコロナ処理を施した面の両方に、接着剤(トーヨーケム社製のUV接着剤CRBシリーズ)を付着させた。接着剤を付着させた面同士を貼り合わせた。その後、無電極UV照射装置(ヘレウス社製)を用い、接着剤に紫外線照射を行って、接着剤を硬化させた。前記の紫外線照射は、ランプとしてDバルブを使用し、ピーク照度100mW/cm2、積算光量3000mJ/cm2の条件で行った。これにより、未延伸フィルム/接着剤の層/光学フィルムの層構成を有するサンプルフィルムを得た。
得られたサンプルフィルムについて、下記の手順で、90度剥離試験を実施した。
サンプルフィルムを15mmの幅に裁断して、フィルム片を得た。このフィルム片の光学フィルム側の面を、スライドガラスの表面に、粘着剤を用いて貼り合わせた。この際、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。高性能型デジタルフォースゲージ(イマダ社製「ZP-5N」)の先端に、フィルム片に含まれる未延伸フィルムを挟み、スライドガラスの表面の法線方向に300mm/分の速度でその未延伸フィルムを牽引して、牽引の力の大きさを接着強度として測定した。
サンプルフィルムを15mmの幅に裁断して、フィルム片を得た。このフィルム片の光学フィルム側の面を、スライドガラスの表面に、粘着剤を用いて貼り合わせた。この際、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。高性能型デジタルフォースゲージ(イマダ社製「ZP-5N」)の先端に、フィルム片に含まれる未延伸フィルムを挟み、スライドガラスの表面の法線方向に300mm/分の速度でその未延伸フィルムを牽引して、牽引の力の大きさを接着強度として測定した。
[実施例1]
(1-1)ノルボルネン系開環重合体の製造:
内部を窒素置換したガラス製反応容器に、後述する単量体の合計100重量部に対して200部の脱水したシクロヘキサン、1-ヘキセン0.7mol%、ジイソプロピルエーテル0.15mol%、及びトリイソブチルアルミニウム0.44mol%を、室温で反応器に入れ、混合した。その後、45℃に保ちながら、反応器に、単量体としてのジシクロペンタジエン(DCPD)70重量%及びテトラシクロドデセン(TCD)30重量%と、六塩化タングステン(0.65重量%トルエン溶液)0.02mol%とを、並行して2時間かけて連続的に添加し、重合した。次いで、重合溶液に、イソプロピルアルコール0.2mol%を加えて重合触媒を不活性化し、重合反応を停止させた。前記の説明において、単位「mol%」で示される量は、いずれも、単量体の合計量を100mol%とした値である。得られたノルボルネン系開環重合体の重量平均分子量Mwは3.1×104であった。また、単量体の重合体への転化率は、100%であった。
(1-1)ノルボルネン系開環重合体の製造:
内部を窒素置換したガラス製反応容器に、後述する単量体の合計100重量部に対して200部の脱水したシクロヘキサン、1-ヘキセン0.7mol%、ジイソプロピルエーテル0.15mol%、及びトリイソブチルアルミニウム0.44mol%を、室温で反応器に入れ、混合した。その後、45℃に保ちながら、反応器に、単量体としてのジシクロペンタジエン(DCPD)70重量%及びテトラシクロドデセン(TCD)30重量%と、六塩化タングステン(0.65重量%トルエン溶液)0.02mol%とを、並行して2時間かけて連続的に添加し、重合した。次いで、重合溶液に、イソプロピルアルコール0.2mol%を加えて重合触媒を不活性化し、重合反応を停止させた。前記の説明において、単位「mol%」で示される量は、いずれも、単量体の合計量を100mol%とした値である。得られたノルボルネン系開環重合体の重量平均分子量Mwは3.1×104であった。また、単量体の重合体への転化率は、100%であった。
(1-2)水素化によるノルボルネン系水素化物の製造:
次いで、前記の工程(1-1)で得られたノルボルネン系開環重合体を含有する反応溶液183gに対して、シクロヘキサン67gを加え、さらに水素化触媒としてケイソウ土担持ニッケル触媒(日揮化学社製「T8400RL」、ニッケル担持率57%)1.8重量%を加えた。水素化触媒の量は、反応溶液に含まれるノルボルネン系開環重合体100重量%に対する値を表す。その後、反応溶液を水素により4.5MPaに加圧して撹拌しながら温度190℃まで加温し、8時間、水素化反応を行った。これにより、ノルボルネン系開環重合体の水素化物としてのノルボルネン系水素化物を含む反応溶液を得た。
次いで、前記の工程(1-1)で得られたノルボルネン系開環重合体を含有する反応溶液183gに対して、シクロヘキサン67gを加え、さらに水素化触媒としてケイソウ土担持ニッケル触媒(日揮化学社製「T8400RL」、ニッケル担持率57%)1.8重量%を加えた。水素化触媒の量は、反応溶液に含まれるノルボルネン系開環重合体100重量%に対する値を表す。その後、反応溶液を水素により4.5MPaに加圧して撹拌しながら温度190℃まで加温し、8時間、水素化反応を行った。これにより、ノルボルネン系開環重合体の水素化物としてのノルボルネン系水素化物を含む反応溶液を得た。
反応溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製「フンダバックフィルター」)して、水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を、大量のイソプロパノール中に注ぎ、ノルボルネン系水素化物を沈殿させた。沈殿したノルボルネン系水素化物を濾取した後に、ノルボルネン系水素化物100部当り、酸化防止剤〔ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製、製品名「イルガノックス(登録商標)1010」)〕0.1部を溶解したキシレン溶液2.0部を添加した。次いで、真空乾燥機(200℃、1Torr)で6時間乾燥させて、熱可塑性ノルボルネン系樹脂を得た。ノルボルネン系水素化物の重量平均分子量は4.4×104、分子量10000以下の低分子割合Lは10%であった。
熱可塑性ノルボルネン系樹脂のガラス転移温度Tg、評価複屈折ΔnR、及び、応力複屈折CRを、上述した方法で測定した。熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは115.5℃、評価複屈折ΔnRは0.0030、応力複屈折CRは2360×10-12Pa-1であった。
(1-3)延伸前フィルムの製造:
前記の工程で得られた熱可塑性ノルボルネン系樹脂を二軸押出機に投入し、熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターを用いて細断して、熱可塑性ノルボルネン系樹脂のペレットを得た。
前記の工程で得られた熱可塑性ノルボルネン系樹脂を二軸押出機に投入し、熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターを用いて細断して、熱可塑性ノルボルネン系樹脂のペレットを得た。
このペレットを80℃で5時間乾燥した。その後、常法によって該ペレットを押出機に供給し、250℃で溶融させた。そして、溶融した熱可塑性ノルボルネン系樹脂を、ダイから冷却ドラム上に吐出させて、厚さ150μmの長尺の延伸前フィルムを得た。
(1-4)光学フィルムの製造:
ロール間でのフロート方式を用いた縦延伸機を用意した。この縦延伸機を用いて、前記の延伸前フィルムを、縦方向に1.35倍に延伸して、中間フィルムを得た。縦延伸機を用いた前記の延伸の延伸温度は、125.5℃であり、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
ロール間でのフロート方式を用いた縦延伸機を用意した。この縦延伸機を用いて、前記の延伸前フィルムを、縦方向に1.35倍に延伸して、中間フィルムを得た。縦延伸機を用いた前記の延伸の延伸温度は、125.5℃であり、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
その後、前記の中間フィルムを、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、横方向に1.65倍に延伸して、二軸延伸フィルムとしての光学フィルムを得た。横延伸機を用いた前記の延伸の延伸温度は、131.5℃であり、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。得られた光学フィルムは、面内レターデーションReが60nm、厚み方向のレターデーションRthが360nm、厚さdが78μmであった。
得られた光学フィルムについて、上述した方法によって、評価を行った。
得られた光学フィルムについて、上述した方法によって、評価を行った。
[実施例2]
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)68重量%、及びエチリデンテトラシクロドデセン(ETD)3重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、123.7℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、129.7℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)68重量%、及びエチリデンテトラシクロドデセン(ETD)3重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、123.7℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、129.7℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[実施例3]
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)70重量%、及びノルボルネン(NB)1重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、120.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、126.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)70重量%、及びノルボルネン(NB)1重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、120.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、126.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[実施例4]
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)28重量%、ジシクロペンタジエン(DCPD)70重量%、及びノルボルネン(NB)2重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、117.6℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、123.6℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)28重量%、ジシクロペンタジエン(DCPD)70重量%、及びノルボルネン(NB)2重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、117.6℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、123.6℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[比較例1]
前記の工程(1-1)において用いる単量体の組み合わせを、メタノテトラヒドロフルオレン(MTF)10重量%、テトラシクロドデセン(TCD)40重量%、及びジシクロペンタジエン(DCPD)50重量%に変更した。更に、前記の工程(1-1)における重合温度を、55℃へ変更した。
前記の工程(1-4)において、縦方向への延伸温度を、137.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、143.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、メタノテトラヒドロフルオレン(MTF)10重量%、テトラシクロドデセン(TCD)40重量%、及びジシクロペンタジエン(DCPD)50重量%に変更した。更に、前記の工程(1-1)における重合温度を、55℃へ変更した。
前記の工程(1-4)において、縦方向への延伸温度を、137.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、143.5℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[比較例2]
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)5重量%、ジシクロペンタジエン(DCPD)80重量%、及びエチリデンテトラシクロドデセン(ETD)15重量%に変更した。さらに、前記の工程(1-1)における重合温度を、55℃へ変更した。
前記の工程(1-4)において、縦方向への延伸温度を、114.2℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、120.2℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)5重量%、ジシクロペンタジエン(DCPD)80重量%、及びエチリデンテトラシクロドデセン(ETD)15重量%に変更した。さらに、前記の工程(1-1)における重合温度を、55℃へ変更した。
前記の工程(1-4)において、縦方向への延伸温度を、114.2℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、120.2℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[比較例3]
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)68重量%、及びエチリデンテトラシクロドデセン(ETD)3重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、123℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、129.0℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)68重量%、及びエチリデンテトラシクロドデセン(ETD)3重量%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、123℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、129.0℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[比較例4]
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)68重量%、及びエチリデンテトラシクロドデセン(ETD)3重量%に変更した。さらに、1-ヘキセンの量を、0.68mol%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、123℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、129.0℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量%、ジシクロペンタジエン(DCPD)68重量%、及びエチリデンテトラシクロドデセン(ETD)3重量%に変更した。さらに、1-ヘキセンの量を、0.68mol%に変更した。
前記の工程(1-4)において、縦方向への延伸温度を、123℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。また、前記の工程(1-4)において、横方向への延伸温度を、129.0℃に変更した。この延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも16℃高い温度(Tg+16℃)であった。
以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂及び光学フィルムの製造及び評価を行った。
[結果]
前記の実施例及び比較例の結果を、下記の表1及び表2に示す。
前記の実施例及び比較例の結果を、下記の表1及び表2に示す。
Claims (7)
- ノルボルネン系重合体の水素化物を含む熱可塑性ノルボルネン系樹脂であって、
前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たし、
前記水素化物の重量平均分子量Mwが、下記式(2)を満たし、
前記熱可塑性ノルボルネン系樹脂に含まれる前記水素化物の量100%に対する、分子量10000以下の前記水素化物の割合Lが、下記式(3)を満たす、熱可塑性ノルボルネン系樹脂。
(1)105℃≦Tg≦120℃
(2)36000≦Mw
(3)L≦10.5% - 前記熱可塑性ノルボルネン系樹脂に、Tg+15℃、1分間で1.5倍に自由端一軸延伸を施した場合に発現する複屈折ΔnRが、下記式(4)を満たす、請求項1に記載の熱可塑性ノルボルネン系樹脂。
(4)0.0025≦ΔnR - 請求項1又は2に記載の熱可塑性ノルボルネン系樹脂で形成された、成形体。
- 光学フィルムである、請求項3に記載の成形体。
- 前記光学フィルムの光弾性係数Cが、下記式(5)を満たす、請求項4に記載の成形体。
(5)C≦10Brewster - 前記光学フィルムの厚み方向のレターデーションRth、及び、前記光学フィルムの厚みdが、下記式(6)を満たす、請求項4又は5に記載の成形体。
(6)Rth/d≧3.5×10-3 - 請求項4~6のいずれか一項に記載の成形体の製造方法であって、
請求項1又は2に記載の熱可塑性ノルボルネン系樹脂で形成された延伸前フィルムを用意する工程と、
前記延伸前フィルムを、前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tg+9℃以上で、延伸倍率1.8倍以上に延伸する工程と、を含む、成形体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020549141A JP7322889B2 (ja) | 2018-09-28 | 2019-09-20 | 成形体及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018184503 | 2018-09-28 | ||
JP2018-184503 | 2018-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066916A1 true WO2020066916A1 (ja) | 2020-04-02 |
Family
ID=69952130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037035 WO2020066916A1 (ja) | 2018-09-28 | 2019-09-20 | 熱可塑性ノルボルネン系樹脂、成形体及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7322889B2 (ja) |
TW (1) | TW202026322A (ja) |
WO (1) | WO2020066916A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841178A (ja) * | 1994-07-29 | 1996-02-13 | Nippon Zeon Co Ltd | 透湿度の低いシートまたはフィルム |
JPH10139865A (ja) * | 1996-11-11 | 1998-05-26 | Nippon Zeon Co Ltd | ノルボルネン系重合体及びその製造方法 |
JP2006016472A (ja) * | 2004-06-30 | 2006-01-19 | Nippon Zeon Co Ltd | 熱収縮性フィルム |
JP2006241204A (ja) * | 2005-02-28 | 2006-09-14 | Nippon Zeon Co Ltd | 皮脂付着時の強度に優れた3元系ノルボルネン系重合体及びその製造方法 |
JP2015100984A (ja) * | 2013-11-25 | 2015-06-04 | 日本ゼオン株式会社 | 積層体及び偏光板 |
-
2019
- 2019-09-20 JP JP2020549141A patent/JP7322889B2/ja active Active
- 2019-09-20 WO PCT/JP2019/037035 patent/WO2020066916A1/ja active Application Filing
- 2019-09-25 TW TW108134641A patent/TW202026322A/zh unknown
-
2023
- 2023-05-18 JP JP2023081986A patent/JP7567983B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841178A (ja) * | 1994-07-29 | 1996-02-13 | Nippon Zeon Co Ltd | 透湿度の低いシートまたはフィルム |
JPH10139865A (ja) * | 1996-11-11 | 1998-05-26 | Nippon Zeon Co Ltd | ノルボルネン系重合体及びその製造方法 |
JP2006016472A (ja) * | 2004-06-30 | 2006-01-19 | Nippon Zeon Co Ltd | 熱収縮性フィルム |
JP2006241204A (ja) * | 2005-02-28 | 2006-09-14 | Nippon Zeon Co Ltd | 皮脂付着時の強度に優れた3元系ノルボルネン系重合体及びその製造方法 |
JP2015100984A (ja) * | 2013-11-25 | 2015-06-04 | 日本ゼオン株式会社 | 積層体及び偏光板 |
Also Published As
Publication number | Publication date |
---|---|
TW202026322A (zh) | 2020-07-16 |
JP2023107789A (ja) | 2023-08-03 |
JP7322889B2 (ja) | 2023-08-08 |
JPWO2020066916A1 (ja) | 2021-08-30 |
JP7567983B2 (ja) | 2024-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11199745B2 (en) | Liquid crystal display device | |
WO2017170346A1 (ja) | 円偏光板及び画像表示装置 | |
TWI672215B (zh) | 延伸膜之製造方法、長條偏光膜以及液晶顯示裝置 | |
JP7463965B2 (ja) | 光学フィルム及びその製造方法、光学積層体並びに液晶表示装置 | |
JP2005017435A (ja) | 位相差補償フィルム、複合偏光板及び液晶表示装置 | |
JP7567983B2 (ja) | 熱可塑性ノルボルネン系樹脂、成形体及びその製造方法 | |
JP6075033B2 (ja) | 位相差フィルム積層体及びその製造方法、偏光板並びに液晶表示装置 | |
JP2005004096A (ja) | 位相差補償フィルム、複合偏光板、偏光板、液晶表示装置及び位相差補償フィルムの製造方法 | |
CN112384833B (zh) | 光学膜、光学层叠体以及液晶显示装置 | |
JP2006285136A (ja) | 位相差フィルムの製造方法、位相差フィルム、複合偏光板及び偏光板 | |
JP2006308917A (ja) | 位相差フィルムの製造方法、位相差フィルム、複合偏光板、液晶表示装置、及び偏光板 | |
JP6476779B2 (ja) | 光学フィルムの製造方法、及び偏光板の製造方法 | |
JP2005010413A (ja) | 位相差補償フィルム、複合偏光板、偏光板、液晶表示装置及び位相差補償フィルムの製造方法 | |
JP2022000674A (ja) | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 | |
KR102230201B1 (ko) | 위상차 필름 적층체 및 그의 제조 방법, 편광판, 및 액정 표시 장치 | |
JP2024112074A (ja) | 位相差層付偏光板および画像表示装置 | |
JP2006301522A (ja) | 位相差フィルムの製造方法及び位相差フィルム | |
JP2009126080A (ja) | 延伸フィルムの製造方法 | |
JP2005004095A (ja) | 位相差補償フィルム、複合偏光板、偏光板、液晶表示装置及び位相差補償フィルムの製造方法 | |
JP2008096925A (ja) | オレフィン系積層偏光板、液晶表示素子および表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19865614 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020549141 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19865614 Country of ref document: EP Kind code of ref document: A1 |