WO2020066669A1 - 半導体基板の処理方法 - Google Patents

半導体基板の処理方法 Download PDF

Info

Publication number
WO2020066669A1
WO2020066669A1 PCT/JP2019/035958 JP2019035958W WO2020066669A1 WO 2020066669 A1 WO2020066669 A1 WO 2020066669A1 JP 2019035958 W JP2019035958 W JP 2019035958W WO 2020066669 A1 WO2020066669 A1 WO 2020066669A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
group
containing film
exposure
polycarbosilane
Prior art date
Application number
PCT/JP2019/035958
Other languages
English (en)
French (fr)
Inventor
達也 ▲葛▼西
希美 佐藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2020066669A1 publication Critical patent/WO2020066669A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a method for processing a semiconductor substrate.
  • a resist pattern obtained by exposing and developing a resist film laminated on a substrate via an organic underlayer film, a silicon-containing film, and the like, as a mask.
  • a semiconductor lithography process or the like for forming a patterned substrate is used (see International Publication No. 2012/039337).
  • a rework process for removing the silicon-containing film may be performed when a problem occurs when the silicon-containing composition is applied.
  • a method of removing the silicon-containing film while suppressing damage to the substrate a method of using a removing solution containing an acid, a base, or the like may be considered.
  • the silicon-containing composition containing polycarbosilane is more excellent in oxygen-based gas etching resistance than the silicon-containing composition containing polysiloxane as a main component.
  • the silicon-containing film formed by applying a silicon-containing composition containing polycarbosilane it has not been possible to reduce damage to a substrate in a rework process while promoting finer patterns.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to apply a silicon-containing composition containing a polycarbosilane to a silicon-containing film formed on a substrate in a rework process.
  • An object of the present invention is to provide a method for processing a semiconductor substrate, which can reduce damage.
  • the invention made in order to solve the above-mentioned problems is a step of directly or indirectly applying a composition for forming a silicon-containing film containing polycarbosilane and a solvent to a substrate, and applying the composition for forming a silicon-containing film to the above-mentioned composition.
  • a method for treating a semiconductor substrate comprising a step of performing and a step of removing the silicon-containing film after the above-mentioned treatment step with a removal solution containing an acid or a removal solution containing a base.
  • a pattern refinement can be promoted by improving the etching selectivity of a silicon-containing film, and in a rework process, a removal solution containing an acid or a base is contained.
  • a removal solution containing an acid or a base is contained.
  • the method for treating a semiconductor substrate includes a silicon-containing method in which a substrate directly or indirectly contains a polycarbosilane (hereinafter, also referred to as “[A] polycarbosilane”) and a solvent (hereinafter, also referred to as “[B] solvent”).
  • a substrate directly or indirectly contains a polycarbosilane (hereinafter, also referred to as “[A] polycarbosilane”) and a solvent (hereinafter, also referred to as “[B] solvent”).
  • a step of applying a film-forming composition (hereinafter, also referred to as “composition (I)”) (hereinafter, also referred to as a “silicon-containing film forming composition applying step”), and the above-described silicon-containing film forming composition Exposure to radiation, exposure to reactive gas, exposure to plasma, exposure to ions, exposure to reactive liquid, and exposure to a silicon-containing film (hereinafter also referred to as “silicon-containing film (I))” formed by the coating process.
  • treatment step an acid-containing removing solution containing the silicon-containing film (I) after the treatment step;
  • Removal solution containing base Lower, removing the "removing solution (I)” also referred to) (hereinafter, comprises also referred) and the "removing step”.
  • the method for treating the semiconductor substrate may include other steps as necessary, and a step of directly or indirectly forming an organic underlayer film on the substrate before the step of applying the composition for forming a silicon-containing film. (Hereinafter, also referred to as “organic underlayer film forming step”).
  • the method for treating a semiconductor substrate includes a step of directly or indirectly applying a composition for forming a resist film to the silicon-containing film (I) after the step of applying the composition for forming a silicon-containing film (hereinafter, referred to as “A step of exposing the resist film formed in the resist film forming composition coating step to radiation (hereinafter, also referred to as an “exposure step”); A step of developing the resist film after the exposure step (hereinafter, also referred to as a “development step”), wherein after the development step, the silicon-containing film is formed using the resist pattern formed by the development step as a mask.
  • a step of etching (I) (hereinafter, also referred to as “silicon-containing film etching step”) may be further provided.
  • the method for processing a semiconductor substrate miniaturization of a pattern can be promoted, and damage to the substrate in a rework process can be reduced.
  • the reason why the above-described effect is obtained when the method for processing a semiconductor substrate includes the above configuration is not necessarily clear, but can be guessed as follows, for example. That is, the silicon-containing film formed from [A] polycarbosilane has improved oxygen gas etching resistance compared to the silicon-containing film formed from polysiloxane having the same silicon mass content. Thereby, the silicon-containing film can be made thinner, and as a result, miniaturization of the pattern can be promoted.
  • the silicon-containing film formed from polycarbosilane is exposed to radiation, exposed to a reactive gas, exposed to plasma, exposed to ions, contacted with a reactive liquid, and heated to 400 ° C. or higher.
  • oxidation and bond cleavage occur in the silicon-containing film, so that the silicon-containing film is dissolved in a removal solution containing an acid or a removal solution containing a base. Conceivable. As a result, damage to the substrate in the rework process can be reduced.
  • each step will be described.
  • Organic underlayer film forming step In this step, an organic underlayer film is formed directly or indirectly on the substrate.
  • a silicon-containing film forming composition coating step described below is performed after the organic underlayer film forming step.
  • the silicon-containing film (I) is formed by directly or indirectly applying the composition (I) on the organic lower layer film in the step of applying the composition for forming a silicon-containing film.
  • the substrate examples include an insulating film of silicon oxide, silicon nitride, silicon oxynitride, polysiloxane, and the like, a resin substrate, and the like.
  • an interlayer insulating film such as a wafer coated with a low dielectric insulating film formed of "Black Diamond” of AMAT, "Silk” of Dow Chemical, "LKD5109” of JSR Corporation, or the like is used. can do.
  • a patterned substrate such as a wiring groove (trench) and a plug groove (via) may be used.
  • the organic underlayer film is different from the silicon-containing film (I) formed from the composition (I).
  • the organic underlayer film may contain a silicon atom.
  • the organic underlayer film has a predetermined function (eg, for example) required to further supplement the function of the silicon-containing film (I) and / or the resist film in forming the resist pattern, or to obtain a function not possessed by the silicon-containing film (I) and / or the resist film. , Anti-reflection properties, coating film flatness, and high etching resistance to fluorine-based gas).
  • an antireflection film or the like can be used as the organic lower layer film.
  • the antireflection film forming composition include “NFC @ HM8006” manufactured by JSR Corporation.
  • the organic underlayer film can be formed by applying the organic underlayer film forming composition by a spin coating method or the like to form a coating film, and then heating the coating film.
  • composition (I) is applied directly or indirectly to the substrate.
  • a coating film of the composition (I) is formed on the substrate directly or via another layer such as an organic underlayer film.
  • the method for applying the composition (I) is not particularly limited, and examples thereof include known methods such as a spin coating method.
  • the silicon-containing film (I) is formed by curing the coating film formed by applying the composition (I) on a substrate or the like, usually by exposing and / or heating.
  • Examples of the radiation used for the exposure include visible light, ultraviolet (including far ultraviolet), electromagnetic waves such as X-rays and ⁇ -rays, and electron beams, molecular beams, and particle beams such as ion beams.
  • the lower limit of the temperature at which the coating film is heated is preferably 90 ° C., more preferably 150 ° C., and even more preferably 200 ° C.
  • As an upper limit of the above-mentioned temperature 550 ° C is preferred, 450 ° C is more preferred, and 300 ° C is still more preferred.
  • the lower limit of the average thickness of the formed silicon-containing film (I) is preferably 1 nm, more preferably 3 nm, and still more preferably 5 nm.
  • the upper limit of the average thickness is preferably 100 nm, more preferably 50 nm, and still more preferably 30 nm.
  • composition (I) contains [A] polycarbosilane and [B] a solvent.
  • the composition (I) may contain other components as long as the effects of the present invention are not impaired.
  • Polycarbosilane is a polymer having a Si—C bond in the main chain.
  • Polycarbosilane has a first structural unit represented by the following formula (1) (hereinafter, also referred to as “structural unit (I)”).
  • Polycarbosilane includes a second structural unit represented by the following formula (2) (hereinafter, also referred to as “structural unit (II)”) and a third structural unit represented by the formula (3) (Hereinafter, also referred to as “structural unit (III)”).
  • the composition (I) can have [A] polycarbosilane alone or in combination of two or more.
  • R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • X and Y are each independently a hydrogen atom, a hydroxy group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 1 in the above formula (1) for example, a substituted or unsubstituted divalent chain hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted divalent alicyclic carbon group having 3 to 20 carbon atoms, Examples thereof include a hydrogen group and a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the chain hydrocarbon group includes both a straight-chain hydrocarbon group and a branched-chain hydrocarbon group.
  • Examples of the unsubstituted divalent chain hydrocarbon group having 1 to 20 carbon atoms include a chain saturated hydrocarbon group such as a methanediyl group and an ethanediyl group, and a chain unsaturated hydrocarbon group such as an ethenediyl group and a propenediyl group. And the like.
  • Examples of the unsubstituted divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include a monocyclic alicyclic saturated hydrocarbon group such as a cyclobutanediyl group and a monocyclic alicyclic ring such as a cyclobutenediyl group.
  • Polycyclic alicyclic saturated hydrocarbon group such as a formula unsaturated hydrocarbon group, bicyclo [2.2.1] heptanediyl group, and polycyclic alicyclic unsaturated such as bicyclo [2.2.1] heptenediyl group; And a hydrocarbon group.
  • Examples of the unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenylene group, a biphenylene group, a phenyleneethylene group, and a naphthylene group.
  • Examples of the substituent in the substituted divalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include a halogen atom, a hydroxy group, a cyano group, a nitro group, a nitro group, an alkoxy group, an acyl group, and an acyloxy group.
  • R 1 an unsubstituted chain-like saturated hydrocarbon group is preferable, and a methanediyl group or an ethanediyl group is more preferable.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by X or Y in the above formula (1) include a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a carbon-carbon Part or all of the hydrogen atoms of the monovalent group having a divalent hetero atom-containing group, the hydrocarbon group or the group having a divalent hetero atom-containing group are substituted with a monovalent hetero atom-containing group. And the like.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes, for example, a monovalent linear hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a carbon number having 1 to 20 carbon atoms. And 6-20 monovalent aromatic hydrocarbon groups.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include an alkyl group such as a methyl group and an ethyl group, an alkenyl group such as an ethenyl group, and an alkynyl group such as an ethynyl group.
  • the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms includes, for example, a monovalent monocyclic alicyclic saturated hydrocarbon group such as a cyclopentyl group and a cyclohexyl group, a cyclopentenyl group and a cyclohexenyl group.
  • a monovalent monocyclic alicyclic saturated hydrocarbon group such as a cyclopentyl group and a cyclohexyl group
  • a cyclopentenyl group and a cyclohexenyl group Monovalent monocyclic alicyclic unsaturated hydrocarbon group, norbornyl group, monovalent polycyclic alicyclic saturated hydrocarbon group such as adamantyl group, monovalent group such as norbornenyl group, tricyclodecenyl group, etc.
  • polycyclic alicyclic unsaturated hydrocarbon groups such as adamantyl group, monovalent group such as norbornenyl group, tricyclo
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include an aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a methylnaphthyl group and an anthryl group, a benzyl group, a naphthylmethyl group, an anthryl group And aralkyl groups such as a methyl group.
  • the hetero atom constituting the divalent or monovalent hetero atom-containing group includes, for example, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the divalent hetero atom-containing group include -O-, -CO-, -S-, -CS-, -NR'-, and a group obtained by combining two or more of these.
  • R ' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent hetero atom-containing group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, a cyano group, an amino group and a sulfanyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, a cyano group, an amino group and a sulfanyl group.
  • a monovalent hydrocarbon group is preferable, and a monovalent chain hydrocarbon group or a monovalent aromatic hydrocarbon group is more preferable.
  • An alkyl group or an aryl group is more preferred.
  • the carbon number of the monovalent organic group represented by X or Y is preferably 1 to 10, more preferably 1 to 6.
  • halogen atom represented by X or Y examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a chlorine atom or a bromine atom is preferable.
  • the lower limit of the content ratio of the structural unit (I) relative to all the structural units constituting the polycarbosilane [A] is preferably 5 mol%, and 30 mol%. % Is more preferable, 60 mol% is further preferable, and 80 mol% is particularly preferable.
  • the upper limit of the content ratio of the structural unit (I) may be 100 mol%.
  • the structural unit (II) is a structural unit represented by the following formula (2).
  • the lower limit of the content ratio of the structural unit (II) to all the structural units constituting the polycarbosilane [A] is preferably 0.1 mol%, 1 mol% is more preferable, and 5 mol% is further preferable.
  • the upper limit of the content of the structural unit (II) is preferably 50 mol%, more preferably 40 mol%, still more preferably 30 mol%, and particularly preferably 20 mol%.
  • the structural unit (III) is a structural unit represented by the following formula (3).
  • R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • c is 1 or 2.
  • two R 2 are the same or different from each other.
  • Examples of the unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 2 include monovalent hydrocarbon groups having 1 to 20 carbon atoms exemplified as X and Y in the above formula (1). Similar groups and the like can be mentioned. Examples of the substituent of the monovalent hydrocarbon group having 1 to 20 carbon atoms include the same groups as the monovalent hetero atom-containing groups exemplified in X and Y in the above formula (1).
  • R 2 is preferably a substituted or unsubstituted monovalent chain hydrocarbon group or a substituted or unsubstituted monovalent aromatic hydrocarbon group, more preferably an alkyl group or an aryl group, and a methyl group or a phenyl group. More preferred.
  • the lower limit of the content ratio of the structural unit (III) relative to all the structural units constituting the polycarbosilane [A] is preferably 0.1 mol%, 1 mol% is more preferable, and 5 mol% is further preferable.
  • the upper limit of the content of the structural unit (III) is preferably 50 mol%, more preferably 40 mol%, still more preferably 30 mol%, and particularly preferably 20 mol%.
  • the polycarbosilane has a structure of Si—O—Si formed by dehydration condensation or the like from a hydroxy group represented by X and / or Y in the above formula (1) in addition to the above structural unit. May contain structural units.
  • the lower limit of the polystyrene equivalent weight average molecular weight (Mw) of polycarbosilane is preferably 500, more preferably 700, still more preferably 900, and particularly preferably 1,200.
  • the upper limit of Mw is preferably 50,000, more preferably 10,000, still more preferably 5,000, and particularly preferably 3,000.
  • the Mw of [A] polycarbosilane is measured using a GPC column (TOSOH CORPORATION's "G2000HXL", two “G3000HXL”, one “G4000HXL”), and the flow rate is 1.0 mL. / Min, elution solvent: tetrahydrofuran, column temperature: a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of 40 ° C.
  • the lower limit of the content of the polycarbosilane [A] is preferably 70% by mass, more preferably 80% by mass, and preferably 90% by mass, based on all components other than the solvent [B] in the composition (I). More preferred.
  • the upper limit of the content ratio may be 100% by mass.
  • the lower limit of the content of the polycarbosilane [A] in the composition (I) is preferably 0.01% by mass, more preferably 0.05% by mass, still more preferably 0.1% by mass, and 0.3% by mass. % Is particularly preferred.
  • the upper limit of the content ratio is preferably 30% by mass, more preferably 20% by mass, still more preferably 10% by mass, and particularly preferably 3% by mass.
  • [[B] Solvent] [A] polycarbosilane and other components contained as necessary can be used as long as they can be dissolved or dispersed.
  • the solvent includes, for example, alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, water and the like.
  • the solvent can be used alone or in combination of two or more.
  • alcohol-based solvent examples include monoalcohol-based solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol, and ethylene glycol, 1,2-propylene glycol, diethylene glycol, and dipropylene glycol. And polyhydric alcohol solvents.
  • ketone-based solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, cyclohexanone and the like.
  • ether solvent examples include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Tetrahydrofuran and the like.
  • ester solvent examples include ethyl acetate, ⁇ -butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and acetic acid.
  • ester solvent examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate, and ethyl lactate.
  • nitrogen-containing solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • ether solvents and / or ester solvents are preferable, and because of excellent film-forming properties, ether solvents and / or ester solvents having a glycol structure are more preferable.
  • ether solvents and ester solvents having a glycol structure examples include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl acetate. Ether and the like. Among these, propylene glycol monomethyl acetate acetate is particularly preferred.
  • the lower limit of the content of the ether solvent and the ester solvent having a glycol structure in the solvent is preferably 20% by mass, more preferably 60% by mass, still more preferably 90% by mass, and particularly preferably 100% by mass. preferable.
  • the lower limit of the content of the solvent [B] in the composition (I) is preferably 80% by mass, more preferably 90% by mass, and still more preferably 95% by mass.
  • the upper limit of the content ratio is preferably 99.9% by mass.
  • the composition (I) contains as other components, for example, a basic compound (including a base generator), a radical generator, an acid generator, a surfactant, colloidal silica, colloidal alumina, an organic polymer and the like. You may.
  • the composition (I) can contain the above-mentioned other components alone or in combination of two or more.
  • the basic compound promotes a curing reaction in the composition (I), and as a result, improves the strength and the like of the formed silicon-containing film (I).
  • the basic compound include a compound having a basic amino group, and a base generator that generates a compound having a basic amino group by the action of an acid or heat.
  • the compound having a basic amino group include an amine compound.
  • the base generator include amide group-containing compounds, urea compounds, and nitrogen-containing heterocyclic compounds. Specific examples of the amine compound, the amide group-containing compound, the urea compound, and the nitrogen-containing heterocyclic compound include, for example, compounds described in paragraphs [0079] to [0082] of JP-A-2016-27370. .
  • the upper limit of the content of the basic compound relative to 100 parts by mass of the polycarbosilane [A] is preferably 50 parts by mass.
  • the lower limit of the content is preferably 1 part by mass.
  • the acid generator is a component that generates an acid upon exposure or heating.
  • the acid generator can promote the condensation reaction of [A] polycarbosilane even at a relatively low temperature (including normal temperature).
  • photoacid generator examples include the acid generators described in paragraphs [0077] to [0081] of JP-A-2004-168748.
  • thermal acid generator examples include onium salt-based acid generators exemplified as photoacid generators in the above-mentioned patent documents, Examples thereof include 4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and alkyl sulfonates.
  • the upper limit of the content of the acid generator with respect to 100 parts by mass of the polycarbosilane [A] is preferably 20 parts by mass, more preferably 10 parts by mass.
  • the lower limit of the content is preferably 0.1 part by mass.
  • composition (I) contains a surfactant, colloidal silica, colloidal alumina and / or an organic polymer
  • the upper limit of the content of each of these components is [A] 100% by weight of polycarbosilane. 2 parts by mass is preferable, and 1 part by mass is more preferable.
  • composition (I) is prepared, for example, by mixing a solution of [A] polycarbosilane, [B] a solvent, and other components used as required at a predetermined ratio, and preferably, mixing the obtained mixed solution with a pore size. It can be prepared by filtering with a filter of 0.2 ⁇ m or less.
  • ⁇ Resist film forming composition coating process> the composition for forming a resist film is applied directly or indirectly to the silicon-containing film (I) formed in the step of applying the composition for forming a silicon-containing film.
  • a resist film is formed directly or indirectly on the silicon-containing film (I) formed in the above-mentioned silicon-containing film forming composition coating step.
  • composition for forming a resist film examples include a radiation-sensitive resin composition (composition for forming a chemically amplified resist film) containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, and an alkali-soluble resin.
  • the composition include a positive resist film forming composition comprising a quinonediazide-based photosensitive agent, and a negative resist film forming composition containing an alkali-soluble resin and a crosslinking agent.
  • a radiation-sensitive resin composition is preferred.
  • a positive pattern can be formed by developing with an alkali developer
  • a negative pattern can be formed by developing with an organic solvent developer.
  • a double patterning method, a double exposure method, or the like, which is a technique for forming a fine pattern may be used as appropriate.
  • the polymer contained in the radiation-sensitive resin composition is, for example, a structural unit containing a lactone structure, a cyclic carbonate structure and / or a sultone structure, or a structural unit containing an alcoholic hydroxyl group, in addition to the structural unit containing an acid-dissociable group.
  • the polymer has a structural unit containing a phenolic hydroxyl group and / or a structural unit containing a fluorine atom, it is possible to improve sensitivity when extreme ultraviolet rays or electron beams are used as radiation in exposure.
  • the lower limit of the content of all components other than the solvent in the composition for forming a resist film is preferably 0.1% by mass, and more preferably 1% by mass. As a maximum of the above-mentioned content rate, 50 mass% is preferred and 30 mass% is more preferred.
  • a composition filtered using a filter having a pore size of 0.2 ⁇ m or less can be suitably used. In the method for treating a semiconductor substrate, a commercially available resist composition can be used as it is as the composition for forming a resist film.
  • a method of applying the composition for forming a resist film for example, a conventional method such as a spin coating method and the like can be mentioned.
  • the amount of the composition for forming a resist film to be applied is adjusted so that the obtained resist film has a predetermined thickness.
  • the resist film can be formed by pre-baking the coating film of the composition for forming a resist film, thereby evaporating a solvent in the coating film.
  • the prebaking temperature is appropriately adjusted depending on the type of the resist film forming composition to be used, etc., but the lower limit of the prebaking temperature is preferably 30 ° C, more preferably 50 ° C.
  • the upper limit of the temperature is preferably 200 ° C, more preferably 150 ° C.
  • the resist film formed in the resist film forming composition coating step is exposed to radiation.
  • This exposure is performed, for example, by selectively irradiating radiation with a photomask.
  • the radiation include visible light, ultraviolet light (including far ultraviolet light and extreme ultraviolet light), electromagnetic waves such as X-rays and ⁇ -rays, and charged particle beams such as electron beams and ⁇ -rays.
  • far ultraviolet rays, extreme ultraviolet rays or electron beams are preferable, and extreme ultraviolet rays or electron beams are more preferable.
  • ⁇ Development process> the resist film after the exposure step is developed.
  • a resist pattern is formed directly or indirectly on the silicon-containing film (I) formed in the above-mentioned silicon-containing film forming composition coating step.
  • the developing method may be an alkali developing method using an alkali developing solution or an organic solvent developing method using an organic solvent developing solution.
  • a predetermined resist pattern corresponding to the photomask used in the exposure step is formed by performing development with various developing solutions, preferably washing and drying.
  • ⁇ Silicon-containing film etching step> In this step, after the development step, the silicon-containing film (I) is etched using the resist pattern formed in the development step as a mask. More specifically, the silicon-containing film (I) formed in the step of applying the composition for forming a silicon-containing film is patterned by one or more etchings using the resist pattern formed in the developing step as a mask. Is done.
  • the etching may be dry etching or wet etching, but dry etching is preferable.
  • Dry etching can be performed using, for example, a known dry etching apparatus.
  • the etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film to be etched and the like, for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6, etc.
  • Fluorine-based gas chlorine-based gas such as Cl 2 or BCl 3
  • oxygen-based gas such as O 2 , O 3 , H 2 O, H 2 , NH 3 , CO, CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 and other reducing gases, He, N 2 , Ar, etc.
  • An inert gas or the like is used. These gases can be used as a mixture.
  • a fluorine-based gas is usually used, and a mixture of an oxygen-based gas and an inert gas is preferably used.
  • the silicon-containing film (I) formed in the silicon-containing film forming composition coating step is exposed to radiation, exposed to a reactive gas, exposed to plasma, exposed to ions, contacted with a reactive liquid, At least one treatment selected from the group consisting of heating at 400 ° C. or higher is performed. In this step, only one of these processes may be performed, or two or more of these processes may be performed sequentially or simultaneously. In this step, the exposure, contact, and heating in each treatment may be performed on the entire silicon-containing film (I) or on a part of the silicon-containing film (I). In each treatment, exposure, contact and heating may be performed only once or may be performed a plurality of times.
  • the treatment in this step has, directly or indirectly, the silicon-containing film (I) formed in the above-mentioned silicon-containing film forming composition coating step, or is patterned by the above-mentioned silicon-containing film etching step. This is performed on the silicon-containing film (I) on the substrate having the silicon-containing film (I) (hereinafter, also referred to as “substrate (P)”).
  • At least one treatment selected from the group consisting of exposure to radiation, exposure to a reactive gas, exposure to plasma, exposure to ions, contact with a reactive liquid, and heating at 400 ° C. or more to the silicon-containing film (I).
  • [A] polycarbosilane is oxidized, —OH, —COOH, etc. are generated and become soluble in a basic solution, and when the oxidation proceeds further, a Si—O—Si bond is formed. It becomes soluble in hydrogen hydride water. When the covalent bond of [A] polycarbosilane is broken, it becomes soluble in an acidic solution.
  • the treatment in this step makes it possible to remove the silicon-containing film (I) with the removal liquid (I) containing an acid or a base in a removal step described later.
  • each process will be described.
  • Examples of the radiation include visible light (wavelength: 400 nm or more and 780 nm or less), ultraviolet light (wavelength: 10 nm or more and 400 nm or less), electromagnetic waves such as X-rays (0.001 nm to 10 nm), and particle beams such as electron beams and molecular beams. No. Among these, electromagnetic waves or electron beams are preferred, and ultraviolet rays or electron beams are more preferred.
  • the lower limit of the wavelength of the ultraviolet light is preferably 13 nm, more preferably 150 nm.
  • the upper limit of the wavelength is preferably 370 nm, more preferably 255 nm.
  • a method of exposing the silicon-containing film (I) of the substrate (P) to ultraviolet rays for example, a method using a low-pressure mercury lamp (emission center wavelength: 185 nm, 254 nm) as an irradiation light source, an EUV scanner (for example, " TWINSCAN NXE: 3300B ”(NA0.3, Sigma0.9) or the like, and a method of exposing to extreme ultraviolet rays (wavelength: 13.5 nm).
  • a method of exposing the silicon-containing film (I) of the substrate (P) to an electron beam for example, a method using an electron beam lithography apparatus (for example, “HL800D” manufactured by Hitachi, Ltd.) or the like can be used.
  • the lower limit of the excimer lamp or exposure intensity of the ultraviolet by the low-pressure mercury lamp is preferably 1 mW / cm 2, more preferably 5 mW / cm 2.
  • the upper limit of the exposure intensity preferably 200mW / cm 2, 50mW / cm 2 is more preferable.
  • the lower limit of the exposure of extreme ultraviolet preferably 5mJ / cm 2, 10mJ / cm 2 is more preferable.
  • the upper limit of the exposure is preferably 500mJ / cm 2, 400mJ / cm 2 is more preferable.
  • the lower limit of the exposure of the electron beam is preferably 20 ⁇ C / cm 2, 40 ⁇ C / cm 2 is more preferable.
  • the upper limit of the exposure is preferably 1,000 ⁇ C / cm 2, 800 ⁇ C / cm 2 is more preferable.
  • the lower limit of the time of exposure to radiation is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the time is preferably 10 hours, more preferably 2 hours, and still more preferably 30 minutes.
  • the temperature of the substrate (P) at the time of exposure to radiation is usually from 0 ° C to 150 ° C, preferably from 0 ° C to 50 ° C.
  • the atmosphere around the silicon-containing film (I) upon exposure to radiation is not particularly limited, and may be air, an inert gas such as nitrogen, or a reactive gas such as ozone or ammonia.
  • Reactive gas refers to a gas that can react with the silicon-containing film (I).
  • the reactive gas include ozone, oxygen, fluorine, chlorine, bromine, iodine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, ammonia, and hydrogen. Of these, ozone, ammonia or fluorine is preferred.
  • the gas used at the time of exposure to the reactive gas may be a gas composed of only the reactive gas or a gas obtained by diluting the reactive gas with a non-reactive gas such as nitrogen.
  • the lower limit of the partial pressure upon exposure to the reactive gas is preferably 0.01 atm, more preferably 0.1 atm.
  • the upper limit of the partial pressure is preferably 5 atm, more preferably 1 atm.
  • the lower limit of the time of exposure to the reactive gas is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the time is preferably 10 hours, more preferably 2 hours, and still more preferably 30 minutes.
  • the temperature of the substrate (P) at the time of exposure to the reactive gas is usually from 0 ° C to 150 ° C, preferably from 0 ° C to 50 ° C.
  • Plasma exposure “Plasma exposure” “Plasma” refers to a plasma of various gases.
  • Examples of the plasma include oxygen plasma, ozone plasma, nitrogen plasma, hydrogen plasma, chlorine plasma, helium plasma, neon plasma, argon plasma, krypton plasma, xenon plasma, and ammonia plasma.
  • oxygen plasma, ozone plasma, helium plasma or argon plasma is preferable, and oxygen plasma, helium plasma or argon plasma is more preferable.
  • a direct method by placing a substrate (P) in each gas atmosphere and performing plasma discharge is exemplified.
  • the conditions for plasma exposure are as follows: a gas flow rate is usually 50 cc / min or more and 100 cc / min or less, and a supply power is 100 W or more and 1,500 W or less.
  • the lower limit of the plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • 10 minutes are preferred, 5 minutes are more preferred, and 2 minutes are still more preferred.
  • the temperature of the substrate (P) at the time of the plasma exposure is usually 0 ° C or more and 150 ° C or less, and preferably 0 ° C or more and 50 ° C or less.
  • Examples of the ion include nitrogen, helium, neon, argon, krypton, xenon, and helium ions. Of these, helium or argon ions are preferred.
  • the lower limit of the ion exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • 10 minutes are preferred, 5 minutes are more preferred, and 2 minutes are still more preferred.
  • the temperature of the substrate (P) at the time of ion exposure is usually 0 ° C or more and 150 ° C or less, and preferably 0 ° C or more and 50 ° C or less.
  • Reactive liquid refers to a liquid that can react with the silicon-containing film (I).
  • the reactive liquid include an oxidizing agent such as hydrogen peroxide, an acid such as sulfuric acid and nitric acid, a mixture thereof, or a liquid obtained by dissolving these in water.
  • a method of bringing the reactive liquid into contact with the silicon-containing film (I) of the substrate (P) for example, a method of dipping the substrate (P) in a tank filled with the reactive liquid for a predetermined time (dip method), a method of dipping the substrate ( A method in which the reactive liquid is raised on the surface of the silicon-containing film (I) of P) by surface tension and is stopped for a predetermined time (paddle method), and the reactive liquid is sprayed on the surface of the silicon-containing film (I) of the substrate (P). (Spray method), and a method of continuously applying a reactive liquid while scanning an application nozzle at a constant speed on a substrate (P) rotating at a constant speed (dynamic dispensing method).
  • the lower limit of the concentration of the oxidizing agent and the acid in the reactive liquid is preferably 0.1% by mass, more preferably 1% by mass, and still more preferably 10% by mass.
  • the upper limit of the concentration is preferably 80% by mass, more preferably 60% by mass, and still more preferably 40% by mass.
  • the lower limit of the contact time of the reactive liquid is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the time is preferably 10 hours, more preferably 2 hours, and still more preferably 30 minutes.
  • the temperature of the substrate (P) at the time of contact with the reactive liquid is usually from 0 ° C to 150 ° C, preferably from 0 ° C to 50 ° C.
  • Examples of a method for performing heating include a method using a heating device such as a hot plate and an oven.
  • the lower limit of the heating temperature is preferably 400 ° C, more preferably 450 ° C.
  • the upper limit of the temperature is preferably 600 ° C, more preferably 500 ° C.
  • the lower limit of the heating time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the time is preferably 10 hours, more preferably 2 hours, and still more preferably 30 minutes.
  • the atmosphere around the silicon-containing film (I) during heating is not particularly limited, and may be air or an inert gas such as nitrogen.
  • Examples of the acid-containing removal solution (I) include a solution containing an acid and water, a solution obtained by mixing an acid, hydrogen peroxide and water, and the like.
  • Examples of the acid include sulfuric acid, hydrofluoric acid, hydrochloric acid and the like.
  • the removal solution (I) containing an acid includes, for example, a solution obtained by mixing hydrofluoric acid and water, a solution obtained by mixing sulfuric acid, hydrogen peroxide and water, hydrochloric acid, and peroxide. Examples include a liquid obtained by mixing hydrogen and water.
  • Examples of the removal solution (I) containing a base include a solution containing a base and water, a solution obtained by mixing a base, hydrogen peroxide and water, and the like, and a solution obtained by mixing a base, hydrogen peroxide and water. Liquids are preferred.
  • Examples of the base include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, Triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3 .0] -5-nonene. Of these, ammonia is preferred.
  • the lower limit of the temperature in the removing step is preferably 20 ° C, more preferably 40 ° C, and still more preferably 50 ° C.
  • the upper limit of the temperature is preferably 300 ° C, more preferably 100 ° C.
  • the lower limit of the time in the removing step is preferably 5 seconds, and more preferably 30 seconds.
  • the upper limit of the time is preferably 10 minutes, and more preferably 180 seconds.
  • Average thickness of silicon-containing film The average thickness of the silicon-containing film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOLLAM).
  • the temperature of the inside of the reaction vessel was set to 20 ° C., and the above monomer solution was added dropwise over 1 hour while stirring.
  • the polymerization reaction was carried out at 40 ° C. for 1 hour and then at 60 ° C. for 3 hours, with the end of the dropwise addition as the reaction start time.
  • tetrahydrofuran (213 parts by mass) was added, and the polymerization solution was ice-cooled and cooled to 10 ° C or lower.
  • triethylamine 150 mol%
  • methanol 150 mol%) was added dropwise from a dropping funnel over 10 minutes with stirring.
  • the reaction was carried out at 20 ° C.
  • the polymerization solution was poured into diisopropyl ether (700 parts by mass), and the precipitated salt was separated by filtration. Next, tetrahydrofuran, excess triethylamine and excess methanol in the filtrate were removed using an evaporator. The obtained residue was poured into diisopropyl ether (180 parts by mass), the precipitated salt was separated by filtration, and diisopropyl ether was added to the filtrate to obtain a diisopropyl ether solution of polycarbosilane (a-1). .
  • the concentration of polycarbosilane (a-1) in the diisopropyl ether solution was 10% by mass.
  • Mw of polycarbosilane (a-1) was 700.
  • polycarbosilane (A- A propylene glycol monomethyl ether acetate solution of 1) was obtained.
  • concentration of the polycarbosilane (A-1) in the propylene glycol monomethyl ether acetate solution was 5% by mass.
  • Mw of polycarbosilane (A-1) was 2,500.
  • Mw of polycarbosilane (A-2) is 1,800
  • Mw of polycarbosilane (A-3) is 2,100
  • Mw of polycarbosilane (A-4) is 1,300
  • polycarbosilane (A Mw of -5) was 1,800.
  • composition (I) ⁇ Preparation of composition (I)>
  • the solvent [B] used for preparing the composition (I) is shown below.
  • compositions (J-2) to (J-5) were prepared in the same manner as in Preparation Example 1, except that the types and amounts of each component were as shown in Table 2 below.
  • P1-1 The substrate on which the silicon-containing film was formed was placed in the chamber, and 15 vol% ozone gas (100 ° C.) was supplied into the chamber at a flow rate of 40 mL / min for 60 seconds.
  • ozone generator "OT-020" (Ozone Technology) was used.
  • the apparatus used was "Tactras-Vigus" manufactured by Tokyo Electron Limited.
  • P1-3 The substrate on which the silicon-containing film was formed was heated at 400 ° C. for 60 seconds in clean air.
  • P1-4 The substrate on which the silicon-containing film was formed was immersed in a 10% by mass aqueous hydrogen peroxide solution (80 ° C.) for 60 seconds, and then the substrate was dried by blowing compressed air for 10 seconds.
  • P1-6 The substrate on which the silicon-containing film was formed was placed in the chamber, and 15 vol% ozone gas (250 ° C.) was supplied into the chamber at a flow rate of 40 mL / min for 120 seconds.
  • ozone generator "OT-020" (Ozone Technology) was used.
  • the apparatus used was "Tactras-Vigus" manufactured by Tokyo Electron Limited.
  • P1-8 The substrate on which the silicon-containing film was formed was heated at 500 ° C. for 120 seconds in clean air.
  • the apparatus used was "Tactras-Vigus" manufactured by Tokyo Electron Limited.
  • P1-11 The substrate on which the silicon-containing film was formed was exposed to argon ions (dose amount: 1 ⁇ 10 15 atoms / cm 2 ).
  • IMX-3500RS manufactured by ULVAC, Inc. was used.
  • P1-12 The substrate on which the silicon-containing film was formed was heated at 400 ° C. for 120 seconds in a nitrogen gas.
  • P1-13 The substrate on which the silicon-containing film was formed was exposed to an electron beam under the conditions of 100 ⁇ C / cm 2 (output: 50 KeV, current density: 5.0 amps / cm 2 ).
  • As the apparatus "HL800D” manufactured by Hitachi, Ltd. was used.
  • P1-14 The substrate on which the silicon-containing film was formed was exposed to extreme ultraviolet light at 200 mJ / cm 2 .
  • the apparatus used was an EUV scanner ("TWINSCAN NXE: 3300B" (NA0.3, Sigma 0.9) manufactured by ASML).
  • the semiconductor substrate processing method of the present invention damage to the substrate can be reduced by using an acid-containing removing solution or a base-containing removing solution in the rework process. Therefore, the method for processing a semiconductor substrate can be suitably used for manufacturing a semiconductor device in which miniaturization is expected to further progress in the future.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

パターンの微細化を促進することができ、リワークプロセスにおいて基板へのダメージを低減することができる半導体基板の処理方法の提供を目的とする。本発明は、基板に直接又は間接にポリカルボシラン及び溶媒を含有するケイ素含有膜形成用組成物を塗工する工程と、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜に対する放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触及び400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行う工程と、上記処理工程後のケイ素含有膜を酸を含有する除去液又は塩基を含有する除去液で除去する工程とを備える半導体基板の処理方法である。上記ポリカルボシランが下記式(1)で表される構造単位を有することが好ましい。下記式(1)中、Rは、置換又は非置換の炭素数1~20の2価の炭化水素基である。X及びYは、水素原子、ヒドロキシ基、ハロゲン原子又は炭素数1~20の1価の有機基である。

Description

半導体基板の処理方法
 本発明は、半導体基板の処理方法に関する。
 半導体基板の製造におけるパターン形成には、例えば、基板上に有機下層膜、ケイ素含有膜等を介して積層されたレジスト膜を露光及び現像して得られたレジストパターンをマスクとしてエッチングを行うことでパターニングされた基板を形成する半導体リソグラフィープロセス等が用いられる(国際公開第2012/039337号参照)。
国際公開第2012/039337号
 半導体等の製造工程においては、ケイ素含有組成物を塗工した際に不具合が生じた場合に上記ケイ素含有膜を除去するリワークプロセスを行うことがある。このようなリワークプロセスにおいては、基板へのダメージを抑えつつ、上記ケイ素含有膜を除去する方法として酸、塩基等を含有する除去液を用いる方法が考えられる。
 ケイ素含有組成物としては、ポリカルボシランを含有するケイ素含有組成物は、ポリシロキサンを主成分とするケイ素含有組成物と比較して、酸素系ガスエッチング耐性に優れると考えられる。しかし、ポリカルボシランを含有するケイ素含有組成物を塗工して形成したケイ素含有膜では、パターンの微細化を促進しつつ、リワークプロセスにおいて基板へのダメージを低減することは達成できていない。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、ポリカルボシランを含有するケイ素含有組成物を塗工して形成したケイ素含有膜についてのリワークプロセスにおいて基板へのダメージを低減することができる半導体基板の処理方法を提供することにある。
 上記課題を解決するためになされた発明は、基板に直接又は間接にポリカルボシラン及び溶媒を含有するケイ素含有膜形成用組成物を塗工する工程と、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜に対する放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触及び400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行う工程と、上記処理工程後のケイ素含有膜を酸を含有する除去液又は塩基を含有する除去液で除去する工程とを備える半導体基板の処理方法である。
 本発明の半導体基板の処理方法によれば、ケイ素含有膜のエッチング選択性を向上することによりパターンの微細化を促進することができ、リワークプロセスにおいて、酸を含有する除去液又は塩基を含有する除去液を用いることにより基板へのダメージを低減することができる。従って、当該半導体基板の処理方法は、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。
 以下、本発明の半導体基板の処理方法の実施の形態について詳説する。
<半導体基板の処理方法>
 当該半導体基板の処理方法は、基板に直接又は間接にポリカルボシラン(以下、「[A]ポリカルボシラン」ともいう)及び溶媒(以下、「[B]溶媒」ともいう)を含有するケイ素含有膜形成用組成物(以下、「組成物(I)」ともいう)を塗工する工程(以下、「ケイ素含有膜形成用組成物塗工工程」ともいう)と、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜(以下、「ケイ素含有膜(I)」ともいう)に対する放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触及び400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行う工程(以下、「処理工程」ともいう)と、上記処理工程後のケイ素含有膜(I)を酸を含有する除去液又は塩基を含有する除去液(以下、「除去液(I)」ともいう)で除去する工程(以下、「除去工程」ともいう)とを備える。
 当該半導体基板の処理方法は、必要に応じてその他の工程を備えていてもよく、上記ケイ素含有膜形成用組成物塗工工程前に、上記基板に直接又は間接に有機下層膜を形成する工程(以下、「有機下層膜形成工程」ともいう)を備えていてもよい。また、当該半導体基板の処理方法は、上記ケイ素含有膜形成用組成物塗工工程後に、上記ケイ素含有膜(I)に直接又は間接にレジスト膜形成用組成物を塗工する工程(以下、「レジスト膜形成用組成物塗工工程」ともいう)と、上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する工程(以下、「露光工程」ともいう)と、上記露光工程後のレジスト膜を現像する工程(以下、「現像工程」ともいう)とをさらに備えていてもよく、上記現像工程後に、上記現像工程により形成されたレジストパターンをマスクとして上記ケイ素含有膜(I)をエッチングする工程(以下、「ケイ素含有膜エッチング工程」ともいう)をさらに備えていてもよい。
 当該半導体基板の処理方法によれば、パターンの微細化を促進することができ、リワークプロセスにおいて基板へのダメージを低減することができる。当該半導体基板の処理方法が上記構成を備えることで、上記効果を奏する理由については必ずしも明確ではないが例えば以下のように推察することができる。すなわち、[A]ポリカルボシランから形成されたケイ素含有膜は、同等のケイ素質量含有率のポリシロキサンから形成されたケイ素含有膜に比べ、酸素ガスエッチング耐性が向上している。それにより、ケイ素含有膜を薄膜化することができ、その結果、パターンの微細化を促進することができる。また、[A]ポリカルボシランから形成されたケイ素含有膜に対して、放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触、400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行うことにより、ケイ素含有膜において酸化、結合の開裂等が起こるため、酸を含有する除去液又は塩基を含有する除去液に溶解するので除去が可能になると考えられる。その結果、リワークプロセスにおいて基板へのダメージを低減することができる。
 以下、各工程について説明する。
<有機下層膜形成工程>
 本工程では、基板に直接又は間接に有機下層膜を形成する。
 当該半導体基板の処理方法において、有機下層膜形成工程を行う場合、有機下層膜形成工程後に、後述するケイ素含有膜形成用組成物塗工工程を行う。この場合、ケイ素含有膜形成用組成物塗工工程において有機下層膜上に直接又は間接に組成物(I)を塗工することによりケイ素含有膜(I)を形成する。
 上記基板としては、例えば酸化シリコン、窒化シリコン、酸窒化シリコン、ポリシロキサン等の絶縁膜、樹脂基板等が挙げられる。上記基板として、例えばAMAT社の「ブラックダイヤモンド」、ダウケミカル社の「シルク」、JSR(株)の「LKD5109」等により形成される低誘電体絶縁膜で被覆したウェハ等の層間絶縁膜を使用することができる。上記基板としては配線溝(トレンチ)、プラグ溝(ビア)等のパターニングされた基板を用いてもよい。
 上記有機下層膜は、組成物(I)から形成されるケイ素含有膜(I)とは異なるものである。但し、上記有機下層膜は、ケイ素原子を含有していてもよい。有機下層膜は、レジストパターン形成において、ケイ素含有膜(I)及び/又はレジスト膜が有する機能をさらに補ったり、これらが有していない機能を得るために、必要とされる所定の機能(例えば、反射防止性、塗工膜平坦性、フッ素系ガスに対する高エッチング耐性)を付与したりする膜のことである。
 有機下層膜としては、例えば反射防止膜等が挙げられる。反射防止膜形成組成物としては、例えばJSR(株)の「NFC HM8006」等が挙げられる。
 有機下層膜は、有機下層膜形成組成物を回転塗工法等により塗工して塗膜を形成した後、加熱することにより形成することができる。
<ケイ素含有膜形成用組成物塗工工程>
 本工程では、基板に直接又は間接に組成物(I)を塗工する。本工程により、基板上に直接又は有機下層膜等の他の層を介して組成物(I)の塗膜が形成される。組成物(I)の塗工方法は特に限定されないが、例えば回転塗工法等の公知の方法が挙げられる。
 組成物(I)を基板上等に塗工して形成された塗膜を、通常、露光及び/又は加熱することにより硬化等させることによってケイ素含有膜(I)が形成される。
 上記露光に用いられる放射線としては、例えば可視光線、紫外線(遠紫外線を含む)、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。
 塗膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。形成されるケイ素含有膜(I)の平均厚みの下限としては、1nmが好ましく、3nmがより好ましく、5nmがさらに好ましい。上記平均厚みの上限としては、100nmが好ましく、50nmがより好ましく、30nmがさらに好ましい。
<組成物(I)>
 組成物(I)は、[A]ポリカルボシラン及び[B]溶媒を含有する。組成物(I)は、本発明の効果を損なわない範囲において、他の成分を含有していてもよい。
[[A]ポリカルボシラン]
 [A]ポリカルボシランは、主鎖中にSi-C結合を有する重合体である。
 [A]ポリカルボシランは、例えば下記式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有する。また、[A]ポリカルボシランは、後述する式(2)で表される第2構造単位(以下、「構造単位(II)」ともいう)及び式(3)で表される第3構造単位(以下、「構造単位(III)」ともいう)を有していてもよい。組成物(I)は、[A]ポリカルボシランを1種単独で又は2種以上を組み合わせて有することができる。
(構造単位(I))
 構造単位(I)は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、Rは、置換又は非置換の炭素数1~20の2価の炭化水素基である。X及びYは、それぞれ独立して、水素原子、ヒドロキシ基、ハロゲン原子又は炭素数1~20の1価の有機基である。
 上記式(1)のRとしては、例えば置換又は非置換の炭素数1~20の2価の鎖状炭化水素基、置換又は非置換の炭素数3~20の2価の脂環式炭化水素基、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基等が挙げられる。なお、本明細書において、鎖状炭化水素基には、直鎖状炭化水素基及び分岐鎖状炭化水素基の両方が含まれる。
 上記非置換の炭素数1~20の2価の鎖状炭化水素基としては、例えばメタンジイル基、エタンジイル基等の鎖状飽和炭化水素基、エテンジイル基、プロペンジイル基等の鎖状不飽和炭化水素基などが挙げられる。
 上記非置換の炭素数3~20の2価の脂環式炭化水素基としては、例えばシクロブタンジイル基等の単環の脂環式飽和炭化水素基、シクロブテンジイル基等の単環の脂環式不飽和炭化水素基、ビシクロ[2.2.1]ヘプタンジイル基等の多環の脂環式飽和炭化水素基、ビシクロ[2.2.1]ヘプテンジイル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 上記非置換の炭素数6~20の2価の芳香族炭化水素基としては、例えばフェニレン基、ビフェニレン基、フェニレンエチレン基、ナフチレン基等が挙げられる。
 上記Rで表される置換の炭素数1~20の2価の炭化水素基における置換基としては、例えばハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、アルコキシ基、アシル基、アシロキシ基等が挙げられる。
 Rとしては、非置換の鎖状飽和炭化水素基が好ましく、メタンジイル基又はエタンジイル基がより好ましい。
 上記式(1)のX又はYで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を有する1価の基、上記炭化水素基又は上記2価のヘテロ原子含有基を含む基の有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した1価の基等が挙げられる。
 上記炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基等のアルキル基、エテニル基等のアルケニル基、エチニル基等のアルキニル基などが挙げられる。
 上記炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等の1価の単環の脂環式飽和炭化水素基、シクロペンテニル基、シクロヘキセニル基等の1価の単環の脂環式不飽和炭化水素基、ノルボルニル基、アダマンチル基等の1価の多環の脂環式飽和炭化水素基、ノルボルネニル基、トリシクロデセニル基等の1価の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、メチルナフチル基、アントリル基等のアリール基、ベンジル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 2価又は1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。
 X又はYで表される炭素数1~20の1価の有機基としては、1価の炭化水素基が好ましく、1価の鎖状炭化水素基又は1価の芳香族炭化水素基がより好ましく、アルキル基又はアリール基がさらに好ましい。
 X又はYで表される1価の有機基の炭素数としては、1~10が好ましく、1~6がより好ましい。
 X又はYで表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。このハロゲン原子としては、塩素原子又は臭素原子が好ましい。
 [A]ポリカルボシランが構造単位(I)を有する場合、[A]ポリカルボシランを構成する全構造単位に対する構造単位(I)の含有割合の下限としては、5モル%が好ましく、30モル%がより好ましく、60モル%がさらに好ましく、80モル%が特に好ましい。構造単位(I)の含有割合の上限は、100モル%であってもよい。構造単位(I)の含有割合を上記範囲とすることで、当該半導体基板の処理方法におけるケイ素含有膜(I)の除去液(I)による除去性をより向上することができる。なお、[A]ポリカルボシランの各構造単位の含有割合(モル%)は、通常[A]ポリカルボシランの合成に用いた各構造単位を与える単量体のモル比率と同等になる。
(構造単位(II))
 構造単位(II)は、下記式(2)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000003
 [A]ポリカルボシランが構造単位(II)を有する場合、[A]ポリカルボシランを構成する全構造単位に対する構造単位(II)の含有割合の下限としては、0.1モル%が好ましく、1モル%がより好ましく、5モル%がさらに好ましい。構造単位(II)の含有割合の上限としては、50モル%が好ましく、40モル%がより好ましく、30モル%がさらに好ましく、20モル%が特に好ましい。
(構造単位(III))
 構造単位(III)は、下記式(3)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000004
 上記式(3)中、Rは、置換又は非置換の炭素数1~20の1価の炭化水素基である。cは、1又は2である。cが2の場合、2つのRは互いに同一又は異なる。
 上記cとしては、1が好ましい。
 Rで表される非置換の炭素数1~20の1価の炭化水素基としては、例えば上記式(1)のX及びYとして例示した炭素数1~20の1価の炭化水素基と同様の基等が挙げられる。また、上記炭素数1~20の1価の炭化水素基の置換基としては、例えば上記式(1)のX及びYにおいて例示した1価のヘテロ原子含有基と同様の基等が挙げられる。
 Rとしては、置換若しくは非置換の1価の鎖状炭化水素基又は置換若しくは非置換の1価の芳香族炭化水素基が好ましく、アルキル基又はアリール基がより好ましく、メチル基又はフェニル基がさらに好ましい。
 [A]ポリカルボシランが構造単位(III)を有する場合、[A]ポリカルボシランを構成する全構造単位に対する構造単位(III)の含有割合の下限としては、0.1モル%が好ましく、1モル%がより好ましく、5モル%がさらに好ましい。構造単位(III)の含有割合の上限としては、50モル%が好ましく、40モル%がより好ましく、30モル%がさらに好ましく、20モル%が特に好ましい。
 また、[A]ポリカルボシランは、上記構造単位以外にも、上記式(1)においてX及び/又はYで表されるヒドロキシ基から脱水縮合等により形成されるSi-O-Siの構造を含む構造単位を含んでいてもよい。
 [A]ポリカルボシランのポリスチレン換算重量平均分子量(Mw)の下限としては、500が好ましく、700がより好ましく、900がさらに好ましく、1,200が特に好ましい。上記Mwの上限としては、50,000が好ましく、10,000がより好ましく、5,000がさらに好ましく、3,000が特に好ましい。
 本明細書において、[A]ポリカルボシランのMwは、GPCカラム(東ソー(株)の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定される値である。
 [A]ポリカルボシランの含有割合の下限としては、組成物(I)中の[B]溶媒以外の全成分に対して、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。上記含有割合の上限は、100質量%であってもよい。
 組成物(I)における[A]ポリカルボシランの含有割合の下限としては、0.01質量%が好ましく、0.05質量%がより好ましく、0.1質量%がさらに好ましく、0.3質量%が特に好ましい。上記含有割合の上限としては、30質量%が好ましく、20質量%がより好ましく、10質量%がさらに好ましく、3質量%が特に好ましい。
[[B]溶媒]
 [B]溶媒としては、[A]ポリカルボシラン及び必要に応じて含有される他の成分を溶解又は分散できる限り用いることができる。[B]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒、水等が挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等の多価アルコール系溶媒などが挙げられる。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-ブチルケトン、シクロヘキサノン等が挙げられる。
 エーテル系溶媒としては、例えばエチルエーテル、iso-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、テトラヒドロフラン等が挙げられる。
 エステル系溶媒としては、例えば酢酸エチル、γ-ブチロラクトン、酢酸n-ブチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、プロピオン酸エチル、プロピオン酸n-ブチル、乳酸メチル、乳酸エチル等が挙げられる。
 含窒素系溶媒としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 これらの中でも、エーテル系溶媒及び/又はエステル系溶媒が好ましく、成膜性に優れるため、グリコール構造を有するエーテル系溶媒及び/又はエステル系溶媒がより好ましい。
 グリコール構造を有するエーテル系溶媒及びエステル系溶媒としては、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。これらの中でも、特に、酢酸プロピレングリコールモノメチルエーテルが好ましい。
 [B]溶媒中のグリコール構造を有するエーテル系溶媒及びエステル系溶媒の含有割合の下限としては、20質量%が好ましく、60質量%がより好ましく、90質量%がさらに好ましく、100質量%が特に好ましい。
 組成物(I)における[B]溶媒の含有割合の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。上記含有割合の上限としては、99.9質量%が好ましい。
[他の成分]
 組成物(I)は、他の成分として、例えば塩基性化合物(塩基発生剤を含む)、ラジカル発生剤、酸発生剤、界面活性剤、コロイド状シリカ、コロイド状アルミナ、有機ポリマー等を含有してもよい。組成物(I)は、上記他の成分をそれぞれ1種単独で又は2種以上を組み合わせて含有することができる。
(塩基性化合物)
 上記塩基性化合物は、組成物(I)における硬化反応を促進し、その結果、形成されるケイ素含有膜(I)の強度等を向上する。上記塩基性化合物としては、例えば塩基性アミノ基を有する化合物や、酸の作用又は熱の作用により塩基性アミノ基を有する化合物を発生する塩基発生剤等が挙げられる。上記塩基性アミノ基を有する化合物としては、例えばアミン化合物等が挙げられる。上記塩基発生剤としては、例えばアミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。上記アミン化合物、アミド基含有化合物、ウレア化合物及び含窒素複素環化合物の具体例としては、例えば特開2016-27370号公報の段落[0079]~[0082]に記載されている化合物等が挙げられる。
 組成物(I)が上記塩基性化合物を含有する場合、[A]ポリカルボシラン100質量部に対する上記塩基性化合物の含有量の上限としては、50質量部が好ましい。上記含有量の下限としては、1質量部が好ましい。
(酸発生剤)
 上記酸発生剤は、露光又は加熱により酸を発生する成分である。上記酸発生剤は、比較的低温(常温を含む)においても[A]ポリカルボシランの縮合反応を促進できる。
 露光により酸を発生する酸発生剤(以下、「光酸発生剤」ともいう)としては、例えば特開2004-168748号公報における段落[0077]~[0081]に記載の酸発生剤等が挙げられる。
 また、加熱により酸を発生する酸発生剤(以下、「熱酸発生剤」ともいう)としては、上記特許文献において光酸発生剤として例示されているオニウム塩系酸発生剤、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、アルキルスルホネート類等が挙げられる。
 組成物(I)が上記酸発生剤を含有する場合、[A]ポリカルボシラン100質量部に対する酸発生剤の含有量の上限としては、20質量部が好ましく、10質量部がより好ましい。上記含有量の下限としては、0.1質量部が好ましい。
 組成物(I)が界面活性剤、コロイド状シリカ、コロイド状アルミナ及び/又は有機ポリマーを含有する場合、これらの成分の1種類毎の含有量の上限としては、[A]ポリカルボシラン100質量部に対して、2質量部が好ましく、1質量部がより好ましい。
[ケイ素含有膜形成用組成物の調製方法]
 組成物(I)は、例えば[A]ポリカルボシランの溶液、[B]溶媒、及び必要に応じて使用される他の成分を所定の割合で混合し、好ましくは得られた混合溶液を孔径0.2μm以下のフィルター等でろ過することにより調製することができる。
<レジスト膜形成用組成物塗工工程>
 本工程では、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜(I)に直接又は間接にレジスト膜形成用組成物を塗工する。本工程により、上記ケイ素含有膜形成用組成物塗工工程で形成されたケイ素含有膜(I)に直接又は間接にレジスト膜が形成される。
 レジスト膜形成用組成物としては、例えば酸解離性基を有する重合体及び感放射線性酸発生剤を含有する感放射線性樹脂組成物(化学増幅型レジスト膜形成用組成物)、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト膜形成用組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト膜形成用組成物等が挙げられる。これらの中で、感放射線性樹脂組成物が好ましい。感放射線性樹脂組成物を用いた場合、アルカリ現像液で現像することでポジ型パターンを形成することができ、有機溶媒現像液で現像することでネガ型パターンを形成することができる。レジストパターンの形成には、微細パターンを形成する手法であるダブルパターニング法、ダブルエクスポージャー法等を適宜用いてもよい。
 感放射線性樹脂組成物に含有される重合体は、酸解離性基を含む構造単位以外にも、例えばラクトン構造、環状カーボネート構造及び/又はスルトン構造を含む構造単位、アルコール性水酸基を含む構造単位、フェノール性水酸基を含む構造単位、フッ素原子を含む構造単位等を有していてもよい。上記重合体が、フェノール性水酸基を含む構造単位及び/又はフッ素原子を含む構造単位を有すると、露光における放射線として極端紫外線又は電子線を用いる場合の感度を向上させることができる。
 レジスト膜形成用組成物における溶媒以外の全成分の含有割合の下限としては、0.1質量%が好ましく、1質量%が好ましい。上記含有割合の上限としては、50質量%が好ましく、30質量%がより好ましい。レジスト膜形成用組成物としては、孔径0.2μm以下のフィルターを用いてろ過したものを好適に用いることができる。当該半導体基板の処理方法においては、レジスト膜形成用組成物として、市販品のレジスト組成物をそのまま使用することもできる。
 レジスト膜形成用組成物の塗工方法としては、例えば回転塗工法等の従来の方法などが挙げられる。レジスト膜形成用組成物を塗工する際には、得られるレジスト膜が所定の膜厚となるように、塗工するレジスト膜形成用組成物の量を調整する。
 レジスト膜は、レジスト膜形成用組成物の塗膜をプレベークすることにより、塗膜中の溶媒を揮発させて形成することができる。プレベークの温度は、使用するレジスト膜形成用組成物の種類等に応じて適宜調整されるが、プレベークの温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。
<露光工程>
 本工程では、上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する。この露光は、例えばフォトマスクにより選択的に放射線を照射して行う。放射線としては、例えば可視光線、紫外線(遠紫外線及び極端紫外線を含む)、X線、γ線等の電磁波、電子線、α線等の荷電粒子線などが挙げられる。これらの中で、遠紫外線、極端紫外線又は電子線が好ましく、極端紫外線又は電子線がより好ましい。
<現像工程>
 本工程では、上記露光工程後のレジスト膜を現像する。本工程により、上記ケイ素含有膜形成用組成物塗工工程で形成されたケイ素含有膜(I)に直接又は間接にレジストパターンが形成される。上記現像方法としては、アルカリ現像液を用いたアルカリ現像法でも有機溶媒現像液を用いた有機溶媒現像法でもよい。本工程では、各種現像液で現像を行った後、好ましくは洗浄及び乾燥させることによって、露光工程で使用したフォトマスクに対応した所定のレジストパターンが形成される。
<ケイ素含有膜エッチング工程>
 本工程では、上記現像工程後に、上記現像工程により形成されたレジストパターンをマスクとして、上記ケイ素含有膜(I)をエッチングする。より具体的には、上記現像工程により形成されたレジストパターンをマスクとした1又は複数回のエッチングによって、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜(I)がパターニングされる。
 上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。
 ドライエッチングは、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、エッチングされるケイ素含有膜の元素組成等により、適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが用いられる。これらのガスは混合して用いることもできる。ケイ素含有膜のドライエッチングには、通常フッ素系ガスが用いられ、これに酸素系ガスと不活性ガスとを混合したものが好適に用いられる。
<処理工程>
 本工程では、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜(I)に対する放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触及び400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行う。本工程では、これらの処理のうち、1つの処理のみを行ってもよく、これらのうちの2つ以上の処理を順次又は同時に行ってもよい。本工程において、各処理における暴露、接触及び加熱はケイ素含有膜(I)の全体に対して行ってもよく、ケイ素含有膜(I)の一部に対して行ってもよい。各処理において、暴露、接触及び加熱は、1回のみ行ってもよく、複数回行ってもよい。
 本工程の処理は、具体的には、上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜(I)を直接又は間接に有するか、又は上記ケイ素含有膜エッチング工程によりパターニングされたケイ素含有膜(I)を有する基板(以下、「基板(P)」ともいう)におけるケイ素含有膜(I)に対して行う。
 ケイ素含有膜(I)に対して、放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触、400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行うことにより、[A]ポリカルボシランが酸化されると-OH、-COOH等が生成し、塩基性液に可溶となり、酸化がさらに進むとSi-O-Si結合が形成され、フッ化水素水に可溶となる。また、[A]ポリカルボシランの共有結合が切断されると、酸性液に可溶となる。このように、本工程における処理により、後述する除去工程において、酸又は塩基を含有する除去液(I)によるケイ素含有膜(I)の除去が可能になる。
 以下、各処理について説明する。
(放射線の暴露)
 放射線としては、例えば可視光線(波長:400nm超780nm以下)、紫外線(波長:10nm以上400nm以下)、X線(0.001nm~10nm)等の電磁波、電子線、分子線等の粒子線などが挙げられる。これらの中で、電磁波又は電子線が好ましく、紫外線又は電子線がより好ましい。紫外線の波長の下限としては、13nmが好ましく、150nmがより好ましい。上記波長の上限としては、370nmが好ましく、255nmがより好ましい。基板(P)のケイ素含有膜(I)に紫外線の暴露を行う方法としては、例えば低圧水銀ランプ(発光中心波長:185nm、254nm)等を照射光源とする方法、EUVスキャナー(例えばASML社の「TWINSCAN NXE:3300B」(NA0.3、シグマ0.9)等)を用いて極端紫外線(波長:13.5nm)を暴露する方法などが挙げられる。基板(P)のケイ素含有膜(I)に電子線の暴露を行う方法としては、例えば電子線描画装置(例えば(株)日立製作所の「HL800D」等)などを用いる方法などが挙げられる。
 Xeエキシマランプ又は低圧水銀ランプによる紫外線の暴露強度の下限としては、1mW/cmが好ましく、5mW/cmがより好ましい。上記暴露強度の上限としては、200mW/cmが好ましく、50mW/cmがより好ましい。極端紫外線の暴露量の下限としては、5mJ/cmが好ましく、10mJ/cmがより好ましい。上記暴露量の上限としては、500mJ/cmが好ましく、400mJ/cmがより好ましい。電子線の暴露量の下限としては、20μC/cmが好ましく、40μC/cmがより好ましい。上記暴露量の上限としては、1,000μC/cmが好ましく、800μC/cmがより好ましい。
 放射線の暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10時間が好ましく、2時間がより好ましく、30分がさらに好ましい。
 放射線の暴露時の基板(P)の温度としては、通常0℃以上150℃以下であり、0℃以上50℃以下が好ましい。
 放射線の暴露におけるケイ素含有膜(I)のまわりの雰囲気としては、特に限定されず、空気中でも、窒素等の不活性ガス中でも、オゾン、アンモニア等の反応性気体中でもよい。
(反応性気体の暴露)
 「反応性気体」とは、ケイ素含有膜(I)と反応し得る気体をいう。反応性気体としては、例えばオゾン、酸素、フッ素、塩素、臭素、ヨウ素、フッ化水素、塩化水素、臭化水素、ヨウ化水素、アンモニア、水素等が挙げられる。これらの中で、オゾン、アンモニア又はフッ素が好ましい。
 反応性気体の暴露を行う方法としては、反応性気体を封入した容器内に基板(P)を一定時間静置する方法等が挙げられる。
 反応性気体の暴露の際に用いる気体としては、反応性気体のみからなる気体であってもよく、反応性気体を窒素等の非反応性気体で希釈した気体であってもよい。
 反応性気体の暴露の際の分圧の下限としては、0.01気圧が好ましく、0.1気圧がより好ましい。上記分圧の上限としては、5気圧が好ましく、1気圧がより好ましい。
 反応性気体の暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10時間が好ましく、2時間がより好ましく、30分がさらに好ましい。
 反応性気体の暴露時の基板(P)の温度としては、通常0℃以上150℃以下であり、0℃以上50℃以下が好ましい。
(プラズマの暴露)
 「プラズマ」とは、各種ガスをプラズマ化したものをいう。
 プラズマとしては、例えば酸素プラズマ、オゾンプラズマ、窒素プラズマ、水素プラズマ、塩素プラズマ、ヘリウムプラズマ、ネオンプラズマ、アルゴンプラズマ、クリプトンプラズマ、キセノンプラズマ、アンモニアプラズマ等が挙げられる。これらの中で、酸素プラズマ、オゾンプラズマ、ヘリウムプラズマ又はアルゴンプラズマが好ましく、酸素プラズマ、ヘリウムプラズマ又はアルゴンプラズマがより好ましい。
 プラズマの暴露を行う方法としては、例えば基板(P)を各ガス雰囲気中に設置し、プラズマ放電することによる直接法等が挙げられる。プラズマの暴露の条件としては、通常ガス流量が50cc/min以上100cc/min以下、供給電力が100W以上1,500W以下である。
 プラズマの暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。
 プラズマの暴露時の基板(P)の温度としては、通常0℃以上150℃以下であり、0℃以上50℃以下が好ましい。
(イオンの暴露)
 イオンとしては、例えば窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ヘリウムのイオン等が挙げられる。これらの中で、ヘリウム又はアルゴンのイオンが好ましい。
 イオンの暴露を行う方法としては例えばイオン照射装置を用いる方法等が挙げられる。
 イオンの暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。
 イオンの暴露時の基板(P)の温度としては、通常0℃以上150℃以下であり、0℃以上50℃以下が好ましい。
(反応性液体の接触)
 「反応性液体」とは、ケイ素含有膜(I)と反応し得る液体という。反応性液体としては、例えば過酸化水素等の酸化剤、硫酸、硝酸等の酸、これらの混合物、又はこれらを水に溶解させて得られる液体などが挙げられる。
 基板(P)のケイ素含有膜(I)に反応性液体を接触させる方法としては、例えば反応性液体が満たされた槽中に基板(P)を一定時間浸漬する方法(ディップ法)、基板(P)のケイ素含有膜(I)の表面に反応性液体を表面張力によって盛り上げて一定時間静止する方法(パドル法)、基板(P)のケイ素含有膜(I)の表面に反応性液体を噴霧する方法(スプレー法)、一定速度で回転している基板(P)上に一定速度で塗出ノズルをスキャンしながら反応性液体を塗出し続ける方法(ダイナミックディスペンス法)等が挙げられる。
 反応性液体が溶液である場合、反応性液体中の酸化剤及び酸の濃度の下限としては、0.1質量%が好ましく、1質量%がより好ましく、10質量%がさらに好ましい。上記濃度の上限としては、80質量%が好ましく、60質量%がより好ましく、40質量%がさらに好ましい。
 反応性液体の接触の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10時間が好ましく、2時間がより好ましく、30分がさらに好ましい。
 反応性液体の接触時の基板(P)の温度としては、通常0℃以上150℃以下であり、0℃以上50℃以下が好ましい。
(400℃以上の加熱)
 加熱を行う方法としては、例えばホットプレート、オーブン等の加熱装置を用いる方法等が挙げられる。
 加熱の温度の下限としては、400℃が好ましく、450℃より好ましい。上記温度の上限としては、600℃が好ましく、500℃がより好ましい。
 加熱の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10時間が好ましく、2時間がより好ましく、30分がさらに好ましい。
 加熱におけるケイ素含有膜(I)のまわりの雰囲気としては、特に限定されず、空気中でも窒素等の不活性ガス中でもよい。
<除去工程>
 本工程では、上記処理工程後のケイ素含有膜(I)を酸又は塩基を含有する除去液(I)で除去する。
 酸を含有する除去液(I)としては、例えば酸及び水を含む液、酸、過酸化水素及び水の混合により得られる液等が挙げられる。酸としては、例えば硫酸、フッ化水素酸、塩酸等が挙げられる。酸を含有する除去液(I)としては、より具体的には、例えばフッ化水素酸及び水の混合により得られる液、硫酸、過酸化水素及び水の混合により得られる液、塩酸、過酸化水素及び水の混合により得られる液等が挙げられる。
 塩基を含有する除去液(I)としては、例えば塩基及び水を含む液、塩基、過酸化水素及び水の混合により得られる液等が挙げられ、塩基、過酸化水素及び水の混合により得られる液が好ましい。
 塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等が挙げられる。これらの中でも、アンモニアが好ましい。
 除去工程における温度の下限としては、20℃が好ましく、40℃がより好ましく、50℃がさらに好ましい。上記温度の上限としては、300℃が好ましく、100℃がより好ましい。
 除去工程における時間の下限としては、5秒が好ましく、30秒がより好ましい。上記時間の上限としては、10分が好ましく、180秒がより好ましい。
 以下、実施例を説明する。なお、以下に示す実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 本実施例における重量平均分子量(Mw)の測定、[A]ポリカルボシランの溶液中の濃度の測定、及び膜の平均厚みの測定は下記の方法により行った。
[重量平均分子量(Mw)]
 GPCカラム(東ソー(株)の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[[A]ポリカルボシランの溶液中の濃度]
 [A]ポリカルボシランの溶液0.5gを250℃で30分間焼成した後の残渣の質量を測定し、この残渣の質量を[A]ポリカルボシランの溶液の質量で除することにより、[A]ポリカルボシランの溶液中の濃度(質量%)を算出した。
[ケイ素含有膜の平均厚み]
 ケイ素含有膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
<[A]ポリカルボシランの合成>
 本実施例での合成に使用した単量体を以下に示す。なお、以下の合成例1~10においては、特に断りのない限り、質量部は使用した単量体の合計質量又はポリカルボシラン(a)のジイソプロピルエーテル溶液の質量を100質量部とした場合の値を意味する。モル%は使用した単量体における合計Siのモル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000005
(ポリカルボシラン(a)の合成)
[合成例1](ポリカルボシラン(a-1)の合成)
 窒素置換した反応容器において、マグネシウム(120モル%)及びテトラヒドロフラン(35質量部)を加え、20℃で撹拌した。次に、上記式(H-1)で表される化合物、上記式(S-2)で表される化合物及び上記式(S-3)で表される化合物をモル比率が50/15/35(モル%)となるようにテトラヒドロフラン(355質量部)に溶解し、単量体溶液を調製した。反応容器内を20℃とし、撹拌しながら上記単量体溶液を1時間かけて滴下した。滴下終了を反応の開始時間とし、重合反応を40℃で1時間、その後60℃で3時間実施した。反応終了後、テトラヒドロフラン(213質量部)を添加し、重合溶液を氷冷して10℃以下に冷却した。冷却した重合溶液に、トリエチルアミン(150モル%)を加えた後、撹拌しながら、滴下ロートからメタノール(150モル%)を10分かけて滴下した。滴下終了を反応の開始時間とし、反応を20℃で1時間実施した。重合溶液をジイソプロピルエーテル(700質量部)中に投入し、析出した塩をろ別した。次に、エバポレーターを用いて、ろ液中のテトラヒドロフラン、余剰のトリエチルアミン及び余剰のメタノールを除去した。得られた残渣をジイソプロピルエーテル(180質量部)中に投入し、析出した塩をろ別し、ろ液にジイソプロピルエーテルを添加することでポリカルボシラン(a-1)のジイソプロピルエーテル溶液を得た。ポリカルボシラン(a-1)の上記ジイソプロピルエーテル溶液中の濃度は10質量%であった。ポリカルボシラン(a-1)のMwは700であった。
[合成例2~5](ポリカルボシラン(a-2)~(a-5)の合成)
 下記表1に示す種類及び使用量の各単量体を使用した以外は、合成例1と同様にして、ポリカルボシラン(a-2)~(a-5)のジイソプロピルエーテル溶液を得た。得られたポリカルボシラン(a)の溶液におけるポリカルボシラン(a)のMw及びポリカルボシラン(a)の上記ジイソプロピルエーテル溶液中の濃度(質量%)を表1に合わせて示す。表1における「-」は、該当する単量体を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000006
[合成例6](ポリカルボシラン(A-1)の合成)
 反応容器において、ポリカルボシラン(a-1)のジイソプロピルエーテル溶液をメタノール90質量部に溶解した。上記反応容器内を30℃とし、撹拌しながら3.2質量%シュウ酸水溶液8質量部を20分間かけて滴下した。滴下終了を反応の開始時間とし、反応を40℃で4時間実施した。反応終了後、反応容器内を30℃以下に冷却した。冷却した反応溶液に酢酸プロピレングリコールモノメチルエーテルを198質量部加えた後、エバポレーターを用いて、水、反応により生成したアルコール類及び余剰の酢酸プロピレングリコールモノメチルエーテルを除去して、ポリカルボシラン(A-1)の酢酸プロピレングリコールモノメチルエーテル溶液を得た。このポリカルボシラン(A-1)の上記酢酸プロピレングリコールモノメチルエーテル溶液中の濃度は、5質量%であった。ポリカルボシラン(A-1)のMwは2,500であった。
[合成例7~10](ポリカルボシラン(A-2)~(A-5)の合成)
 ポリカルボシラン(a-2)~(a-5)を使用した以外は、合成例6と同様にして、ポリカルボシラン(A-2)~(A-5)の酢酸プロピレングリコールモノメチルエーテル溶液を得た。これらのポリカルボシラン(A-2)~(A-5)の上記酢酸プロピレングリコールモノメチルエーテル溶液中の濃度は、5質量%であった。ポリカルボシラン(A-2)のMwは1,800、ポリカルボシラン(A-3)のMwは2,100、ポリカルボシラン(A-4)のMwは1,300、ポリカルボシラン(A-5)のMwは1,800であった。
<組成物(I)の調製>
 組成物(I)の調製に用いた[B]溶媒について以下に示す。
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
[調製例1]
 [A]ポリカルボシランとしての(A-1)0.5質量部と、[B]溶媒としての(B-1)99.50質量部([A]ポリカルボシランの溶液に含まれる溶媒としての(B-1)も含む)とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過して、組成物(J-1)を調製した。
[調製例2~5]
 各成分の種類及び配合量が下記表2に示す通りとなるようにした以外は、調製例1と同様に操作して、組成物(J-2)~(J-5)を調製した。
Figure JPOXMLDOC01-appb-T000007
<ケイ素含有膜の形成>
 8インチシリコンウェハ上に、有機下層膜形成材料(JSR(株)の「HM8006」)をスピンコーターによる回転塗工法により塗工した後、250℃で60秒間加熱を行うことにより平均厚み100nmの有機下層膜を形成した。この有機下層膜上に、下記表3~表5に示す組成物(I)を上記スピンコーターによる回転塗工法により塗工した後、220℃で60秒間加熱した後、23℃で30秒間冷却することにより、平均厚み10nmのケイ素含有膜を形成し、表面にケイ素含有膜が形成された基板を作製した。
<処理の実施及びケイ素含有膜の除去>
 上記作製した各基板について、下記表3~表5に示す処理条件により処理を行った。次に、この処理を行った各基板のケイ素含有膜の表面に、パドル法により、下記表3~表5に示す除去液(I)を接触させた後、スピンコーターによる回転により乾燥させた。下記表3~表5中の処理条件における「-」は、処理を行わなかったことを示す。
[実施例1-1~1-20及び比較例1-1~1-5]
(処理条件)
 P1-1:反応性気体(オゾン)の暴露
 P1-2:プラズマ(酸素プラズマ)の暴露
 P1-3:400℃以上(空気中400℃)の加熱
 P1-4:反応性液体(過酸化水素水)の接触
 処理条件(P1-1)~(P1-4)における処理方法について以下に示す。
 P1-1:チャンバー内にケイ素含有膜が形成された基板を載置し、15vol%オゾンガス(100℃)を流量40mL/分で60秒間チャンバー内に供給した。オゾン発生装置は、「OT-020」(Ozone Technology社)を用いた。
 P1-2:ケイ素含有膜が形成された基板に、O=400sccm、PRESS.=25mT、HF RF=20W、LF RF=0W、DCS=0V、RDC=50%、60secの条件でプラズマを暴露した。装置は、東京エレクトロン(株)の「Tactras-Vigus」を用いた。
 P1-3:ケイ素含有膜が形成された基板を、清浄空気中で、400℃で60秒間加熱した。
 P1-4:ケイ素含有膜が形成された基板を、10質量%過酸化水素水(80℃)に60秒間浸漬した後、圧縮空気を10秒間吹き付けることにより、基板を乾燥させた。
(除去条件)
 上記得られた各基板を、65℃に加温した除去液(R-1)(25質量%アンモニア水溶液/30質量%過酸化水素水/水=1/1/5(体積比)混合水溶液)に5分間浸漬した。
[実施例2-1~2-15及び比較例2-1~2-5]
(処理条件)
 P1-6:反応性気体(オゾン)の暴露
 P1-7:プラズマ(酸素プラズマ)の暴露
 P1-8:400℃以上(空気中500℃)の加熱
 処理条件(P1-6)~(P1-9)における処理方法について以下に示す。
 P1-6:チャンバー内にケイ素含有膜が形成された基板を載置し、15vol%オゾンガス(250℃)を流量40mL/分で120秒間チャンバー内に供給した。オゾン発生装置は、「OT-020」(Ozone Technology社)を用いた。
 P1-7:ケイ素含有膜が形成された基板に、O=400sccm、PRESS.=25mT、HF RF=200W、LF RF=0W、DCS=0V、RDC=50%、60secの条件でプラズマを暴露した。装置は、東京エレクトロン(株)の「Tactras-Vigus」を用いた。
 P1-8:ケイ素含有膜が形成された基板を、清浄空気中で、500℃で120秒間加熱した。
(除去条件)
 上記得られた各基板を、50℃に加温した除去液(R-2)(50質量%フッ化水素酸/水=1/5(体積比)混合水溶液)に5分間浸漬した。
[実施例3-1~3-25及び比較例3-1~3-5]
(処理条件)
 P1-10:プラズマ(アルゴンプラズマ)の暴露
 P1-11:イオン(アルゴンイオン)の暴露
 P1-12:400℃以上(窒素中400℃)の加熱
 P1-13:電子線の暴露
 P1-14:極端紫外線の暴露
 処理条件(P1-10)~(P1-15)における処理方法について以下に示す。
 P1-10:ケイ素含有膜が形成された基板に、Ar=800sccm、PRESS.=80mT、HF RF=500W、LF RF=0W、DCS=0V、RDC=50%、60secの条件でプラズマを暴露した。装置は、東京エレクトロン(株)の「Tactras-Vigus」を用いた。
 P1-11:ケイ素含有膜が形成された基板に、アルゴンイオン(ドーズ量1×1015atms/cm)を暴露した。装置は、(株)アルバックの「IMX-3500RS」を用いた。
 P1-12:ケイ素含有膜が形成された基板を、窒素ガス中で、400℃で120秒間加熱した。
 P1-13:ケイ素含有膜が形成された基板に、100μC/cm(出力:50KeV、電流密度:5.0アンペア/cm)の条件で電子線を暴露した。装置は、(株)日立製作所の「HL800D」を用いた。
 P1-14:ケイ素含有膜が形成された基板に、200mJ/cmの条件で極端紫外線を暴露した。装置は、EUVスキャナー(ASML社の「TWINSCAN NXE:3300B」(NA0.3、シグマ0.9)を用いた。
(除去条件)
 上記得られた各基板を、50℃に加温した除去液(R-3)(96質量%硫酸/30質量%過酸化水素水=3/1(体積比)混合水溶液)に5分間浸漬した。
<評価>
 以下の方法により、ケイ素含有膜の除去におけるケイ素含有膜の除去性を評価した。評価結果を下記表3~表5に合わせて示す。
[除去性]
 上記得られた各基板の断面について、電界放出形走査電子顕微鏡((株)日立ハイテクノロジーズの「SU8220」)を用いて観察し、ケイ素含有膜が残存していない場合は「A」(良好)と、ケイ素含有膜が残存している場合は「B」(不良)と評価した。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 
 上記表3~表5の結果から分かるように、実施例の半導体基板の処理方法におけるケイ素含有膜の除去性は良好であった。従って、実施例の半導体基板の処理方法によれば、リワークプロセスにおいて基板へのダメージを低減することができると考えられる。
 本発明の半導体基板の処理方法によれば、リワークプロセスにおいて、酸を含有する除去液又は塩基を含有する除去液を用いることにより、基板へのダメージを低減することができる。従って、当該半導体基板の処理方法は、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。

 

Claims (6)

  1.  基板に直接又は間接にポリカルボシラン及び溶媒を含有するケイ素含有膜形成用組成物を塗工する工程と、
     上記ケイ素含有膜形成用組成物塗工工程により形成されたケイ素含有膜に対する放射線の暴露、反応性気体の暴露、プラズマの暴露、イオンの暴露、反応性液体の接触及び400℃以上の加熱からなる群より選ばれる少なくとも1種の処理を行う工程と、
     上記処理工程後のケイ素含有膜を酸を含有する除去液又は塩基を含有する除去液で除去する工程と
     を備える半導体基板の処理方法。
  2.  上記ポリカルボシランが下記式(1)で表される構造単位を有する請求項1に記載の半導体基板の処理方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、置換又は非置換の炭素数1~20の2価の炭化水素基である。X及びYは、それぞれ独立して、水素原子、ヒドロキシ基、ハロゲン原子又は炭素数1~20の1価の有機基である。)
  3.  上記ケイ素含有膜形成用組成物塗工工程後に、
     上記ケイ素含有膜に直接又は間接にレジスト膜形成用組成物を塗工する工程と、
     上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する工程と、
     上記露光工程後のレジスト膜を現像する工程と、
     上記現像工程により形成されたレジストパターンをマスクとして上記ケイ素含有膜をエッチングする工程と
     をさらに備える請求項1又は請求項2に記載の半導体基板の処理方法。
  4.  上記酸を含有する除去液が、酸及び水を含む液又は酸、過酸化水素及び水の混合により得られる液である請求項1、請求項2又は請求項3に記載の半導体基板の処理方法。
  5.  上記塩基を含有する除去液が、塩基及び水を含む液又は塩基、過酸化水素及び水の混合により得られる液である請求項1、請求項2又は請求項3に記載の半導体基板の処理方法。
  6.  上記除去工程を50℃以上で行う請求項1から請求項5のいずれか1項に記載の半導体基板の処理方法。

     
PCT/JP2019/035958 2018-09-27 2019-09-12 半導体基板の処理方法 WO2020066669A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018182493 2018-09-27
JP2018-182493 2018-09-27
JP2019009776 2019-01-23
JP2019-009776 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020066669A1 true WO2020066669A1 (ja) 2020-04-02

Family

ID=69952634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035958 WO2020066669A1 (ja) 2018-09-27 2019-09-12 半導体基板の処理方法

Country Status (2)

Country Link
TW (1) TW202013098A (ja)
WO (1) WO2020066669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149478A1 (ja) * 2021-01-07 2022-07-14 Jsr株式会社 組成物及び半導体基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538604A (ja) * 1999-02-26 2002-11-12 トリコン ホールディングス リミティド ポリマー層の処理方法
JP2003273100A (ja) * 2002-03-18 2003-09-26 Fujitsu Ltd 半導体装置及びその製造方法
JP2008210929A (ja) * 2007-02-26 2008-09-11 Jsr Corp 膜およびその形成方法、ならびに半導体装置
US20120122302A1 (en) * 2010-11-03 2012-05-17 Applied Materials, Inc. Apparatus And Methods For Deposition Of Silicon Carbide And Silicon Carbonitride Films
JP2018503710A (ja) * 2014-12-01 2018-02-08 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. カルボシランポリマー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538604A (ja) * 1999-02-26 2002-11-12 トリコン ホールディングス リミティド ポリマー層の処理方法
JP2003273100A (ja) * 2002-03-18 2003-09-26 Fujitsu Ltd 半導体装置及びその製造方法
JP2008210929A (ja) * 2007-02-26 2008-09-11 Jsr Corp 膜およびその形成方法、ならびに半導体装置
US20120122302A1 (en) * 2010-11-03 2012-05-17 Applied Materials, Inc. Apparatus And Methods For Deposition Of Silicon Carbide And Silicon Carbonitride Films
JP2018503710A (ja) * 2014-12-01 2018-02-08 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. カルボシランポリマー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149478A1 (ja) * 2021-01-07 2022-07-14 Jsr株式会社 組成物及び半導体基板の製造方法

Also Published As

Publication number Publication date
TW202013098A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2015146523A1 (ja) パターン形成方法、樹脂及びレジスト下層膜形成組成物
WO2011149029A1 (ja) 絶縁パターン形成方法及びダマシンプロセス用絶縁パターン形成材料
JP7429712B2 (ja) 硬化膜の製造方法、およびその使用
US20240004297A1 (en) Composition and method for manufacturing semiconductor substrate
JP7101932B2 (ja) Euvリソグラフィー用ケイ素含有膜形成組成物、euvリソグラフィー用ケイ素含有膜及びパターン形成方法
JP4563076B2 (ja) 反射防止膜形成用組成物、該反射防止膜形成用組成物からなる反射防止膜、および該反射防止膜形成用組成物を用いたレジストパターン形成方法
WO2020170934A1 (ja) 膜形成用組成物及び半導体基板の製造方法
JPH10251519A (ja) 珪素組成物、これを用いたパターン形成方法、および電子部品の製造方法
WO2020066669A1 (ja) 半導体基板の処理方法
JP7048903B2 (ja) パターン形成方法及びeuvリソグラフィー用ケイ素含有膜形成組成物
JP6787206B2 (ja) レジストプロセス用ケイ素含有膜形成組成物、ケイ素含有膜及びパターン形成方法
WO2018159356A1 (ja) ケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサン
JP6897071B2 (ja) レジストプロセス用膜形成材料、パターン形成方法及び重合体
WO2020171054A1 (ja) 半導体基板の製造方法及び半導体基板製造用組成物
JPWO2018155377A1 (ja) レジストプロセス用膜形成材料、パターン形成方法及びポリシロキサン
WO2021193030A1 (ja) 電子線又は極端紫外線リソグラフィー用レジスト下層膜形成組成物、電子線又は極端紫外線リソグラフィー用レジスト下層膜、及び半導体基板の製造方法
KR102611256B1 (ko) 반도체 리소그래피 프로세스용 막 형성 조성물, 규소 함유막 및 레지스트 패턴 형성 방법
JP6741957B2 (ja) レジストプロセス用膜形成材料及びパターン形成方法
JP7342953B2 (ja) 組成物、ケイ素含有膜、ケイ素含有膜の形成方法及び半導体基板の処理方法
JP7301151B2 (ja) 下層膜形成用組成物、レジストパターン形成方法、電子デバイスの製造方法
WO2024135316A1 (ja) 組成物及び半導体基板の製造方法
WO2021235273A1 (ja) ケイ素含有組成物及び半導体基板の製造方法
WO2020171006A1 (ja) 半導体基板の製造方法及び組成物
WO2022113781A1 (ja) ケイ素含有組成物及び半導体基板の製造方法
WO2021106537A1 (ja) レジスト下層膜形成用組成物、パターン形成方法、及び、電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP