WO2020066651A1 - 流動性改質剤、これを含む組成物、及び当該組成物の硬化物 - Google Patents
流動性改質剤、これを含む組成物、及び当該組成物の硬化物 Download PDFInfo
- Publication number
- WO2020066651A1 WO2020066651A1 PCT/JP2019/035855 JP2019035855W WO2020066651A1 WO 2020066651 A1 WO2020066651 A1 WO 2020066651A1 JP 2019035855 W JP2019035855 W JP 2019035855W WO 2020066651 A1 WO2020066651 A1 WO 2020066651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon atoms
- resin
- inorganic filler
- acid
- residue
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/092—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/04—Polysulfides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2262—Oxides; Hydroxides of metals of manganese
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
Definitions
- the present invention particularly relates to a fluidity modifier capable of imparting fluidity when an inorganic filler or the like is mixed with another compound, a composition containing the same, and a cured product of the composition.
- resin compositions such as sealing materials, paints, adhesives and sealants, not only to increase the amount, gas barrier properties, conductivity, heat insulation, with the purpose of expressing various functions such as flame retardancy, It has been practiced to blend fillers made of various inorganic compounds.
- the compounding of the filler is not limited to the resin composition used as a coating material such as the sealing material, but may also be a resin composition used for molding such as automobile parts, sanitary absorbent articles (eg, diapers), building materials, stone paper, and the like. Fillers are added for the purpose of improving the durability and the like of the obtained molded article.
- fillers vary widely, in any case, if these fillers are mixed with the resin, the original fluidity of the resin is often impaired, so that the composition can be used for coating or molding. In such a case, there is a fact that workability and moldability deteriorate, and the amount of filler used naturally has an upper limit.
- a thickener or diluent for a composition comprising additives such as an inorganic filler, a hydrocarbon solvent such as mineral spirit or paraffin, or the use of polyethylene glycol or glycerin alkyl ester is known.
- a hydrocarbon solvent such as mineral spirit or paraffin
- polyethylene glycol or glycerin alkyl ester is known.
- the effect of reducing the viscosity is insufficient and the solvent volatilizes into the atmosphere during curing or molding of the composition.
- it has been proposed to use a dialkyl ether having a specific structure, which has a small volatilization to the atmosphere, as a thickener for example, see Patent Document 1).
- the problem to be solved by the present invention is to provide a composition (paste) as a composition (paste) even if a small amount is added to an inorganic filler having high versatility especially as a composition for a sealing material or a paint.
- An object of the present invention is to provide a fluidity modifier capable of imparting fluidity and a composition using the same.
- Another problem to be solved by the present invention is that a small amount is added to an inorganic filler having high versatility as a resin composition for molding applications such as automobile parts, sanitary absorbent articles, building materials, and stone paper.
- Another object of the present invention is to provide a fluidity modifier capable of imparting fluidity as a composition, a composition using the same, and a cured product obtained from the composition.
- Y is a hydrogen atom or a monocarboxylic acid residue having 1 to 9 carbon atoms
- G is an aliphatic diol residue having 2 to 9 carbon atoms
- A is 2 carbon atoms.
- X is an aliphatic dicarboxylic acid residue having 1 to 8 carbon atoms
- X is a dicarboxylic acid residue having 1 to 8 carbon atoms
- m is a repeating number and is an integer of 0 to 30.
- G and A may be the same or different for each repetition, and a plurality of Gs may be the same or different.
- Z is a monoalcohol residue having 2 to 10 carbon atoms
- G, A, and X are the same as described above
- n represents a repetition number and is an integer of 0 to 30.
- G and A may be the same or different for each repetition.
- an ester resin having a specific structure which can impart fluidity to a composition even when used in a small amount with respect to an inorganic filler, without impairing the performance of the obtained molded article, contains an ester resin having a specific structure.
- the flowability modifier can be provided.
- the fluidity modifier of the present invention has the following general formula (I)
- Y is a hydrogen atom or a monocarboxylic acid residue having 1 to 9 carbon atoms
- G is an aliphatic diol residue having 2 to 9 carbon atoms
- A is 2 carbon atoms.
- X is an aliphatic dicarboxylic acid residue having 1 to 8 carbon atoms
- X is a dicarboxylic acid residue having 1 to 8 carbon atoms
- m is a repeating number and is an integer of 0 to 30.
- G and A may be the same or different for each repetition, and a plurality of Gs may be the same or different.
- Z is a monoalcohol residue having 2 to 10 carbon atoms
- G, A, and X are the same as described above
- n represents a repetition number and is an integer of 0 to 30.
- G and A may be the same or different for each repetition.
- the “carboxylic acid residue” refers to the remaining organic group except for the carboxyl group of the carboxylic acid
- the “diol residue” and “alcohol residue” refer to diols and alcohols in which the hydroxyl groups have been removed. It shows the remaining organic groups. The number of carbon atoms does not include the carbon atoms in the carboxy group.
- the fluidity modifier in the present invention must have an acid value in the range of 3 to 50.
- the acid value is in this range, the fluidity of the composition (paste) is effectively exhibited by the interaction with the inorganic filler and the like.
- the acid value and the hydroxyl value of the fluidity modifier are values obtained according to the measurement method specified in JIS K0070-1992, and the unit is mgKOH / g.
- the acid value of the fluidity modifier of the present invention is preferably in the range of 3 to 35.
- the fluidity modifier in the present invention must have a number average molecular weight (Mn) in the range of 300 to 3000. When the Mn is within this range, the composition does not volatilize when cured or molded after the composition is prepared, and the fluidity modification is effectively performed without adversely affecting the inherent performance of the resin or the inorganic filler. Is expressed. From these viewpoints, Mn is preferably in the range of 400 to 2500, and most preferably in the range of 400 to 1500. M in the general formula (I) and n in the formula (II) represent the number of repetitions, each of which is in the range of 0 to 30, and the average value thereof is preferably in the range of 2 to 15.
- the repeating structure in () is not necessarily the same, and in the general formula (I), G in () and G in () may be the same or different.
- the molecular weight (Mn, Mw) and the average value of m and n of the fluidity modifier are values measured according to the following.
- Y in the general formula (I) is a hydrogen atom or a monocarboxylic acid residue having 1 to 9 carbon atoms.
- the monocarboxylic acid residue may be any of aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, and aromatic monocarboxylic acid residues, for example, propionic acid, butanoic acid, hexanoic acid, and octanoic acid.
- benzoic acid dimethyl benzoic acid, trimethyl benzoic acid, tetramethyl benzoic acid, ethyl benzoic acid, propyl benzoic acid, butyl benzoic acid, cumic acid, para-tert-butyl benzoic acid, orthotoluic acid, methatoluyl Residues such as acid, paratoluic acid, ethoxybenzoic acid, propoxybenzoic acid, anisic acid and naphthoic acid are exemplified.
- Y is preferably a hydrogen atom or a benzoic acid residue from the viewpoint of a higher fluidity modifying effect on inorganic fillers and the like.
- G in the general formula (I) is an aliphatic diol residue having 2 to 9 carbon atoms, and may have an alicyclic structure or an ether bond.
- Examples of the aliphatic diol residue include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol.
- 1,4-butanediol 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3- Dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1 Residues such 9-nonane diol.
- it may have an oxyalkylene structure having 4 to 12 carbon atoms, and examples thereof include residues such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These may be used alone or in combination of two or more. Among these, from the viewpoint of being a compound that is more excellent in the fluidity modifying effect when mixed with an inorganic filler described later, it may be a residue of 1,2-propylene glycol, neopentyl glycol, or 1,3-propanediol. preferable.
- a in the general formula (I) is an aliphatic dicarboxylic acid residue having 2 to 10 carbon atoms, and may have an alicyclic structure.
- an aliphatic dicarboxylic acid-derived structure fluidity modification to an inorganic filler or the like is effectively exhibited.
- the aliphatic dicarboxylic acid residue include residues such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and 1,2-dicarboxycyclohexane. It may have two or more types. Among these, the residue of adipic acid is preferable from the viewpoint of a compound having a better fluidity modifying effect.
- X in the general formula (I) is a dicarboxylic acid residue having 1 to 8 carbon atoms, and examples thereof include alicyclic and aliphatic dicarboxylic acids and aromatic dicarboxylic acids.
- examples of the aliphatic dicarboxylic acid residue include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, 1,2-dicarboxycyclohexane, , 2-dicarboxycyclohexene and the like.
- aromatic dicarboxylic acid residue examples include phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, Residues such as 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid are exemplified.
- succinic acid, adipic acid, maleic acid, and phthalic acid residues are preferred from the viewpoint of a compound having a better fluidity modifying effect.
- ZZ in the general formula (II) is a monoalcohol residue having 2 to 10 carbon atoms, and may have an alicyclic structure.
- the monoalcohol residue include residues such as ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, nonanol, and decanol.
- octanol, nonanol, and decanol residues are preferable from the viewpoint of excellent fluidity modifying effect and easy introduction.
- G, A, and X in the general formula (II) are the same as those in the general formula (I), and are also the same as preferred structures.
- a mixture of compounds represented by the general formula (I) or (II), which differ only in m and n, that is, only the number of repetitions, or each residue in the general formulas (I) and (II) A mixture of compounds having different groups may be used.
- the acid value and the number average molecular weight of the mixture may be within the ranges specified in the present application.
- a mixture of the compound represented by the general formula (I) and the compound represented by the general formula (II) may be used.
- another ester compound or a part of the raw material may be contained, but it is essential that the acid value and the number average molecular weight as the fluidity modifier are within the ranges specified in the present application.
- the content is preferably low, particularly preferably 5% by mass or less.
- Y is a hydrogen atom, an acetyl group, or a benzoic acid residue
- G is propylene glycol, neopentyl glycol, 1,3-propanediol from the viewpoint of further exhibiting the effects of the present invention.
- A is an adipic acid residue
- X is preferably an adipic acid or maleic acid residue
- Z is an octanol, nonanol, decanol residue
- G I is preferably a residue of propylene glycol, neopentyl glycol or 1,3-propanediol
- A is a residue of adipic acid
- X is a residue of adipic acid or maleic acid.
- the content of the low-molecular compound may be reduced.
- components having m and n of 0 or unreacted raw materials are removed in a step such as distillation.
- the ester resin in the present invention is produced, for example, by subjecting the above-mentioned raw material to an esterification reaction in the presence of an esterification catalyst, if necessary, for example, in a temperature range of 180 to 250 ° C. for 10 to 25 hours. can do.
- the conditions such as the temperature and time of the esterification reaction are not particularly limited, and may be appropriately set.
- the monocarboxylic acid or dicarboxylic acid the acid itself may be used as a raw material, or its esterified product, acid chloride, dicarboxylic acid anhydride or the like may be used as the raw material.
- esterification catalyst examples include titanium catalysts such as tetraisopropyl titanate and tetrabutyl titanate; tin catalysts such as dibutyltin oxide; and organic sulfonic acid catalysts such as p-toluenesulfonic acid.
- the amount of the esterification catalyst to be used may be appropriately set, but it is usually preferable to use the esterification catalyst in the range of 0.001 to 0.1 part by mass based on 100 parts by mass of the total amount of the raw material.
- the properties of the fluidity modifier of the present invention vary depending on factors such as the number average molecular weight and the combination of raw materials, but are usually liquid, solid, or paste at room temperature.
- an ester resin As a more specific method for producing an ester resin, the above-mentioned diol, dicarboxylic acid, and monocarboxylic acid are collectively charged and an esterification reaction is performed, or a compound having a hydroxyl group at a terminal using diol and dicarboxylic acid. And then reacting it with a dicarboxylic acid.
- the above-mentioned fluidity modifier may be used alone, and may be added to an inorganic filler or various synthetic resins described below, or other conventional plasticizers and other additives known as modifiers and the like. Additives may be used in combination.
- Examples of the other additives include other modifiers other than the compounds represented by the general formulas (I) and (II) of the present invention, ultraviolet absorbers, stabilizers, and deterioration inhibitors (for example, oxidation inhibitors). Inhibitors, peroxide decomposers, radical inhibitors, metal deactivators, acid scavengers, etc.), dyes and the like.
- the fluidity modifier of the present invention is mixed in advance, after the additives, the inorganic filler and various synthetic resins
- the composition may be prepared by the addition method.
- TPP triphenyl phosphate
- the fluidity modifier of the present invention has the effect of imparting fluidity to powders, powders, particles or fibers, etc. when it is made into a paste, melt-kneaded, etc., and is particularly limited in its application range. However, it can be suitably used particularly as a modifier for an inorganic filler.
- the inorganic filler that can be applied is not particularly limited, and includes, for example, fillers such as calcium carbonate, talc, silica, and clay, antimony oxide, aluminum hydroxide, magnesium hydroxide, hydrotalcite, calcium silicate, Examples include magnesium oxide, potassium titanate, barium titanate, titanium oxide, calcium oxide, magnesium oxide, and manganese dioxide. Among these, it is preferable to use at least one selected from the group consisting of calcium carbonate, manganese dioxide, and talc from the viewpoint that the effects of the present invention are more exhibited.
- the shape of the inorganic filler such as the particle size, fiber length, fiber diameter, etc., is not particularly limited, and may be appropriately adjusted according to the intended use. Further, the surface treatment state of the inorganic filler is not particularly limited, and may be surface-modified with, for example, a saturated fatty acid according to the intended use.
- the fluidity modifier of the present invention may be added in an amount of 0.1 to 100 parts by mass of the inorganic filler. It is preferably used in an amount of from 30 to 30 parts by mass, particularly preferably from 0.1 to 10 parts by mass.
- the fluidity modifier of the present invention is a resin composition containing an inorganic filler such as a sealing material, a paint, an adhesive, and a sealant, and is used in a paste-like resin composition that requires fluidity when used. It can be suitably used.
- the synthetic resin contained in the paste-like resin composition is not particularly limited, but includes, for example, a vinyl chloride resin, an acrylic resin, an ethylene / vinyl acetate resin, a phenol resin, an alkyd resin, an epoxy resin, and a polyurethane resin. , A polyester resin, an unsaturated polyester resin, a modified silicone resin, a silicone resin, a modified polysulfide resin, a polysulfide resin, and the like.
- the fluidity modifier of the present invention is preferably contained in an amount of 0.1 to 30 parts by mass, particularly preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the total of the synthetic resin and the inorganic filler.
- the method for producing the paste-like resin composition is not particularly limited.
- the above components are sufficiently kneaded using a stirring device such as a roll, a kneader, an extruder, a universal stirrer, a mixing mixer, and uniformly dispersed.
- the inorganic composition and the resin composition of the present invention can be produced by a mixing method or the like.
- the paste-like resin composition contains a synthetic resin, but the fluidity modifier of the present invention can also be suitably used for a composition containing a viscous compound such as asphalt instead of the synthetic resin.
- the fluidity modifier of the present invention can suppress an excessive increase in viscosity when mixing an inorganic filler with the synthetic resin without impairing the inherent performance of the synthetic resin. From this point of view, it is preferable to apply the composition to paints, adhesives, structural materials, and the like, which are often used outdoors. A polysulfide-based sealing material having a particularly high filler content and an increase in the filler content are desired. Suitable for rare structural materials.
- the polysulfide-based resin used for the polysulfide-based sealing material is not particularly limited as long as it has a sulfide bond in the molecule.
- a resin in which a hydrocarbon group such as an alkyl group is bonded to a sulfide bond is bonded to a sulfide bond.
- the polysulfide resin may have, for example, an ether bond, an ester bond, an amide bond, or an imide group in the skeleton.
- the polysulfide resin When the polysulfide resin has an ether bond in the skeleton, it is a polysulfide polyether resin.
- the polysulfide resin may have, for example, a functional group such as a thiol group, a hydroxy group, or an amino group at one or both ends.
- the polysulfide-based resin contains, for example, a structural unit represented by — (C 2 H 4 OCH 2 OC 2 H 4 —SX) — (x is an integer of 1 to 5) in the main chain, And those having a thiol group represented by —C 2 H 4 OCH 2 OC 2 H 4 —SH at the terminal.
- the polysulfide resin preferably has fluidity at room temperature, specifically at 25 ° C.
- the number average molecular weight (Mn) of the polysulfide resin is usually 100 to 200,000, preferably 400 to 50,000 or less.
- examples of the polysulfide resin include a polysulfide polyether resin.
- Specific examples of the polysulfide polyether resin include a thiol group-containing polysulfide polyether resin.
- (1) “— (R 1 O) n ” (R 1 is 2 carbon atoms) And n represents an integer of 6 to 200)
- the number average molecular weight of the polysulfide polyether resin is usually from 600 to 200,000, preferably from 800 to 50,000.
- the polysulfide-based resin is not limited to a production method, and those produced by various known methods can be used.
- a commercially available polysulfide resin can also be used.
- Commercially available polysulfide resins include, for example, "Thiocoll LP-23, LP-32" (manufactured by Toray Fine Chemical Co., Ltd.), "THIOPLAST Polymer” (manufactured by AKZO NOBEL), and the like.
- the polysulfide resin (A) may be used alone or in combination of two or more.
- the polysulfide-based sealing material containing the fluidity modifier of the present invention may contain other various additives.
- the additives include an adhesion-imparting agent, a pigment, a dye, an antioxidant, an antioxidant, an antistatic agent, a flame retardant, a tackifying resin, a stabilizer, and a dispersant.
- a silane coupling agent such as aminosilane is preferably used because it is particularly effective in improving the adhesiveness to a glass surface and is a general-purpose compound.
- the aminosilane include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylethyldiethoxysilane, bistrimethoxysilylpropylamine, and bistriethoxysilylpropyl Amine, bismethoxydimethoxysilylpropylamine, bisethoxydiethoxysilylpropylamine, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane , N-2- (aminoethyl) -3-aminopropylmethyldime
- the pigment examples include organic pigments such as azo pigments and copper phthalocyanine pigments.
- Examples of the dye include a black dye, a yellow dye, a red dye, a blue dye, and a brown dye.
- antioxidant examples include hindered phenol compounds and hindered amine compounds.
- antioxidants examples include butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA).
- antistatic agent examples include quaternary ammonium salts; hydrophilic compounds such as polyglycols and ethylene oxide derivatives.
- Examples of the flame retardant include chloroalkyl phosphate, dimethyl methylphosphonate, bromine / phosphorus compound, ammonium polyphosphate, neopentyl bromide-polyether, and brominated polyether.
- tackifying resin examples include terpene resin, phenol resin, terpene-phenol resin, rosin resin, xylene resin, epoxy resin, alkyl titanates, and organic polyisocyanate.
- stabilizer examples include fatty acid silyl esters and fatty acid amide trimethylsilyl compounds.
- the dispersant refers to a substance that converts solids into fine particles and disperses them in the liquid, and includes sodium hexametaphosphate, sodium condensed naphthalenesulfonate, and a surfactant.
- the polysulfide-based sealing material is usually mixed with a curing agent immediately before use.
- a curing agent for example, a curing agent generally used for a polysulfide resin-based sealing material such as a metal oxide, a metal peroxide, an organic / inorganic oxidizing agent, an epoxy compound, an isocyanate compound and the like can be used.
- metal peroxides such as lead dioxide and manganese dioxide are preferred, and manganese dioxide is more preferred. It is preferable that the fluidity modifier of the present invention is used by being mixed with the curing agent.
- the amount of the manganese dioxide to be used is from 2.5 to 2.5 parts by mass, since curing is sufficient and a cured product having appropriate elasticity is obtained with respect to 100 parts by mass of the polysulfide resin used as the main agent. It is preferably 25 parts by mass, more preferably 3 to 20 parts by mass.
- the curing agent may contain other fillers, plasticizers, curing accelerators, and silane coupling agents.
- Curing conditions when used as a sealing material are usually 20 to 25 ° C. after mixing the main agent and the curing agent.
- the curing time is usually 24 to 168 hours.
- Examples of the resin component contained in the resin composition used for the structural material include polyolefin, polyurethane, and unsaturated polyester.
- the resin component of the molding resin composition used for the structural material (building material) differs depending on the application.
- polyurethane is mainly used for a waterproof material
- unsaturated polyester is mainly used for artificial marble. .
- the resin composition used for the waterproof material includes, for example, a main component containing an isocyanate group-containing compound, an aromatic polyamine, It is preferable that the polyurethane composition contains a curing agent component containing at least one selected from the group consisting of a polyol, water and moisture.
- the isocyanate group-containing compound contained in the main component is preferably an isocyanate group-terminated polyurethane prepolymer obtained by reacting a polyisocyanate having a diphenylmethane diisocyanate structure with a polyol.
- the polyisocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, and 2,2'-diphenylmethane diisocyanate.
- an isocyanate mixture composed of 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and / or 2,2'-diphenylmethane diisocyanate is preferred.
- polyol polyoxypropylene polyol is preferable, and polyoxypropylene diol alone or a mixture of polyoxypropylene diol and polyoxypropylene triol is more preferable.
- the ratio of polyisocyanate to polyol is preferably 1.8 to 2.5 in terms of the molar ratio of isocyanate groups to hydroxyl groups (NCO / OH).
- the isocyanate group content (NCO group content) in the isocyanate group-terminated urethane prepolymer is preferably 2 to 5% by mass.
- aromatic polyamine contained in the curing agent component examples include 4,4'-methylenebis (2-chloroaniline), dimethylthiotoluenediamine, and diethyltoluenediamine. Of these, 4,4'-methylenebis (2-chloroaniline) is known as "MOCA" and is widely used.
- a polyether polyol is preferable, and a polyoxypropylene polyol is particularly preferable.
- the number of functional groups of this polyol is preferably 2 to 4, more preferably 2 to 3.
- the mixing ratio of the main agent and the curing agent is such that the molar ratio (NCO / (NH 2 + OH)) between the isocyanate group contained in the main agent and the active hydrogen-containing group contained in the curing agent is, for example, 1 0.0 to 2.0, preferably 1.0 to 1.8, more preferably 1.0 to 1.3.
- the curing agent component preferably contains an inorganic filler, and examples of the inorganic filler include calcium carbonate, talc, clay, silica, and carbon.
- the content of the inorganic filler in the polyurethane composition is, for example, preferably 10 to 60 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the resin component.
- the viscosity of both the main agent and the curing agent is usually high (main agent: for example, 7 to 10 Pa ⁇ S, curing agent: for example, 10 to 30 Pa ⁇ S), and the viscosity further increases in winter when the temperature falls. Therefore, the fluidity modifier of the present invention, which can improve the dispersibility and content of the inorganic filler, is useful.
- the fluidity modifier of the present invention may be contained in the resin composition for a waterproof material.
- the fluidity modifying material of the present invention may be contained in at least one of the main component and the curing agent component.
- the curing agent component may contain a known curing catalyst.
- the curing catalyst include organic acid lead, organic acid tin, and tertiary amine compounds.
- the curing agent components include, in addition to the inorganic filler and the curing catalyst, dioctyl phthalate (bis (2-ethylhexyl) phthalate), dibutyl phthalate, dinonyl phthalate, diisononyl phthalate, dioctyl adipate, methyl lard ester, bran oil Plasticizers such as esters such as methyl esters, chlorinated paraffins, and petroleum plasticizers; pigments such as chromium oxide, titanium oxide, and phthalocyanine; including stabilizers such as antioxidants, ultraviolet absorbers, and dehydrating agents. Good.
- Examples of the waterproof material obtained by molding the waterproof material composition include a roof waterproof material.
- the rooftop waterproofing material is obtained, for example, by applying a composition in which a main component and a curing agent component are mixed to a desired location to form a coating film, followed by reaction curing.
- the fluidity modifier of the present invention can be used as long as it is a resin composition containing an inorganic filler such as talc and calcium carbonate, and is not limited to the above paste-like resin composition. It can also be used for molding resin compositions.
- the molding resin composition containing the fluidity modifier of the present invention can suppress an excessive increase in viscosity due to the inclusion of the inorganic filler, and can smoothly perform melt kneading and the like before molding.
- the fluidity modifier of the present invention can increase the amount of the inorganic filler added, it is desired to improve the physical properties by increasing the amount of the inorganic filler added, such as automobile parts, sanitary absorbent articles, and building materials.
- a resin composition for molding such as stone paper.
- the content of the fluidity modifier of the present invention in the molding resin composition is, for example, 0.1 to 30 parts by mass, and preferably 0.1 to 10 parts by mass, per 100 parts by mass of the inorganic filler. .
- components other than the fluidity modifier of the molding resin composition for each application will be exemplified, but the components contained in the molding resin composition are not limited to the following.
- the resin component contained in the molding resin composition used for an automobile member include, for example, a thermoplastic resin, which is excellent among the thermoplastic resins.
- a polypropylene resin having characteristics such as moldability, high mechanical strength, and economy is preferable.
- the polypropylene is not particularly limited, but a polypropylene resin having an MFR (230 ° C., 2.16 kg) of 60 to 120 g / 10 minutes is preferable.
- the resin composition for an automobile member may further include an olefin-based thermoplastic elastomer as a resin component.
- the olefin-based thermoplastic elastomer is not particularly limited, but preferably contains an ethylene- ⁇ -olefin copolymer.
- Examples of the inorganic filler contained in the resin composition for automobile members include talc, calcium carbonate, and whisker (the materials of the whisker include graphite, potassium titanate, alumina, silicon carbide, silicon nitride, mullite, magnesia, magnesium borate, and borate.
- the whisker include graphite, potassium titanate, alumina, silicon carbide, silicon nitride, mullite, magnesia, magnesium borate, and borate.
- the resin composition for automobile members may contain various additives other than the fluidity modifier and the inorganic filler of the present invention, and the additives include an antioxidant, an ultraviolet absorber, a light stabilizer, a flame retardant, Coloring agents and the like can be mentioned.
- the composition ratio of the resin component, the inorganic filler, the fluidity modifier, and the like contained in the resin composition for an automobile member is not particularly limited, but is preferably adjusted to a composition that satisfies one or more of the following physical properties.
- the MFR (230 ° C., 2.16 kg, JIS-K7210-1) of the resin composition for an automobile member is preferably 20 g / 10 min or more, more preferably 20 to 30 g / 10 min.
- the linear expansion coefficient (JIS-K7197) of the resin composition for an automobile member is preferably 5.0 ⁇ 10 ⁇ 5 / K or less, and more preferably 4.0 to 5.0 ⁇ 10 ⁇ 5 / K. More preferred.
- the tensile modulus (JIS-K7161) of the resin composition for an automobile member is preferably 2.5 GPa or more, and more preferably 2.5 to 3.0 GPa.
- the Charpy impact value (JIS-K7111) of the resin composition for an automobile member is preferably 30 kJ / m 2 or more, and more preferably 30 to 40 kJ / m 2 .
- Examples of automobile members obtained by molding the resin composition for automobile members include a hood, a fender, a bumper, a door, a trunk lid, a roof, a radiator grill, a wheel cap, an instrument panel, and a pillar garnish. These automobile members can be manufactured by injection molding a resin composition for automobile members.
- the resin component included in the molding resin composition used for the sanitary absorbent article is, for example, a polyolefin.
- polyolefins polyethylene and polypropylene are used. One or more selected from the group is preferred, and polyethylene is more preferred.
- polyethylene is used as the resin component, for example, two or more types of polyethylene having different densities may be used.
- the polyolefin which is a resin component of the resin composition for a sanitary absorbent article is not particularly limited, but has an MFR (190 ° C., 2.16 kgf) of preferably 0.1 to 20 g / 10 min, and 0.5 to 5 g / 10 min. More preferred.
- MFR 190 ° C., 2.16 kgf
- the resin composition for a sanitary absorbent article may further contain a polystyrene elastomer as a resin component.
- a polystyrene elastomer examples include styrene-olefin-based (SEP, SEBC, etc.), styrene-olefin-styrene-based (SEPS, SEBS, etc.), styrene-diene (SIS, SBS, etc.), hydrogenated styrene-diene (HSIS). , HSBR, etc.).
- the styrene component in these polystyrene-based elastomers is preferably from 10 to 40% by mass, more preferably from 20 to 40% by mass.
- Examples of the inorganic filler included in the resin composition for a sanitary absorbent article include calcium carbonate, calcium sulfate, barium carbonate, and titanium oxide. One or more selected from the group consisting of calcium carbonate and barium sulfate is preferable.
- the shape of these inorganic fillers is not particularly limited, but is preferably in the form of particles, more preferably fine particles having an average particle diameter of 0.1 to 10 ⁇ m, and more preferably fine particles having an average particle diameter of 0.3 to 5 ⁇ m. It is particularly preferable that the fine particles have an average particle diameter of 0.5 to 3 ⁇ m.
- the resin composition for a sanitary absorbent article may contain various additives other than the fluidity modifier and the inorganic filler of the present invention.
- the additives include a compatibilizer, a processing aid, an antioxidant, and a heat stable agent.
- a molded article obtained by molding the resin composition for a sanitary absorbent article is used as a back sheet (a sheet having air permeability and moisture permeability, but impermeable to liquid) used in sanitary absorbent articles such as disposable diapers and sanitary napkins. It can be suitably used.
- the back sheet can be produced, for example, by melt-kneading the resin composition for sanitary absorbent articles, forming a sheet by a T-die method or an inflation method, and then uniaxially or biaxially stretching the obtained sheet.
- Stone paper is a sheet containing calcium carbonate and polyolefins (polyethylene, polypropylene, etc.) derived from limestone, and does not require water or wood to form the sheet, and the limestone as a raw material is almost inexhaustible on the earth , It is a sheet with excellent sustainability. Stone paper contains a large amount of calcium carbonate. However, since the fluidity modifier of the present invention can increase the fluidity of calcium carbonate, sheet properties can be enhanced.
- Stone paper can be produced, for example, by melt-kneading a stone paper composition containing calcium carbonate, a polyolefin and the fluidity modifier of the present invention, followed by inflation molding or extrusion molding.
- the content of calcium carbonate is, for example, from 85:15 to 20:80, and preferably from 85:15 to 30:70 by mass ratio of polyolefin to calcium carbonate (polyolefin: calcium carbonate). , More preferably 85:15 to 35:65, and still more preferably 80:20 to 40:60.
- the stone paper composition may further include a foaming agent, a coloring agent, a lubricant, a coupling agent, a stabilizer (an antioxidant, an ultraviolet absorber, etc.), an antistatic agent, and the like as auxiliary agents.
- foaming agent examples include aliphatic hydrocarbon compounds such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane; alicyclic hydrocarbon compounds such as cyclohexane, cyclopentane, and cyclobutane; trifluoromonochloroethane, difluorodichloromethane, and the like. And the like.
- lubricant examples include fatty acid lubricants such as stearic acid, hydroxystearic acid, complex stearic acid, and oleic acid; aliphatic alcohol lubricants, stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, and behenamide; Aliphatic amide-based lubricants such as methylolamide, methylenebisstearamide, methylenebisstearobenamide, higher fatty acid bisamidic acid and complex amides; n-butyl stearate, methyl hydroxystearate, polyhydric alcohol fatty acid esters , Saturated fatty acid esters, aliphatic waxes such as ester waxes, and fatty acid metal soap-based lubricants.
- fatty acid lubricants such as stearic acid, hydroxystearic acid, complex stearic acid, and oleic acid
- aliphatic alcohol lubricants
- antioxidants examples include a phosphorus-based antioxidant, a phenol-based antioxidant, and a pentaerythritol-based antioxidant.
- examples of the phosphorus-based antioxidant include phosphorous phosphites such as triphenylphosphite, trisnonylphenylphosphite, and tris (2,4-di-tert-butylphenyl) phosphite.
- Phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, and 2-ethylphenyl diphenyl phosphate.
- phenolic antioxidants include ⁇ -tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tert-butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethyl Aminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxymethyl] methane And the like.
- Synthesis Example 4 In a 0.3-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, 200.0 g of the ester resin (1) obtained in Synthesis Example 1 and 52.4 g of acetic anhydride were charged. The mixture was reacted at 120 ° C. for a total of 6 hours while stirring under a nitrogen stream to obtain an ester resin (4) having an acid value of 27.1, a hydroxyl value of 12.6 and a number average molecular weight of 1200.
- Synthesis Example 6 In a three-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, 913.1 g of propylene glycol, 584.6 g of adipic acid, 977.0 g of benzoic acid, and tetraester as an esterification catalyst. 0.235 g of isopropyl titanate was charged, and the temperature was increased stepwise until the temperature reached 230 ° C. while stirring under a nitrogen stream, whereby a condensation reaction was performed for a total of 10 hours. After the reaction, unreacted propylene glycol was removed at 150 ° C. under reduced pressure.
- Synthesis Example 7 In a two-liter four-necked flask equipped with a thermometer, stirrer, and reflux condenser, 494.6 g of propylene glycol, 380.0 g of adipic acid, 635.0 g of benzoic acid, and tetraester as an esterification catalyst. 0.143 g of isopropyl titanate was charged, and the temperature was increased stepwise until the temperature reached 230 ° C. while stirring under a nitrogen stream, so that a condensation reaction was performed for a total of 10 hours. After the reaction, unreacted propylene glycol was removed at 160 ° C. under reduced pressure.
- Synthesis Example 8 In a three-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, 913.1 g of propylene glycol, 584.6 g of adipic acid, 977.0 g of benzoic acid, and tetraester as an esterification catalyst. 0.235 g of isopropyl titanate was charged, and the temperature was increased stepwise until the temperature reached 230 ° C. while stirring under a nitrogen stream, whereby a condensation reaction was performed for a total of 10 hours. After the reaction, unreacted propylene glycol was removed at 150 ° C. under reduced pressure.
- Synthesis Example 9 In a three-liter four-necked flask equipped with a thermometer, stirrer, and reflux condenser, 1027.2 g of propylene glycol, 1096.1 g of adipic acid, 366.4 g of benzoic acid, and tetraester as an esterification catalyst. 0.237 g of isopropyl titanate was charged, and the temperature was increased stepwise until the temperature reached 230 ° C. while stirring under a nitrogen stream, whereby a condensation reaction was performed for a total of 11 hours. After the reaction, unreacted propylene glycol was removed at 150 ° C. under reduced pressure.
- Synthesis Example 10 380.5 g of propylene glycol, 292.3 g of adipic acid, 488.5 g of benzoic acid, and tetraester as an esterification catalyst were placed in a two-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser. 0.110 g of isopropyl titanate was charged, and the temperature was increased stepwise until the temperature reached 230 ° C. while stirring under a nitrogen stream, whereby a condensation reaction was performed for a total of 10 hours. After the reaction, unreacted propylene glycol was removed at 190 ° C. under reduced pressure to obtain an ester resin (10) having an acid value of 0.06, a hydroxyl value of 25.8 and a number average molecular weight of 500.
- Synthesis Example 14 410.0 g of 1,3-butanediol, 828.0 g of adipic acid and tetraisopropyl titanate as an esterification catalyst were placed in a two-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser. 0.074 g was charged, and the mixture was gradually heated to 220 ° C. while stirring under a nitrogen stream to conduct a condensation reaction for a total of 22 hours, thereby obtaining an ester having an acid value of 112.6, a hydroxyl value of 1> and a number average molecular weight of 1070. Resin (14) was obtained.
- Synthesis Example 15 In a 2-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, 505.9 g of 1,3-butanediol, 688.5 g of adipic acid, and tetraisopropyl titanate as an esterification catalyst were added. 0.072 g, an ester having an acid value of 1>, a hydroxyl value of 105.3, and a number average molecular weight of 1320 by being gradually heated to 220 ° C. while stirring under a nitrogen gas flow and gradually heated to 220 ° C. for a total of 22 hours. Resin (15) was obtained.
- Synthesis Example 16 300.0 g of the ester resin (14) and 700.0 g of the ester resin (15) were charged into a two-liter four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, and stirred at 90 ° C. Thus, an ester resin (16) having an acid value of 34.2, a hydroxyl value of 72.7 and a number average molecular weight of 1240 was obtained.
- Example 1 According to the composition shown in Table 1, 65 g of calcium carbonate (NCC # 410 manufactured by Nitto Powder Chemical Co., Ltd.) as an inorganic filler, 3 g of the ester resin obtained above, and PB-10 (a benzoate plasticizer as a plasticizer, An inorganic composition (paste) was obtained by using 32 g of DIC Corporation and uniformly stirring using a mixing mixer (Chemister). The obtained inorganic composition was evaluated according to the following. Table 1 shows the results.
- ⁇ Fluidity evaluation visual> 12 g of the sample was measured in a 50 cc vial, left at 25 ° C. overnight, and the time during which the sample was flowing was measured at an inclination of 135 °. ⁇ : within 10 seconds to 5cm ⁇ : 11 to 30 seconds to 5cm ⁇ ⁇ : 31 to 50 seconds to 5cm ⁇ : 50 seconds or more to 5cm ⁇ : not moving
- Example 2 to 8 An inorganic composition was obtained in the same manner as in Example 1 using the blending materials and amounts shown in Table 1. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
- Comparative Examples 1 to 10 An inorganic composition was obtained in the same manner as in Example 1 using the blending materials and amounts shown in Table 2. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 2. In addition, "-" in the evaluation of viscosity indicates that measurement was not possible because the inorganic composition was phase-separated.
- Example 9 According to the composition shown in Table 3, 25 g of manganese dioxide (Type FA manufactured by Honeywell, monoclinic sodium birnessite type manganese dioxide), 25 g of calcium carbonate (NCC # 410), 3 g of ester resin (1) were used as inorganic fillers. An inorganic composition was obtained in the same manner as in Example 1 using 37.3 g of PB-10, and the fluidity of the inorganic composition was evaluated. Table 3 shows the results.
- Example 10 and 11 An inorganic composition was obtained in the same manner as in Example 9 using the blending materials and amounts shown in Table 3. Evaluation was performed in the same manner as in Example 9, and the results are shown in Table 3.
- Comparative Examples 11 and 12 An inorganic composition was obtained in the same manner as in Example 9 using the blending materials and amounts shown in Table 4. Evaluation was performed in the same manner as in Example 9, and the results are shown in Table 4.
- Examples 12 and 13 A curing agent for a polysulfide-based sealing material was prepared. Specifically, 10 g of manganese dioxide (Type FA manufactured by Honeywell), 13 g of a plasticizer (W-83 manufactured by DIC), 0.5 g of a hardening accelerator (tetramethylthiuram disulfide), and heavy calcium carbonate (Nitto Powder Chemical Co., Ltd.) Using 5 g of NCC # 410 manufactured by Kogyo Co., Ltd., 0.5 g of SR-F carbon (Asahi # 50UG (SR-F)), and 0.9 g of a fluidity modifier, uniformly using a mixing mixer (chem stirrer). Stirred.
- a mixing mixer chem stirrer
- the viscosity of the obtained curing agent was measured with a rheometer. Further, the obtained curing agent was mixed with the following main agent, and the curability and adhesiveness were evaluated according to the method described in JIS A 1439 as follows. Table 5 shows the results.
- the base material for polysulfide-based sealing materials was adjusted. Specifically, 100 g of polysulfide polymer (LP-23, manufactured by Toray Fine Chemical Co., Ltd.), 38.5 g of plasticizer (PB-10, manufactured by DIC Corporation), 65 g of precipitated calcium carbonate (Shiraishi Calcium Co., Ltd., Shiraishi Calcium Co., Ltd.), 65 g Using 90 g of calcium carbonate (Whiten SSB Red, manufactured by Shiraishi Calcium Co., Ltd.) and 1.5 g of a silane coupling agent (KBM-403, manufactured by Shin-Etsu Silicone Co., Ltd.), the mixture was uniformly stirred using a mixing mixer (Chemister). And the main ingredient was obtained.
- PB-10 plasticizer
- KBM-403 silane coupling agent
- ⁇ Curability evaluation> The curability was evaluated according to the method described in JIS A 1439, and the hardness of the sealant was measured 7 days after curing under a 23 ° C. and 55% RH atmosphere. A Shore A hardness of 50 or more was rated as O, and a Shore A hardness of 49 or less was rated as X.
- Comparative Example 13 A curing agent for a polysulfide-based sealing material was prepared according to the formulation shown in Table 5. The viscosity was measured with a rheometer. The obtained curing agent was mixed with the main agent, and the curability and adhesiveness were evaluated according to the method described in JIS A 1439 as follows. Table 5 shows the results.
- Example 14 10.8 g of calcium carbonate (heavy calcium carbonate, "Super S” manufactured by Maruo Calcium Co., Ltd.) as an inorganic filler, 36 g of polyethylene ("UMERIT 2040F” manufactured by Ube Industries, Ltd.), and the ester resin obtained above as an additive 0.71 g of (1) was put into a batch-type kneader (“Laboplast Mill 4C150” manufactured by Toyo Seiki Seisaku-Sho, Ltd.), and melt-kneading was performed at a set temperature of 190 ° C., a blade rotation speed of 50 r / min, and a kneading time of 10 minutes. And a resin composition was prepared.
- a batch-type kneader (“Laboplast Mill 4C150” manufactured by Toyo Seiki Seisaku-Sho, Ltd.), and melt-kneading was performed at a set temperature of 190 ° C., a blade rotation speed of 50 r /
- the torque value and the internal temperature during melt kneading were evaluated. Table 6 shows the results. Note that the torque value and the internal temperature are values obtained by reading the display value of the kneader at a kneading time of 8 minutes.
- Example 15 and Comparative Examples 14-15 A resin composition was prepared and evaluated in the same manner as in Example 14, except that the additives shown in Table 6 were used instead of the ester resin (1). Table 6 shows the results.
- the hardened castor oil used in Comparative Example 14 was “HCO-3” manufactured by KY Trading Corporation.
- Example 16 10.8 g of calcium carbonate (“RL217” manufactured by Fuji Talc Industries, Ltd.) as an inorganic filler, 36 g of polypropylene (homopolymer of polypropylene, “J106G” manufactured by Prime Polymer Co., Ltd.), and the ester resin obtained above as an additive 0.71 g of (1) was put into a batch-type kneader ("Laboplast Mill 4C150" manufactured by Toyo Seiki Seisaku-Sho, Ltd.), and melt kneading was performed at a set temperature of 190 ° C., a blade rotation speed of 50 r / min, and a kneading time of 8 minutes. And a resin composition was prepared. The torque value and the internal temperature during melt kneading were evaluated. Table 7 shows the results. The torque value and the internal temperature are values obtained by reading the display value of the kneader at the end of kneading.
- Example 17 and Comparative Examples 16-17 A resin composition was prepared and evaluated in the same manner as in Example 16 except that the additives shown in Table 7 were used instead of the ester resin (1). Table 7 shows the results.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
フィラーの種類や用途は多岐にわたるものの、いずれの場合も、樹脂に対してこれらのフィラーを混合すると樹脂本来の流動性が損なわれることが多く、組成物を用いて塗工したり、成形体を得ようとしたりする場合に、作業性や成形性が悪くなり、フィラーの使用量にはおのずと上限があるという実情が存在する。
本発明が解決しようとする他の課題は、自動車用部材、衛生吸収物品、建材、ストーンペーパー等となる成形用途の樹脂組成物用として汎用性の高い無機フィラーに対して、少量添加であったとしても組成物としての流動性を付与することができる流動性改質剤、それを用いてなる組成物、及びその組成物から得られる硬化物を提供することにある。
又は下記一般式(II)
本発明の流動性改質剤は、下記一般式(I)
又は下記一般式(II)
で表されるエステル樹脂を含有することを特徴とする。
本発明の流動性改質剤の酸価は、3~35の範囲であると好ましい。
測定装置:東ソー株式会社製高速GPC装置「HLC-8320GPC」
カラム:東ソー株式会社製「TSK GURDCOLUMN SuperHZ-L」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZ-2000」+東ソー株式会社製「TSK gel SuperHZ-2000」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「EcoSEC Data Analysis バージョン1.07」
カラム温度:40℃
展開溶媒:テトラヒドロフラン
流速:0.35mL/分
測定試料:試料7.5mgを10mlのテトラヒドロフランに溶解し、得られた溶液をマイクロフィルターでろ過したものを測定試料とした。
試料注入量:20μl
標準試料:前記「HLC-8320GPC」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
東ソー株式会社製「A-300」
東ソー株式会社製「A-500」
東ソー株式会社製「A-1000」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
東ソー株式会社製「F-40」
東ソー株式会社製「F-80」
東ソー株式会社製「F-128」
東ソー株式会社製「F-288」
本発明の流動性改質剤は、シーリング材、塗料、接着剤、封止剤等の無機フィラーを含む樹脂組成物であって、使用の際に流動性を必要とするペースト状樹脂組成物に好適に使用できる。
ペースト状樹脂組成物が含む合成樹脂としては、特に限定されるものではないが、例えば、塩化ビニル系樹脂、アクリル系樹脂、エチレン・酢酸ビニル系樹脂、フェノール樹脂、アルキド樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、変成シリコーン樹脂、シリコーン樹脂、変成ポリサルファイド樹脂、ポリサルファイド樹脂等が挙げられる。この時、合成樹脂と無機フィラーの合計100質量部に対し、本発明の流動性改質剤を0.1~30質量部含むことが好ましく、特に0.1~10質量部含むものが好ましい。
前記ポリサルファイド系シーリング材に用いるポリサルファイド系樹脂は、分子内にスルフィド結合を有する樹脂であれば特に制限されるものではなく、例えば、スルフィド結合にアルキル基のような炭化水素基が結合しているものが挙げられる。ポリサルファイド樹脂は、骨格中に例えば、エーテル結合、エステル結合、アミド結合、イミド基を有していても良い。
構造材に用いる樹脂組成物が含む樹脂成分としては、ポリオレフィン、ポリウレタン、不飽和ポリエステル等が挙げられる。
構造材(建材)に用いる成形用樹脂組成物の樹脂成分は用途によって異なり、例えば防水材であれば樹脂成分はポリウレタンが主に使用され、人工大理石であれば不飽和ポリエステルが主に使用される。
上記ポリイソシアネートとしては、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネートが挙げられる。なかでも、4,4’-ジフェニルメタンジイソシアネートと、2,4’-ジフェニルメタンジイソシアネートおよび/または2,2’-ジフェニルメタンジイソシアネートとからなるイソシアネート混合物が好ましい。
上記ポリオールとしては、ポリオキシプロピレンポリオールが好ましく、ポリオキシポリプロピレンジオール単独もしくはポリオキシプロピレンジオールとポリオキシプロピレントリオールの混合物がより好ましい。
ポリウレタン組成物における無機フィラーの含有量は、例えば樹脂成分100質量部に対して10~60質量部とするとよく、20~50質量部とすると好ましい。無機フィラーの含有量を当該範囲とすることで、組成物の硬化性と得られる防水材の性能とのバランスを良好とすることができる。
本発明の流動性改質材は、防水材用樹脂組成物に含まれていればよい。例えば上記二液硬化型ポリウレタンである場合、本発明の流動性改質材は、主剤成分及び硬化剤成分の少なくとも一方に含まれればよい。
上記屋上用防水材は、例えば主剤成分と硬化剤成分を混合した組成物を所望の箇所に塗布して塗膜を形成し、反応硬化させることにより得られる。
本発明の流動性改質剤は、タルク、炭酸カルシウム等の無機フィラーを含む樹脂組成物であれば使用することができ、上記ペースト状樹脂組成物に限定されず、射出成形、押出し成形等をする成形用樹脂組成物にも使用できる。本発明の流動性改質剤を含む成形用樹脂組成物は、無機フィラーを含むことによる過度な粘度上昇を抑制することができ、成形前に行う溶融混練等をスムーズに行うことができる。
成形用樹脂組成物における本発明の流動性改質剤の含有量は、無機フィラー100質量部に対して、例えば0.1~30質量部であり、好ましくは0.1~10質量部である。
(自動車用部材)
自動車用部材に用いる成形用樹脂組成物(以下、単に「自動車部材用樹脂組成物」という場合がある)が含む樹脂成分としては、例えば熱可塑性樹脂であり、当該熱可塑性樹脂のなかでも優れた成形性、高い機械的強度、経済性などの特徴を有するポリプロピレン樹脂が好ましい。
上記ポリプロピレンは、特に限定されないが、MFR(230℃,2.16kg)が60~120g/10分のポリプロピレン樹脂が好ましい。
自動車部材用樹脂組成物のMFR(230℃,2.16kg,JIS-K7210-1)は、20g/10分以上であることが好ましく、20~30g/10分であることがより好ましい。
自動車部材用樹脂組成物の線膨張係数(JIS-K7197)は、5.0×10-5/K以下であることが好ましく、4.0~5.0×10-5/Kであることがより好ましい。
自動車部材用樹脂組成物の引張弾性率(JIS-K7161)は、2.5GPa以上であることが好ましく、2.5~3.0GPaであることがより好ましい。
自動車部材用樹脂組成物のシャルピー衝撃値(JIS-K7111)は、30kJ/m2以上であることが好ましく、30~40kJ/m2であることがより好ましい。
これらの自動車用部材は、自動車部材用樹脂組成物を射出成形することにより製造できる。
衛生吸収物品に用いる成形用樹脂組成物(以下、単に「衛生吸収物品用樹脂組成物」という場合がある)が含む樹脂成分としては、例えばポリオレフィンであり、当該ポリオレフィンのなかでも、ポリエチレン及びポリプロピレンからなる群から選択される1種以上が好ましく、ポリエチレンがより好ましい。
樹脂成分としてポリエチレンを使用する場合、例えば密度が異なる2種以上のポリエチレンを使用してもよい。
MFRを0.1g/10分以上とすることで、薄膜フィルムの成形性を十分に保持することができ、20g/10分以下とすることで、十分な強度を有することができる。
上記ポリスチレン系エラストマーとしては、スチレン-オレフィン系(SEP,SEBCなど)、スチレン-オレフィン-スチレン系(SEPS,SEBSなど)、スチレン-ジエン系(SIS,SBSなど)、水添スチレン-ジエン系(HSIS,HSBRなど)のスチレンブロックを含むエラストマーが挙げられる。
これらポリスチレン系エラストマーにおけるスチレン成分は10~40質量%が好ましく、20~40質量%がより好ましい。
これら無機フィラーの形状は特に限定されないが、粒子状であると好ましく、平均粒子径が0.1~10μmの微粒子であるとより好ましく、平均粒子径が0.3~5μmの微粒子であるとさらに好ましく、平均粒子径が0.5~3μmの微粒子であると特に好ましい。
無機フィラーの含有量が上記範囲であれば、得られる衛生吸収物品の透湿性、通気性及び耐透液性の全てを十分に担保することができる。
上記バックシートは、例えば衛生吸収物品用樹脂組成物を溶融混練後、Tダイ法又はインフレーション法によってシートとした後、得られたシートを一軸または二軸延伸することにより製造できる。
ストーンペーパーとは、石灰石に由来する炭酸カルシウムとポリオレフィン(ポリエチレン、ポリプロピレン等)を含んでなるシートであって、シートの成形に水及び木材を必要とせず、原料である石灰石は地球上にほぼ無尽蔵に存在するため、持続可能性に優れるシートである。
ストーンペーパーは、炭酸カルシウムを多量に含むが、本発明の流動性改質剤により炭酸カルシウムの流動性を高めることができるので、シート物性を高めることができる。
リン系酸化防止剤としては、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等の亜リン酸のトリエステル、ジエステル、モノエステル等の亜リン酸エステル;トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート等のリン酸エステル等を挙げることができる。
フェノール系の酸化防止剤としては、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-tert-ブチル-6-(3’-tert-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、及びテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン等が挙げられる。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、1,3-ブタンジオールを459.3g、ネオペンチルグリコールを48.7g、アジピン酸を616.2g、エステル化触媒としてテトライソプロピルチタネートを0.112g仕込み、窒素気流下で攪拌しながら220℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、150℃でハイドロキノンを0.056g、無水マレイン酸を44.2g仕込み反応を完結させ、酸価29.1、水酸基価121、数平均分子量900のエステル樹脂(1)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを239.7g、アジピン酸を219.2g、安息香酸を366.4g、エステル化触媒としてテトライソプロピルチタネートを0.078g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計11時間縮合反応させた。反応後、180℃で未反応のプロピレングリコールを減圧除去し、酸価4.7、水酸基価8.8、数平均分子量430のエステル樹脂(2)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを479.4g、アジピン酸を730.7g、安息香酸を244.2g、エステル化触媒としてテトライソプロピルチタネートを0.138g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計13時間縮合反応させた。反応後、180℃で未反応のプロピレングリコールを減圧除去し、酸価7.9、水酸基価18.6、数平均分子量950のエステル樹脂(3)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積0.3リットルの四つ口フラスコに、合成例1で得られたエステル樹脂(1)を200.0g、無水酢酸を52.4g仕込み、窒素気流下で攪拌しながら120℃で、合計6時間反応させ酸価27.1、水酸基価12.6、数平均分子量1200のエステル樹脂(4)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四つ口フラスコに、プロピレングリコールを913.1g、アジピン酸を584.6g、安息香酸を977.0g、エステル化触媒としてテトライソプロピルチタネートを0.235g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、150℃で未反応のプロピレングリコールを減圧除去したのち、110℃で、無水フタル酸を172.8g仕込み反応を完結させ、酸価30.0、水酸基価74.3、数平均分子量400のエステル樹脂(5)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四つ口フラスコに、プロピレングリコールを913.1g、アジピン酸を584.6g、安息香酸を977.0g、エステル化触媒としてテトライソプロピルチタネートを0.235g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、150℃で未反応のプロピレングリコールを減圧除去したのち、110℃で、無水コハク酸を116.6g仕込み反応を完結させ、酸価30.2、水酸基価82.4、数平均分子量400のエステル樹脂(6)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを494.6g、アジピン酸を380.0g、安息香酸を635.0g、エステル化触媒としてテトライソプロピルチタネートを0.143g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、160℃で未反応のプロピレングリコールを減圧除去したのち、110℃で、ハイドロキノンを0.056g、無水マレイン酸を68.9g仕込み反応を完結させ酸価36.4、水酸基価40.5、数平均分子量450のエステル樹脂(7)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四つ口フラスコに、プロピレングリコールを913.1g、アジピン酸を584.6g、安息香酸を977.0g、エステル化触媒としてテトライソプロピルチタネートを0.235g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、150℃で未反応のプロピレングリコールを減圧除去したのち、110℃で、ハイドロキノンを0.094g、無水マレイン酸を114.1g仕込み反応を完結させ、酸価30.1、水酸基価83.4、数平均分子量400のエステル樹脂(8)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四つ口フラスコに、プロピレングリコールを1027.2g、アジピン酸を1096.1g、安息香酸を366.4g、エステル化触媒としてテトライソプロピルチタネートを0.237g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計11時間縮合反応させた。反応後、150℃で未反応のプロピレングリコールを減圧除去したのち、110℃で、ハイドロキノンを0.096g、無水マレイン酸を117.5g仕込み反応を完結させ、酸価35.6、水酸基価90.7、数平均分子量600のエステル樹脂(9)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを380.5g、アジピン酸を292.3g、安息香酸を488.5g、エステル化触媒としてテトライソプロピルチタネートを0.110g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、190℃で未反応のプロピレングリコールを減圧除去し、酸価0.06、水酸基価25.8、数平均分子量500のエステル樹脂(10)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを312.8g、アジピン酸を261.6g、安息香酸を436.0g、エステル化触媒としてテトライソプロピルチタネートを0.097g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計10時間縮合反応させた。反応後、190℃で未反応のプロピレングリコールを減圧除去し、酸価0.50、水酸基価12.6、数平均分子量450のエステル樹脂(11)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを287.8g、アジピン酸を438.4g、安息香酸を146.6g、エステル化触媒としてテトライソプロピルチタネートを0.054g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計25時間縮合反応させた。反応後、200℃で未反応のプロピレングリコールを減圧除去し、酸価0.5、水酸基価5.5、数平均分子量1090のエステル樹脂(12)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、プロピレングリコールを479.4g、フタル酸を740.5g、安息香酸を244.2g、エステル化触媒としてテトライソプロピルチタネートを0.139g仕込み、窒素気流下で攪拌しながら230℃になるまで段階的に昇温することで、合計19時間縮合反応させた。反応後、190℃で未反応のプロピレングリコールを減圧除去し、酸価3.6、水酸基価17.5、数平均分子量700のエステル樹脂(13)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、1,3-ブタンジオールを410.0g、アジピン酸を828.0g、エステル化触媒としてテトライソプロピルチタネートを0.074g仕込み、窒素気流下で攪拌しながら220℃になるまで段階的に昇温することで、合計22時間縮合反応させ、酸価112.6、水酸基価1>、数平均分子量1070のエステル樹脂(14)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、1,3-ブタンジオールを505.9g、アジピン酸を688.5g、エステル化触媒としてテトライソプロピルチタネートを0.072g仕込み、窒素気流下で攪拌しながら220℃になるまで段階的に昇温することで、合計22時間縮合反応させ、酸価1>、水酸基価105.3、数平均分子量1320のエステル樹脂(15)を得た。
温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、エステル樹脂(14)300.0g、エステル樹脂(15)を700.0g仕込み、90℃で攪拌することで酸価34.2、水酸基価72.7、数平均分子量1240のエステル樹脂(16)を得た。
表1に記載の配合により、無機フィラーとして炭酸カルシウム(日東粉化工業株式会社製NCC#410)65g、上記で得られたエステル樹脂3g及び可塑剤としてPB-10(安息香酸エステル系可塑剤、DIC株式会社製)32gを用い、混合ミキサー(ケミスターラー)を用いて均一に撹拌することにより、無機組成物(ペースト)を得た。得られた無機組成物について、下記に従い評価した。結果を表1に示す。
レオメーター Anton Paar MCR302を用いて測定した。
測定温度:25℃
Shear rateを0から10[1/s]まで2分間掛けて変化させた時のShear rate 1[1/s]の値を粘度値として読み取った。
50ccバイヤル瓶にサンプル12gを測り取り、25℃で一晩放置後、135°の傾斜によりサンプルが流動している時間を測定した。
◎:5cmまで10秒以内
○:5cmまで11~30秒
○△:5cmまで31~50秒
△:5cmまで50秒以上
×:動かず
表1に記載の配合材料、量を用いて実施例1と同様にして無機組成物を得た。実施例1と同様にして評価を行い、その結果を表1に示す。
表2に記載の配合材料、量を用いて実施例1と同様にして無機組成物を得た。実施例1と同様にして評価を行い、その結果を表2に示す。なお、粘度の評価における「-」は無機組成物が相分離したため、測定できなかったことを示す。
表3に記載の配合により、無機フィラーとして二酸化マンガン(Honeywell社製Type FA、単斜晶系ナトリウムバーネサイト型二酸化マンガン)25g、炭酸カルシウム(NCC#410)25g、エステル樹脂(1)3g、PB-10 37.3gを用いて実施例1と同様にして無機組成物を得た後、これの流動性評価を行った。結果を表3に示す。
表3に記載の配合材料、量を用いて実施例9と同様にして無機組成物を得た。実施例9と同様にして評価を行い、その結果を表3に示す。
表4に記載の配合材料、量を用いて実施例9と同様にして無機組成物を得た。実施例9と同様にして評価を行い、その結果を表4に示す。
ポリサルファイド系シーリング材用の硬化剤を調製した。具体的には、二酸化マンガン(Honeywell社製Type FA)10g、可塑剤(DIC株式会社製W-83)13g、硬化促進剤(テトラメチルチウラムジスルフィド)0.5g、重質炭酸カルシウム(日東粉化工業株式会社製NCC#410)5g、SR-Fカーボン(旭#50UG(SR-F))0.5g、流動性改質剤0.9gを用い、混合ミキサー(ケミスターラー)を用いて均一に撹拌した。得られた硬化剤についてレオメーターにより粘度を測定した。また、得られた硬化剤を下記の主剤と混合し、JIS A 1439に記載の方法に従い、硬化性と接着性について下記に従い評価を行った。結果を表5に示す。
ポリサルファイド系シーリング材用の主剤を調整した。具体的には、ポリサルファイドポリマー(東レ・ファインケミカル社製LP-23)100g、可塑剤(DIC株式会社製PB-10)38.5g、沈降炭酸カルシウム(白石カルシウム株式会社製白艶華CC)65g、重質炭酸カルシウム(白石カルシウム株式会社製ホワイトンSSB赤)90g、シランカップリング剤(信越シリコーン株式会社製KBM-403)1.5gを用い、混合ミキサー(ケミスターラー)を用いて均一に攪拌することにより、主剤を得た。
硬化性は、JIS A 1439に記載の方法に従い、評価を実施、23℃、55%RH雰囲気下で養生した7日後のシーラントの硬度測定を行った。ショアA硬度50以上を○、49以下を×とした。
接着性は、JIS A 1439に記載の方法に従い、23℃、55%RH雰囲気下で7日間養生したH型引張片に対して引張接着試験を実施した。試験後のシーラントの破壊状況(凝集破壊/界面破壊)を観察し、凝集破壊80%以上を○、79%以下を×とした。
表5に記載の配合によりポリサルファイド系シーリング材用の硬化剤を調製した。レオメーターにより粘度を測定した。得られた硬化剤を主剤と混合し、JIS A 1439に記載の方法に従い、硬化性と接着性について下記に従い評価を行った。結果を表5に示す。
無機フィラーとして炭酸カルシウム(重質炭酸カルシウム、丸尾カルシウム株式会社製「スーパーS」)10.8g、ポリエチレン(宇部興産株式会社製「UMERIT 2040F」)36g、および添加剤として上記で得られたエステル樹脂(1)を0.72gを、バッチ式混練機(東洋精機製作所製「ラボプラストミル 4C150」)に投入し、設定温度190℃、ブレード回転数50r/min、混練時間10分で溶融混練を行い、樹脂組成物を調製した。
溶融混練の際のトルク値と内部温度を評価した。結果を表6に示す。
尚、トルク値と内部温度は、混練時間8分での上記混練機の表示値を読み取った値である。
エステル樹脂(1)の代わりに表6に示す添加剤を用いた他は実施例14と同様にして樹脂組成物を調製し、評価した。結果を表6に示す。
尚、比較例14で用いた硬化ひまし油は、ケイエフ・トレーディング株式会社製「HCO-3」である。
無機フィラーとして炭酸カルシウム(富士タルク工業株式会社製「RL217」)10.8g、ポリプロピレン(ポリプロピレンのホモ重合体、株式会社プライムポリマー製「J106G」)36g、および添加剤として上記で得られたエステル樹脂(1)を0.72gを、バッチ式混練機(東洋精機製作所製「ラボプラストミル4C150」)に投入し、設定温度190℃、ブレード回転数50r/min、混練時間8分で溶融混練を行い、樹脂組成物を調製した。
溶融混練の際のトルク値と内部温度を評価した。結果を表7に示す。
尚、トルク値と内部温度は、混練終了時の上記混練機の表示値を読み取った値である。
エステル樹脂(1)の代わりに表7に示す添加剤を用いた他は実施例16と同様にして樹脂組成物を調製し、評価した。結果を表7に示す。
Claims (16)
- 下記一般式(I)
又は下記一般式(II)
で表されるエステル樹脂を含有し、
酸価が3~50の範囲であり、かつ数平均分子量が300~3000の範囲であることを特徴とする流動性改質剤。 - 前記一般式(I)のYが水素原子又は炭素原子数1~6のモノカルボン酸残基であり、Gが炭素原子数3~5の脂肪族グリコール残基であり、Aが炭素原子数2~6の脂肪族ジカルボン酸残基であり、Xが炭素原子数2~6のジカルボン酸残基である請求項1記載の流動性改質剤。
- 前記一般式(II)のZが炭素原子数4~10のモノアルコール残基であり、Aが炭素原子数2~6の脂肪族ジカルボン酸残基であり、Gが炭素原子数3~5の脂肪族グリコール残基であり、Xが炭素原子数2~6のジカルボン酸残基である請求項1記載の流動性改質剤。
- 酸価が3~35の範囲である請求項1~3の何れか1項記載の流動性改質剤。
- 無機フィラーの改質剤である請求項1~4の何れか1項記載の流動性改質剤。
- 前記無機フィラーが、炭酸カルシウム又は二酸化マンガンである請求項5記載の流動性改質剤。
- 無機フィラーと請求項1~4の何れか1項記載の流動性改質剤とを含有することを特徴とする無機組成物。
- 無機フィラー100質量部に対して、流動性改質剤を0.1~30質量部含むものである請求項7記載の無機組成物。
- 前記無機フィラーが、炭酸カルシウム又は二酸化マンガンである請求項7又は8記載の無機組成物。
- ポリサルファイド系シーリング材用硬化剤である請求項9記載の無機組成物。
- 合成樹脂と無機フィラーと請求項1~4の何れか1項記載の流動性改質剤とを含有することを特徴とする樹脂組成物。
- 合成樹脂と無機フィラーの合計100質量部に対し、流動性改質剤を0.1~30質量部含むものである請求項11記載の樹脂組成物。
- 更に可塑剤を含む請求項11又は12記載の樹脂組成物。
- 合成樹脂が、ポリサルファイド、塩化ビニル、変成ポリサルファイド、シリコーン、変成シリコーン、アクリルウレタン、エポキシ、ポリウレタン、アクリル、ポリエステル又は不飽和ポリエステルである請求項11~13の何れか1項記載の樹脂組成物。
- 可塑剤と請求項1~4の何れか1項記載の流動性改質剤とを含有することを特徴とする添加剤。
- 合成樹脂及び/又は無機フィラーと、請求項15記載の添加剤とを含有することを特徴とする組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/276,597 US12110389B2 (en) | 2018-09-27 | 2019-09-12 | Fluidity modifier, composition containing same, and cured product of said composition |
CN201980063800.9A CN112771134B (zh) | 2018-09-27 | 2019-09-12 | 流动性改性剂、包含其的组合物以及该组合物的固化物 |
KR1020217005353A KR102459175B1 (ko) | 2018-09-27 | 2019-09-12 | 유동성 개질제, 이것을 포함하는 조성물, 및 당해 조성물의 경화물 |
JP2020548428A JP6856177B2 (ja) | 2018-09-27 | 2019-09-12 | 流動性改質剤、これを含む組成物、及び当該組成物の硬化物 |
EP19868038.1A EP3858941A4 (en) | 2018-09-27 | 2019-09-12 | FLUIDITY MODIFIER, COMPOSITION CONTAINING THE SAME, AND CURED PRODUCT OF SUCH COMPOSITION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018181959 | 2018-09-27 | ||
JP2018-181959 | 2018-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066651A1 true WO2020066651A1 (ja) | 2020-04-02 |
Family
ID=69952693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035855 WO2020066651A1 (ja) | 2018-09-27 | 2019-09-12 | 流動性改質剤、これを含む組成物、及び当該組成物の硬化物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12110389B2 (ja) |
EP (1) | EP3858941A4 (ja) |
JP (1) | JP6856177B2 (ja) |
KR (1) | KR102459175B1 (ja) |
CN (1) | CN112771134B (ja) |
MY (1) | MY187872A (ja) |
WO (1) | WO2020066651A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116670234A (zh) * | 2021-03-02 | 2023-08-29 | Dic株式会社 | 生物分解性树脂组合物和该组合物的成形品 |
WO2023204033A1 (ja) * | 2022-04-21 | 2023-10-26 | Dic株式会社 | 無機フィラー流動性改質剤、無機フィラー含有組成物および熱伝導性シリコーンシート |
EP4130151A4 (en) * | 2020-03-25 | 2024-03-06 | DIC Corporation | INORGANIC FILLER DISPERSION STABILIZER, RESIN COMPOSITION CONTAINING INORGANIC FILLERS, MOLDED BODY AND ADDITIVE |
WO2024171915A1 (ja) * | 2023-02-14 | 2024-08-22 | 味の素株式会社 | 硬化性組成物 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04272956A (ja) * | 1991-02-27 | 1992-09-29 | Hitachi Chem Co Ltd | カラービヒクル用飽和ポリエステル樹脂組成物及びこれを用いたカラービヒクル |
JPH05125280A (ja) * | 1991-07-19 | 1993-05-21 | Dainippon Ink & Chem Inc | 重合体組成物 |
JPH1067907A (ja) * | 1996-08-28 | 1998-03-10 | Dainippon Ink & Chem Inc | 樹脂組成物及びその製造方法 |
JPH11292961A (ja) * | 1998-04-13 | 1999-10-26 | Ajinomoto Co Inc | ポリグリセリン誘導体 |
JP2002293899A (ja) * | 2001-03-30 | 2002-10-09 | Daicel Chem Ind Ltd | 脂肪族ポリエステル共重合体系流動性改良剤、その製法、及び樹脂組成物 |
JP2011079935A (ja) | 2009-10-06 | 2011-04-21 | Kao Corp | ペースト樹脂組成物 |
JP2013203857A (ja) * | 2012-03-28 | 2013-10-07 | Dic Corp | ポリエステル樹脂組成物、電子写真トナー用樹脂組成物及び電子写真トナー |
CN104031250A (zh) * | 2014-06-17 | 2014-09-10 | 常州天马集团有限公司(原建材二五三厂) | 不饱和聚酯树脂色浆用载体树脂的制备方法 |
WO2018116949A1 (ja) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | 複層ガラス用シーリング材及び複層ガラス |
WO2018116812A1 (ja) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | 炭酸カルシウム用分散剤、炭酸カルシウム組成物、熱可塑性樹脂組成物及び成型体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004016479B4 (de) * | 2004-03-31 | 2007-03-15 | Byk-Chemie Gmbh | Verwendung von Polyestern als Dispergiermittel und Polyester enthaltende Masterbatches |
JP5483670B2 (ja) | 2008-12-26 | 2014-05-07 | 竹本油脂株式会社 | 非水系顔料分散剤及び顔料組成物 |
US10703880B2 (en) * | 2015-08-19 | 2020-07-07 | Dic Corporation | Plasticizer for vinyl chloride resin, vinyl chloride resin composition, wire harness, and dashboard |
WO2018084066A1 (ja) * | 2016-11-04 | 2018-05-11 | Dic株式会社 | ポリエステルポリオール樹脂及び塗料 |
-
2019
- 2019-09-12 WO PCT/JP2019/035855 patent/WO2020066651A1/ja active Application Filing
- 2019-09-12 KR KR1020217005353A patent/KR102459175B1/ko active IP Right Grant
- 2019-09-12 EP EP19868038.1A patent/EP3858941A4/en active Pending
- 2019-09-12 CN CN201980063800.9A patent/CN112771134B/zh active Active
- 2019-09-12 US US17/276,597 patent/US12110389B2/en active Active
- 2019-09-12 MY MYPI2021001636A patent/MY187872A/en unknown
- 2019-09-12 JP JP2020548428A patent/JP6856177B2/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04272956A (ja) * | 1991-02-27 | 1992-09-29 | Hitachi Chem Co Ltd | カラービヒクル用飽和ポリエステル樹脂組成物及びこれを用いたカラービヒクル |
JPH05125280A (ja) * | 1991-07-19 | 1993-05-21 | Dainippon Ink & Chem Inc | 重合体組成物 |
JPH1067907A (ja) * | 1996-08-28 | 1998-03-10 | Dainippon Ink & Chem Inc | 樹脂組成物及びその製造方法 |
JPH11292961A (ja) * | 1998-04-13 | 1999-10-26 | Ajinomoto Co Inc | ポリグリセリン誘導体 |
JP2002293899A (ja) * | 2001-03-30 | 2002-10-09 | Daicel Chem Ind Ltd | 脂肪族ポリエステル共重合体系流動性改良剤、その製法、及び樹脂組成物 |
JP2011079935A (ja) | 2009-10-06 | 2011-04-21 | Kao Corp | ペースト樹脂組成物 |
JP2013203857A (ja) * | 2012-03-28 | 2013-10-07 | Dic Corp | ポリエステル樹脂組成物、電子写真トナー用樹脂組成物及び電子写真トナー |
CN104031250A (zh) * | 2014-06-17 | 2014-09-10 | 常州天马集团有限公司(原建材二五三厂) | 不饱和聚酯树脂色浆用载体树脂的制备方法 |
WO2018116949A1 (ja) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | 複層ガラス用シーリング材及び複層ガラス |
WO2018116812A1 (ja) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | 炭酸カルシウム用分散剤、炭酸カルシウム組成物、熱可塑性樹脂組成物及び成型体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3858941A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4130151A4 (en) * | 2020-03-25 | 2024-03-06 | DIC Corporation | INORGANIC FILLER DISPERSION STABILIZER, RESIN COMPOSITION CONTAINING INORGANIC FILLERS, MOLDED BODY AND ADDITIVE |
CN116670234A (zh) * | 2021-03-02 | 2023-08-29 | Dic株式会社 | 生物分解性树脂组合物和该组合物的成形品 |
CN116670234B (zh) * | 2021-03-02 | 2024-08-23 | Dic株式会社 | 生物分解性树脂组合物和该组合物的成形品 |
WO2023204033A1 (ja) * | 2022-04-21 | 2023-10-26 | Dic株式会社 | 無機フィラー流動性改質剤、無機フィラー含有組成物および熱伝導性シリコーンシート |
JP7509329B2 (ja) | 2022-04-21 | 2024-07-02 | Dic株式会社 | 無機フィラー流動性改質剤、無機フィラー含有組成物および熱伝導性シリコーンシート |
WO2024171915A1 (ja) * | 2023-02-14 | 2024-08-22 | 味の素株式会社 | 硬化性組成物 |
Also Published As
Publication number | Publication date |
---|---|
US12110389B2 (en) | 2024-10-08 |
EP3858941A4 (en) | 2022-06-22 |
KR20210038598A (ko) | 2021-04-07 |
CN112771134A (zh) | 2021-05-07 |
JP6856177B2 (ja) | 2021-04-07 |
JPWO2020066651A1 (ja) | 2021-03-18 |
KR102459175B1 (ko) | 2022-10-27 |
CN112771134B (zh) | 2023-07-21 |
MY187872A (en) | 2021-10-26 |
EP3858941A1 (en) | 2021-08-04 |
US20220041858A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856177B2 (ja) | 流動性改質剤、これを含む組成物、及び当該組成物の硬化物 | |
CA3048168C (en) | Sealing material for multi-layered glasses, and multi-layered glass | |
JP7440518B2 (ja) | 高強度シラン変性ポリマー接着剤組成物 | |
JP7509329B2 (ja) | 無機フィラー流動性改質剤、無機フィラー含有組成物および熱伝導性シリコーンシート | |
JP7127754B2 (ja) | 無機フィラー分散安定化剤、無機フィラー含有樹脂組成物、成形品及び添加剤 | |
US20240101786A1 (en) | Inorganic filler fluidity modifier, inorganic filler-containing resin composition and molded article of resin composition | |
JP6511188B1 (ja) | 樹脂組成物および成形品 | |
JP4904747B2 (ja) | シーリング材組成物 | |
TW202246379A (zh) | 無機填料分散安定化劑、含有無機填料之樹脂組成物及該樹脂組成物之成形品 | |
TW202311351A (zh) | 無機填料分散安定劑、含無機填料之樹脂組成物、成形品及添加劑 | |
JP5924477B2 (ja) | 硬化性樹脂組成物 | |
JP4904748B2 (ja) | シーリング材組成物 | |
JP2019119846A (ja) | 樹脂組成物および成形品 | |
JP2006160875A (ja) | ウレタン樹脂組成物 | |
Samaniego Aguilar et al. | Role of Plasticizers on PHB/bio-TPE Blends Compatibilized by Reactive Extrusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19868038 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020548428 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20217005353 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2101001728 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019868038 Country of ref document: EP Effective date: 20210428 |