JP2009126080A - 延伸フィルムの製造方法 - Google Patents

延伸フィルムの製造方法 Download PDF

Info

Publication number
JP2009126080A
JP2009126080A JP2007304309A JP2007304309A JP2009126080A JP 2009126080 A JP2009126080 A JP 2009126080A JP 2007304309 A JP2007304309 A JP 2007304309A JP 2007304309 A JP2007304309 A JP 2007304309A JP 2009126080 A JP2009126080 A JP 2009126080A
Authority
JP
Japan
Prior art keywords
film
roll
temperature
heating device
heat removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007304309A
Other languages
English (en)
Inventor
Kazuya Suda
和哉 須田
Takeshi Asada
毅 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2007304309A priority Critical patent/JP2009126080A/ja
Publication of JP2009126080A publication Critical patent/JP2009126080A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】従来よりも高い遅相軸精度を有し、かつ平面性が良好な延伸フィルムを製造する方法を提供すること。
【解決手段】熱可塑性樹脂フィルムを、予熱ロールによる予熱工程、フロート方式の加熱装置による加熱工程、除熱ロールによる除熱工程をこの順に通過させ、予熱ロールと除熱ロールとの周速の差を利用して流れ方向に縦一軸延伸することにより延伸フィルムを製造する方法であって、フロート方式の加熱装置が、フィルムの流れ方向に連なる3つ以上の区画に分かれており、各区画内の温度が特定の関係を満たし、さらに前記フロート方式の加熱装置の上流からk番目の区画における温度、及びk+1番目の区画における温度が特定の関係を満たし、加熱工程と除熱工程との間にフィルムの幅方向に10〜500N/mの張力を与える工程を有し、その際のフィルム温度及び前記フロート方式の加熱装置の最下流の区画における温度が、特定の関係を満たすようにする。
【選択図】なし

Description

本発明は、例えば液晶表示装置に用いられる延伸フィルムの製造方法に関するものである。
液晶表示装置には、性能向上のために様々な位相差フィルムが使用されている。
この位相差フィルムの製造方法には、縦一軸延伸法、横一軸延伸法、逐次二軸延伸方法、同時二軸延伸方法等があり、目的とする性能に応じて使い分けられている。
このうち、縦一軸延伸法で位相差フィルムを製造する方法として、例えば、特許文献1〜特許文献3が知られている。
特許文献1には、環状オレフィン系樹脂フィルムを縦方向に延伸するにあたり、縦延伸ゾーンを通過するフィルムの温度がフィルムの下流にいくにつれて下がるように温度勾配をつける方法が開示されている。この方法によれば、配向軸の精度が良好な位相差フィルムを得ることができるとされている。
また、特許文献2には、熱可塑性樹脂からなる原反フィルムを縦延伸するにあたり、延伸されたフィルムを、フィルムを構成する熱可塑性樹脂のガラス転移温度より低い表面温度を有する2本以上のパスロールで順次支持しながら冷却する方法が開示されている。この方法によれば、平滑性を可及的に高めて、色むらの発生を抑制または防止できるようにして位相差フィルムを製造することが可能になるとされている。
さらに、特許文献3には、熱可塑性樹脂よりなるフィルムを非接触加熱手段にて加熱しつつ、該フィルムの移動方向に連続的に延伸する延伸方法において、該フィルムの延伸工程後に、該フィルムの幅方向にシワ伸ばし工程を経由して引き取り工程に至るフィルムの延伸方法が開示されている。これによれば、ロール縦延伸を用いた時に発生するロールへの粘着痕や延伸ムラ等、水平縦延伸を用いた時に発生しやすいシワや擦り傷のない、高品位のフィルムを安価に提供することが可能になるとされている。
しかしながら、特許文献1〜特許文献3に記載の方法によっても、より高い配向軸精度を有し、かつより平面性が良好な延伸フィルムを得ることができず、さらなる改善が求められていた。
特開2006−988806号公報 特開2007−171290号公報 特開2007−216658号公報
本発明の目的は、従来よりも高い配向軸精度を有し、かつ平面性が良好な延伸フィルムを製造する方法を提供することにある。
本発明者は、前記目的を達成するために検討した結果、熱可塑性樹脂フィルムを、予熱ロールによる予熱工程、フロート方式の加熱装置による加熱工程、除熱ロールによる除熱工程をこの順に通過させ、前記予熱ロールと除熱ロールとの周速の差を利用して流れ方向に縦一軸延伸するにあたり、前記フロート方式の加熱装置を複数の区画にわけ、各区画の温度をフィルムの流れ方向に進むに従って低くなるようにし、かつ隣接するフロート方式の加熱装置の各区画の温度差を特定の範囲となるようにし、さらに、加熱工程と除熱工程との間に張力を与える工程を有し、かつその際のフィルム温度を特定の範囲となるようにすることにより、上記の問題が解決可能であることを見出した。本発明者は、さらに検討を進め、これらの知見に基づいて本発明を完成するに至った。
すなわち、本発明は、以下のとおりのものである。
〔1〕熱可塑性樹脂フィルムを、予熱ロールによる予熱工程、フロート方式の加熱装置による加熱工程、除熱ロールによる除熱工程をこの順に通過させ、予熱ロールと除熱ロールとの周速の差を利用して流れ方向に縦一軸延伸することにより延伸フィルムを製造する方法であって、
前記フロート方式の加熱装置がフィルムの流れ方向に連なる3つ以上の区画(F,F,・・・,F(但し、nは3以上の整数))に分かれており、フロート方式の加熱装置の各区画の温度をT,T,・・・,Tとしたとき、T,T,・・・,Tが、下記(1)式を満たし、
さらに前記フロート方式の加熱装置の上流からk番目の区画Fにおける温度T、及びk+1番目の区画Fk+1番目の区画Fk+1における温度Tk+1が、下記(2)式を満たし、
加熱工程と除熱工程との間に、フィルムの幅方向に10〜500N/mの張力を与える工程を有し、前記張力を与える工程におけるフィルム温度T及び前記フロート方式の加熱装置の最下流の区画Fにおける温度Tが、下記式(3)を満たすことを特徴とする延伸フィルムの製造方法。
(℃)>T(℃)>・・・>T(℃) (1)
0(℃)<T−Tk+1(℃)<5(℃) (但し、kは1以上n−1以下の整数) (2)
0<T−T(℃)≦20(℃) (3)
〔2〕さらに、熱可塑性樹脂フィルムのガラス転移温度Tg(℃)、及び前記フロート方式の加熱装置の最下流の区画Fにおける温度Tが、下記(3)式を満たす前記〔1〕記載の延伸フィルムの製造方法。
Tg−3(℃)≦T(℃)≦Tg+3(℃) (4)
〔3〕前記フィルムの幅方向に10〜500N/mの張力を与える工程が、
フロート方式の加熱装置と除熱ロールとの間に上下一対のロールを、その中心軸が前記フィルムの幅方向と異なるように前記フィルムの両端に配置し、上下一対のロールとロールとの間にフィルムの両端を通過させる工程である前記〔1〕又は〔2〕のいずれかに記載の延伸フィルムの製造方法。
〔4〕前記フィルムの幅方向に10〜500N/mの張力を与える工程が、
フロート方式の加熱装置と除熱ロールとの間に逆クラウン形状のロールを配置し、該ロール上に前記フィルムを通過させる工程である前記〔1〕〜〔3〕のいずれかに記載の延伸フィルムの製造方法。
〔5〕前記〔1〕〜〔4〕のいずれかの製造方法により得られた延伸フィルム。
〔6〕偏光子の少なくとも片面に、前記〔5〕に記載の延伸フィルムを積層してなる偏光板。
〔7〕前記〔6〕に記載の偏光板を備える液晶表示装置。
本発明によれば、高い配向軸精度を有し、かつ平面性が良好な延伸フィルムを製造する方法を提供することができる。非接触加熱手段の各区画間の温度差を小さくすることにより、配向角、リターデーションのムラの少ない位相差フィルムを製造できる。また、非接触加熱手段と除熱ロールとの間に、フィルム温度の幅方向に特定の温度でフィルムに張力を与えることによって光学特性に影響を与えずにフィルムの平面性を良化させることができる。
本発明の製造方法は、熱可塑性樹脂フィルムを、予熱ロールによる予熱工程、フロート方式の加熱装置、除熱ロールによる除熱工程をこの順に通過させ、予熱ロールと除熱ロールとの周速の差を利用して流れ方向に縦一軸延伸することにより延伸フィルムを製造する方法である。
本発明に使用する熱可塑性樹脂フィルムを構成する熱可塑性樹脂としては、ポリカーボネート、ポリエステル、ポリエーテルスルホン、ポリアリレート、ポリイミド、脂環式ポリオレフィン樹脂などが挙げられる。これらのうち脂環式ポリオレフィン樹脂が好ましい。
脂環式ポリオレフィン樹脂は、主鎖及び/または側鎖に脂環構造を有する非晶性の樹脂である。脂環式ポリオレフィン樹脂中の脂環構造としては、飽和脂環炭化水素(シクロアルカン)構造、不飽和脂環炭化水素(シクロアルケン)構造などが挙げられるが、機械強度、耐熱性などの観点から、シクロアルカン構造が好ましい。脂環構造を構成する炭素原子数には、格別な制限はないが、通常4〜30個、好ましくは5〜20個、より好ましくは5〜15個であるときに、機械強度、耐熱性、及びフィルムの成形性の特性が高度にバランスされ、好適である。
脂環式ポリオレフィン樹脂を構成する脂環構造を有する繰り返し単位の割合は、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると透明性および耐熱性の観点から好ましい。
脂環式ポリオレフィン樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体、又はそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。
ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、7,8−ベンゾトリシクロ[4.3.0.12,5]デカ−3−エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
極性基の種類としては、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。飽和吸水率の小さいフィルムを得るためには。極性基の量が少ない方が好ましく、極性基を持たない方がより好ましい。
ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類およびその誘導体;シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエンおよびその誘導体;などが挙げられる。
ノルボルネン構造を有する単量体の開環重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。
ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1−ブテンなどの炭素数2〜20のα−オレフィンおよびこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィンおよびこれらの誘導体;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α−オレフィンが好ましく、エチレンがより好ましい。
ノルボルネン構造を有する単量体の付加重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。
ノルボルネン構造を有する単量体の開環重合体の水素化物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素化物、ノルボルネン構造を有する単量体の付加重合体の水素化物、およびノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素化物は、これら開環(共)重合体又は付加(共)重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素化触媒を添加し、水素を接触させて、炭素−炭素不飽和結合を好ましくは90%以上水素化することによって得ることができる。
ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン−2,4−ジイル−エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン−7,9−ジイル−エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90重量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0〜40:60であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる光学フィルムを得ることができる。
本発明に好適に用いる脂環式ポリオレフィン樹脂の分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常15,000〜50,000、好ましくは18,000〜45,000、より好ましくは20,000〜40,000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度および成形性とが高度にバランスされ好適である。
本発明に好適に用いる脂環式ポリオレフィン樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0〜10.0、好ましくは1.1〜4.0、より好ましくは1.2〜3.5の範囲である。
本発明に用いる熱可塑性樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100〜250℃の範囲である。ガラス転移温度がこのような範囲にある熱可塑性樹脂からなるフィルムは、高温下で変形や応力が生じることがなく耐久性に優れる。
本発明に用いる熱可塑性樹脂は、光弾性係数の絶対値が10×10−12Pa−1以下であることが好ましく、7×10−12Pa−1以下であることがより好ましく、4×10−12Pa−1以下であることが特に好ましい。光弾性係数Cは、複屈折Δnを応力σで除算したものである。すなわち、C=Δn/σで表される値である。熱可塑性樹脂の光弾性係数が10×10−12Pa−1を超えると、延伸フィルムの面内方向リターデーションのバラツキが大きくなるおそれがある。
本発明に用いる熱可塑性樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤が適宜配合されたものであってもよい。前記配合剤の配合量は、特に制限されず、熱可塑性樹脂中0〜5重量%である。
本発明に用いる熱可塑性樹脂フィルムは、公知の方法、例えば、キャスト成形法、押出成形法、インフレーション成形法などによって得ることができる。これらのうち押出成形法が残留揮発性成分量が少なく、寸法安定性にも優れるので好ましい。この未延伸フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法が好ましい。
本発明において、熱可塑性樹脂フィルムの厚みは、通常20〜200μm、好ましくは30〜150μmである。
また、本発明において、熱可塑性樹脂フィルムの厚みムラは、最大値−最小値の値で3μm以下であることが好ましく、2μm以下であることがより好ましい。熱可塑性樹脂フィルムの厚みムラが前記範囲であることにより、得られた延伸フィルムの光学特性の均一化を図ることが可能となる。厚みのムラは、赤外線透過式厚み計などの市販の厚み計を用いて測定された厚みのうち、最大値から最小値を差し引いた値とする。
本発明に用いる熱可塑性フィルムは、残留揮発性成分の含有量が、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。残留揮発性成分の含有量が多いと経時的に光学特性が変化するおそれがある。揮発性成分の含有量を上記範囲にすることにより、寸法安定性が向上し、面内方向リターデーション(Re)や厚さ方向リターデーションRth(=((nx+ny)/2−nz)×d;nxは面内遅相軸方向の屈折率;nyは面内で前記遅相軸に直交する方向の屈折率;nzは厚さ方向の屈折率;dはフィルムの平均厚さ)の経時変化を小さくすることができ、さらに本発明により得られる延伸フィルムを用いた偏光板及び液晶表示装置の劣化を抑制でき、表示画像を長期間良好な状態に保つことができる。
なお、揮発性成分は、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体や溶媒などが挙げられる。揮発性成分の含有量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーにより分析することにより定量することができる。
本発明に用いる熱可塑性樹脂フィルムは、飽和吸水率が、好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が上記範囲であると、ReやRthの経時変化を小さくすることができ、さらには本発明の円偏光板や液晶表示装置の劣化を抑制でき、表示画像を長期間良好な状態に保つことができる。
飽和吸水率は、フィルムの試験片を23℃の水中に24時間、浸漬し、増加した質量の、浸漬前フィルム試験片の質量に対する百分率で表される値である。
以下に、図面を参照しながら、本発明の実施の形態を説明する。
図1は本発明の製造方法に用いることができる縦延伸装置の一実施の形態を示す側面図である。図1に示す縦延伸装置は、熱可塑性樹脂フィルム1を予熱する予熱ロール2−1〜2−3、フリーロール3、さらにフィルムを加熱するフロート方式の加熱装置4、フロート方式の加熱装置を通過したフィルムの幅方向に張力を与える手段5、フィルムを除熱する除熱ロール6−1〜6−3を備える。そして、予熱ロールと除熱ロールとの周速の差を利用してフィルムをその流れ方向に一軸延伸する。
前記フロート方式の加熱装置4は、フィルムの流れ方向に複数の区画F,F,・・・,F(nは3以上の整数。図1では3つ。)に仕切られており、それぞれ独立した温度制御が可能となっている。
本発明では、熱可塑性樹脂フィルム1は、まず予熱ロール2−1〜2−3に送られて予備加熱される。
予熱ロールの温度は、熱可塑性樹脂フィルムのガラス転移温度をTg(℃)としたとき、Tg−90(℃)以上Tg−10(℃)以下が好ましく、Tg−70(℃)以上Tg−40(℃)以下がより好ましい。図1では、予熱ロールは3個あるが、個数は特に制限されない。予熱ロールが複数個ある場合には、前後の予熱ロールの温度差が0〜50℃以内、好ましくは5〜30℃以内、より好ましくは5〜20℃以内となるようにする。
本発明では、予熱ロール2−1〜2−3に送られて予備加熱された熱可塑性樹脂フィルム1は、フリーロール3を介して、フロート方式の加熱装置4に導かれる。
フロート方式の加熱装置は、フィルムにその両面から熱風を吹き付けて非接触状態でフィルムを加熱する装置である。
本発明では、前記フロート方式の加熱装置の各区画F,F,・・・,F内の温度を、それぞれT,T,・・・,Tとしたとき、T,T,・・・,Tが、下記式(1)を満たし、さらに前記フロート方式の加熱装置の上流からk番目の区画Fにおける温度T、及びk+1番目の区画Fk+1番目の区画Fk+1における温度Tk+1が、下記(2)式を満たすようにする必要がある。
(℃)>T(℃)>・・・>T(℃) (但し、nは3以上の整数) (1)
0(℃)<T−Tk+1<5(℃) (但し、kは1以上n−1以下の整数) (2)
本発明において、式(1)及び式(2)を満たさないと、段階的な冷却ができないため配向角の局所的な軸精度が悪化する。さらに、フィルムの配向角のムラやリターデーションのムラが発生する。このようなムラは延伸フィルムを偏光板化した時に問題となる。
本発明において、前記フロート方式の加熱装置の区画数は3以上であればよく、区画数を多くすればするほど温度勾配を細かく設定することができる。
本発明において、熱可塑性樹脂フィルムのガラス転移温度Tg及びフロート方式の加熱装置の最下流の区画Fにおける温度Tが、下記式(4)を満たすことが好ましい。
Tg−3(℃)≦T(℃)≦Tg+3(℃) (4)
前記式(4)を満たすことにより、外気での急冷による温度ムラを低減でき、この後のフィルムの幅方向に張力を与える工程においてフィルムに十分に張力を与えることができる。
なお、式(4)のさらに好ましい範囲は、Tg−1(℃)≦T(℃)≦Tg+1(℃)である。
本発明では、フロート方式の加熱装置を通過した熱可塑性樹脂フィルムは、フロート方式の加熱装置と除熱ロールとの間に配置された張力を与える手段5により幅方向に張力が与えられる。
熱可塑性フィルムの幅方向に与えられる張力は、10〜500N/m、好ましくは100〜500N/m、より好ましくは300〜500N/mである。前記張力が前記範囲よりも小さいとフィルムに発生した皺が十分に伸びないことがあり、逆に大きいとフィルムの光学特性に影響を及ぼしたり、フィルムに張力がかかり過ぎて破断することがある。
本発明において、前記張力を与える方法としては、フィルムの幅方向に上記範囲の張力を与えられるものであれば特に制限されないが、i)フロート方式の加熱装置と除熱ロールとの間にフィルムに対して上下一対のロールを、その中心軸がフィルムの幅方向と異なるように配置して、フィルムを該上下一対のロールの間に通過させる方法;ii)フロート方式の加熱装置と除熱ロールとの間に逆クラウン形状のロールを配置し、フィルムを該ロール上に通過させる方法が好ましい。
図2は、フィルムの幅方向に張力を与える方法として、前記i)の方法(フロート方式の加熱装置と除熱ロールとの間にフィルムに対して上下一対のロールを、その中心軸がフィルムの幅方向と異なるように配置して、フィルムを該上下一対のロールの間に通過させる方法)を用いた場合における張力を与える手段5の拡大図である。図2(a)は上から見た図、図2(b)は横から見た図である。図2において、1は熱可塑性樹脂フィルム、4はフロート方式の加熱装置、5aはロール、Aはロール4の中心軸方向、Wは熱可塑性樹脂フィルム1の幅方向、Dはフィルムの流れ方向をあらわす。
図2(a)において、ロール5aの中心軸方向と熱可塑性フィルム4の幅方向Wとのなす角度αは、好ましくは15°以内、より好ましくは5〜10°である。前記角度αが、前記範囲であることにより、フィルムの平面性を良化することができる。前記i)の方法において、フィルムの両端に与えられる張力は、前記角度αを変えることにより調整可能である。例えば、角度αを大きくすると張力は大きくなる。
図3は、フィルムの幅方向に張力を与える方法として、前記ii)の方法(フロート方式の加熱装置と除熱ロールとの間に逆クラウン形状のロールを配置し、該ロール上にフィルムを通過させる方法)を用いた場合における張力を与える手段5の拡大図である。図3(a)は上から見た図、図3(b)は横から見た図である。図3において、1は熱可塑性樹脂フィルム、4はフロート方式の加熱装置、5bは逆クラウン形状のロール、6は除熱ロールである。
逆クラウン形状のロールは、両端部の直径が中央部より大きいロールのことをいい、本発明においては、中央部の直径に対して両端部の直径が、0.1〜1.0mmだけ大きい逆クラウン形状のロールを用いることが好ましい。逆クラウン形状のロールの両端部の直径と中央部の直径の差が0.1mm未満であると、所望のフィルム平面性を得ることができず、逆に1.0mmを超えるとフィルムに過度の張力を与えることになり所望の配向角を得られない場合がある。前記ii)の方法において、フィルムの両端にかかる張力は、逆クラウンロールの型の中央部と両端部の直径の比や搬送幅により調整可能である。
本発明において、フィルムの幅方向に張力を与える方法として、前記i)の方法及びii)の方法を併用してもよい。
本発明では、前記フロート方式の加熱装置の最下流の区画Fにおける温度T及びフィルムの幅方向に10〜500N/mの張力を与える工程におけるフィルムの温度T及び前記フロート方式の加熱装置の最下流の区画Fにおける温度Tが、下記(3)式を満たす必要がある。
0<T−T(℃)≦20(℃) (3)
前記式(3)を満たすことにより、フィルムの平面性を良化させることができる。
なお、式(3)の好ましい範囲は、0<T−T(℃)≦10(℃)である。
前記温度Tは、フィルムの幅方向に張力を与える工程直前のフィルムの温度とする。
本発明では、フィルムは、前記張力を与える工程により張力を与えられた後、除熱ロールに送られて除熱される。
除熱ロールの温度は、熱可塑性樹脂フィルムのガラス転移温度をTg(℃)としたとき、Tg−50(℃)以上Tg−5(℃)以下が好ましく、Tg−30(℃)以上Tg−10(℃)以下がより好ましい。図1では、除熱ロールは3個あるが、個数は特に制限されない。除熱ロールが複数個ある場合には、前後の除熱ロールの温度差が0〜30℃以内、好ましくは0〜10℃以内、より好ましくは0〜5℃以内となるようにする。
本発明において、フィルムの延伸倍率は好ましくは1.1〜1.8倍、より好ましくは1.2〜1.5倍である。前記延伸倍率は、予熱ロールと除熱ロールとの周速度の差により調節することができる。
本発明では、除熱ロールを通過したフィルムは、必要に応じてフィルムの両端がトリミングされた後に、順次巻芯(巻取りロール)に巻き取られて、延伸フィルムの巻回体となる。
本発明の製造方法により得られた延伸フィルム(以下、「本発明の延伸フィルム」ということがある。)は、長手方向に対する配向角のムラが±0.5°、好ましくは±0.2°である。配向角のムラは、市販の偏光顕微鏡を用いてフィルムの幅方向に対し3〜5mmの間隔で長手方向に対する配向角を測定し、最大値−最小値の値で表したものとする。
本発明の延伸フィルムの面内方向リターデーション(Re)は、100〜300nm程度であるが、用いられる表示装置の設計によってこの範囲内で最適値が選択される。なお、前記Reは、面内遅相軸方向の屈折率nと面内で前記遅相軸に直交する方向の屈折率nとの差にフィルムの平均厚みdを乗算した値(Re=(n−n)×d)である。
本発明の延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは40〜120μm、さらに好ましくは50〜100μmである。
また、幅方向の厚みムラは、巻取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。
本発明の延伸フィルムの残留揮発性成分の含有量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。残留揮発性成分の含有量が多いと経時的に光学特性が変化するおそれがある。揮発性成分の含有量を上記範囲にすることにより、寸法安定性が向上し、面内方向リターデーションReや厚さ方向リターデーションRth(=((n+n)/2−n)×d;nは面内遅相軸方向の屈折率;nは面内で前記遅相軸に直交する方向の屈折率;nは厚さ方向の屈折率;dはフィルムの平均厚さ)の経時変化を小さくすることができ、さらに本発明の円偏光板や液晶表示装置の劣化を抑制でき、表示画像を長期間良好な状態に保つことができる。
なお、揮発性成分は、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体や溶媒などが挙げられる。揮発性成分の含有量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーにより分析することにより定量することができる。
本発明の延伸フィルムの飽和吸水率は、好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が上記範囲であると、ReやRthの経時変化を小さくすることができ、さらには本発明の円偏光板や液晶表示装置の劣化を抑制でき、表示画像を長期間良好な状態に保つことができる。
飽和吸水率は、フィルムの試験片を23℃の水中に24時間、浸漬し、増加した質量の、浸漬前フィルム試験片の質量に対する百分率で表される値である。
本発明の延伸フィルムは、上記の製造方法によって容易に得ることが可能であり、それ単独あるいは他の部材と組み合わせて、位相差板や視野角補償フィルムとして、液晶表示装置、有機EL表示装置、プラズマ表示装置、FED(電界放出)表示装置、SED(表面電界)表示装置などに広く応用が可能である。
本発明の偏光板は、本発明の延伸フィルムと偏光子とを積層してなる。
偏光子には、ポリピニルアルコールや部分ホルマール化ポリビニルアルコール等の従来に準じた適宜なビニルアルコール系ポリマーよりなるフィルムに、ヨウ素や二色性染料等よりなる二色性物質による染色処理、延伸処理、架橋処理等の適宜な処理を適宜な順序や方式で施したもので、自然光を入射させると直線偏光を透過する適宜なものを用いることができる。特に、光透過率や偏光度に優れるものが好ましい。偏光子の厚さは、5〜80μmが一般的であるがこれに限定されない。
積層形態としては、本発明の延伸フィルムを偏光子の両面に積層させても、片面に積層させてもよく、また積層数に特に限定はなく、2枚以上積層させてもよい。また、積層手法としては、必須手法ではないが、接着剤や粘着剤を用いて積層させることができる。従来、偏光子は、その片面又は両面に保護フィルムが積層されていたが、本発明の延伸フィルムを積層することによって、本発明の延伸フィルムが偏光子の保護フィルムの役目も兼ねることになる。このように延伸フィルムを直接偏光子に積層すると、従来使用していた保護フィルム1枚を省くことができ、液晶表示装置の薄型化に寄与する。偏光板と本発明の延伸フィルムを積層する際には、偏光板の透過軸と本発明の延伸フィルムの遅相軸とが、所定の角度となるように積層する。
本発明の偏光板では、延伸フィルムと偏光子との間に本発明の特性を損なわない範囲で他の部材を介在させることもできる。介在させる他の部材として、例えば、偏光子を保護するための保護フィルムが挙げられる。保護フィルムとしては、適宜な透明フィルムを用いることができる。中でも、透明性や機械的強度、熱安定性や水分遮蔽性等に優れる樹脂からなるフィルムが好ましい。保護フィルムを形成する樹脂としては、トリアセチルセルロースの如きアセテート樹脂;脂環式ポリオレフィン樹脂;鎖状ポリオレフィン樹脂、ポリカーボネート重合体、ポリエチレンテレフタレートの如きポリエステル樹脂;ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂等があげられる。
本発明の液晶表示装置は、前記偏光板を備えてなる。
液晶表示装置に備わっている液晶セルの表示モードは特に制限されず、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなどを挙げることができる。
本発明の液晶表示装置には他の部材を備えていてもよい。例えばプリズムアレイシート、レンズアレイシート、光拡散板、バックライトや輝度向上フィルム等の適宜な部品を適宜な位置に1層又は2層以上配置することができる。バックライトとしては、冷陰極管、水銀平面ランプ、発光ダイオード、ELなどが挙げられる。
本発明を、実施例及び比較例を示しながら、さらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
本実施例における評価は、以下の方法によって行う。
(平面性)
延伸フィルムを暗室内で上から吊し、長手方向にある皺の有無及び皺の間隔を測定し、以下の基準で判断した。
◎:皺がない。
○:皺の間隔が50mm以上
△:皺の間隔が30mm以上50mm未満
×:皺の間隔が0mm以上30mm未満
(配向角とその標準偏差)
偏光顕微鏡(オリンパス社製、偏光顕微鏡BX51)を用いて、フィルムの幅方向に対し50mmの間隔、長手方向に対して5mmの間隔で、長手方向に対する配向角を測定し、その標準偏差を算出した。
(実施例1)
ノルボルネン系樹脂(ガラス転移点Tg=137℃、重量平均分子量30,000)のペレットを100℃で5時間乾燥した。該ペレットを押出機に供給し、押出機内で溶融させ、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押出し、冷却し、厚み60μm、長さ2,000mm、幅1,600mmの未延伸フィルムを得た。
得られた未延伸フィルムを、図1に示すような3つの区画に分けられたフロート方式の加熱装置を備えた縦延伸装置に導入し、縦一軸延伸を行った。なお、フロート方式の加熱装置の各区画における温度を、予熱ロール側より、144℃、143℃、142℃とし、張力を与える手段として図2に示すような手段(フロート方式の加熱装置と除熱ロールとの間にフィルムに対して上下一対のロール(本実施例ではエキスパンダーロールを使用)を、その回転軸がフィルムの幅方向と異なるように配置して、フィルムを該上下一対のロールの間に通過させる方法)を用いて張力が300N/mとなるようにし、延伸倍率が1.3倍となるように予熱ロールと除熱ロールの周速を調整した。また、予熱ロールの温度は70℃、除熱ロールの温度は100℃、張力を与える工程におけるフィルムの温度Tは136℃とした。
得られた延伸フィルムの評価結果を表1に示す。
(実施例2)
実施例1において、縦延伸装置として、フロート方式の加熱装置が4つの区画に分けられた縦延伸装置を用い、フロート方式の加熱装置の各区画における温度を、予熱ロール側より、142℃、141℃、140℃、139℃とし、張力を与える工程における張力を200N/m、張力を与える工程におけるフィルムの温度Tを135℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(実施例3)
実施例1において、フロート方式の加熱装置の各区画における温度を、予熱ロール側より、143℃、140℃、137℃、張力を与える工程におけるフィルムの温度Tを131℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(実施例4)
実施例1において、フロート方式の加熱装置の各区画における温度を、予熱ロール側より、143℃、140℃、137℃とし、フィルムの幅方向に張力を与える手段として、図3に示すような手段(フロート方式の加熱装置と除熱ロールとの間に逆クラウン形状(中央部の直径に対して両端部の直径が0.3mm大きい)のロールを配置し、フィルムを該ロール上を通過させる方法)を用い、張力を与える工程におけるフィルムの温度Tを131℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(実施例5)
実施例1において、フロート方式の加熱装置の各区画の温度を予熱ロール側より、141℃、138℃、135℃とし、張力を与える工程における張力を50N/m、張力を与える工程におけるフィルムの温度Tを120℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(比較例1)
実施例1において、フロート方式の加熱装置の区画数を2つにし、各区画の温度を予熱ロール側より、155℃、138℃とし、張力を与える工程におけるフィルムの温度Tを135℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(比較例2)
実施例1において、フロート方式の加熱装置の各区画の温度を予熱ロール側より、147℃、140℃、138℃とし、張力を与える工程における張力を50N/m、張力を与える工程におけるフィルムの温度Tを133℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(比較例3)
実施例1において、フロート方式の加熱装置の各区画の温度を予熱ロール側より、143℃、140℃、137℃とし、張力を与える工程における張力を5N/m、張力を与える工程におけるフィルムの温度Tを130℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(比較例4)
実施例1において、フロート方式の加熱装置の各区画の温度を予熱ロール側より、150℃、140℃、115℃とし、張力を与える工程におけるフィルムの温度Tを102℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
(比較例5)
実施例1において、フロート方式の加熱装置の各区画の温度を予熱ロール側より、143℃、140℃、137℃とし、張力を与える工程におけるフィルムの温度Tを112℃とした他は、実施例1と同様にして延伸フィルムを得た。
得られた延伸フィルムの評価結果を表1に示す。
Figure 2009126080
図1は本発明の製造方法に用いることができる縦延伸装置の一実施の形態を示す側面図である。 図2は、フィルムの幅方向に張力を与える手段として、フロート方式の加熱装置と除熱ロールとの間にフィルムに対して上下一対のロールを、その回転軸がフィルムの幅方向と異なるように配置して、該上下一対のロールの間にフィルムを通過させる方法を用いた場合における張力を与える手段5の拡大図である。 図3は、フィルムの幅方向に張力を与える手段として、フィルムをと除熱ロールとの間に逆クラウン形状のロールを配置し、該ロール上にフィルムを通過させる方法を用いた場合における張力を与える手段5の拡大図である。
符号の説明
1:熱可塑性樹脂フィルム、2−1,2−2,2−3:予熱ロール、3:フリーロール、4:フロート方式の加熱装置、5:張力を与える手段、5a:ロール、5b:逆クラウン形状のロール、6−1,6−2,6−3:除熱ロール、A:ロール5aの回転軸、D:フィルムの進行方向、W:フィルムの幅方向、α:ロール5aの回転軸とフィルムの幅方向とのなす角度

Claims (7)

  1. 熱可塑性樹脂フィルムを、予熱ロールによる予熱工程、フロート方式の加熱装置による加熱工程、除熱ロールによる除熱工程をこの順に通過させ、予熱ロールと除熱ロールとの周速の差を利用して流れ方向に縦一軸延伸することにより延伸フィルムを製造する方法であって、
    前記フロート方式の加熱装置がフィルムの流れ方向に連なる3つ以上の区画(F,F,・・・,F(但し、nは3以上の整数))に分かれており、フロート方式の加熱装置の各区画の温度をT,T,・・・,Tとしたとき、T,T,・・・,Tが、下記(1)式を満たし、
    さらに前記フロート方式の加熱装置の上流からk番目の区画Fにおける温度T、及びk+1番目の区画Fk+1番目の区画Fk+1における温度Tk+1が、下記(2)式を満たし、
    加熱工程と除熱工程との間に、フィルムの幅方向に10〜500N/mの張力を与える工程を有し、前記張力を与える工程におけるフィルム温度T及び前記フロート方式の加熱装置の最下流の区画Fにおける温度Tが、下記式(3)を満たすことを特徴とする延伸フィルムの製造方法。
    (℃)>T(℃)>・・・>T(℃) (1)
    0(℃)<T−Tk+1(℃)<5(℃) (但し、kは1以上n−1以下の整数) (2)
    0<T−T(℃)≦20(℃) (3)
  2. さらに、熱可塑性樹脂フィルムのガラス転移温度Tg(℃)、及び前記フロート方式の加熱装置の最下流の区画Fにおける温度Tが、下記(3)式を満たす請求項1記載の延伸フィルムの製造方法。
    Tg−3(℃)≦T(℃)≦Tg+3(℃) (4)
  3. 前記フィルムの幅方向に10〜500N/mの張力を与える工程が、
    フロート方式の加熱装置と除熱ロールとの間に上下一対のロールを、その中心軸が前記フィルムの幅方向と異なるように前記フィルムの両端に配置し、上下一対のロールとロールとの間にフィルムの両端を通過させる工程である請求項1又は2のいずれかに記載の延伸フィルムの製造方法。
  4. 前記フィルムの幅方向に10〜500N/mの張力を与える工程が、
    フロート方式の加熱装置と除熱ロールとの間に逆クラウン形状のロールを配置し、該ロール上に前記フィルムを通過させる工程である請求項1〜3のいずれかに記載の延伸フィルムの製造方法。
  5. 請求項1〜4のいずれかの製造方法により得られた延伸フィルム。
  6. 偏光子の少なくとも片面に、請求項5に記載の延伸フィルムを積層してなる偏光板。
  7. 請求項6に記載の偏光板を備える液晶表示装置。
JP2007304309A 2007-11-26 2007-11-26 延伸フィルムの製造方法 Pending JP2009126080A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304309A JP2009126080A (ja) 2007-11-26 2007-11-26 延伸フィルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304309A JP2009126080A (ja) 2007-11-26 2007-11-26 延伸フィルムの製造方法

Publications (1)

Publication Number Publication Date
JP2009126080A true JP2009126080A (ja) 2009-06-11

Family

ID=40817470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304309A Pending JP2009126080A (ja) 2007-11-26 2007-11-26 延伸フィルムの製造方法

Country Status (1)

Country Link
JP (1) JP2009126080A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379070A (zh) * 2020-10-22 2022-04-22 布鲁克纳机械有限责任两合公司 纵向拉伸机构以及用于更换经受磨损的结构单元的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379070A (zh) * 2020-10-22 2022-04-22 布鲁克纳机械有限责任两合公司 纵向拉伸机构以及用于更换经受磨损的结构单元的方法

Similar Documents

Publication Publication Date Title
JP4488124B2 (ja) 延伸フィルムの製造方法、延伸フィルム、偏光板、及び液晶表示装置
US10036841B2 (en) Lengthy stretched film, and manufacturing method and use thereof
US9011991B2 (en) Lengthy stretched film, and manufacturing method and use thereof
JP5151356B2 (ja) 延伸フィルムの製造方法、延伸フィルム、偏光板、及び液晶表示装置
JP4830517B2 (ja) 延伸フィルムの製造方法
JP5017835B2 (ja) 延伸フィルムおよび延伸フィルムの製造方法
JP2008238514A (ja) 延伸フィルムの製造方法、延伸フィルム、偏光板及び液晶表示装置
JP2007245551A (ja) 延伸積層フィルム
JP5553067B2 (ja) 長尺の延伸フィルム、長尺の積層フィルム、偏光板及び液晶表示装置
JP5098296B2 (ja) 長尺の延伸フィルムの製造方法
JP2008114369A (ja) 延伸フィルムの製造方法及び用途
JP6806135B2 (ja) 延伸フィルム、及び円偏光板
JP2008080674A (ja) 延伸フィルムの製造方法、位相差フィルム、円偏光板、及び液晶表示装置
JP4525381B2 (ja) 延伸ポリオレフィンフィルムの製造方法
JP4956973B2 (ja) 延伸フィルムの製造方法
JP2009214341A (ja) 延伸積層フィルム、偏光板、及び液晶表示装置
JP2008233754A (ja) 長尺の延伸フィルム及びその製造方法並びに用途
JP2014038357A (ja) 長尺の斜め延伸フィルム及び用途
JP4595780B2 (ja) 延伸複層フィルム
JP5370527B2 (ja) 延伸フィルムおよび延伸フィルムの製造方法
JP5477485B2 (ja) 長尺の延伸フィルムの製造方法
JP2008162123A (ja) 延伸フィルムの製造方法、延伸フィルム、偏光板及び液晶表示装置法
JP2009126080A (ja) 延伸フィルムの製造方法
JP2009214441A (ja) 延伸フィルムの製造方法、延伸フィルム、偏光板、及び液晶表示装置
JP2009214343A (ja) 延伸フィルムの製造方法