WO2020066363A1 - 構造物の補修方法 - Google Patents

構造物の補修方法 Download PDF

Info

Publication number
WO2020066363A1
WO2020066363A1 PCT/JP2019/032362 JP2019032362W WO2020066363A1 WO 2020066363 A1 WO2020066363 A1 WO 2020066363A1 JP 2019032362 W JP2019032362 W JP 2019032362W WO 2020066363 A1 WO2020066363 A1 WO 2020066363A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
polymerizable resin
layer
repair
Prior art date
Application number
PCT/JP2019/032362
Other languages
English (en)
French (fr)
Inventor
大谷 和男
篤 海野
一博 黒木
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020548148A priority Critical patent/JPWO2020066363A1/ja
Priority to EP19867222.2A priority patent/EP3858805A4/en
Priority to US17/275,715 priority patent/US20210283655A1/en
Priority to CN201980063075.5A priority patent/CN112789259A/zh
Publication of WO2020066363A1 publication Critical patent/WO2020066363A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/542No clear coat specified the two layers being cured or baked together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/584No clear coat specified at least some layers being let to dry, at least partially, before applying the next layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4596Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with fibrous materials or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4826Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4884Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/71Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being an organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/064Polymers containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2508/00Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • C04B2111/723Repairing reinforced concrete

Definitions

  • the present invention relates to a method for repairing a structure.
  • Methods for repairing and reinforcing damaged or deteriorated parts of buildings and civil engineering structures include reinforced concrete winding method, steel sheet winding heavy construction method, concrete filling method, carbon fiber method (for example, Patent Document 1 and Patent Document 2), etc. Is widely known.
  • an epoxy resin has been mainly used as the curable resin.
  • MMA methyl methacrylate
  • VE vinyl ester
  • MMA resin and VE resin can be cured by radical polymerization and have a faster curing speed than epoxy resins, which can contribute to shortening the construction period. It was not able to respond sufficiently to the demand for shortening the construction period.
  • Patent Document 3 discloses a composition containing a radically polymerizable resin composition, a hydroxyl group-containing aromatic tertiary amine, an organic peroxide, and an inorganic filler. A method for repairing a cross-section is described.
  • the radical polymerizable resin composition includes a radical polymerizable resin containing at least one of a vinyl ester resin, a urethane (meth) acrylate resin, and a polyester (meth) acrylate resin, and two or more ( (Meth) an acryloyl group-containing radically polymerizable unsaturated monomer.
  • an object of the present invention is to provide a method for repairing a structure that can secure a short construction period and high reliability in a wide temperature range when applied to a concrete structure.
  • R 1 represents H, CH 3 or OCH 3
  • R 2 represents a hydroxyalkyl group
  • R 3 represents an alkyl group or a hydroxyalkyl group.
  • the radical polymerizable resin (a1) contains a urethane (meth) acrylate resin, and the urethane (meth) acrylate resin has a (meth) acryloyl group at at least one end in the molecule.
  • the radical polymerizable resin (a1) contains a polyester (meth) acrylate resin, and the polyester (meth) acrylate resin is formed from at least one of an aromatic dicarboxylic acid and an aliphatic saturated dicarboxylic acid, and a diol.
  • the ratio of the radical polymerizable resin (a1) to the total amount of the radical polymerizable resin (a1) and the radical polymerizable unsaturated monomer (a2) The method for repairing a structure according to any one of [1] to [6], wherein the content is 5 to 90% by mass.
  • the radically polymerizable resin composition (A) contains 0.1 to 10% by mass of the hydroxyl group-containing aromatic tertiary amine (a3) and 0.1 to 10% by mass of the organic peroxide (a4). %. The method for repairing a structure according to any one of [1] to [7].
  • the restoration material (X) contains 80 to 500 parts by mass of the filler (B) based on 100 parts by mass of the radically polymerizable resin composition (Ax).
  • the method for repairing a structure according to any one of the above. [10] The method for repairing a structure according to any one of [1] to [9], wherein the filler (B) is an inorganic filler.
  • the method further includes a reinforcing step of forming a reinforcing layer containing the curable resin composition (C) and the fiber material (D) on the second repair layer.
  • the reinforcing step includes a first reinforcing layer forming step of applying a curable resin composition (C) on the second repair layer to form a first reinforcing layer, and a step of forming a first reinforcing layer on the second reinforcing layer.
  • a reinforcing fiber layer containing a fiber material (D) on the reinforcing fiber layer and applying a curable resin composition (C) on the reinforcing fiber layer to form a second reinforcing layer
  • the method for repairing a structure according to [11] comprising: a layer forming step; and a reinforcing layer curing step of curing the curable resin composition (C) contained in the first reinforcing layer and the second reinforcing layer.
  • the present invention when applied to a concrete structure, it is possible to provide a method for repairing a structure that can secure a short construction period and high reliability in a wide temperature range.
  • the repair method according to the following embodiment is preferably applied to a concrete structure, but can also be applied to a construction surface made of asphalt concrete, mortar, wood, metal, etc. other than concrete.
  • an architectural and civil engineering structure is preferable, for example, a pier of a bridge, an overhang slab, a floor slab, a pillar of a building structure, a beam, a slab, a lining portion of a tunnel, an outer wall of a chimney, and the like.
  • the term “repair” does not only mean repair or repair of a deteriorated or damaged part, but also includes reinforcement of a structure in which deterioration, damage, or the like has not occurred.
  • “Curing” means that molecules contained in the raw materials are combined by a chemical reaction to form a polymer having a network structure. “Drying” means that some components contained in a mixture, a composition, and the like volatilize without a chemical reaction. The curing and the drying may proceed at the same time. For example, while the curing is progressing, a component that does not react chemically or a component that is generated by the chemical reaction may volatilize.
  • (Meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl.
  • Radar polymerizable is a property that a component contained in a composition is cured by radical polymerization under a certain condition. Examples of the curing condition include heating, irradiation with light, and the like. Can be
  • Unsaturated bond means a double or triple bond between carbon atoms excluding carbon atoms forming an aromatic ring.
  • “Laitance layer” refers to a porous and fragile mud layer formed by precipitation of components contained in concrete on the concrete surface.
  • “Workability” means ease of application when applying the radical polymerizable resin composition (A), the repair material (X), etc. to the construction surface.
  • FIG. 1 is a flowchart illustrating an example of a method for repairing a structure according to the first embodiment of the present invention.
  • the repair method according to the present embodiment includes a first repair layer forming step S1, a second repair layer forming step S2, a repair layer hardening step S3, a first reinforcing layer forming step S4, and a reinforcing fiber layer forming step S5. , A second reinforcing layer forming step S6, and a reinforcing layer curing step S7.
  • the first reinforcing layer forming step S4, the reinforcing fiber layer forming step S5, the second reinforcing layer forming step S6, and the reinforcing layer curing step S7 are collectively referred to as a reinforcing step.
  • a reinforcing step each of these steps will be described.
  • the radical polymerizable resin composition (A), the radical polymerizable resin composition (Ax), the filler (B), the repair material (X), the curable resin composition (C), and the fiber used in the present embodiment Details including specific examples of the material (D) will be described later without being described here.
  • the radically polymerizable resin composition (A) is applied to the construction surface of the structure to form a first repair layer.
  • the construction surface of the structure has previously been cleaned of fragile layers such as dirt, deposits, and latency layers.
  • a base treatment for preparing a construction surface.
  • a treatment of shaving the surface of a rough or dirty structure using a disk sander, sand blast, water jet, or the like can be given.
  • the repair method according to this embodiment may include a step of coating the construction surface with another material before the first repair layer forming step S1.
  • the repair layer is formed indirectly on the construction surface via the coating layer made of the other material.
  • the method for applying the radically polymerizable resin composition (A) include, but are not limited to, spray coating, an application method using an instrument such as a roller, brush, brush, or spatula, and dipping.
  • the basis weight of the first repair layer is preferably 50 g / m 2 or more, and more preferably 100 g / m 2 or more.
  • the basis weight of the first repair layer is preferably 500 g / m 2 or less, more preferably 400 g / m 2 or less. More preferably, it is 300 g / m 2 or less.
  • a repair material (X) containing the radically polymerizable resin composition (Ax) and the filler (B) is applied on the first repair layer to form a second repair layer.
  • the first repair layer and the second repair layer may be collectively referred to as a repair layer.
  • the second repair layer forming step S2 is performed before the radical polymerizable resin composition (A) applied in the first repair layer forming step S1 is cured. This is because the familiarity between the first repair layer and the second repair layer is improved, and the adhesive strength of the cured repair layer is increased. Further, since the first repair layer and the second repair layer are cured at the same time, the time required for curing can be reduced.
  • the basis weight of the second repair layer is preferably 5 to 30 kg / m 2 , more preferably 10 to 25 kg / m 2 , and still more preferably 13 to 23 kg / m 2 .
  • the second repair layer is formed immediately after the first repair layer forming step S1, for example, in the first repair layer forming step S1. After completion of the repair layer forming step S1, it is preferably formed within 30 minutes, more preferably within 10 minutes.
  • the second repair layer forming step S2 is also called uneven land adjustment.
  • the application method in this step include, but are not limited to, an application method using an instrument such as a trowel, a roller, a brush, a brush, a spatula, or a spray coat, a dipping, and the like.
  • the radical polymerizable resin compositions (A) and (Ax) contained in the repair layer are cured.
  • the curing method is not particularly limited, but may be, for example, covering the construction surface with a curing sheet or the like and leaving it for a sufficient time for curing.
  • the time and the appropriate temperature at the time of standing are different depending on the components and compositions contained in the radically polymerizable resin compositions (A) and (Ax).
  • the radically polymerizable resin composition (A) and / or (Ax) contains a photopolymerization initiator, curing proceeds efficiently by irradiation with light.
  • the wavelength range of the irradiated light can be appropriately determined depending on the components of the radically polymerizable resin composition (A) and / or (Ax), particularly the type of the photopolymerization initiator.
  • a method for confirming that the repair layer has hardened there is a method of confirming that the repair layer is not plastically deformed by touching the finger and leaving no trace.
  • the curable resin composition (C) is applied on the cured repair layer to form the first reinforcing layer.
  • the application method in this step include, but are not limited to, a spray coating method, an application method using an apparatus such as a roller, a brush, a brush, a spatula, and the like, and a dipping method.
  • the basis weight of the first reinforcing layer is preferably 50 g / m 2 or more, and more preferably 100 g / m 2 or more.
  • the basis weight of the first reinforcing layer is preferably 500 g / m 2 or less, more preferably 400 g / m 2 or less. More preferably, it is 300 g / m 2 or less.
  • a reinforcing fiber layer is formed on the first reinforcing layer.
  • a fiber sheet containing the fiber material (D) may be stuck on the first reinforcing layer, but is not limited thereto.
  • a method in which a plurality of bundled fibers are placed on the first reinforcing layer or attached may be used. Details of the material and form of the fiber material (D) will be described later.
  • the number of sheets to be stuck is not limited to one, and a plurality of sheets may be stacked.
  • the curable resin composition (C) is applied on the reinforcing fiber layer to form the second reinforcing layer.
  • the application method in this step and the preferable range of the basis weight of the second reinforcing layer are the same as in the first reinforcing layer forming step S4.
  • the first reinforcing layer, the reinforcing fiber layer, and the second reinforcing layer may be collectively referred to as a reinforcing layer.
  • the curable resin composition (C) contained in the reinforcing layer is cured.
  • the curing method is not particularly limited, but examples include covering the construction surface with a curing sheet or the like, and leaving the cured surface for a sufficient time for curing.
  • the time and the appropriate temperature at the time of leaving are different depending on the components and the composition contained in the curable resin composition (C).
  • the curable resin composition (C) contains a photopolymerization initiator
  • curing proceeds efficiently by irradiation with light.
  • the wavelength range of the irradiated light can be appropriately determined depending on the components of the curable resin composition (C), particularly the type of the photopolymerization initiator.
  • a method of confirming that the reinforcing layer has hardened there is a method of confirming that a finger touches and leaves no trace, that is, that the reinforcing layer is not plastically deformed by the finger touch.
  • the radical polymerizable resin composition (A) comprises a radical polymerizable resin (a1), a radical polymerizable unsaturated monomer (a2), and a hydroxyl group-containing aromatic tertiary amine represented by the following general formula (I) ( a3) and an organic peroxide (a4).
  • R 1 represents H, CH 3 or OCH 3
  • R 2 represents a hydroxyalkyl group
  • R 3 represents an alkyl group or a hydroxyalkyl group.
  • the radically polymerizable resin (a1) and the radically polymerizable unsaturated monomer (a2) in the radically polymerizable resin composition (A) Is 75% by mass or more, preferably 82% by mass or more, and more preferably 90% by mass or more. Further, the radical polymerizable resin composition (A) does not contain a component corresponding to a filler (B) described later.
  • the radical polymerizable resin (a1) includes at least one selected from the group consisting of a vinyl ester resin, a urethane (meth) acrylate resin, and a polyester (meth) acrylate resin.
  • the radical polymerizable resin (a1) is preferably made of at least one selected from the group consisting of vinyl ester resins, urethane (meth) acrylate resins, and polyester (meth) acrylate resins.
  • each of the vinyl ester resin, urethane (meth) acrylate resin, and polyester (meth) acrylate resin will be described.
  • the vinyl ester resin is sometimes called an epoxy (meth) acrylate resin, and is, for example, an esterified product of an epoxy polymer and a carboxylic acid having one or more unsaturated bonds or a derivative thereof.
  • the carboxylic acid derivative include a carboxylic acid halide and a carboxylic anhydride. That is, the vinyl ester resin is a polymer of an epoxy compound having an unsaturated bond bonded to at least one end of the epoxy polymer via an ester bond.
  • the unsaturated bond is preferably at the terminal of the molecule, and more preferably a vinyl group, an allyl group, a (meth) acryloyl group, or a (meth) acryloyloxy group.
  • vinyl ester resins are described in, for example, "Polyester Resin Handbook (published by Nikkan Kogyo Shimbun, 1988)" and "Paint Glossary Dictionary (edited by Coloring Material Association, published in 1993)".
  • the epoxy compound used as a raw material of the vinyl ester resin is preferably a diepoxy compound, and examples thereof include bisphenol A glycidyl ether and novolak glycidyl ether.
  • Specific examples of the epoxy compound include bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, tetrabromobisphenol A diglycidyl ether, novolak diglycidyl ether, and cresol novolac diglycidyl ether.
  • epoxy compounds include 1,6-hexanediol diglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, 5-norbornane-2,3-dimethanol diglycidyl ether, and tricyclodecanedimethanol diglycidyl.
  • Ether, alicyclic diepoxy carbonate, alicyclic diepoxy acetal, alicyclic diepoxy carboxylate and the like can be mentioned.
  • epoxy compounds may be used alone or as a mixture of two or more.
  • bisphenol A diglycidyl ether and a linear diglycidyl ether are used as a mixture. Is preferred. This is for improving the flexibility and toughness of the cured repair layer.
  • the epoxy compound is more preferably a mixture of bisphenol A diglycidyl ether and 1,6-hexanediol diglycidyl ether.
  • one of the carbon atoms forming the unsaturated bond has two hydrogen atoms bonded, that is, the unsaturated bond is located at a molecular terminal. It is more preferable that the unsaturated bond forms a vinyl group or an allyl group.
  • Examples of the monocarboxylic acid having one unsaturated bond include acrylic acid and methacrylic acid.
  • Examples of the monocarboxylic acid having a plurality of unsaturated bonds include, for example, a half-ester carboxylic acid obtained by reacting trimethylolpropane diallyl ether with phthalic anhydride or a derivative thereof.
  • examples of the derivative of phthalic anhydride include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endmethylenetetrahydrophthalic anhydride, and the like, with tetrahydrophthalic anhydride being preferred.
  • These carboxylic acids may be used alone or in combination of two or more.
  • the carboxylic acid having an unsaturated bond may be a dicarboxylic acid.
  • the dicarboxylic acid having an unsaturated bond one obtained by reacting one carboxy group among trivalent carboxylic acids such as citric acid with a compound having an unsaturated bond and a hydroxyl group such as trimethylolpropane diallyl ether is esterified. Is mentioned.
  • a halide such as chloride or bromide of the above carboxylic acid or the above carboxylic anhydride can be used.
  • the vinyl ester resin may be partially reacted with a carboxylic acid having no unsaturated bond, among the epoxy groups at the terminal of the epoxy polymer as a raw material.
  • carboxylic acid having no unsaturated bond examples include adipic acid, sebacic acid, and phthalic anhydride.
  • the urethane (meth) acrylate resin can be obtained, for example, by reacting a polyisocyanate with a polyol to form a polyurethane having an isocyanate group at a terminal, and then reacting the polyurethane with a (meth) acrylic ester containing a hydroxyl group. .
  • a hydroxyl group-containing allyl ether compound may be further added. That is, the urethane (meth) acrylate resin is a polyurethane having a (meth) acryloyl group at at least one end in the molecule.
  • the method for synthesizing the urethane (meth) acrylate resin is not limited to this.
  • a polyisocyanate is reacted with a polyol to form a polyurethane having a hydroxyl group at a terminal, and the isocyanate group-containing (meth) acrylate is reacted with the polyurethane.
  • Examples of the polyisocyanate used as a raw material of the urethane (meth) acrylate resin include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, and hydrogenated xylylene diisocyanate.
  • Isocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, etc., and commercially available products are Millionate MT (manufactured by Nippon Polyurethane Co., Ltd.) and Burnock D-750 (manufactured by DIC Corporation).
  • Crisbon NK manufactured by DIC Corporation
  • Death Module L manufactured by Sumika Covest Low Urethane Co., Ltd.
  • Coronate L manufactured by Tosoh Corporation
  • Takenate D102 manufactured by Mitsui Chemicals, Inc.
  • Isoneto 143L Isoneto 143L
  • Duranate registered trademark
  • Examples of the polyol used as a raw material of the urethane (meth) acrylate resin include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3-butanediol, bisphenol A-propylene oxide adduct, bisphenol A-ethylene oxide adduct, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-butanediol, 1,2 -Cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, para-xylene glycol, bicyclohexyl-4,4-diol, 2,6-decaline Glycol, 2,7-decalin glycol, and the like.
  • examples of the polyol include a polyester polyol and a polyether polyol. More specifically, glycerin-ethylene oxide adduct, glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethylene oxide-propylene oxide adduct, trimethylolpropane-ethylene oxide adduct, trimethylolpropane-propylene oxide adduct , Trimethylolpropane-tetrahydrofuran adduct, trimethylolpropane-ethylene oxide-propylene oxide adduct, dipentaethritol-ethylene oxide adduct, dipentaethritol-propylene oxide adduct, dipentaethritol-tetrahydrofuran adduct And dipentaethritol-ethylene oxide-propylene oxide adduct.
  • These polyhydroxy compounds may be used alone or in
  • Examples of the hydroxyl group-containing (meth) acrylate used as a raw material of the urethane (meth) acrylate resin include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxybutyl (meth) acrylate , Polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaethritol tri (meth) acrylate, glycerin (mono) (meth) acrylate, etc.
  • hydroxyl group-containing allyl ether compound used as a raw material of the urethane (meth) acrylate resin include, for example, ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl ether, Propylene glycol monoallyl ether, dipropylene glycol monoallyl ether, tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, hexylene glycol mono Allyl ether, octylene glycol monoallyl ether, trimethylolpropane diallyl ether, glycer Nji allyl ether, pentaerythritol triallyl ether.
  • These hydroxyl group-containing allyl ether compounds may be used alone or in a combination of two or more.
  • polyester (meth) acrylate resin The polyester (meth) acrylate resin is obtained, for example, by reacting a polyester having a carboxy group at a terminal obtained from a polycarboxylic acid and a polyol with a (meth) acrylate having a hydroxyl group or an epoxy group. Further, the polyester (meth) acrylate resin can also be obtained, for example, by reacting (meth) acrylic acid with a polyester having a hydroxyl group at a terminal obtained from a polycarboxylic acid and a polyol. That is, the polyester (meth) acrylate resin is a polyester having a (meth) acryloyl group at at least one end of the molecular chain.
  • the polycarboxylic acid used as a raw material of the polyester (meth) acrylate resin is preferably composed of at least one of an aromatic dicarboxylic acid and an aliphatic saturated dicarboxylic acid, and more preferably composed of an aromatic dicarboxylic acid.
  • aromatic dicarboxylic acid include phthalic acid, isophthalic acid, terephthalic acid and the like, and anhydrides thereof.
  • aliphatic dicarboxylic acid include adipic acid, sebacic acid and the like, and anhydrides thereof.
  • the polycarboxylic acid used as a raw material of the polyester (meth) acrylate resin may include an aliphatic unsaturated dicarboxylic acid, and examples of the aliphatic unsaturated dicarboxylic acid include fumaric acid, maleic acid, itaconic acid, and tetrahydroacid. Examples include phthalic acid and the like and anhydrides thereof. These aliphatic unsaturated dicarboxylic acids may be used alone or in a combination of two or more.
  • the polycarboxylic acid used as a raw material of the polyester (meth) acrylate resin may contain a polycarboxylic acid other than the above dicarboxylic acid, or may be used in combination with the above dicarboxylic acid and a polycarboxylic acid other than the above dicarboxylic acid. .
  • a diol is preferable.
  • the (meth) acrylic ester having an epoxy group which is used as a raw material of the polyester (meth) acrylate resin, those having no unsaturated bond other than ⁇ , ⁇ -unsaturated bond are preferable, and furthermore, epoxy contained in the molecule is preferable. More preferably, there is one group, such as glycidyl methacrylate.
  • the hydroxyl group-containing (meth) acrylate used as a raw material of the polyester (meth) acrylate resin is the same compound as that exemplified as the hydroxyl group-containing (meth) acrylate used as a raw material of the urethane (meth) acrylate resin. They may be used, and only one type may be used alone, or two or more types may be used in combination.
  • (meth) acrylic acid used as a raw material of the polyester (meth) acrylate resin examples include acrylic acid, methacrylic acid, and itaconic acid. These (meth) acrylic acids may be used alone or in a combination of two or more.
  • polyester (meth) acrylate resins obtained from the above raw materials a bisphenol A type polyester (meth) acrylate resin is preferred from the viewpoint of increasing the mechanical strength (compression strength, hardness, etc.) of the cured repair layer.
  • the content of the radical polymerizable resin (a1) is preferably from 5 to 90% by mass, and more preferably from 8 to 70% by mass, based on the total amount of the radical polymerizable resin (a1) and the radical polymerizable unsaturated monomer (a2). %, More preferably from 15 to 70% by mass, even more preferably from 30 to 50% by mass.
  • the radical polymerizable unsaturated monomer (a2) is at least one selected from the group consisting of mono (meth) acrylate, di (meth) acrylate and tri (meth) acrylate.
  • the viscosity of the radical polymerizable resin composition (A) can be appropriately reduced.
  • the conditions for the radically polymerizable resin composition (Ax) described later are the same as those for the radically polymerizable resin composition (A), and the viscosity of the repair material (X) can be appropriately reduced. Further, the hardness, strength, chemical resistance, water resistance and the like of the cured restoration layer can be improved.
  • the mono (meth) acrylate is not particularly limited.
  • the mono (meth) acrylate for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (Meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) ) Acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, dodecyl (
  • the di (meth) acrylate is not particularly limited.
  • the di (meth) acrylate for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane di (meth) acrylate, 1,10 decane Diol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate ) Acrylate,
  • the tri (meth) acrylate is not particularly limited.
  • Examples of tri (meth) acrylates include trimethylolpropane tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, ⁇ -caprolactone-modified tris- (2-acryloyloxyethyl) isocyanurate, and pentaethritol Tri (meth) acrylate and the like.
  • the radical polymerizable unsaturated monomer (a2) is preferably a methacrylate. Further, from the same viewpoint, it is particularly preferable to include at least one selected from the group consisting of dicyclopentenyloxyethyl methacrylate, methacryloylmorpholine, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane trimethacrylate.
  • dimethylolpropane tetra (meth) acrylate dimethylolpropane tetra (meth) acrylate, ethoxylated pentaethritol tetra (meth) acrylate, dipentaethritol poly (meth) acrylate, dipentaes Litol hexa (meth) acrylate can also be used.
  • the content of the radical polymerizable unsaturated monomer (a2) with respect to the total amount of the radical polymerizable resin (a1) and the radical polymerizable unsaturated monomer (a2) is preferably 10% by mass or more. Even under a low temperature (eg, ⁇ 25 ° C.) atmosphere, the radical polymerizable resin composition (A) has a viscosity suitable for good workability and also has good wettability to a filler (B) described later. is there. In this respect, the content of the radically polymerizable unsaturated monomer (a2) is more preferably equal to or greater than 30% by mass, and still more preferably equal to or greater than 50% by mass.
  • the content of the radically polymerizable unsaturated monomer (a2) based on the total amount of the radically polymerizable resin (a1) and the radically polymerizable unsaturated monomer (a2) is preferably 95% by mass or less. This is because high strength and water resistance of the cured repair layer can be maintained.
  • the content of the radically polymerizable unsaturated monomer (a2) is more preferably equal to or less than 85% by mass, and still more preferably equal to or less than 70% by mass.
  • R 1 is, H, CH 3 or OCH 3, and more preferably is preferably CH 3, a CH 3 in p-position.
  • R 2 is a hydroxyalkyl group, preferably a hydroxyalkyl group having 1 to 10 carbon atoms, and more preferably a hydroxyalkyl group having 3 or less carbon atoms.
  • R 3 is an alkyl group or a hydroxyalkyl group, preferably an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms, and an alkyl group having 4 or less carbon atoms or 4 carbon atoms.
  • the following hydroxyalkyl groups are more preferred, and the hydroxyalkyl groups having 4 or less carbon atoms are even more preferred.
  • the hydroxyl group-containing aromatic tertiary amine (a3) represented by the general formula (I) is not particularly limited, but includes, for example, N-methyl-N- ⁇ -hydroxyethylaniline, N-butyl-N- ⁇ - Hydroxyethylaniline, N-methyl-N- ⁇ -hydroxyethyl-p-toluidine, N-butyl-N- ⁇ -hydroxyethyl-p-toluidine, N-methyl-N- ⁇ -hydroxypropylaniline, N-methyl- N- ⁇ -hydroxypropyl-p-toluidine, N, N-di ( ⁇ -hydroxyethyl) aniline, N, N-di ( ⁇ -hydroxypropyl) aniline, N, N-di ( ⁇ -hydroxyethyl) -p -Toluidine, N, N-di ( ⁇ -hydroxypropyl) -p-toluidine, N, N-diisopropylyl-p-toluidine,
  • hydroxyl-containing aromatic tertiary amines (a3) may be used alone or in a combination of two or more.
  • the content of the hydroxyl group-containing aromatic tertiary amine (a3) in the radically polymerizable resin composition (A) is preferably from 0.1 to 10% by mass, and more preferably from 0.1 to 8.0% by mass. More preferably, it is more preferably 0.2 to 5.0% by mass.
  • Organic peroxide (a4) can be used as a room temperature radical polymerization initiator by using in combination with an amine such as a hydroxyl group-containing aromatic tertiary amine (a3) or a metal soap which is an optional component described later in addition to the amine. Works.
  • an amine such as a hydroxyl group-containing aromatic tertiary amine (a3) or a metal soap which is an optional component described later in addition to the amine.
  • the organic peroxide (a4) is not particularly limited, but for example, those classified into ketone peroxide, peroxyketal, hydroperoxide, diallyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate Is mentioned.
  • organic peroxide more specifically, dibenzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, 1,1-bis (t-butylperoxy) -3, 3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyl-3,3-isopropylhydroperoxide, t-butylhydroperoxide, dicumylhydroperoxide, acetyl Peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, lauryl peroxide, benzoyl m-methylbenzoyl peroxide , - toluoyl peroxide, methyl ethyl ketone peroxide
  • dibenzoyl peroxide benzoyl m-methylbenzoyl peroxide
  • m-toluoyl peroxide methyl ethyl ketone peroxide
  • cumene hydroperoxide t-butyl peroxybenzoate.
  • organic peroxides (a4) may be used alone or as a mixture of two or more.
  • examples of the mixture of two or more types include a mixture of dibenzoyl peroxide, benzoyl m-methylbenzoyl peroxide and m-toluoyl peroxide, a mixture of cumene hydroperoxide and t-butylperoxybenzoate, and a mixture of cumene hydroperoxide.
  • a mixture of oxide, t-butyl peroxybenzoate, and methyl ethyl ketone peroxide is exemplified.
  • the content of the organic peroxide (a4) in the radically polymerizable resin composition (A) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. More preferably, it is 0% by mass or more.
  • the content of the organic peroxide (a4) is preferably 10.0% by mass or less, and more preferably 8.0% by mass or less. More preferably, it is still more preferably 6.0% by mass or less.
  • the radically polymerizable resin composition (A) may contain components other than those described above as optional components as long as the effects of the present invention are not impaired.
  • the optional component include a monomer other than the above (hereinafter, also referred to as “other monomer”), an amine, an azo compound, a metal soap, a photopolymerization initiator, a reinforcing material, and various additives. And the like.
  • Other monomers include, for example, (meth) acrylic acid, (meth) acryloylmorpholine, styrene, at least one hydrogen atom at the ⁇ -, o-, m-, or p-position of styrene is an alkyl group, Derivatives substituted with a substituent having a nitro group, a cyano group, an amide bond, or a substituent having an ester bond, styrene-based monomers such as chlorostyrene, vinyltoluene, divinylbenzene, etc .; butadiene, 2,3-dimethylbutadiene, isoprene And diene compounds such as chloroprene, but are not limited thereto.
  • a condensate of an unsaturated fatty acid such as maleic acid, fumaric acid, itaconic acid, etc. with an alcohol can also be used. These may be used alone or as a mixture of two or more.
  • those having a (meth) acryloyl group are preferable, and those having an acryloyl group are more preferable.
  • an aromatic tertiary amine other than the hydroxyl group-containing aromatic tertiary amine (a3), for example, an aromatic tertiary amine containing no hydroxyl group, and the like can be mentioned.
  • the optional component include dimethylaniline and dimethylparatoluidine. These may be used alone or as a mixture of two or more.
  • the content of the optional amine in the radically polymerizable resin composition (A) is preferably 0.01 to 5.0% by mass. , More preferably 0.1 to 3.0% by mass.
  • the optional amine By containing the optional amine, the polymerization of the component contained in the radically polymerizable resin composition (A) is accelerated by the decomposition reaction of the peroxide due to the contact between the organic peroxide (a4) and the optional amine.
  • the surface drying property and the curability of the repair layer are further improved.
  • the azo compound examples include azobisisobutyronitrile, azobiscarbonamide and the like. These may be used alone or as a mixture of two or more.
  • the content of the azo compound in the radical polymerizable resin composition (A) is not particularly limited, but is preferably 0.1 to 5.0% by mass. , More preferably 0.5 to 3.0% by mass.
  • the surface of the repair layer is efficiently cured.
  • azobisisobutyronitrile, azobiscarbonamide, or the like is used as the azo compound, the polymerization of the components contained in the radically polymerizable resin composition (A) can be promoted.
  • the metal soap examples include cobalt octylate, manganese octylate, zinc octylate, vanadium octylate, cobalt naphthenate, copper naphthenate, barium naphthenate, etc., among which cobalt octylate, manganese octylate, and naphthenic acid Cobalt and the like are preferred, and cobalt octylate is more preferred.
  • the content of the metal soap in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.1 to 10.0% by mass. , More preferably 0.3 to 5.0% by mass.
  • the polymerization of the components contained in the radically polymerizable resin composition (A) is promoted by the decomposition reaction of the organic peroxide caused by the contact between the organic peroxide (a4) and the metal salt, and the restoration is performed.
  • the curability of the layer is further improved.
  • photopolymerization initiator it is preferable to use a photopolymerization initiator having photosensitivity in the range from visible light to near-infrared light, and specific examples include Irgacure (registered trademark) 1800 (manufactured by BASF). Can be
  • the content of the photopolymerization initiator in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.01 to 15%. %, More preferably 0.05 to 10% by mass.
  • the photopolymerization initiator can shorten the curing time while suppressing a decrease in other physical properties.
  • the reinforcing material examples include polyester, vinylon, carbon, ceramics, and short fibers such as stainless steel. One of these reinforcing materials may be used alone, or two or more thereof may be used in combination.
  • the content of the reinforcing material in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.1 to 10% by mass. Preferably it is 0.01 to 2.0% by mass. By containing the reinforcing material, the strength and durability of the structure after repair can be improved.
  • examples of various additives include a wax, a polymerization inhibitor, a coupling agent, a curing accelerator, a thixotropic agent, and a solvent.
  • wax examples include petroleum wax (paraffin wax, microcrystalline, etc.), vegetable wax (candelilla wax, rice wax, wood wax, etc.), animal wax (beeswax, spermaceti, etc.), mineral wax (montan wax, etc.). ), Synthetic waxes (such as polyethylene wax and amide wax), but are not limited thereto. More specifically, examples of the wax include paraffin wax having a melting point of about 20 ° C. to 80 ° C., and commercially available products include paraffin wax 115 ° F. and paraffin wax 125 ° F. manufactured by Nippon Seiro Co., Ltd.
  • These waxes may be used alone or in a combination of two or more. For example, waxes having different melting points may be used in combination.
  • the content of the wax in the radical polymerizable resin composition (A) is not particularly limited, but is preferably 0.1 to 5.0% by mass. Preferably it is 0.1 to 2.0% by mass.
  • the drying time can be reduced.
  • polymerization inhibitor examples include hydroquinone, methylhydroquinone, trimethylhydroquinone, tert-butylcatechol, 2,6-di-tert-butyl-4-methylphenone and the like.
  • the content of the polymerization inhibitor in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.001 to 1.0. %, More preferably 0.005 to 0.5% by mass.
  • the polymerization inhibitor By the polymerization inhibitor, the progress of curing can be suppressed, and the working time can be secured.
  • silane coupling agents such as aminosilane, vinylsilane, epoxysilane, and acrylicsilane are preferable.
  • One of these coupling agents may be used alone, or two or more thereof may be used in combination.
  • the content of the coupling agent in the radical polymerizable resin composition (A) is not particularly limited, but is preferably 0.01 to 10% by mass. , More preferably 0.1 to 5.0% by mass.
  • the coupling agent improves the strength of the cured repair layer.
  • curing accelerator examples include, but are not particularly limited to, ⁇ -diketone compounds such as acetylacetone, ethyl acetoacetate, ⁇ -acetyl- ⁇ -butyrolactone, N-pyrosininoacetoacetamide, and N, N-dimethylacetoacetamide. No. One of these curing accelerators may be used alone, or two or more thereof may be used in combination.
  • the content of the curing accelerator in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.01 to 10% by mass. , More preferably 0.1 to 5.0% by mass.
  • the curing accelerator can shorten the curing time of the repair layer.
  • the thixotropic agent examples include inorganic fumed silicas such as hydrophobic fumed silica (manufactured by Cabot Corp., Cavosil TS-720) and hydrophilic fumed silica (manufactured by Nippon Aerosil Co., Ltd., AEROSIL (registered trademark) 200).
  • the organic thixotropic agent examples include polyethylene flocculent fiber (“Chembest” manufactured by Mitsui Chemicals, Inc.), hydrogenated castor oil and the like. Among them, hydrophobic silica, hydrophilic silica, and chemibest are preferred.
  • These thixotropic agents may be used alone or as a mixture of two or more.
  • the hydrophilic silica may be used in combination with a thixotropic aid such as BYK (registered trademark) R605 (manufactured by BYK Japan KK).
  • the content of the thixotropic agent in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.1 to 10% by mass. , More preferably 0.2 to 5.0% by mass.
  • the thixotropic agent imparts good thixotropic properties and improves workability.
  • the solvent is not particularly limited, for example, alkyl ether acetate such as ethyl acetate, ether such as tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, ketone such as cyclohexanone, benzene, toluene, xylene, octane, decane, dodecane and the like
  • Examples include petroleum solvents such as hydrocarbons, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha, lactate esters such as methyl lactate, ethyl lactate, and butyl lactate, dimethylformamide, and N-methylpyrrolidone.
  • solvents may be used alone or as a mixture of two or more.
  • a hydrocarbon solvent such as described in JP-A-2002-97233, for example, n-hexane, cyclohexane, pentane, trimethylbenzene, butylbenzene, pentylbenzene, etc. in combination with a wax, a radical polymerizable resin composition is obtained.
  • a wax film can be quickly formed, and the drying property can be improved.
  • the content of the solvent in the radically polymerizable resin composition (A) is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably It is 0.1 to 5.0% by mass.
  • the viscosity of the radically polymerizable resin composition (A) can be adjusted to a range suitable for the work, and when used in combination with a wax, particularly a paraffin wax, the solubility and dispersibility of the wax can be improved. .
  • the method for preparing the radically polymerizable resin composition (A) is not particularly limited, and examples thereof include weighing each component and mixing them with a homomixer, a hand mixer, or the like, but it is preferable to mix them with a homomixer.
  • the radical polymerizable resin (a1) and the radical polymerizable unsaturated monomer (a2) are preferably mixed in advance before adding other components. After the hydroxyl group-containing aromatic tertiary amine (a3) and the organic peroxide (a4) are blended, it is preferable to use the radically polymerizable resin composition (A) promptly before curing proceeds.
  • the viscosity of the radically polymerizable resin composition (A) at 25 ° C is preferably 150 mPa ⁇ s or less.
  • the conditions of the radically polymerizable resin composition (Ax) described later are the same as those of the radically polymerizable resin composition (A). (For example, 5 ° C. or less), the kneadability of the filler (B) or the coating of the radical polymerizable resin composition (A) and the repair material (X) when producing the repair material (X). This is because a decrease in workability can be suppressed.
  • the viscosity of the radically polymerizable resin composition (A) at 25 ° C. is more preferably 100 mPa ⁇ s or less.
  • the viscosity of the radical polymerizable resin composition (A) at 25 ° C. is preferably 10 mPa ⁇ s or more. This is because the radical polymerizable resin composition (A) before curing is prevented from flowing during coating on a slope or a vertical surface.
  • the repair material (X) includes a radically polymerizable resin composition (Ax) and a filler (B).
  • the conditions of the radically polymerizable resin composition (Ax) are the same as those of the radically polymerizable resin composition (A), and are as described above.
  • the radical polymerizable resin composition (Ax) may be the same as or different from the radical polymerizable resin composition (A), but the radical polymerizable resin compositions (Ax) and (A) have the same composition. Is preferred.
  • the radically polymerizable resin composition (A) as the first repair layer and the repair material (X) as the second repair layer are easily blended, and the adhesive strength is improved. This is because The radically polymerizable resin composition (Ax) does not contain a component corresponding to the filler (B) described below.
  • the filler (B) acts as an aggregate.
  • the filler (B) is preferably an inorganic filler.
  • the inorganic filler include talc, calcium carbonate, alumina, aluminum hydroxide, aluminum, titanium, silica sand, silica stone, and the like. Among them, it is preferable to include at least one selected from the group consisting of talc, calcium carbonate, silica sand and silica stone, and from the viewpoint of cost and material availability, at least one selected from the group consisting of calcium carbonate, silica sand and silica stone. It is more preferable to include one kind, and it is particularly preferable to include at least one of calcium carbonate and silica sand.
  • These inorganic fillers may be used alone or in a combination of two or more.
  • the average particle diameter D of the filler (B) is preferably 1 nm to 5000 ⁇ m, more preferably 10 nm to 2000 ⁇ m, and further preferably 100 nm to 2000 ⁇ m.
  • the workability and physical properties of the restoration material (X) can be improved.
  • is a form factor.
  • the content of the filler (B) in the repair material (X) is preferably 80 to 500 parts by mass based on 100 parts by mass of the radically polymerizable resin composition (Ax). This is because the radically polymerizable resin composition (Ax) contained in the restoration material (X) is sufficiently cured, and good workability is obtained.
  • the content of the filler (B) is more preferably 120 to 450 parts by mass, and preferably 150 to 450 parts by mass, based on 100 parts by mass of the radically polymerizable resin composition (Ax). Is more preferred.
  • the total content of the filler (B) and the radically polymerizable resin composition (Ax) in the restoration material (X) is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass.
  • the above is, for example, 100% by mass.
  • the repairing material (X) may contain optional components other than the radically polymerizable resin composition (Ax) and the filler (B) as long as the effects of the present invention are not impaired.
  • the optional components are the same as those described in the section 1-2-5.
  • the method for preparing the restoration material (X) is not particularly limited, but can be adjusted by weighing the above-mentioned components, blending and mixing as appropriate.
  • the filler (B) is promptly mixed after the preparation of the radical polymerizable resin composition (Ax) and used for a predetermined use. Is desirable.
  • the cured product of the restoration material (X) (the cured second restoration layer) preferably has a compressive strength of 20 MPa or more after 24 hours in a test according to JIS K6911 “General thermosetting plastic test method”, and is preferably 30 MPa. More preferably, it is more preferably 60 MPa or more. If the compression strength of the cured product after 24 hours is within the above range, good performance as a cured restoration layer can be maintained even after being subjected to freezing and thawing after construction by this method.
  • the restoration material (X) can be cured in a short time even in a low temperature environment of -25 ° C or lower. Therefore, the repair material (X) is excellent in workability, and the cured repair layer formed by the repair material (X) is also excellent in strength development.
  • Curable resin composition (C) contains a curable compound.
  • the curable compound preferably contains at least one of a vinyl compound and an epoxy compound.
  • a vinyl compound as the curable compound.
  • the vinyl compound is a radical polymerizable resin and a radical polymerizable unsaturated monomer.
  • the preferable component as the radical polymerizable resin in the vinyl compound is the same as the radical polymerizable resin (a1) in the radical polymerizable resin composition (A), and as the radical polymerizable unsaturated monomer (a2).
  • Preferred components are the same as the radically polymerizable unsaturated monomer (a2) in the radically polymerizable resin composition (A).
  • composition ratio between the radical polymerizable resin and the radical polymerizable unsaturated monomer in the vinyl compound is such that the radical polymerizable resin (a1) in the radical polymerizable resin composition (A) and the radical polymerizable resin (a1)
  • the composition ratio is the same as that of the unsaturated monomer (a2).
  • the curable resin composition (C) preferably further contains an organic peroxide.
  • the preferable range of the content of the organic peroxide (a4) in the radically polymerizable resin composition (A) is the same as that of the radically polymerizable resin composition (A).
  • the curable resin composition (C) may contain the hydroxyl group-containing aromatic tertiary amine represented by the general formula (I). Preferred components as the hydroxyl group-containing aromatic tertiary amine are the same as those of the radically polymerizable resin composition (A).
  • the curable resin composition (C) may further contain, if necessary, optional components that can be contained in the radically polymerizable resin composition (A), that is, the components described in the section 1-2-5.
  • the curable resin composition (C) may have the same composition as the radically polymerizable resin composition (A) used for forming the repair layer.
  • the curable resin composition (C) contains an epoxy compound
  • the curable resin composition (C) contains a curing agent in addition to the epoxy compound. If necessary, a diluent may be included.
  • the epoxy compound is a compound having at least two or more epoxy groups in a molecule.
  • examples of such epoxy compounds include ether-type bisphenol-type epoxy resins, novolak-type epoxy resins, polyphenol-type epoxy resins, aliphatic-type epoxy resins, ester-type aromatic epoxy resins, cycloaliphatic epoxy resins, and ether. Ester type epoxy resins and the like can be mentioned. These epoxy resins may be used alone or in a combination of two or more.
  • examples of the curing agent include amines having two or more amino groups in the molecule, imidazole, imidazole derivatives, imines, polyamides, and the like. Of these, aliphatic amines are preferred because they are cured at room temperature.
  • Aliphatic amines containing two or more amino groups in the molecule include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, 2,5-dimethyl- 2,5-hexanediamine, 2,2,4-trimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4-aminomethyloctamethylenediamine, 3,3′-iminobis (propylamine ), 3,3'-methyliminobis (propylamine), bis (3-aminopropyl) ether, 1,2-bis (3-aminopropyloxy) ethane, mensendiamine, isophoronediamine, bisaminomethylnorbornane, Bis (4-aminocyclohexyl ) Methane, bis (4-amino-3-methylcyclohexyl) methan
  • curing agents may be used alone or in a combination of two or more. It is preferable to add the curing agent in accordance with the epoxy equivalent of the epoxy resin as the main component. That is, it is preferable to appropriately adjust the addition amount of the curing agent so that the amine equivalent corresponds to the epoxy equivalent of the main component.
  • a low-viscosity compound having an epoxy group may be used as a diluent to adjust the viscosity of the curable resin composition (C).
  • usable diluents are not particularly limited, for example, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexane Examples include dimethanol diglycidyl ether, glycerin triglycidyl ether, trimethylolethane triglycidyl ether, and neopentyl glycol diglycidyl ether. These diluents may be used alone or in a combination of two or more.
  • the fiber contained in the fiber material (D) include carbon fiber such as carbon fiber, graphite fiber, and graphite whisker, glass fiber, aramid fiber, and polyester fiber, and carbon fiber is preferable.
  • the carbon fiber include carbon fibers manufactured using polyacrylonitrile-based fibers, cellulosic fibers, pitch, aromatic hydrocarbons, carbon black, and the like as raw materials. These fiber materials may be used alone or in a combination of two or more.
  • Fiber materials (D) include, but are not limited to, nonwoven fabrics, tapes in which fibers are arranged in a certain direction, sheets, mats, and fabrics.
  • the fiber material (D) may be a material impregnated with a thermosetting resin or the like, such as a prepreg sheet, in addition to the above-mentioned fibers.
  • FIG. 2 is a flowchart illustrating an example of a method for repairing a structure according to the second embodiment of the present invention.
  • the repair method according to the present embodiment includes a first repair layer forming step S1, a second repair layer forming step S2, a repair layer hardening step S3, a reinforcing layer forming step S8, and a reinforcing layer hardening step S9.
  • the reinforcing layer forming step S8 and the reinforcing layer curing step S9 are collectively referred to as a reinforcing step.
  • the first repair layer forming step S1, the second repair layer forming step S2, and the repair layer hardening step S3 are the same as in the first embodiment, and thus description thereof will be omitted.
  • the details of the radical polymerizable resin composition (A), the filler (B), and the restoration material (X) are as described in the first embodiment.
  • a reinforcing sheet is attached on the cured repair layer to form a reinforcing layer.
  • a reinforcing sheet for example, a fiber or a non-woven fabric of a fiber material (D) impregnated with a heat or photo-curable resin may be used. Not limited.
  • the resin contained in the reinforcing sheet forming the reinforcing layer is cured.
  • Curing conditions vary depending on the resin contained in the reinforcing sheet.
  • the temperature is maintained at an appropriate temperature at which the curing proceeds efficiently, and in the case of a photocurable resin, light of a wavelength region in which the curing proceeds efficiently is irradiated for a sufficient time.
  • a method of confirming that the reinforcing sheet has hardened there is a method of confirming that a finger touches and leaves no trace, that is, that the reinforcing layer is not plastically deformed by the finger touch.
  • FIG. 3 is a flowchart illustrating an example of a method for repairing a structure according to the third embodiment of the present invention.
  • the repair method according to the present embodiment includes a first repair layer forming step S1, a second repair layer forming step S2, and a repair layer hardening step S3.
  • the first repair layer forming step S1, the second repair layer forming step S2, and the repair layer hardening step S3 are the same as in the first and second embodiments.
  • 6-hexanediol diglycidyl ether (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., product name "SR-16", epoxy equivalent: 157): 188 g, trimethylolpropane diallyl ether (manufactured by Osaka Soda Co., Ltd., product name "Neoallyl (TM) T” -20 ”): 129 g, tetrahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., product name” Ricacid TH ”): 91 g, dicyclopentenyloxyethyl methacrylate (a2-1) (manufactured by Hitachi Chemical Co., Ltd., product name" Fancryl FA-512MT ”): 145 g, and the temperature was raised to 90 ° C.
  • the reaction was carried out while maintaining the temperature, and 4 hours after the temperature reached 130 ° C., the acid value became 14 mgKOH / g.
  • the reaction was terminated, and a mixture containing 679 g of vinyl ester resin (a1-1) and 145 g of dicyclopentenyloxyethyl methacrylate (a2-1) was obtained.
  • Urethane methacrylate resin (a1-2)> In a reactor equipped with a stirrer, a reflux condenser, a gas inlet tube and a thermometer, 226 g of 4,4′-diphenylmethane diisocyanate (manufactured by Nippon Polyurethane Co., Ltd., product name “Millionate MT”): 226 g, polypropylene glycol (Showa Chemical Co., Ltd.) Company, number average molecular weight 1000): 610 g, acryloyl morpholine (a2-2): 320 g, methoxyethyl methacrylate (a2-3) (manufactured by Mitsubishi Chemical Corporation, product name "Acryester MT”): 576 g, hydroquinone: 0 And charged to 60 ° C.
  • 4′-diphenylmethane diisocyanate manufactured by Nippon Polyurethane Co., Ltd., product name “Millionate MT”
  • IR absorption spectra of (IR measurement) result, the peak of wavenumber 2270 cm -1 derived from an isocyanato group, where a change in the intensity ratio of the peak of wavenumber 1730 cm -1 derived from a urethane bond is no longer observed, 2 -Hydroxypropyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product name "Light Ester HOP”): 91 g, and then dibutyltin dilaurate: 0.06 g as a catalyst were added, and the mixture was heated to 75 ° C and reacted.
  • Polyester methacrylate resin (a1-3)> A reactor equipped with a stirrer, a reflux condenser, a gas inlet tube and a thermometer was charged with 604 g of dipropylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1080 g of isophthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), and placed in a nitrogen gas atmosphere. After the temperature was raised to 205 ° C. for 3 hours, the reaction was cooled to 100 ° C.
  • Examples 1 to 5> (Preparation of materials used for repair) Each component shown in Table 2 was allowed to stand in an atmosphere of 20 ⁇ 5 ° C. for 24 hours to make the temperature constant, then mixed, and mixed with radically polymerizable resin compositions A1 to A5, repair materials X1 to X5, and A curable resin composition C1 was prepared. Using the prepared radically polymerizable resin compositions A1 to A5, the repair materials X1 to X5, and the curable resin composition C1, in each example, repairing a concrete plate by the following process under an environment of 20 ⁇ 5 ° C. Was done.
  • the repair methods in Examples 1 to 5 are all based on the first embodiment (FIG. 1).
  • the radical polymerizable resin compositions A1 to A5 and the repair materials X1 to X5 used in the respective steps in Examples 1 to 5 are as shown in Table 2.
  • the same curable resin composition C1 and carbon fiber sheet D1 used in the reinforcing step were used in Examples 1 to 5.
  • the radically polymerizable resin compositions A1 to A5 are applied with a basis weight of 200 g / m 2 using a brush to form a first repair layer, and immediately the first repair layer before curing.
  • restorative materials X1 to X5 were applied with a trowel to form a second repair layer having a basis weight of 18 kg / m 2 .
  • the first repair layer and the second repair layer were cured by leaving them at 20 ⁇ 5 ° C.
  • the thickness of the cured repair layer was 10 mm.
  • Table 2 shows the time T1 [h] required for curing the repair layer. The determination of hardening was made by confirming that no trace of the finger was left on the repair layer by touching the finger, that is, that the repair layer was not plastically deformed by touching the finger (the same applies to the determination of hardening below).
  • the curable resin composition C1 was applied at a basis weight of 400 g / m 2 using a brush on the surface of the cured restoration layer to form a first reinforcing layer.
  • the carbon fiber sheet D1 was stuck on the first reinforcing layer to form a reinforcing fiber layer.
  • the curable resin composition C1 was applied on the reinforcing fiber layer at a basis weight of 300 g / m 2 using a roller to form a second reinforcing layer. Thereafter, the curable resin composition C1 contained in the first reinforcing layer and the second reinforcing layer was cured. Curing was performed by leaving at 20 ⁇ 5 ° C. Table 2 shows the time T2 [h] required for curing the reinforcing layer.
  • Comparative Example 2 after the first repair layer forming step and before the second repair layer forming step, the first repair layer was left at 20 ⁇ 5 ° C. for 12 hours (in this comparative example, the radical polymerizable resin composition ( The concrete plate was repaired in the same manner as in Example 1 except that the concrete plate was left for a longer time than the expected curing time of A). In addition, it was confirmed that the first repair layer after standing was hardened by touching with a finger. Table 2 shows the time T0 [h] during which the first repair layer was left, the time T1 [h] required to cure the second repair layer, and the time T2 [h] required to cure the reinforcing layer.
  • the agent was left in an atmosphere at 20 ⁇ 5 ° C. for 24 hours. Thereafter, the concrete plate was repaired by the following process in an environment of 20 ⁇ 5 ° C.
  • an epoxy primer P in which a main agent and a curing agent were mixed was applied at a basis weight of 200 g / m 2 using a brush to form a first repair layer (primer layer). Thereafter, the first repair layer was cured by leaving it at 20 ⁇ 5 ° C. Table 2 shows the time T0 [h] required for curing the first repair layer.
  • an epoxy resin R obtained by mixing a main agent and a curing agent was applied at a basis weight of 400 g / m 2 using a roller to form a first reinforcement layer.
  • the carbon fiber sheets used in Examples 1 to 5 were stuck on the first reinforcing layer to form a reinforcing fiber layer.
  • Epoxy resin R was applied on the reinforcing fiber layer at a basis weight of 300 g / m 2 using a roller to form a second reinforcing layer. Thereafter, the epoxy resin R contained in the first reinforcing layer and the second reinforcing layer was cured. Curing was performed by leaving at 20 ⁇ 5 ° C. Table 2 shows the time T2 [h] required for curing the reinforcing layer.
  • Comparative Example 4 a concrete plate was repaired in the same manner as in Comparative Example 1 except that the first repair layer of Comparative Example 3 was not formed.
  • Table 2 shows the time T1 [h] required for curing the repair layer and the time T2 [h] required for curing the reinforcing layer.
  • Example 6 The repair of the concrete plate in Examples 6 to 10 was performed in the same manner as in Example 1 except that the temperatures of the restoration layer curing step and the reinforcing layer curing step were set to ⁇ 25 ⁇ 5 ° C.
  • the radically polymerizable resin compositions A6 to A10 and the repair materials X6 to X10 used in the respective steps in Examples 6 to 10 are as shown in Table 2.
  • the curable resin composition C2 and the carbon fiber sheet D1 used in the reinforcing step those common to Examples 6 to 10 were used.
  • Table 2 shows the times T1 [h] and T2 [h] required for curing the repair layer and the repair layer in each example.
  • the first repair layer was left at -25 ⁇ 5 ° C. for 24 hours after the first repair layer forming step and before the second repair layer forming step (in this comparative example, the radical polymerizable resin composition
  • the concrete plate was repaired in the same manner as in Example 6 except that the concrete plate was left for a longer time than the expected curing time of (A).
  • the first repair layer after standing was hardened by touching with a finger.
  • Table 2 shows the time T0 [h] during which the first repair layer was left, the time T1 [h] required to cure the second repair layer, and the time T2 [h] required to cure the reinforcing layer.
  • Comparative Example 7 An epoxy primer P (similar to that used in Comparative Example 3) in which a main agent and a curing agent were mixed was applied to the surface of the concrete plate from which the latency layer was removed using a brush at a basis weight of 200 g / m 2. A first repair layer was formed. Thereafter, an attempt was made to cure the first repair layer at ⁇ 25 ⁇ 5 ° C. However, the subsequent steps were not performed because the coating did not cure after 7 days.
  • an epoxy primer P similar to that used in Comparative Example 3 in which a main agent and a curing agent were mixed was applied to the surface of the concrete plate from which the latency layer was removed using a brush at a basis weight of 200 g / m 2.
  • a first repair layer was formed. Thereafter, an attempt was made to cure the first repair layer at ⁇ 25 ⁇ 5 ° C. However, the subsequent steps were not performed because the coating did not cure after 7 days.
  • FIG. 4 is a diagram showing a concrete adhesion test method.
  • the cured repair layer 2 and the cured reinforcing layer 3 (hereinafter referred to as “repair layer 2” and “reinforcement” The layer 3) was subjected to a concrete adhesion test in accordance with the adhesive strength test method of the Building Research Institute of Japan.
  • air layer 2 and “reinforcement” The layer 3
  • a metal attachment 5 (bottom 4 cm ⁇ 4 cm, mounting area 1600 mm 2 ) was bonded to the surface of the reinforcing layer 3 using an adhesive 4.
  • Quick Mender manufactured by Konishi Co., Ltd.
  • the curing time of the adhesive 4 was 1 hour.
  • Comparative Examples 3 and 4 the same epoxy resin R as used when the reinforcing layer 3 was integrated with the carbon fiber sheet was used, and the curing time of the adhesive 4 was set to 24 hours.
  • the same curable resin composition C2 as used when the reinforcing layer 3 was integrated with the carbon fiber sheet was used, and the curing time of the adhesive 4 was reinforced. It was set to 3 hours, which is the same as the time T2 required for curing when forming the layer 3.
  • a notch 6 was formed along the outer periphery of the attachment 5 at a depth to reach the concrete plate 1 using a cutter. Thereafter, the attachment 5 is pulled perpendicularly to the surface of the reinforcing layer 3 (in the direction of arrow F in FIG. 4), and bonded by dividing the maximum load [N] at the time of breaking by the attachment area 1600 [mm 2 ] of the attachment 5. The strength [N / mm 2 ] was calculated.
  • the breaking ratio [%] was set.
  • the area of the portion where the concrete plate 1 was broken was such that the portion where the attachment 5 was attached was divided into 10 mm ⁇ 10 mm meshes, and the portion occupied by the broken portion of the concrete plate 1 in each mesh was triangular, square, or The area was determined by approximating the figure of the combination, and the total area determined for each mesh was used.
  • Table 2 shows the adhesive strength [N / mm 2 ] and the base material destruction rate [%] in each of Examples and Comparative Examples except Comparative Example 7.
  • Comparative Example 3 in which each layer was cured at 20 ⁇ 5 ° C. using the epoxy primer P in the first repair layer forming step and the epoxy putty Q in the second repair layer forming step, the total curing time was long. .
  • Comparative Example 4 in which the first repair layer was not formed, had a longer total curing time and lower adhesive strength and a lower percentage of base material failure.
  • Comparative Example 7 in which the epoxy primer P as the first repair layer was to be cured at ⁇ 25 ⁇ 5 ° C., the epoxy primer P did not cure because of the low temperature.
  • Comparative Example 1 in which the first repair layer is not formed has a lower adhesive strength and a lower percentage of base material breakage as compared with Examples 1 to 5. The same can be said for the case where Comparative Example 5 in which the first repair layer is not formed is compared with Examples 6 to 10. Therefore, it can be seen that the concrete and the repair layer are firmly adhered by applying the radically polymerizable resin composition (A) before the second repair layer forming step, that is, before applying the repair material (X).
  • Comparative Example 2 in which the first repair layer is cured before the second repair layer forming step S2, has a lower adhesive strength and a lower percentage of the base material as compared with Examples 1 to 5. The same can be said for the case where Comparative Example 6 in which the first repair layer is cured is compared with Examples 6 to 10. Therefore, it can be seen that by forming the second repair layer before the first repair layer is cured, the construction period can be shortened, and the concrete and the cured repair layer are firmly bonded.
  • the first repair layer forming step of applying the radical polymerizable resin composition (A) to the structure and forming the first repair layer, and the step of curing the first repair layer before curing the first repair layer A second repair layer forming step of applying a repair material (X) containing a radical polymerizable resin composition (Ax) and a filler (B) thereon to form a second repair layer, and a radical polymerizable resin
  • the content is 75% by mass or more, and the radical polymerizable resin compositions (A) and (Ax) have a wide temperature range when applied to a concrete structure according to the method for repairing a structure containing no filler. It can be seen that within the range, a short construction period and high reliability can be secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Epoxy Resins (AREA)
  • Bridges Or Land Bridges (AREA)
  • Laminated Bodies (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

コンクリート構造物に適用した場合に、広い温度範囲で、短い工期かつ高い信頼性を確保できる、構造物の補修方法を提供する。 ラジカル重合性樹脂組成物(A)を構造物に塗布し、第1修復層を形成させる第1修復層形成工程と、第1修復層を硬化させる前に、第1修復層上に、ラジカル重合性樹脂組成物(Ax)と充填材(B)とを含有する修復材(X)を塗布し、第2修復層を形成させる第2修復層形成工程と、ラジカル重合性樹脂組成物(A)及びラジカル重合性樹脂組成物(Ax)を硬化させる修復層硬化工程と、を有し、前記(A)及び(Ax)は、ラジカル重合性樹脂(a1)と、ラジカル重合性不飽和単量体(a2)と、水酸基含有芳香族3級アミン(a3)と、有機過酸化物(a4)とを含有し、前記(A)及び(Ax)の各々における前記(a1)と(a2)合計量の含有率は75質量%以上である。

Description

構造物の補修方法
 本発明は、構造物の補修方法に関する。
 建築及び土木構造物の破損・劣化部分の補修方法、補強方法としては、鉄筋コンクリート巻立工法や、鋼鈑巻立重工法、コンクリート充填工法、炭素繊維工法(例えば特許文献1及び特許文献2)等が広く知られている。
 近年の土木分野においては、高度経済成長期に整備された社会インフラの老朽化が問題視されてきており、特に、2032年には、2m以上の道路橋の65%、トンネルの47%が、建築後50年以上となり、経年劣化による老朽化の問題は今後より一層深刻化するものと考えられる。また、このような老朽化した物件のほとんどが、耐震補強等の補修を必要とする要補修物件である。今後、従来の補修工法ではこれらのニーズへの対応が追いつかなくなることも懸念されている。そのため、今日、このようなニーズに応えるために、工期の短い急速補修工法の開発が強く求められている。
 また、建築分野においても、1981年以前に設計された耐震基準を満たしてない建物が、改修を必要とする時期にきている。これらの物件の改修にあたっても、耐震補強等が必要であり、特に、建物が隙間なく近接する都市空間等では、狭小地での作業が可能な補強工法が求められている。このような要求に対しては、上述の炭素繊維工法が適合するが、工期短縮の技術については未だ十分な検討がなされていない。
 また、従来の補修工法では、硬化性樹脂として、主としてエポキシ樹脂が用いられてきた。しかし、エポキシ樹脂は、低温環境下では硬化し難いため、冬場の野外等での作業には、メチルメタクリレート(MMA)樹脂やビニルエステル(VE)樹脂も用いられてきた。MMA樹脂やVE樹脂は、ラジカル重合による硬化が可能で、エポキシ樹脂に比べ、硬化速度が速く、工期短縮に貢献し得るが、これらの樹脂を用いても、従来の修復工法では、現代の更なる工期短縮の要求に対しては十分に対応できていなかった。
 このような工期短縮の要求に応える発明として、特許文献3では、ラジカル重合性樹脂組成物と、水酸基含有芳香族3級アミンと、有機過酸化物と、無機充填材とを含む組成物及びこれを用いた断面修復方法が記載されている。ここで、ラジカル重合性樹脂組成物は、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂、及びポリエステル(メタ)アクリレート樹脂のうち少なくとも1種を含むラジカル重合性樹脂と、分子中に2つ以上の(メタ)アクリロイル基を有するラジカル重合性不飽和単量体とを含んでいる。
特開2002-235444号公報 特開2005-336952号公報 国際公開第WO2016/133094号
 特許文献3に記載の断面修復方法では、無機充填材を含む組成物(低温硬化断面修復材)を直接、被修復物に塗布しているが、後述する比較例1及び比較例5からわかるように接着強度について改善の余地がある。
 そこで本発明は、コンクリート構造物に適用した場合に、広い温度範囲で、短い工期かつ高い信頼性を確保できる、構造物の補修方法を提供することを目的とする。
 上記目的を達成するため、本発明の構成は、以下のとおりである。
[1]ラジカル重合性樹脂組成物(A)を構造物に塗布し、第1修復層を形成させる第1修復層形成工程と、前記第1修復層を硬化させる前に、前記第1修復層上に、ラジカル重合性樹脂組成物(Ax)と充填材(B)とを含有する修復材(X)を塗布し、第2修復層を形成させる第2修復層形成工程と、前記ラジカル重合性樹脂組成物(A)及び前記ラジカル重合性樹脂組成物(Ax)を硬化させる修復層硬化工程と、を有し、前記ラジカル重合性樹脂組成物(A)及び前記ラジカル重合性樹脂組成物(Ax)は、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂及びポリエステル(メタ)アクリレート樹脂からなる群から選択される少なくとも1種のラジカル重合性樹脂(a1)と、モノ(メタ)アクリル酸エステル、ジ(メタ)アクリル酸エステル及びトリ(メタ)アクリル酸エステルからなる群から選択される少なくとも1種のラジカル重合性不飽和単量体(a2)と、下記一般式(I)で示される水酸基含有芳香族3級アミン(a3)と、有機過酸化物(a4)とを含有し、前記ラジカル重合性樹脂組成物(A)及び(Ax)の各々における、ラジカル重合性樹脂(a1)及びラジカル重合性不飽和単量体(a2)の合計量の含有率は75質量%以上であり、前記ラジカル重合性樹脂組成物(A)及び(Ax)は、いずれも充填材を含まないことを特徴とする構造物の補修方法。
Figure JPOXMLDOC01-appb-C000002
 (一般式(I)中、Rは、H、CH又はOCHを示し、Rは、ヒドロキシアルキル基を示し、Rは、アルキル基又はヒドロキシアルキル基を示す。)
[2]前記ラジカル重合性樹脂組成物(A)と、前記ラジカル重合性樹脂組成物(Ax)とは同一組成である[1]に記載の構造物の補修方法。
[3]前記ラジカル重合性樹脂(a1)は、ビニルエステル樹脂を含み、該ビニルエステル樹脂は、エポキシ重合体の少なくともいずれかの末端にエステル結合を介して結合した不飽和結合を有する[1]又は[2]に記載の構造物の補修方法。
[4]前記不飽和結合は、ビニル基、アリル基、(メタ)アクリロイル基、及び(メタ)アクリロイルオキシ基からなる群から選択される少なくとも1種である[3]に記載の構造物の補修方法。
[5]前記ラジカル重合性樹脂(a1)は、ウレタン(メタ)アクリレート樹脂を含み、該ウレタン(メタ)アクリレート樹脂は、分子中の少なくともいずれかの末端に(メタ)アクリロイル基を有する、ジイソシアネートと直鎖状のグリコールとを重合して得られるポリウレタンである[1]~[4]のいずれかに記載の構造物の補修方法。
[6]前記ラジカル重合性樹脂(a1)は、ポリエステル(メタ)アクリレート樹脂を含み、該ポリエステル(メタ)アクリレート樹脂は、芳香族ジカルボン酸及び脂肪族飽和ジカルボン酸のうち少なくとも一方と、ジオールとから得られるポリエステルであって、分子鎖の少なくともいずれかの末端に(メタ)アクリロイル基を有する[1]~[5]のいずれかに記載の構造物の補修方法。
[7]前記ラジカル重合性樹脂組成物(A)において、前記ラジカル重合性樹脂(a1)と前記ラジカル重合性不飽和単量体(a2)との合計量に対する前記ラジカル重合性樹脂(a1)の含有率は、5~90質量%である[1]~[6]のいずれかに記載の構造物の補修方法。
[8]前記ラジカル重合性樹脂組成物(A)は、前記水酸基含有芳香族3級アミン(a3)を0.1~10質量%、前記有機過酸化物(a4)を0.1~10質量%含有する[1]~[7]のいずれかに記載の構造物の補修方法。
[9]前記修復材(X)は、前記ラジカル重合性樹脂組成物(Ax)100質量部に対して、前記充填材(B)を80~500質量部含有する、[1]~[8]のいずれかに記載の構造物の補修方法。
[10]前記充填材(B)は、無機充填材である[1]~[9]のいずれかに記載の構造物の補修方法。
[11]前記修復層硬化工程の後に、前記第2修復層上に、硬化性樹脂組成物(C)と、繊維材料(D)とを含有する補強層を形成する補強工程をさらに有する[1]~[10]のいずれかに記載の構造物の補修方法。
[12]記補強工程は、前記第2修復層の上に硬化性樹脂組成物(C)を塗布して第1補強層を形成させる第1補強層形成工程と、前記第2補強層の上に繊維材料(D)を含む補強繊維層を形成する補強繊維層形成工程と、前記補強繊維層の上に硬化性樹脂組成物(C)を塗布して第2補強層を形成させる第2補強層形成工程と、前記第1補強層及び第2補強層に含まれる硬化性樹脂組成物(C)を硬化させる補強層硬化工程と、を含む[11]に記載の構造物の補修方法。
[13]前記硬化性樹脂組成物(C)は、ビニル化合物及びエポキシ化合物からなる群から選択される少なくとも1種を含む[11]又は[12]に記載の構造物の補修方法。
[14]前記繊維材料(D)は、炭素繊維シートである、[11]~[13]のいずれかに記載の構造物の補修方法。
[15]前記構造物はコンクリート構造物である[1]~[14]のいずれかに記載の構造物の補修方法。
 本発明によれば、コンクリート構造物に適用した場合に、広い温度範囲で、短い工期かつ高い信頼性を確保できる、構造物の補修方法を提供できる。
本発明の第1実施形態にかかる、構造物の補修方法の一例を示したフロー図である。 本発明の第2実施形態にかかる、構造物の補修方法の一例を示したフロー図である。 本発明の第3実施形態にかかる、構造物の補修方法の一例を示したフロー図である。 コンクリート付着試験の方法を示す図である。
 本発明にかかる構造物の補修方法の実施形態を、以下で詳細に説明する。以下の実施形態にかかる補修方法はコンクリート構造物に適用されることが好ましいが、コンクリート以外のアスファルトコンクリート、モルタル、木材及び金属等で構成される施工面に対しても適用できる。構造物としては、建築及び土木構造物が好ましく、例えば、橋梁の橋脚、張出床版、床版等、建築構造物の柱、梁、スラブ等、トンネルの覆工部、煙突の外壁などが挙げられるが、これらに限定されない。ここで「補修」とは、劣化、破損した部分の修繕、修復等のみを意味するのではなく、劣化、破損等が生じていない構造物に対する強化等も含まれる。
 「硬化」とは、原料に含まれる分子どうしが化学反応により結合し、網目構造の高分子を形成することを言う。「乾燥」とは、化学反応を伴わずに、混合物、組成物等に含まれる一部の成分が揮発することを言う。なお、硬化及び乾燥は同時に進行することもあり、例えば、硬化が進行しつつ、化学反応しない成分、あるいは化学反応により生じた成分が揮発することもある。
 「(メタ)アクリレート」とは、アクリレート又はメタクリレートを、「(メタ)アクリル」とは、アクリル又はメタクリルを、「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを各々意味する。
 「ラジカル重合性」とは、ある条件下で組成物に含まれる成分がラジカル重合することにより硬化する性質であり、硬化する条件としては、例えば、加熱すること、光を照射すること等が挙げられる。
 「不飽和結合」とは、芳香環を形成する炭素原子を除く、炭素原子間の二重結合又は三重結合を意味する。
 「レイタンス層」とは、コンクリートに含まれる成分がコンクリート表面に析出して形成された多孔質で脆弱な泥膜層のことを言う。
 「作業性」とは、施工面に対してラジカル重合性樹脂組成物(A)、修復材(X)等を塗工する際の塗り易さ等を意味する。
<1.第1実施形態>
<1-1.構造物の補修方法>
 図1は、本発明の第1実施形態にかかる、構造物の補修方法の一例を示したフロー図である。本実施形態にかかる補修方法は、第1修復層形成工程S1と、第2修復層形成工程S2と、修復層硬化工程S3と、第1補強層形成工程S4と、補強繊維層形成工程S5と、第2補強層形成工程S6と、補強層硬化工程S7と、を含む。ここで、第1補強層形成工程S4と、補強繊維層形成工程S5と、第2補強層形成工程S6と、補強層硬化工程S7と、をまとめて補強工程とする。以下、これらの各工程について説明する。なお、本実施形態で用いられるラジカル重合性樹脂組成物(A)、ラジカル重合性樹脂組成物(Ax)、充填材(B)、修復材(X)、硬化性樹脂組成物(C)及び繊維材料(D)の具体例を含む詳細についてはここでは説明せずに後述する。
 第1修復層形成工程S1では、ラジカル重合性樹脂組成物(A)を構造物の施工面に塗布し、第1修復層を形成させる。構造物の施工面は、汚れ、付着物、及びレイタンス層等の脆弱な層を予め除去しておくことが好ましい。また、本工程の前に、施工面を整える下地処理を行うことが好ましい。下地処理としては、例えば、荒れた又は汚れた構造物の表面を、ディスクサンダーや、サンドブラスト、ウォータージェット等を用いて削り取る処理などが挙げられる。この処理により、後述する修復層が硬化した後の、硬化した修復層の施工面に対する接着強度を高めることができる。
 本実施形態にかかる補修方法において、第1修復層形成工程S1の前に、施工面を他の材料で被覆する工程を含んでもよい。この場合、修復層は、該他の材料からなる被覆層を介して施工面に間接的に形成される。しかし、工期短縮の観点からは、施工面を他の材料で被覆する工程を含まないことが好ましい。すなわち、修復層は、施工面に直接形成されることが好ましい。本実施形態にかかる補修方法によれば、施工面を他の材料で修復しなくとも、すなわち、施工面に直接修復層を形成しても、施工面と修復層との接着強度を十分に確保できる。
 ラジカル重合性樹脂組成物(A)の塗布方法としては、例えば、スプレーコート、あるいはローラー、ブラシ、刷毛、ヘラ等の器具を用いた塗布方法、ディッピング等が挙げられるがこれらに限られない。後述する第2修復層の接着強度を十分に高めるためには、第1修復層の目付量は50g/m以上であることが好ましく、100g/m以上であることがより好ましい。また、硬化前に第1修復層が垂れる、あるいは流れることを抑制するために、第1修復層の目付量は500g/m以下であることが好ましく、400g/m以下であることがより好ましく、300g/m以下であることがさらに好ましい。
 第2修復層形成工程S2では、第1修復層の上に、ラジカル重合性樹脂組成物(Ax)及び充填材(B)を含む修復材(X)を塗布し、第2修復層を形成させる。以下、第1修復層と第2修復層とを総称する場合、修復層とすることがある。第2修復層形成工程S2は、第1修復層形成工程S1で塗布されたラジカル重合性樹脂組成物(A)が硬化する前に行う。第1修復層と第2修復層との間の馴染みがよくなり、硬化した修復層の接着強度が高くなるためである。また、第1修復層及び第2修復層は同時に硬化されるため、硬化に要する時間を短縮できる。第2修復層の目付量は、5~30kg/mであることが好ましく、10~25kg/mであることがより好ましく、13~23kg/mであることがさらに好ましい。
 なお、第1修復層に含まれるラジカル重合性樹脂組成物(A)に揮発性のモノマーが含まれている場合、第2修復層は、第1修復層形成工程S1の直後、例えば、第1修復層形成工程S1の終了後、30分以内に形成させることが好ましく、10分以内に形成させることがより好ましい。
 表面に凹凸がある構造物の施工面を第2修復層形成工程S2により平らにする場合、第2修復層形成工程S2は、不陸調整とも呼ばれる。本工程における塗布方法としては、例えば、コテ、ローラー、ブラシ、刷毛、ヘラ等の器具を用いた塗布方法、あるいはスプレーコート、ディッピング等が挙げられるがこれらに限られない。
 修復層硬化工程S3では、修復層に含まれるラジカル重合性樹脂組成物(A)及び(Ax)を硬化させる。硬化方法としては、特に限定されないが、施工面を養生シート等で覆い、硬化のために十分な時間放置すること等がある。ここで、放置する際の時間及び適正温度は、ラジカル重合性樹脂組成物(A)及び(Ax)に含まれる成分及び組成によって異なる。また、例えば、ラジカル重合性樹脂組成物(A)及び/又は(Ax)が光重合開始剤を含む場合、光を照射することにより効率的に硬化が進行する。この場合、照射する光の波長域は、ラジカル重合性樹脂組成物(A)及び/又は(Ax)の成分、特に光重合開始剤の種類によって適宜決定することができる。修復層が硬化したことを確認する方法としては、指触し、跡が残らない、すなわち指触により修復層が塑性変形しないことを確認することが挙げられる。
 第1補強層形成工程S4では、硬化した修復層の上に、硬化性樹脂組成物(C)を塗布し、第1補強層を形成させる。本工程における塗布方法としては、例えば、スプレーコート、あるいはローラー、ブラシ、刷毛、ヘラ等の器具を用いた塗布方法、ディッピング等が挙げられるがこれらに限られない。次の工程で形成させる補強繊維層の接着力を十分に確保するため、第1補強層の目付量は50g/m以上であることが好ましく、100g/m以上であることがより好ましい。また、硬化前に第1補強層が垂れる、あるいは流れることを抑制するために、第1補強層の目付量は500g/m以下であることが好ましく、400g/m以下であることがより好ましく、300g/m以下であることがさらに好ましい。
 補強繊維層形成工程S5では、第1補強層の上に補強繊維層を形成させる。補強繊維層の形成方法の代表的な一例としては繊維材料(D)を含む繊維シートを第1補強層上に貼付することが挙げられるが、これに限らず、例えば、1本ずつの繊維又は複数本が束になった繊維を第1補強層上に置く、あるいは貼付する等の方法でもよい。繊維材料(D)の材質及び形態等の詳細については後述する。補強繊維層に含まれる繊維材料(D)として繊維シートを用いる場合、貼付する枚数は1枚に限られず、複数枚重ねてもよい。
 第2補強層形成工程S6では、補強繊維層の上に、硬化性樹脂組成物(C)を塗布し、第2補強層を形成させる。本工程における塗布方法及び、第2補強層の好ましい目付量の範囲は第1補強層形成工程S4と同様である。また、以下、第1補強層、補強繊維層、及び第2補強層を総称する場合、補強層とすることもある。
 補強層硬化工程S7では、補強層に含まれる硬化性樹脂組成物(C)を硬化させる。硬化方法としては、特に限定されないが、施工面を養生シート等で覆い、硬化のために十分な時間放置することが挙げられる。ここで、放置する際の時間及び適正温度は、硬化性樹脂組成物(C)に含まれる成分及び組成によって異なる。また、例えば、硬化性樹脂組成物(C)が光重合開始剤を含む場合、光を照射することにより効率的に硬化が進行する。この場合、照射する光の波長域は、硬化性樹脂組成物(C)の成分、特に光重合開始剤の種類によって適宜決定することができる。補強層が硬化したことを確認する方法としては、指触し、跡が残らない、すなわち指触により補強層が塑性変形しないことを確認することが挙げられる。
<1-2.ラジカル重合性樹脂組成物(A)>
 ラジカル重合性樹脂組成物(A)は、ラジカル重合性樹脂(a1)と、ラジカル重合性不飽和単量体(a2)と、下記一般式(I)で示される水酸基含有芳香族3級アミン(a3)と、有機過酸化物(a4)とを含有する。
Figure JPOXMLDOC01-appb-C000003
 上記式(I)中、Rは、H、CH又はOCHを示し、Rは、ヒドロキシアルキル基を示し、Rは、アルキル基又はヒドロキシアルキル基を示す。
 硬化後のラジカル重合性樹脂組成物(A)の強度を十分に確保するため、ラジカル重合性樹脂組成物(A)におけるラジカル重合性樹脂(a1)及びラジカル重合性不飽和単量体(a2)の合計量の含有率は75質量%以上であり、82質量%以上であることが好ましく、90質量%以上であることがより好ましい。また、ラジカル重合性樹脂組成物(A)は、後述する充填材(B)に該当する成分を含まない。
〔1-2-1.ラジカル重合性樹脂(a1)〕
 ラジカル重合性樹脂(a1)は、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂及びポリエステル(メタ)アクリレート樹脂からなる群から選択される少なくとも1種を含む。ラジカル重合性樹脂(a1)は、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂及びポリエステル(メタ)アクリレート樹脂からなる群から選択される少なくとも1種からなることが好ましい。以下、上記ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂及びポリエステル(メタ)アクリレート樹脂のそれぞれについて説明する。
(ビニルエステル樹脂)
 ビニルエステル樹脂は、エポキシ(メタ)アクリレート樹脂と呼ばれることもあり、例えば、エポキシ重合体と、1つ又は複数の不飽和結合を有するカルボン酸又はその誘導体とがエステル化したものである。カルボン酸誘導体としては、カルボン酸ハロゲン化物、カルボン酸無水物等が挙げられる。すなわち、ビニルエステル樹脂は、エポキシ重合体の少なくともいずれかの末端にエステル結合を介して結合した不飽和結合を有する、エポキシ化合物の重合体である。ここで不飽和結合は、分子の末端にあることが好ましく、ビニル基、アリル基、(メタ)アクリロイル基、又は(メタ)アクリロイルオキシ基であることがより好ましい。このようなビニルエステル樹脂は、例えば、「ポリエステル樹脂ハンドブック(日刊工業新聞社、1988年発行)」、及び「塗料用語辞典(色材協会編、1993年発行)」等に記載されている。
 ビニルエステル樹脂の原料として用いられるエポキシ化合物としては、ジエポキシ化合物であることが好ましく、例えばビスフェノールA型グリシジルエーテル及びノボラック型グリシジルエーテル等が挙げられる。エポキシ化合物として、より具体的には、ビスフェノールAジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、テトラブロムビスフェノールAジグリシジルエーテル、ノボラック型ジグリシジルエーテル、クレゾールノボラック型ジグリシジルエーテル等が挙げられる。また、その他エポキシ化合物としては、1,6-ヘキサンジオールジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、5-ノルボルナン-2,3-ジメタノールジグリシジルエーテル、トリシクロデカンジメタノールジグリシジルエーテル、アリサイクリックジエポキシカーボネート、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシカルボキシレート等が挙げられる。
 これらのエポキシ化合物は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよいが、ビスフェノールAジグリシジルエーテルと直鎖状のジグリシジルエーテルとを混合して用いることが好ましい。硬化した修復層の柔軟性及び靱性を向上させるためである。この観点から、エポキシ化合物は、ビスフェノールAジグリシジルエーテルと1,6-ヘキサンジオールジグリシジルエーテルとの混合物であることがより好ましい。
 上記ビニルエステル樹脂の原料として用いられる不飽和結合を有するカルボン酸は、不飽和結合を形成する一方の炭素原子は水素原子が2個結合していること、すなわち不飽和結合は分子末端にあることが好ましく、不飽和結合はビニル基又はアリル基を形成することがより好ましい。
 不飽和結合を1つ有するモノカルボン酸としては、例えば、アクリル酸、メタクリル酸等が挙げられる。また、不飽和結合を複数有するモノカルボン酸としては、例えば、トリメチロールプロパンジアリルエーテルと無水フタル酸又はその誘導体との反応で得られるハーフエステルカルボン酸等が挙げられる。ここで、無水フタル酸の誘導体としては、例えば、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等が挙げられ、テトラヒドロ無水フタル酸が好ましい。これらのカルボン酸は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 また、不飽和結合を有するカルボン酸は、ジカルボン酸でもよい。不飽和結合を有するジカルボン酸としては、クエン酸等の3価のカルボン酸のうち1つのカルボキシ基を、トリメチロールプロパンジアリルエーテル等の不飽和結合及び水酸基を有する化合物と反応させてエステル化したものが挙げられる。
 不飽和結合を有するカルボン酸の代わりに、不飽和結合を有するカルボン酸の誘導体を用いる場合、上記カルボン酸の塩化物、臭化物等のハロゲン化物、あるいは上記カルボン酸無水物を用いることができる。
 ビニルエステル樹脂は、硬化物の架橋度を調整する等の目的のために、原料となるエポキシ重合体末端のエポキシ基のうち、一部は不飽和結合を有さないカルボン酸と反応させてもよい。不飽和結合を有さないカルボン酸としては、例えば、アジピン酸、セバシン酸、無水フタル酸等が挙げられる。
(ウレタン(メタ)アクリレート樹脂)
 ウレタン(メタ)アクリレート樹脂は、例えば、ポリイソシアネートと、ポリオールとを反応させ、末端にイソシアナト基を有するポリウレタンを生成させ、これに水酸基含有(メタ)アクリル酸エステルを反応させることによって得ることができる。水酸基含有(メタ)アクリル酸エステルを反応させる際に、さらに水酸基含有アリルエーテル化合物を添加してもよい。すなわち、ウレタン(メタ)アクリレート樹脂は、分子中の少なくともいずれかの末端に(メタ)アクリロイル基を有するポリウレタンである。
 ウレタン(メタ)アクリレート樹脂の合成方法はこれだけに限られず、例えば、ポリイソシアネートと、ポリオールとを反応させ、末端に水酸基を有するポリウレタンを生成させ、これにイソシアナト基含有(メタ)アクリル酸エステルを反応させることによって得ることもできる。
 ウレタン(メタ)アクリレート樹脂の原料として用いられるポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等が挙げられ、市販品としてはミリオネートMT(日本ポリウレタン株式会社製)、バーノックD-750(DIC株式会社製)、クリスボンNK(DIC株式会社製)、デスモジュールL(住化コベストロウレタン株式会社製)、コロネートL(東ソー株式会社製)、タケネートD102(三井化学株式会社製)、イソネート143L(三菱ケミカル株式会社製)、デュラネート(登録商標)シリーズ(旭化成株式会社製)等が挙げられる。これらのポリイソシアネートは、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。ここで用いられるポリイソシアネートとして、ジイソシアネートが好ましく、これらの中でも、コストの観点から、4,4’-ジフェニルメタンジイソシアネートがより好ましい。
 ウレタン(メタ)アクリレート樹脂の原料に用いられるポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールA-プロピレンオキシド付加物、ビスフェノールA-エチレンオキシド付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3-ブタンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4-ジオール、2,6-デカリングリコール、2,7-デカリングリコール等が挙げられる。また、ポリオールとして、ポリエステルポリオール、ポリエーテルポリオール等も挙げられる。より具体的には、グリセリン-エチレンオキシド付加物、グリセリン-プロピレンオキシド付加物、グリセリン-テトラヒドロフラン付加物、グリセリン-エチレンオキシド-プロピレンオキシド付加物、トリメチロールプロパン-エチレンオキシド付加物、トリメチロールプロパン-プロピレンオキシド付加物、トリメチロールプロパン-テトラヒドロフラン付加物、トリメチロールプロパン-エチレンオキシド-プロピレンオキシド付加物、ジペンタエスリトール-エチレンオキシド付加物、ジペンタエスリトール-プロピレンオキシド付加物、ジペンタエスリトール-テトラヒドロフラン付加物、ジペンタエスリトール-エチレンオキシド-プロピレンオキシド付加物等が挙げられる。これらのポリヒドロキシ化合物は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。ここで用いられるポリオールとしては、直鎖状のグリコールが好ましく、ポリプロピレングリコールがより好ましい。
 ウレタン(メタ)アクリレート樹脂の原料として用いられる水酸基含有(メタ)アクリル酸エステルとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエスリトールトリ(メタ)アクリレート、グリセリン(モノ)(メタ)アクリレート等が挙げられ、市販品としてはブレンマー(登録商標)シリーズ(日油株式会社製)等が挙げられる。これらの(メタ)アクリル酸エステルの中でも、分子内に水酸基と(メタ)アクリロイル基を1つずつ有するもの、すなわち、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレートがより好ましく、2-ヒドロキシプロピル(メタ)アクリレートが特に好ましい。これらの水酸基含有(メタ)アクリル酸エステルは、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ウレタン(メタ)アクリレート樹脂の原料として用いられる水酸基含有アリルエーテル化合物としては、具体的には、例えば、エチレングリコールモノアリルエーテル、ジエチレングリコールモノアリルエーテル、トリエチレングリコールモノアリルエーテル、ポリエチレングリコールモノアリルエーテル、プロピレングリコールモノアリルエーテル、ジプロピレングリコールモノアリルエーテル、トリプロピレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、1,2-ブチレングリコールモノアリルエーテル、1,3-ブチレングリコールモノアリルエーテル、ヘキシレングリコールモノアリルエーテル、オクチレングリコールモノアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ペンタエスリトールトリアリルエーテル等が挙げられる。これら水酸基含有アリルエーテル化合物は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
(ポリエステル(メタ)アクリレート樹脂)
 ポリエステル(メタ)アクリレート樹脂は、例えば、ポリカルボン酸と、ポリオールとから得られる、末端にカルボキシ基を有するポリエステルに、水酸基又はエポキシ基を有する(メタ)アクリル酸エステルを反応させて得られる。また、ポリエステル(メタ)アクリレート樹脂は、例えば、ポリカルボン酸と、ポリオールとから得られる、末端に水酸基を有するポリエステルに、(メタ)アクリル酸を反応させて得ることもできる。すなわち、ポリエステル(メタ)アクリレート樹脂は、分子鎖の少なくともいずれかの末端に(メタ)アクリロイル基を有するポリエステルである。
 ポリエステル(メタ)アクリレート樹脂の原料として用いられるポリカルボン酸は、芳香族ジカルボン酸及び脂肪族飽和ジカルボン酸のうち少なくとも一方からなることが好ましく、芳香族ジカルボン酸からなることがより好ましい。芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸等又はその無水物などが挙げられる。脂肪族ジカルボン酸としては、例えば、アジピン酸、セバシン酸等又はその無水物などが挙げられる。これらのポリカルボン酸は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 また、ポリエステル(メタ)アクリレート樹脂の原料として用いられるポリカルボン酸は、脂肪族不飽和ジカルボン酸を含んでもよく、脂肪族不飽和ジカルボン酸としては、例えば、フマル酸、マレイン酸、イタコン酸、テトラヒドロフタル酸等又はその無水物などが挙げられる。これらの脂肪族不飽和ジカルボン酸は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ポリエステル(メタ)アクリレート樹脂の原料として用いられるポリカルボン酸は、上記ジカルボン酸以外のポリカルボン酸を含んでもよく、上記ジカルボン酸と上記ジカルボン酸以外のポリカルボン酸とを併用して用いてもよい。
 ポリエステル(メタ)アクリレート樹脂の原料として用いられるポリオールとしては、ジオールが好ましく、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオ-ル、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物等が挙げられる。これらのポリオールは、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ポリエステル(メタ)アクリレート樹脂の原料として用いられる、エポキシ基を有する(メタ)アクリル酸エステルとしては、α,β-不飽和結合以外の不飽和結合がないものが好ましく、さらに分子内に含まれるエポキシ基は1個であることがより好ましく、例えばグリシジルメタクリレート等が挙げられる。
 ポリエステル(メタ)アクリレート樹脂の原料として用いられる水酸基含有(メタ)アクリル酸エステルは、上記ウレタン(メタ)アクリレート樹脂の原料として用いられる水酸基含有(メタ)アクリル酸エステルとして例示したものと同様の化合物を用いることができ、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ポリエステル(メタ)アクリレート樹脂の原料として用いられる(メタ)アクリル酸としては、例えばアクリル酸、メタクリル酸、イタコン酸等が挙げられる。これらの(メタ)アクリル酸は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 上記原料から得られるポリエステル(メタ)アクリレート樹脂の中でも、硬化した修復層の機械的強度(圧縮強度、硬さ等)を高める観点から、ビスフェノールA型ポリエステル(メタ)アクリレート樹脂が好ましい。
(ラジカル重合性樹脂(a1)の含有率)
 ラジカル重合性樹脂(a1)とラジカル重合性不飽和単量体(a2)との合計量に対するラジカル重合性樹脂(a1)の含有率は、5~90質量%であることが好ましく、8~70質量%であることがより好ましく、15~70質量%であることがさらに好ましく、30~50質量%であることが特に好ましい。ラジカル重合性樹脂組成物(A)中のラジカル重合性樹脂(a1)の含有量を上記範囲とすることにより良好な作業性を確保できる。
〔1-2-2.ラジカル重合性不飽和単量体(a2)〕
 ラジカル重合性不飽和単量体(a2)は、モノ(メタ)アクリル酸エステル、ジ(メタ)アクリル酸エステル及びトリ(メタ)アクリル酸エステルからなる群から選択される少なくとも1種である。ラジカル重合性不飽和単量体(a2)を含むことにより、ラジカル重合性樹脂組成物(A)の粘度を適度に低下させることができる。また、後述するラジカル重合性樹脂組成物(Ax)の条件は、ラジカル重合性樹脂組成物(A)と同様であり、修復材(X)の粘度を適度に低下させることもできる。さらに、硬化した修復層の、硬度、強度、耐薬品性、耐水性等を向上させることができる。
 モノ(メタ)アクリル酸エステルとしては特に限定されない。モノ(メタ)アクリル酸エステルとして、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、等が挙げられる。これら(メタ)アクリレートモノマーは、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ジ(メタ)アクリル酸エステルとしては、特に限定されない。ジ(メタ)アクリル酸エステルとして、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、1,10デカンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス[4-(メタクリロイルオキシエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロイルオキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロイルオキシ・ポリエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロイルオキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリエトキシ)フェニル]プロパン等が挙げられる。
 トリ(メタ)アクリル酸エステルとしては特に限定されない。トリ(メタ)アクリル酸エステルとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-アクリロイルオキシエチル)イソシアヌレート、ペンタエスリトールトリ(メタ)アクリレート等が挙げられる。
 作業性及び圧縮強度の観点から、ラジカル重合性不飽和単量体(a2)は、メタクリル酸エステルであることが好ましい。さらに、同じ観点から、ジシクロペンテニルオキシエチルメタクリレート、メタクリロイルモルホリン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートからなる群から選択される少なくとも1種を含むことが特に好ましい。
 上記以外にも、本発明の目的を達成できる範囲で、ジメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエスリトールテトラ(メタ)アクリレート、ジペンタエスリトールポリ(メタ)アクリレート、ジペンタエスリトールヘキサ(メタ)アクリレート等も使用できる。
(ラジカル重合性不飽和単量体(a2)の含有率)
 ラジカル重合性樹脂(a1)とラジカル重合性不飽和単量体(a2)との合計量に対するラジカル重合性不飽和単量体(a2)の含有率は、10質量%以上であることが好ましい。低温(例えば-25℃)雰囲気下においてもラジカル重合性樹脂組成物(A)が良好な作業性に適した粘度となる上に、後述する充填材(B)に対する濡れ性も良好となるためである。この観点から、ラジカル重合性不飽和単量体(a2)の含有率は、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。ラジカル重合性樹脂(a1)とラジカル重合性不飽和単量体(a2)との合計量に対するラジカル重合性不飽和単量体(a2)の含有率は、95質量%以下であることが好ましい。硬化した修復層の高い強度及び耐水性を維持することができるためである。この観点から、ラジカル重合性不飽和単量体(a2)の含有率は、85質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
〔1-2-3.水酸基含有芳香族3級アミン(a3)〕
 水酸基含有芳香族3級アミン(a3)は下記式(I)で表される。
Figure JPOXMLDOC01-appb-C000004
 式(I)中、Rは、H、CH又はOCHであり、CHであることが好ましく、p位にあるCHであることがより好ましい。Rは、ヒドロキシアルキル基であり、炭素数が1~10のヒドロキシアルキル基であることが好ましく、炭素数3以下のヒドロキシアルキル基であることがより好ましい。Rは、アルキル基又はヒドロキシアルキル基であり、炭素数が1~10のアルキル基又は炭素数が1~10のヒドロキシアルキル基であることが好ましく、炭素数4以下のアルキル基又は炭素数4以下のヒドロキシアルキル基であることがより好ましく、炭素数4以下のヒドロキシアルキル基であることが更に好ましい。
 上記一般式(I)で表される水酸基含有芳香族3級アミン(a3)としては、特に限定されないが、例えば、N-メチル-N-β-ヒドロキシエチルアニリン、N-ブチル-N-β-ヒドロキシエチルアニリン、N-メチル-N-β-ヒドロキシエチル-p-トルイジン、N-ブチル-N-β-ヒドロキシエチル-p-トルイジン、N-メチル-N-β-ヒドロキシプロピルアニリン、N-メチル-N-β-ヒドロキシプロピル-p-トルイジン、N,N-ジ(β-ヒドロキシエチル)アニリン、N,N-ジ(β-ヒドロキシプロピル)アニリン、N,N-ジ(β-ヒドロキシエチル)-p-トルイジン、N,N-ジ(β-ヒドロキシプロピル)-p-トルイジン、N,N-ジイソプロピロール-p-トルイジン、N,N-ジ(β-ヒドロキシエチル)-p-アニシジン等が挙げられる。これらの中でも、低温硬化性の観点から、N,N-ジ(β-ヒドロキシエチル)-p-トルイジン、N,N-ジ(β-ヒドロキシプロピル)-p-トルイジンが好ましい。
 これらの水酸基含有芳香族3級アミン(a3)は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
(水酸基含有芳香族3級アミン(a3)の含有率)
 ラジカル重合性樹脂組成物(A)中の水酸基含有芳香族3級アミン(a3)の含有率は、0.1~10質量%であることが好ましく、0.1~8.0質量%であることがより好ましく、0.2~5.0質量%であることがさらに好ましい。水酸基含有芳香族3級アミン(a3)を含有することにより、ラジカル重合性樹脂組成物(A)の硬化反応が促進され、作業性が向上する。
〔1-2-4.有機過酸化物(a4)〕
 有機過酸化物(a4)は、水酸基含有芳香族3級アミン(a3)のようなアミン、又はアミンに加えて後述する任意成分である金属石鹸と組み合わせて用いることにより、常温ラジカル重合開始剤として作用する。
 有機過酸化物(a4)は、特に限定はされないが、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類されるものが挙げられる。有機過酸化物としては、より具体的には、ジベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシル-3、3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシベンゾエート等が挙げられる。これらの中でも、ジベンゾイルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルパーオキシベンゾエートからなる群から選択される少なくとも1種であることが好ましい。
 これらの有機過酸化物(a4)は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。2種類以上の混合物としては、例えばジベンゾイルパーオキサイドとベンゾイルm-メチルベンゾイルパーオキサイドとm-トルオイルパーオキサイドとの混合物、クメンハイドロパーオキサイドとt-ブチルパーオキシベンゾエートとの混合物、クメンハイドロパーオキサイドとt-ブチルパーオキシベンゾエートとメチルエチルケトンパーオキサイドとの混合物などが挙げられる。
(有機過酸化物(a4)の含有率)
 ラジカル重合性樹脂組成物(A)中の有機過酸化物(a4)の含有率は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましい。コストを低減、及び硬化した修復層の強度を高くするため、有機過酸化物(a4)の含有率は、10.0質量%以下であることが好ましく、8.0質量%以下であることがより好ましく、6.0質量%以下であることがさらに好ましい。
〔1-2-5.任意成分〕
 また、ラジカル重合性樹脂組成物(A)は、本発明の効果を妨げない範囲で、上記以外の成分を任意成分として含んでもよい。任意成分としては、例えば、上記以外の単量体(以下、「その他の単量体」とすることもある)及びアミン、アゾ化合物、金属石鹸、光重合開始剤、補強材、並びに各種添加剤等が挙げられる。
 その他の単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリロイルモルホリン、スチレン、スチレンのα-,o-,m-,p-位のうち少なくともいずれかの水素原子がアルキル基、ニトロ基、シアノ基、アミド結合を有する置換基、又はエステル結合を含む置換基で置換された誘導体、クロルスチレン、ビニルトルエン、ジビニルベンゼン等のスチレン系モノマー;ブタジエン、2,3-ジメチルブタジエン、イソプレン、クロロプレン等のジエン化合物等が挙げられるがこれらに限られない。その他の単量体として、マレイン酸やフマル酸、イタコン酸等の不飽和脂肪酸と、アルコールとの縮合物等も用いることができる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。その他の単量体としては、(メタ)アクリロイル基を有するものが好ましく、アクリロイル基を有するものがより好ましい。
 任意成分のアミンとしては、水酸基含有芳香族3級アミン(a3)以外の芳香族3級アミン等、例えば、水酸基を含有しない芳香族3級アミン等が挙げられる。任意成分として、例えば、ジメチルアニリンやジメチルパラトルイジン等が挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ラジカル重合性樹脂組成物(A)が任意成分のアミンを含有する場合、ラジカル重合性樹脂組成物(A)中の任意成分のアミンの含有率は、好ましくは0.01~5.0質量%、より好ましくは0.1~3.0質量%である。任意成分のアミンを含有することにより、有機過酸化物(a4)と任意成分のアミンとの接触による過酸化物の分解反応によってラジカル重合性樹脂組成物(A)に含まれる成分の重合が促進され、修復層の表面乾燥性や硬化性がさらに向上する。
 アゾ化合物としては、例えば、アゾビスイソブチロニトリル、アゾビスカルボンアミド等が挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。ラジカル重合性樹脂組成物(A)がアゾ化合物を含有する場合、ラジカル重合性樹脂組成物(A)中のアゾ化合物の含有率は特に限定されないが、好ましくは0.1~5.0質量%、より好ましくは0.5~3.0質量%である。アゾ化合物を含有することにより、修復層の表面が効率的に硬化する。なお、アゾ化合物として、アゾビスイソブチロニトリル、アゾビスカルボンアミド等を用いた場合、ラジカル重合性樹脂組成物(A)に含まれる成分の重合を促進することもできる。
 金属石鹸としては、例えばオクチル酸コバルト、オクチル酸マンガン、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸バリウム等が挙げられ、中でもオクチル酸コバルト、オクチル酸マンガン、及びナフテン酸コバルト等が好ましく、オクチル酸コバルトがより好ましい。ラジカル重合性樹脂組成物(A)が金属石鹸を含有する場合、ラジカル重合性樹脂組成物(A)中の金属石鹸の含有率は特に限定されないが、好ましくは0.1~10.0質量%、より好ましくは0.3~5.0質量%である。金属石鹸を含有することにより、有機過酸化物(a4)と金属塩との接触による有機過酸化物の分解反応によってラジカル重合性樹脂組成物(A)に含まれる成分の重合が促進され、修復層の硬化性がさらに向上する。
 光重合開始剤としては、可視光から近赤外光領域に感光性を有する光重合開始剤を用いることが好ましく、具体的には、例えばイルガキュア(登録商標)1800(BASF社製)等が挙げられる。
 ラジカル重合性樹脂組成物(A)が光重合開始剤を含有する場合、ラジカル重合性樹脂組成物(A)中の光重合開始剤の含有率は特に限定されないが、好ましくは0.01~15質量%、より好ましくは0.05~10質量%である。光重合開始剤により、他の物性の低下を抑制しつつ、硬化時間を短縮できる。
 補強材としては、例えば、ポリエステル、ビニロン、カーボン、セラミックス、ステンレススチール等の短繊維などが挙げられる。これらの補強材は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。ラジカル重合性樹脂組成物(A)が補強材を含有する場合、ラジカル重合性樹脂組成物(A)中の補強材の含有率は特に限定されないが、好ましくは0.1~10質量%、より好ましくは0.01~2.0質量%である。補強材を含有することにより、修復後の構造物の強度及び耐久性を向上できる。
 また、各種添加剤としては、ワックス、重合禁止剤、カップリング剤、硬化促進剤、揺変剤、溶剤等が挙げられる。
 ワックスとしては、例えば、石油ワックス(パラフィンワックス、マイクロクリスタリン等)、植物系ワックス(キャンデリラワックス、ライスワックス、木蝋等)、動物系ワックス(蜜蝋、鯨蝋等)、鉱物系ワックス(モンタンワックス等)、合成ワックス(ポリエチレンワックス、アミドワックス等)などが挙げられるが、これらに限られない。ワックスとしては、より具体的には、融点が20℃~80℃程度のパラフィンワックス等が挙げられ、市販品としては、日本精蝋株式会社製のパラフィンワックス115°F、パラフィンワックス125°F、及びビックケミー・ジャパン株式会社製のBYK(登録商標)-S-750、BYK(登録商標)-S-740、BYK(登録商標)-LP-S6665等が挙げられる。これらのワックスは、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよく、例えば融点が異なるワックスを、組み合わせて用いてもよい。
 ラジカル重合性樹脂組成物(A)がワックスを含有する場合、ラジカル重合性樹脂組成物(A)中のワックスの含有率は特に限定されないが、好ましくは0.1~5.0質量%、より好ましくは0.1~2.0質量%である。ワックスを含有することにより、乾燥時間を短縮できる。
 重合禁止剤としては、ハイドロキノン、メチルハイドロキノン、トリメチルハイドロキノン、ターシャリーブチルカテコール、2,6-ジ-ターシャリーブチル・4-メチルフェノン等が挙げられる。
 ラジカル重合性樹脂組成物(A)が重合禁止剤を含有する場合、ラジカル重合性樹脂組成物(A)中の重合禁止剤の含有率は特に限定されないが、好ましくは0.001~1.0質量%、より好ましくは0.005~0.5質量%である。重合禁止剤により、硬化の進行を抑制し、作業時間を確保することができる。
 カップリング剤としては、アミノシラン、ビニルシラン、エポキシシラン、アクリルシラン等のシランカップリング剤が好ましい。これらのカップリング剤は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ラジカル重合性樹脂組成物(A)がカップリング剤を含有する場合、ラジカル重合性樹脂組成物(A)中のカップリング剤の含有率は特に限定されないが、好ましくは0.01~10質量%、より好ましくは0.1~5.0質量%含有することができる。カップリング剤により、硬化した修復層の強度が向上する。
 硬化促進剤としては、特に限定されないが、アセチルアセトン、アセト酢酸エチル、α-アセチル-γ-ブチロラクトン、N-ピロジニノアセトアセタミド、N,Nジメチルアセトアセタミド等のβ-ジケトン化合物などが挙げられる。これらの硬化促進剤は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ラジカル重合性樹脂組成物(A)が硬化促進剤を含有する場合、ラジカル重合性樹脂組成物(A)中の硬化促進剤の含有率は特に限定されないが、好ましくは0.01~10質量%、より好ましくは0.1~5.0質量%である。硬化促進剤により、修復層の硬化時間を短縮できる。
 揺変剤としては、無機系では、例えば、疎水性ヒュームドシリカ(キャボット社製、キャボジールTS-720等)、親水性ヒュームドシリカ(日本アエロジル株式会社製、AEROSIL(登録商標)200等)等がある。有機系の揺変剤としては、例えば、ポリエチレン綿状ファイバー(三井化学製「ケミベスト」)、水素化ひまし油等が挙げられる。中でも、疎水性シリカ及び親水性シリカ、ケミベストが好ましい。これらの揺変剤は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。なお、特に、親水性シリカは、BYK(登録商標)R605(ビックケミー・ジャパン株式会社製)等の揺変助剤などと併用してもよい。
 ラジカル重合性樹脂組成物(A)が揺変剤を含有する場合、ラジカル重合性樹脂組成物(A)中の揺変剤の含有率は特に限定されないが、好ましくは0.1~10質量%、より好ましくは0.2~5.0質量%である。揺変剤により、良好な揺変性が付与され、作業性が向上する。
 溶剤としては、特に限定されないが、例えば、酢酸エチル等のアルキルエーテルアセテート、テトラヒドロフラン等のエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン、ベンゼン、トルエン、キシレン、オクタン、デカン、ドデカン等の炭化水素、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤、乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エステル、ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。これらの溶剤は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。特に、特開2002-97233に記載されているような炭化水素溶剤、例えば、n-ヘキサン、シクロヘキサン、ペンタン、トリメチルベンゼン、ブチルベンゼン、ペンチルベンゼン等をワックスと併用することで、ラジカル重合性樹脂組成物(A)の硬化時に、ワックスの膜を速やかに形成させることができ、乾燥性を向上させることができる。
 ラジカル重合性樹脂組成物(A)が溶剤を含有する場合、ラジカル重合性樹脂組成物(A)中の溶剤の含有率は特に限定されないが、好ましくは0.1~10質量%、より好ましくは0.1~5.0質量%である。溶剤により、ラジカル重合性樹脂組成物(A)の粘度を作業に適した範囲に調整することができ、ワックス、特にパラフィンワックスと併用する場合、ワックスの溶解性や分散性を向上させることができる。
〔1-2-6.ラジカル重合性樹脂組成物(A)の調製方法及び粘度〕
 ラジカル重合性樹脂組成物(A)の調製方法は、特に限定されないが、各成分を秤量し、ホモミキサー、ハンドミキサー等により混合すること等が挙げられるが、ホモミキサーで混合することが好ましい。均質な硬化反応を行う観点から、ラジカル重合性樹脂(a1)及びラジカル重合性不飽和単量体(a2)は、他の成分を添加する前に、予め混合しておくことが好ましい。水酸基含有芳香族3級アミン(a3)及び有機過酸化物(a4)が配合された後は、硬化が進行する前にラジカル重合性樹脂組成物(A)を速やかに使用することが好ましい。
 ラジカル重合性樹脂組成物(A)の粘度は、25℃において、150mPa・s以下であることが好ましい。後述するラジカル重合性樹脂組成物(Ax)の条件はラジカル重合性樹脂組成物(A)と同様であり、ラジカル重合性樹脂組成物(Ax)の粘度が上記範囲にあることにより、低温時(例えば、5℃以下)においても、修復材(X)を作製する際の、充填材(B)の混練性、あるいはラジカル重合性樹脂組成物(A)及び修復材(X)の塗工の際の作業性の低下を抑制できるためである。この観点から、ラジカル重合性樹脂組成物(A)の粘度は、25℃において、100mPa・s以下であることがより好ましい。ラジカル重合性樹脂組成物(A)の粘度は、25℃において、10mPa・s以上であることが好ましい。斜面又は垂直面への塗工の際に、硬化前のラジカル重合性樹脂組成物(A)が流動することを抑制するためである。
<1-3.修復材(X)>
 修復材(X)は、ラジカル重合性樹脂組成物(Ax)と、充填材(B)とを含む。ラジカル重合性樹脂組成物(Ax)の条件は、ラジカル重合性樹脂組成物(A)と同様であり、上述した通りである。ラジカル重合性樹脂組成物(Ax)は、ラジカル重合性樹脂組成物(A)と同じでもよく、異なっていてもよいが、ラジカル重合性樹脂組成物(Ax)及び(A)は同一組成であることが好ましい。材料の種類が増えることによるコストの上昇を抑え、また、第1修復層としてのラジカル重合性樹脂組成物(A)と第2修復層としての修復材(X)とがなじみやすくなり、接着強度が高くなるためである。また、ラジカル重合性樹脂組成物(Ax)は、以下で説明する充填材(B)に該当する成分は含まない。
〔1-3-1.充填材(B)〕
 充填材(B)は、骨材として作用する。充填材(B)は、無機充填材であることが好ましい。無機充填材としては、例えば、タルク、炭酸カルシウム、アルミナ、水酸化アルミニウム、アルミニウム、チタン、硅砂、珪石等が挙げられる。これらの中でも、タルク、炭酸カルシウム、珪砂及び珪石からなる群から選択される少なくとも1種を含むことが好ましく、コストや材料入手の観点から、炭酸カルシウム、硅砂及び珪石からなる群から選択される少なくとも1種を含むことがより好ましく、中でも炭酸カルシウム及び硅砂のうち少なくともいずれかを含むことが特に好ましい。これらの無機充填材は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 充填材(B)の平均粒径Dは、1nm~5000μmであることが好ましく、より好ましくは10nm~2000μmであり、さらに好ましくは100nm~2000μmである。上記範囲内とすることにより、修復材(X)の作業性や物性を向上することができる。ここで、平均粒径D(μm)は、空気透過法によって求められた粒子の比表面積S(cm/g)及び粒子の真密度ρ(g/cm)を用いて、D={κ/(ρS)}×10で表される。ここでκは形状因子で、ここでは、粒子が球であるとして、すなわちκ=6として計算する。
 修復材(X)中の充填材(B)の含有量は、ラジカル重合性樹脂組成物(Ax)100質量部に対して、80~500質量部であることが好ましい。修復材(X)に含まれるラジカル重合性樹脂組成物(Ax)が十分に硬化し、かつ良好な作業性が得られるためである。この観点で、充填材(B)の含有量は、ラジカル重合性樹脂組成物(Ax)100質量部に対して、120~450質量部であることがより好ましく、150~450質量部であることがさらに好ましい。
 修復材(X)中における、充填材(B)及びラジカル重合性樹脂組成物(Ax)の合計含有率は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、例えば100質量%である。
〔1-3-2.任意成分〕
 また、修復材(X)は、本発明の効果を妨げない範囲で、ラジカル重合性樹脂組成物(Ax)及び充填材(B)以外の任意成分を含んでもよい。任意成分は、1-2-5項で説明したものと同様である。
〔1-3-3.修復材(X)の調製方法〕
 修復材(X)の調製方法は、特に限定されないが、上述の各成分を秤量し、適宜配合、混合して調整することができる。なお、ラジカル重合性樹脂組成物(Ax)は硬化速度が速いため、ラジカル重合性樹脂組成物(Ax)の作製後は速やかに充填材(B)を混合し、所定の使用に供されることが望ましい。
 修復材(X)の硬化物(硬化した第2修復層)は、JIS K6911「熱硬化性プラスチック一般試験方法」に準ずる試験において、24時間後の圧縮強度が20MPa以上であることが好ましく、30MPa以上であることがより好ましく、60MPa以上であることがさらに好ましい。上記硬化物の24時間後の圧縮強度が上記範囲内であれば、本工法による施工の後に、凍結融解を受けても硬化した修復層として良好な性能を維持できる。
 また、修復材(X)は、-25℃以下の低温環境下でも短時間で硬化できる。そのため、修復材(X)は作業性に優れ、修復材(X)により形成される硬化した修復層は強度発現性にも優れている。
<1-4.硬化性樹脂組成物(C)>
 硬化性樹脂組成物(C)は、硬化性の化合物を含む。硬化性の化合物としてはビニル化合物及びエポキシ化合物のうち少なくとも一方を含むことが好ましい。中でも、硬化時間を短縮し、硬化した修復層と硬化した補強層との接着強度を高める観点から、硬化性の化合物としてビニル化合物を含むことがより好ましい。
 硬化性樹脂組成物(C)がビニル化合物を含む場合、ビニル化合物は、ラジカル重合性樹脂と、ラジカル重合性不飽和単量体である。この場合、ビニル化合物中のラジカル重合性樹脂として好ましい成分は、ラジカル重合性樹脂組成物(A)におけるラジカル重合性樹脂(a1)と同様であり、ラジカル重合性不飽和単量体(a2)としての好ましい成分は、ラジカル重合性樹脂組成物(A)におけるラジカル重合性不飽和単量体(a2)と同様である。また、ビニル化合物中のラジカル重合性樹脂とラジカル重合性不飽和単量体との組成比としての好ましい範囲は、ラジカル重合性樹脂組成物(A)中のラジカル重合性樹脂(a1)とラジカル重合性不飽和単量体(a2)との組成比と同様である。
 硬化性樹脂組成物(C)がビニル化合物を含む場合、硬化性樹脂組成物(C)は、さらに有機過酸化物を含むことが好ましい。この場合、ラジカル重合性樹脂組成物(A)中の有機過酸化物(a4)の含有率としての好ましい範囲は、ラジカル重合性樹脂組成物(A)と同様である。
 硬化性樹脂組成物(C)がビニル化合物を含む場合、硬化性樹脂組成物(C)は、上記一般式(I)で示される水酸基含有芳香族3級アミンを含んでもよい。水酸基含有芳香族3級アミンとして好ましい成分はラジカル重合性樹脂組成物(A)と同様である。硬化性樹脂組成物(C)は、必要に応じて、ラジカル重合性樹脂組成物(A)に含まれ得る任意成分、すなわち1-2-5項で説明した成分をさらに含んでもよい。なお、硬化性樹脂組成物(C)は、修復層形成のために用いたラジカル重合性樹脂組成物(A)と同じ配合であってもよい。
 硬化性樹脂組成物(C)がエポキシ化合物を含む場合、硬化性樹脂組成物(C)は、エポキシ化合物に加えて、硬化剤を含有する。また必要に応じて、希釈剤を含んでもよい。
 硬化性樹脂組成物(C)がエポキシ化合物を含む場合、エポキシ化合物は、分子内に少なくとも2個以上のエポキシ基を有する化合物である。このようなエポキシ化合物としては、例えば、エーテル型のビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、脂肪族型エポキシ樹脂、エステル系の芳香族エポキシ樹脂、環状脂肪族エポキシ樹脂、エーテル・エステル型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 硬化性樹脂組成物(C)がエポキシ化合物を含む場合、硬化剤としては、分子内に2個以上のアミノ基を含むアミン、イミダゾール、イミダゾール誘導体、イミン、ポリアミド等が使用できる。中でも常温で硬化させるため、脂肪族アミンが好ましい。分子内に2個以上のアミノ基を含む脂肪族アミンとしては、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ジアミノブタン、ヘキサメチレンジアミン、2,5-ジメチル-2,5-ヘキサンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、4-アミノメチルオクタメチレンジアミン、3,3’-イミノビス(プロピルアミン)、3,3’-メチルイミノビス(プロピルアミン)、ビス(3-アミノプロピル)エーテル、1,2-ビス(3-アミノプロピルオキシ)エタン、メンセンジアミン、イソホロンジアミン、ビスアミノメチルノルボルナン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノシクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等が挙げられる。これらの硬化剤は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。硬化剤の添加量は、主剤のエポキシ樹脂のエポキシ当量に合わせて配合することが好ましい。すなわち、主剤のエポキシ当量に対応したアミン当量となるように、硬化剤の添加量を適宜調整することが好ましい。
 硬化性樹脂組成物(C)がエポキシ化合物を含む場合、硬化性樹脂組成物(C)の粘度を調整するため、エポキシ基を有する低粘度の化合物を希釈剤として使用してもよい。使用可能な希釈剤は特に限定されないが、例えば、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等がある。これらの希釈剤は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
<1-5.繊維材料(D)>
 繊維材料(D)に含まれる繊維は、例えば、炭素繊維、黒鉛繊維、黒鉛ウィスカー等の炭素繊維、ガラス繊維、アラミド繊維、ポリエステル繊維などが挙げられ、炭素繊維が好ましい。炭素繊維は、例えば、ポリアクリロニトリル系繊維、セルロース系繊維、ピッチ、芳香族炭化水素、カーボンブラック等を原料として製造された炭素繊維が挙げられる。これらの繊維材料は、1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 また、繊維材料(D)は、不織布、繊維が一定方向に配列したテープ、シート状物、マット状物、織物等の形態が挙げられるが、これらに限られない。また、繊維材料(D)は、上記の繊維以外に、例えば、プリプレグシートのように、熱硬化性樹脂等を含浸させたものでもよい。
<2.第2実施形態>
 図2は、本発明の第2実施形態にかかる、構造物の補修方法の一例を示したフロー図である。本実施形態にかかる補修方法は、第1修復層形成工程S1と、第2修復層形成工程S2と、修復層硬化工程S3と、補強層形成工程S8と、補強層硬化工程S9と、を含む。ここで、補強層形成工程S8と、補強層硬化工程S9と、をまとめて補強工程とする。第1修復層形成工程S1、第2修復層形成工程S2、及び修復層硬化工程S3については第1実施形態と同様であるため、ここでは説明を省略する。ラジカル重合性樹脂組成物(A)、充填材(B)、及び修復材(X)の詳細については第1実施形態で説明した通りである。
 補強層形成工程S8は、硬化した修復層の上に補強シートを貼付し、補強層を形成させる。補強シートは、例えば、繊維材料(D)の織布又は不織布等の繊維に熱又は光硬化性樹脂を含浸したものが挙げられるが、繊維材料と、硬化性樹脂を含むものであればこれに限られない。
 補強層硬化工程S9は、補強層を形成する補強シートに含まれる樹脂を硬化させる。硬化条件は、補強シートに含まれる樹脂によって異なる。熱硬化性樹脂であれば効率的に硬化が進行する適切な温度で保持すること、光硬化性樹脂であれば効率的に硬化が進行する波長域の光を十分な時間照射することが挙げられる。補強シートが硬化したことを確認する方法としては、指触し、跡が残らない、すなわち指触により補強層が塑性変形しないことを確認することが挙げられる。
<3.第3実施形態>
 図3は、本発明の第3実施形態にかかる、構造物の補修方法の一例を示したフロー図である。本実施形態にかかる補修方法は、第1修復層形成工程S1と、第2修復層形成工程S2と、修復層硬化工程S3と、を含む。第1修復層形成工程S1、第2修復層形成工程S2、及び修復層硬化工程S3は、第1実施形態及び第2実施形態と同様である。
 以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。
<1.ラジカル重合性樹脂(a1)の合成>
 ビニルエステル樹脂(a1-1)、ウレタンメタクリレート樹脂(a1-2)、及びポリエステルメタクリレート樹脂(a1-3)をそれぞれ以下のように合成した。
<1-1.ビニルエステル樹脂(a1-1)>
 攪拌機、環流冷却器、ガス導入管及び温度計を備えた反応装置に、ビスフェノールA型エポキシ樹脂(三井化学株式会社製、製品名「エポミック(商標)R140P」、エポキシ当量189):151g、1,6-ヘキサンジオールジグリシジルエーテル(阪本薬品工業株式会社製、製品名「SR-16」、エポキシ当量157):188g、トリメチロールプロパンジアリルエーテル(株式会社大阪ソーダ製、製品名「ネオアリル(商標)T-20」):129g、テトラヒドロ無水フタル酸(新日本理化株式会社製、製品名「リカシッドTH」):91g、ジシクロペンテニルオキシエチルメタクリレート(a2-1)(日立化成株式会社製、製品名「ファンクリルFA-512MT」):145gを仕込み、90℃まで昇温させた。その温度を維持した状態で、2,4,6-トリス(ジメチルアミノメチル)フェノール(精工化学株式会社製、製品名「セイクオールTDMP」):1.0g、メチルハイドロキノン(東京化成工業株式会社製):0.3gを加え、空気を流しながら110℃に昇温し、反応させた。反応開始から1時間後、酸価が25mgKOH/gとなった。ここで、メタクリル酸(株式会社クラレ製):120g、2,4,6-トリス(ジメチルアミノメチル)フェノール:1.0gを添加し、130℃に昇温した。なお、酸価の測定は、JIS K 0070:1992第3.1項に記載されている中和滴定法に基づいており(以下の酸価の測定についても同様である)、反応液から少量(0.1mL程度)取り出すことで行われているため、測定のために取り出された量は全体の量に影響しない(以下の酸価の測定についても同様である)。その温度を維持した状態で反応させ、130℃に達してから4時間後、酸価が14mgKOH/gになった。ここで、反応を終了し、ビニルエステル樹脂(a1-1)679gとジシクロペンテニルオキシエチルメタクリレート(a2-1)145gとを含む混合物を得た。
<1-2.ウレタンメタクリレート樹脂(a1-2)>
 攪拌機、還流冷却器、ガス導入管及び温度計を備えた反応装置に、4,4’-ジフェニルメタンジイソシアネート(日本ポリウレタン株式会社社製、製品名「ミリオネートMT」):226g、ポリプロピレングリコール(昭和化学株式会社製、数平均分子量1000):610g、アクリロイルモルホリン(a2-2):320g、メトキシエチルメタクリレート(a2-3)(三菱ケミカル株式会社製、製品名「アクリエステルMT」):576g、ハイドロキノン:0.3gを仕込み、空気を流しながら60℃まで上昇させた。その温度を維持した状態で重合触媒としてジブチルチンジラウレート(共同薬品株式会社製、製品名「KS-1260」):0.02gを添加した。その後、70℃に上昇させて、反応させた。赤外吸収スペクトル測定(IR測定)の結果、イソシアナト基に由来する波数2270cm-1のピークと、ウレタン結合に由来する波数1730cm-1のピークとの強度比に変化が見られなくなったところで、2-ヒドロキシプロピルメタクリレート(共栄社化学株式会社製、製品名「ライトエステルHOP」):91g、次いで触媒としてジブチルチンジラウレート:0.06gを加え、75℃に上昇させて反応させた。IR測定の結果、イソシアナト基に由来する波数2270cm-1のピークが消失したことを確認して反応を終了し、ウレタンメタクリレート樹脂(a1-2)927gと、アクリロイルモルホリン(a2-2)320gと、メトキシエチルメタクリレート(a2-3)576gとを含む混合物を得た。
<1-3.ポリエステルメタクリレート樹脂(a1-3)>
 攪拌機、環流冷却器、ガス導入管及び温度計を備えた反応装置に、ジプロピレングリコール(東京化成株式会社製):604g、イソフタル酸(東京化成株式会社製):1080gを仕込み、窒素ガス雰囲気中で205℃まで昇温して3時間反応させた後、100℃まで冷却した。次いで、空気下、これにメチルハイドロキノン:0.6g、グリシジルメタクリレート(日油株式会社製、製品名「ブレンマーG」):498gを加え、120℃~130℃で2時間反応させ、ポリエステルメタクリレート樹脂(a1-3)2182gを含む混合物を得た。
<2.ラジカル重合性樹脂(a1)とラジカル重合性不飽和単量体(a2)との混合>
 表1に示される量で、各成分を混合して、ビニルエステル樹脂(a1-1)を含む混合物VE1、VE2、VE3、ウレタンメタクリレート樹脂(a1-2)を含む混合物UA1、及びポリエステルメタクリレート樹脂(a1-3)を含む混合物PMA1を得た。なお、ラジカル重合性不飽和単量体(a2)の”*”を付してある成分の添加量については、ラジカル重合性樹脂(a1)の合成の際に添加された該当成分も含む。
Figure JPOXMLDOC01-appb-T000005
<3.実施例>
<3-1.実施例1~5>
(補修に用いる材料の準備)
 表2に示される各成分を20±5℃の雰囲気中にて24時間放置して、温度を一定にした後、混合し、ラジカル重合性樹脂組成物A1~A5、修復材X1~X5、及び硬化性樹脂組成物C1をそれぞれ作製した。作製されたラジカル重合性樹脂組成物A1~A5、修復材X1~X5、及び硬化性樹脂組成物C1を用いて、各実施例において20±5℃の環境下、以下の工程によるコンクリート板の補修を行った。
Figure JPOXMLDOC01-appb-T000006

 
(コンクリート板の補修)
 実施例1~5における補修方法は、いずれも第1実施形態(図1)に基づく。また、実施例1~5における各工程で用いたラジカル重合性樹脂組成物A1~A5、修復材X1~X5については表2で示す通りである。補強工程で用いる硬化性樹脂組成物C1及び炭素繊維シートD1は実施例1~5で共通のものを用いた。
 レイタンス層を除去したコンクリート板表面に、ラジカル重合性樹脂組成物A1~A5を目付量200g/mで刷毛を用いて塗布して第1修復層を形成し、直ちに、硬化前の第1修復層上に、修復材X1~X5をコテで塗布して目付量18kg/mの第2修復層を形成した。その後、第1修復層及び第2修復層を20±5℃にて放置することにより硬化させた。硬化後の修復層の厚さは10mmであった。修復層の硬化に要した時間T1[h]を表2に示す。なお、硬化の判定は、指触により修復層に指の跡が残らない、すなわち修復層が指触により塑性変形しないことを確認することにより行った(以下の硬化の判定においても同じ)。
 硬化した修復層の表面に、硬化性樹脂組成物C1を目付量400g/mで刷毛を用いて塗布し、第1補強層を形成させた。第1補強層の上に炭素繊維シートD1を貼り付け、補強繊維層を形成させた。補強繊維層の上に硬化性樹脂組成物C1を目付量300g/mでローラーを用いて塗布し、第2補強層を形成させた。その後、第1補強層及び第2補強層に含まれる硬化性樹脂組成物C1を硬化させた。硬化は、20±5℃にて放置することにより行った。補強層の硬化に要した時間T2[h]を表2に示す。
<3-2.比較例1~2>
 比較例1では、第1修復層形成工程S1を行わなかったこと以外は実施例1と同様にコンクリート板の補修を行った。修復層の硬化時間T1[h]及び補強層の硬化時間T2[h]を表2に示す。
 比較例2では、第1修復層形成工程の後、第2修復層形成工程の前に、20±5℃で第1修復層を12時間放置(本比較例では、ラジカル重合性樹脂組成物(A)の予測される硬化時間よりも長い時間放置)したこと以外は実施例1と同様にコンクリート板の補修を行った。なお、放置後の第1修復層は指触により硬化していることが確認された。第1修復層を放置した時間T0[h]、第2修復層の硬化に要した時間T1[h]、及び補強層の硬化に要した時間T2[h]を表2に示す。
<3-3.比較例3~4>
 比較例3では、エポキシプライマーP(三菱ケミカルインフラテック株式会社製、製品名「エポサーム(登録商標)プライマーXPS-100」)、エポキシパテQ(三菱ケミカルインフラテック株式会社製、製品名「エポサーム(登録商標)パテL-200」)、及びエポキシレジンR(三菱ケミカルインフラテック株式会社製、製品名「エポサーム(登録商標)レジンXL-300」、耐震補強用CFRP含浸用樹脂)のそれぞれについて、主剤及び硬化剤を、20±5℃の雰囲気中にて24時間放置した。その後、20±5℃の環境下、以下の工程によるコンクリート板の補修を行った。
 レイタンス層を除去したコンクリート板表面に、主剤と硬化剤を混合したエポキシプライマーPを目付量200g/mで刷毛を用いて塗布し、第1修復層(プライマー層)を形成させた。その後、第1修復層を20±5℃で放置することにより硬化させた。第1修復層の硬化に要した時間T0[h]を表2に示す。
 硬化した第1修復層の表面に、主剤と硬化剤を混合したエポキシパテQを目付量18kg/mでゴムベラを用いて塗布し、第2修復層を形成させた。その後、第2修復層を20±5℃で放置することにより硬化させた。第2修復層の硬化に要した時間T1[h]を表2に示す。
 硬化した第2修復層の表面に、主剤と硬化剤を混合したエポキシレジンRを目付量400g/mでローラーを用いて塗布し、第1補強層を形成させた。第1補強層の上に実施例1~5で用いた炭素繊維シートを貼り付け、補強繊維層を形成させた。補強繊維層の上にエポキシレジンRを目付量300g/mでローラーを用いて塗布し、第2補強層を形成させた。その後、第1補強層及び第2補強層に含まれるエポキシレジンRを硬化させた。硬化は、20±5℃にて放置することにより行った。補強層の硬化に要した時間T2[h]を表2に示す。
 比較例4では、比較例3の第1修復層を形成しないこと以外は比較例1と同様にコンクリート板の補修を行った。修復層の硬化に要した時間T1[h]、及び補強層の硬化に要した時間T2[h]を表2に示す。
<3-4.実施例6~10>
 実施例6~10では、表2に示される各成分を-25±5℃の雰囲気中にて24時間放置して、温度を一定にした後、混合し、ラジカル重合性樹脂組成物A6~A10、修復材X6~X10、及び硬化性樹脂組成物C2をそれぞれ作製した。
 実施例6~10における、コンクリート板の補修は、修復層硬化工程及び補強層硬化工程の温度を-25±5℃としたこと以外は実施例1の工程と同様とした。また、実施例6~10における各工程で用いたラジカル重合性樹脂組成物A6~A10、修復材X6~X10については表2で示す通りである。補強工程で用いる硬化性樹脂組成物C2及び炭素繊維シートD1は実施例6~10で共通のものを用いた。各実施例における修復層及び補修層の硬化に要した時間T1[h]、T2[h]を表2に示す。
<3-5.比較例5~6>
 比較例5では、第1修復層形成工程S1を行わなかったこと以外は実施例6と同様にコンクリート板の補修を行った。修復層の硬化時間T1[h]及び補強層の硬化時間T2[h]を表2に示す。
 比較例6では、第1修復層形成工程の後、第2修復層形成工程の前に、-25±5℃で第1修復層を24時間放置(本比較例では、ラジカル重合性樹脂組成物(A)の予測される硬化時間よりも長い時間放置)したこと以外は実施例6と同様にコンクリート板の補修を行った。なお、放置後の第1修復層は指触により硬化していることが確認された。第1修復層を放置した時間T0[h]、第2修復層の硬化に要した時間T1[h]、及び補強層の硬化に要した時間T2[h]を表2に示す。
<3-6.比較例7>
 比較例7では、レイタンス層を除去したコンクリート板表面に、主剤と硬化剤を混合したエポキシプライマーP(比較例3で用いたものと同様)を目付量200g/mで刷毛を用いて塗布し、第1修復層を形成させた。その後、第1修復層を-25±5℃で硬化させようとしたが、塗膜が7日間を経過しても硬化しなかったため、その後の工程は行わなかった。
<4.評価方法>
<4-1.総硬化時間>
 比較例2~3及び比較例7以外の各実施例及び比較例については修復層硬化時間T1及び補強層硬化時間T2の合計T1+T2を、比較例2~3については第1修復層放置又は硬化時間T0、修復層硬化時間T1及び補強層硬化時間T2の合計T0+T1+T2を総硬化時間として算出した。算出された総硬化時間を表2に示す。なお、比較例7については硬化しなかったので総硬化時間は算出できなかった。
<4-2.コンクリート付着試験>
 図4は、コンクリート付着試験の方法を示す図である。実施例1~10及び比較例1~6の各々における、コンクリート板1上に形成され、硬化した修復層2及び硬化した補強層3(以下、この項においては、「修復層2」及び「補強層3」とする)について、コンクリート付着試験を、国立研究開発法人建築研究所式接着力試験方法に準じて行った。以下、具体的に説明する。
 補強層3の表面に、接着剤4を使用して、金属製のアタッチメント5(底面4cm×4cm、取り付け面積1600mm)を接着した。接着剤4は、実施例1~5及び比較例1~2においては、クイックメンダー(コニシ株式会社製)を用い、接着剤4の硬化時間は1時間とした。比較例3~4においては、補強層3で炭素繊維シートと一体化させる際に用いたものと同じエポキシレジンRを用い、接着剤4の硬化時間は24時間とした。実施例6~10及び比較例5~6おいては、補強層3で炭素繊維シートと一体化させる際に用いたものと同じ硬化性樹脂組成物C2を用い、接着剤4の硬化時間は補強層3の形成の際に硬化に要した時間T2と同じ3時間とした。
 接着剤4の硬化後、アタッチメント5の外周に沿って切れ込み6を、コンクリート板1に達するまでの深さで、カッターを用いて形成させた。その後、アタッチメント5を、補強層3表面に対して垂直(図4における矢印Fの方向)に引張り、破壊時の最大荷重[N]をアタッチメント5の取り付け面積1600[mm]で割ることで接着強度[N/mm]を算出した。
 また、コンクリート板1の、アタッチメント5を取り付けていた部分のうち、コンクリート板1が破断した部分の面積を測定し、アタッチメント5の取り付け面積1600[mm]に対する割合を求め、母材(コンクリート)破壊割合[%]とした。コンクリート板1が破断した部分の面積は、アタッチメント5が取り付けられていた部分を、10mm×10mmのメッシュに分けて、各々のメッシュにおけるコンクリート板1の破断部が占める部分を三角形、四角形、又はこれらの組み合わせの図形に近似して面積を求め、各メッシュにおいて求められた面積の合計とした。比較例7を除く各実施例及び比較例における接着強度[N/mm]及び母材破壊割合[%]を表2に示す。
<5.評価結果>
 表2からわかるように、実施例1~5では20±5℃の範囲で、実施例6~10では、-25±5℃の範囲で、それぞれ短い総硬化時間、高い接着強度及び母材破壊割合が得られていることが分かる。接着強度の値が大きいほど、及び母材破壊割合が高いほど、コンクリートと硬化した修復層との間、及び硬化した修復層と硬化した補強層との間で強固に接着していると言える。
 これに対し、第1修復層形成工程においてエポキシプライマーPを、及び第2修復層形成工程においてエポキシパテQを用い、20±5℃で各層を硬化させた比較例3では、総硬化時間が長かった。比較例3に対して、第1修復層を形成させていない比較例4については総硬化時間が長く、接着強度及び母材破壊割合が低かった。また、第1修復層としてのエポキシプライマーPを-25±5℃で硬化させようとした比較例7では、低温のため、エポキシプライマーPが硬化しなかった。
 第1修復層を形成させない比較例1は、実施例1~5に比べて、接着強度及び母材破壊割合が低い。このことは、第1修復層を形成させない比較例5を、実施例6~10と比較した場合においても同様に言える。そのため、第2修復層形成工程、すなわち修復材(X)の塗布前に、ラジカル重合性樹脂組成物(A)を塗布することにより、コンクリートと修復層とが強固に接着されることが分かる。
 第2修復層形成工程S2の前に第1修復層を硬化させている比較例2は、実施例1~5に比べて、接着強度及び母材破壊割合が低い。このことは、第1修復層を硬化させている比較例6を、実施例6~10と比較した場合においても同様に言える。そのため、第1修復層の硬化前に、第2修復層を形成させることで、工期を短縮できる上に、コンクリートと硬化した修復層とが強固に接着されることが分かる。
 以上のことから、ラジカル重合性樹脂組成物(A)を構造物に塗布し、第1修復層を形成させる第1修復層形成工程と、第1修復層を硬化させる前に、第1修復層上に、ラジカル重合性樹脂組成物(Ax)と充填材(B)とを含有する修復材(X)を塗布し、第2修復層を形成させる第2修復層形成工程と、ラジカル重合性樹脂組成物(A)及びラジカル重合性樹脂組成物(Ax)を硬化させる修復層硬化工程と、を有し、ラジカル重合性樹脂組成物(A)及びラジカル重合性樹脂組成物(Ax)は、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂及びポリエステル(メタ)アクリレート樹脂からなる群から選択される少なくとも1種のラジカル重合性樹脂(a1)と、モノ(メタ)アクリル酸エステル、ジ(メタ)アクリル酸エステル及びトリ(メタ)アクリル酸エステルからなる群から選択される少なくとも1種のラジカル重合性不飽和単量体(a2)と、一般式(I)で示される水酸基含有芳香族3級アミン(a3)と、有機過酸化物(a4)とを含有し、ラジカル重合性樹脂組成物(A)及び(Ax)における、ラジカル重合性樹脂(a1)及びラジカル重合性不飽和単量体(a2)の含有率は75質量%以上であり、ラジカル重合性樹脂組成物(A)及び(Ax)は、充填材を含まない構造物の補修方法によれば、コンクリート構造物に適用した場合に、広い温度範囲で、短い工期かつ高い信頼性を確保できることが分かる。
1:コンクリート板
2:修復層
3:補強層
4:接着剤
5:アタッチメント
6:切れ込み
 

Claims (15)

  1.  ラジカル重合性樹脂組成物(A)を構造物に塗布し、第1修復層を形成させる第1修復層形成工程と、
     前記第1修復層を硬化させる前に、前記第1修復層上に、ラジカル重合性樹脂組成物(Ax)と充填材(B)とを含有する修復材(X)を塗布し、第2修復層を形成させる第2修復層形成工程と、
     前記ラジカル重合性樹脂組成物(A)及び前記ラジカル重合性樹脂組成物(Ax)を硬化させる修復層硬化工程と、を有し、
     前記ラジカル重合性樹脂組成物(A)及び前記ラジカル重合性樹脂組成物(Ax)は、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂及びポリエステル(メタ)アクリレート樹脂からなる群から選択される少なくとも1種のラジカル重合性樹脂(a1)と、モノ(メタ)アクリル酸エステル、ジ(メタ)アクリル酸エステル及びトリ(メタ)アクリル酸エステルからなる群から選択される少なくとも1種のラジカル重合性不飽和単量体(a2)と、下記一般式(I)で示される水酸基含有芳香族3級アミン(a3)と、有機過酸化物(a4)とを含有し、
     前記ラジカル重合性樹脂組成物(A)及び(Ax)の各々における、ラジカル重合性樹脂(a1)及びラジカル重合性不飽和単量体(a2)の合計量の含有率は75質量%以上であり、
     前記ラジカル重合性樹脂組成物(A)及び(Ax)は、いずれも充填材を含まないことを特徴とする構造物の補修方法。
    Figure JPOXMLDOC01-appb-C000001

     (一般式(I)中、Rは、H、CH又はOCHを示し、Rは、ヒドロキシアルキル基を示し、Rは、アルキル基又はヒドロキシアルキル基を示す。)
  2.  前記ラジカル重合性樹脂組成物(A)と、前記ラジカル重合性樹脂組成物(Ax)とは同一組成である請求項1に記載の構造物の補修方法。
  3.  前記ラジカル重合性樹脂(a1)は、ビニルエステル樹脂を含み、該ビニルエステル樹脂は、エポキシ重合体の少なくともいずれかの末端にエステル結合を介して結合した不飽和結合を有する請求項1又は2に記載の構造物の補修方法。
  4.  前記不飽和結合は、ビニル基、アリル基、(メタ)アクリロイル基、及び(メタ)アクリロイルオキシ基からなる群から選択される少なくとも1種である請求項3に記載の構造物の補修方法。
  5.  前記ラジカル重合性樹脂(a1)は、ウレタン(メタ)アクリレート樹脂を含み、該ウレタン(メタ)アクリレート樹脂は、分子中の少なくともいずれかの末端に(メタ)アクリロイル基を有する、ジイソシアネートと直鎖状のグリコールとを重合して得られるポリウレタンである請求項1~4のいずれか1項に記載の構造物の補修方法。
  6.  前記ラジカル重合性樹脂(a1)は、ポリエステル(メタ)アクリレート樹脂を含み、該ポリエステル(メタ)アクリレート樹脂は、芳香族ジカルボン酸及び脂肪族飽和ジカルボン酸のうち少なくとも一方と、ジオールとから得られるポリエステルであって、分子鎖の少なくともいずれかの末端に(メタ)アクリロイル基を有する請求項1~5のいずれか1項に記載の構造物の補修方法。
  7.  前記ラジカル重合性樹脂組成物(A)において、前記ラジカル重合性樹脂(a1)と前記ラジカル重合性不飽和単量体(a2)との合計量に対する前記ラジカル重合性樹脂(a1)の含有率は、5~90質量%である請求項1~6のいずれか1項に記載の構造物の補修方法。
  8.  前記ラジカル重合性樹脂組成物(A)は、前記水酸基含有芳香族3級アミン(a3)を0.1~10質量%、前記有機過酸化物(a4)を0.1~10質量%含有する請求項1~7のいずれか1項に記載の構造物の補修方法。
  9.  前記修復材(X)は、前記ラジカル重合性樹脂組成物(Ax)100質量部に対して、前記充填材(B)を80~500質量部含有する、請求項1~8のいずれか1項に記載の構造物の補修方法。
  10.  前記充填材(B)は、無機充填材である請求項1~9のいずれか1項に記載の構造物の補修方法。
  11.  前記修復層硬化工程の後に、前記第2修復層上に、硬化性樹脂組成物(C)と、繊維材料(D)とを含有する補強層を形成する補強工程をさらに有する請求項1~10のいずれか1項に記載の構造物の補修方法。
  12.  前記補強工程は、前記第2修復層の上に硬化性樹脂組成物(C)を塗布して第1補強層を形成させる第1補強層形成工程と、前記第1補強層の上に繊維材料(D)を含む補強繊維層を形成する補強繊維層形成工程と、前記補強繊維層の上に硬化性樹脂組成物(C)を塗布して第2補強層を形成させる第2補強層形成工程と、前記第1補強層及び第2補強層に含まれる硬化性樹脂組成物(C)を硬化させる補強層硬化工程と、を含む請求項11に記載の構造物の補修方法。
  13.  前記硬化性樹脂組成物(C)は、ビニル化合物及びエポキシ化合物からなる群から選択される少なくとも1種を含む請求項11又は12に記載の構造物の補修方法。
  14.  前記繊維材料(D)は、炭素繊維シートである、請求項12又は13に記載の構造物の補修方法。
  15.  前記構造物はコンクリート構造物である請求項1~14のいずれか1項に記載の構造物の補修方法。
     
PCT/JP2019/032362 2018-09-27 2019-08-20 構造物の補修方法 WO2020066363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020548148A JPWO2020066363A1 (ja) 2018-09-27 2019-08-20 構造物の補修方法
EP19867222.2A EP3858805A4 (en) 2018-09-27 2019-08-20 Structure repairing method
US17/275,715 US20210283655A1 (en) 2018-09-27 2019-08-20 Structure repairing method
CN201980063075.5A CN112789259A (zh) 2018-09-27 2019-08-20 结构物的修补方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182972 2018-09-27
JP2018-182972 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066363A1 true WO2020066363A1 (ja) 2020-04-02

Family

ID=69950455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032362 WO2020066363A1 (ja) 2018-09-27 2019-08-20 構造物の補修方法

Country Status (5)

Country Link
US (1) US20210283655A1 (ja)
EP (1) EP3858805A4 (ja)
JP (1) JPWO2020066363A1 (ja)
CN (1) CN112789259A (ja)
WO (1) WO2020066363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825813A (zh) * 2020-08-07 2020-10-27 广东晨宝复合材料股份有限公司 一种用于柏油路面快速修复的uv树脂及其制备方法
WO2022224988A1 (ja) * 2021-04-23 2022-10-27 昭和電工株式会社 凹部充填材キット、その硬化物及び凹部充填法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097233A (ja) 2000-09-21 2002-04-02 Nippon Shokubai Co Ltd ラジカル重合性樹脂乾燥性付与剤、ラジカル重合性樹脂組成物及びラジカル重合性樹脂組成物硬化物
JP2002235444A (ja) 2001-02-08 2002-08-23 Nippon Thermal Engineering Corp コンクリート構造物の補修工法
JP2004018719A (ja) * 2002-06-18 2004-01-22 Showa Highpolymer Co Ltd コンクリート剥落防止用硬化性材料及びコンクリート剥落防止方法
JP2005336952A (ja) 2004-05-31 2005-12-08 Denki Kagaku Kogyo Kk コンクリート劣化部の断面修復工法およびそれに用いる無収縮ポリマーセメントモルタル
JP2007002432A (ja) * 2005-06-21 2007-01-11 Kurabo Ind Ltd セメント系構造物の補強方法および該方法によって補強されたセメント系構造物
WO2016133094A1 (ja) 2015-02-19 2016-08-25 昭和電工株式会社 低温硬化断面修復材、およびそれを用いた断面修復方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218354A (ja) * 2003-01-17 2004-08-05 Masashi Furukawa セメント構造物の補強方法及びこれを用いた視線誘導壁の形成方法
JP5457644B2 (ja) * 2008-06-03 2014-04-02 昭和電工株式会社 低温硬化性樹脂組成物、それを用いた塗膜形成方法、樹脂モルタル及び繊維強化樹脂
WO2015064191A1 (ja) * 2013-10-30 2015-05-07 Dic株式会社 コンクリート補修材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097233A (ja) 2000-09-21 2002-04-02 Nippon Shokubai Co Ltd ラジカル重合性樹脂乾燥性付与剤、ラジカル重合性樹脂組成物及びラジカル重合性樹脂組成物硬化物
JP2002235444A (ja) 2001-02-08 2002-08-23 Nippon Thermal Engineering Corp コンクリート構造物の補修工法
JP2004018719A (ja) * 2002-06-18 2004-01-22 Showa Highpolymer Co Ltd コンクリート剥落防止用硬化性材料及びコンクリート剥落防止方法
JP2005336952A (ja) 2004-05-31 2005-12-08 Denki Kagaku Kogyo Kk コンクリート劣化部の断面修復工法およびそれに用いる無収縮ポリマーセメントモルタル
JP2007002432A (ja) * 2005-06-21 2007-01-11 Kurabo Ind Ltd セメント系構造物の補強方法および該方法によって補強されたセメント系構造物
WO2016133094A1 (ja) 2015-02-19 2016-08-25 昭和電工株式会社 低温硬化断面修復材、およびそれを用いた断面修復方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3858805A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825813A (zh) * 2020-08-07 2020-10-27 广东晨宝复合材料股份有限公司 一种用于柏油路面快速修复的uv树脂及其制备方法
WO2022224988A1 (ja) * 2021-04-23 2022-10-27 昭和電工株式会社 凹部充填材キット、その硬化物及び凹部充填法
JPWO2022224988A1 (ja) * 2021-04-23 2022-10-27
JP7439991B2 (ja) 2021-04-23 2024-02-28 株式会社レゾナック 凹部充填材キット、その硬化物及び凹部充填法

Also Published As

Publication number Publication date
EP3858805A4 (en) 2022-06-29
US20210283655A1 (en) 2021-09-16
JPWO2020066363A1 (ja) 2021-10-07
CN112789259A (zh) 2021-05-11
EP3858805A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6694866B2 (ja) 低温硬化断面修復材、およびそれを用いた断面修復方法
JPWO2011040384A1 (ja) プライマー組成物、それを用いた床版防水構造体、及び床版防水施工方法
JP7164522B2 (ja) ラジカル重合性樹脂組成物及び構造物修復材
KR19980071870A (ko) 구조물의 보강 방법
JP2016029125A (ja) 2液硬化型樹脂組成物、被覆材、被覆工法及び被覆構造体
WO2020066363A1 (ja) 構造物の補修方法
JP5336730B2 (ja) 繊維強化プラスチック用ラジカル重合性接着剤を用いて接着された接着構造体及びその製造方法
JP2022075667A (ja) 金属基材への付着性が改善されたオートボディ修理用の不飽和ポリエステル組成物
KR101806228B1 (ko) 광경화시트 제조용 비닐에스테르 수지 조성물 및 이의 제조방법
JP5034747B2 (ja) 防水構造体及びその製造方法
JP2017214441A (ja) 樹脂組成物、ひび割れ注入材およびひび割れ修復方法
WO2019235063A1 (ja) ラジカル重合性パテ状樹脂組成物、シール剤、およびひび割れ修復方法
JP2000119353A (ja) シラップ組成物
JP2002114971A (ja) 防水材組成物及び防水構造体
JP2006274723A (ja) コンクリート用光硬化性プライマー組成物
WO2020066364A1 (ja) ラジカル重合性樹脂組成物、及び構造物補修材
JP6766320B2 (ja) 土木建築用プライマー及び床版防水構造体
JP4100120B2 (ja) 被覆構造体
JP2008013922A (ja) 塗り床構造体の施工方法
JP2005098022A (ja) 土木建築材用被覆組成物、舗装材及びこれを用いた舗装体
WO2022224989A1 (ja) 凹部充填材キット、その硬化物及び凹部充填法
WO2022224988A1 (ja) 凹部充填材キット、その硬化物及び凹部充填法
JP2018080281A (ja) 繊維強化プラスチックシート
WO2016171034A1 (ja) ラジカル重合性樹脂組成物及び土木建築用プライマー
JP2017145329A (ja) 繊維強化プラスチック用樹脂組成物、防水構造、及び防水構造の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867222

Country of ref document: EP

Effective date: 20210428